g1CollectedHeap.cpp 251.2 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25
#include "precompiled.hpp"
J
johnc 已提交
26
#include "code/codeCache.hpp"
27 28 29 30 31
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
32
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
33 34
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
35
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
36
#include "gc_implementation/g1/g1EvacFailure.hpp"
37
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
38
#include "gc_implementation/g1/g1Log.hpp"
39 40 41
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
S
sla 已提交
42
#include "gc_implementation/g1/g1YCTypes.hpp"
43
#include "gc_implementation/g1/heapRegion.inline.hpp"
44 45 46
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
S
sla 已提交
47 48 49 50
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
51 52 53
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/generationSpec.hpp"
54
#include "memory/iterator.hpp"
55
#include "memory/referenceProcessor.hpp"
56 57 58
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/vmThread.hpp"
59
#include "utilities/ticks.hpp"
60

61 62
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

63 64 65
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
66
#define YOUNG_LIST_VERBOSE 0
67 68 69 70 71 72
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
73 74 75 76 77
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
78

79 80 81 82 83 84
// Notes on implementation of parallelism in different tasks.
//
// G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
// The number of GC workers is passed to heap_region_par_iterate_chunked().
// It does use run_task() which sets _n_workers in the task.
// G1ParTask executes g1_process_strong_roots() ->
S
sla 已提交
85
// SharedHeap::process_strong_roots() which calls eventually to
86 87 88 89 90
// CardTableModRefBS::par_non_clean_card_iterate_work() which uses
// SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
// directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
//

91 92 93 94 95 96 97 98 99 100 101 102 103 104
// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  SuspendibleThreadSet* _sts;
  G1RemSet* _g1rs;
  ConcurrentG1Refine* _cg1r;
  bool _concurrent;
public:
  RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
                              G1RemSet* g1rs,
                              ConcurrentG1Refine* cg1r) :
    _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  {}
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
105
    bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
J
johnc 已提交
106 107 108 109 110
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    if (_concurrent && _sts->should_yield()) {
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  int _histo[256];
public:
  ClearLoggedCardTableEntryClosure() :
129
    _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set())
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  {
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      unsigned char* ujb = (unsigned char*)card_ptr;
      int ind = (int)(*ujb);
      _histo[ind]++;
      *card_ptr = -1;
    }
    return true;
  }
  int calls() { return _calls; }
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
public:
  RedirtyLoggedCardTableEntryClosure() :
160 161
    _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set()) {}

162 163 164 165 166 167 168 169 170 171
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      *card_ptr = 0;
    }
    return true;
  }
  int calls() { return _calls; }
};

172 173 174 175 176 177 178 179
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    *card_ptr = CardTableModRefBS::dirty_card_val();
    return true;
  }
};

180 181 182 183
YoungList::YoungList(G1CollectedHeap* g1h) :
    _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
  guarantee(check_list_empty(false), "just making sure...");
184 185 186 187 188 189 190 191 192
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

193
  _g1h->g1_policy()->set_region_eden(hr, (int) _length);
194 195 196 197
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
198
  assert(hr->is_survivor(), "should be flagged as survivor region");
199 200 201 202
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
203
    _survivor_tail = hr;
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  }
  _survivor_head = hr;
  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
228
  _survivor_tail = NULL;
229 230 231 232 233 234 235 236 237 238
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

239
  uint length = 0;
240 241 242
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
243
    if (!curr->is_young()) {
244
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
245
                             "incorrectly tagged (y: %d, surv: %d)",
246
                             curr->bottom(), curr->end(),
247
                             curr->is_young(), curr->is_survivor());
248 249 250 251 252 253 254 255 256 257
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
258
    gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
259 260 261
                           length, _length);
  }

262
  return ret;
263 264
}

265
bool YoungList::check_list_empty(bool check_sample) {
266 267 268
  bool ret = true;

  if (_length != 0) {
269
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

285
  return ret;
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
302 303 304 305 306 307 308 309 310 311 312 313
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

314 315 316 317 318 319 320 321 322 323 324 325 326 327
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
328
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
329

330
  int young_index_in_cset = 0;
331 332 333
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
334
    _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
335 336 337 338 339

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
340
    young_index_in_cset += 1;
341
  }
342
  assert((uint) young_index_in_cset == _survivor_length, "post-condition");
343 344
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

345 346
  _head   = _survivor_head;
  _length = _survivor_length;
347
  if (_survivor_head != NULL) {
348 349 350
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
351 352
  }

353 354 355 356
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
357

358
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
359 360 361 362 363

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
364 365
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
366 367 368 369 370 371 372

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
373 374
      gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                             HR_FORMAT_PARAMS(curr),
375 376
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
377
                             curr->age_in_surv_rate_group_cond());
378 379 380 381 382 383 384
      curr = curr->get_next_young_region();
    }
  }

  gclog_or_tty->print_cr("");
}

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

438
void G1CollectedHeap::stop_conc_gc_threads() {
439
  _cg1r->stop();
440 441 442
  _cmThread->stop();
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
  return hr != NULL && hr->in_collection_set();
}
#endif

// Returns true if the reference points to an object that
S
sla 已提交
461
// can move in an incremental collection.
462 463 464 465 466
bool G1CollectedHeap::is_scavengable(const void* p) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
467 468
     // null
     assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
469 470 471 472 473 474
     return false;
  } else {
    return !hr->isHumongous();
  }
}

475 476
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
477
  CardTableModRefBS* ct_bs = g1_barrier_set();
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
  dcqs.set_closure(&clear);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
  JavaThread::dirty_card_queue_set().set_closure(&redirty);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
                         clear.calls(), orig_count);
  guarantee(redirty.calls() == clear.calls(),
            "Or else mechanism is broken.");

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }

  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

526
HeapRegion*
T
tonyp 已提交
527
G1CollectedHeap::new_region_try_secondary_free_list() {
528 529 530 531 532
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
533
                               "secondary_free_list has %u entries",
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

      assert(!_free_list.is_empty(), "if the secondary_free_list was not "
             "empty we should have moved at least one entry to the free_list");
      HeapRegion* res = _free_list.remove_head();
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

S
sla 已提交
552
    // Wait here until we get notified either when (a) there are no
553 554 555 556 557 558 559 560 561 562 563
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
564

565
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
566
  assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
567 568
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
569

570 571 572 573 574 575 576
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
T
tonyp 已提交
577
      res = new_region_try_secondary_free_list();
578 579 580 581 582 583 584 585 586 587 588
      if (res != NULL) {
        return res;
      }
    }
  }
  res = _free_list.remove_head_or_null();
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
T
tonyp 已提交
589
    res = new_region_try_secondary_free_list();
590
  }
591 592 593 594 595 596 597
  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
    // Currently, only attempts to allocate GC alloc regions set
    // do_expand to true. So, we should only reach here during a
    // safepoint. If this assumption changes we might have to
    // reconsider the use of _expand_heap_after_alloc_failure.
    assert(SafepointSynchronize::is_at_safepoint(), "invariant");

598 599 600 601 602
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
603
    if (expand(word_size * HeapWordSize)) {
604 605 606 607 608 609 610
      // Given that expand() succeeded in expanding the heap, and we
      // always expand the heap by an amount aligned to the heap
      // region size, the free list should in theory not be empty. So
      // it would probably be OK to use remove_head(). But the extra
      // check for NULL is unlikely to be a performance issue here (we
      // just expanded the heap!) so let's just be conservative and
      // use remove_head_or_null().
611
      res = _free_list.remove_head_or_null();
612 613
    } else {
      _expand_heap_after_alloc_failure = false;
614
    }
615 616 617 618
  }
  return res;
}

619 620
uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
                                                        size_t word_size) {
T
tonyp 已提交
621 622 623
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

624
  uint first = G1_NULL_HRS_INDEX;
625 626
  if (num_regions == 1) {
    // Only one region to allocate, no need to go through the slower
S
sla 已提交
627
    // path. The caller will attempt the expansion if this fails, so
628
    // let's not try to expand here too.
629
    HeapRegion* hr = new_region(word_size, false /* do_expand */);
630 631 632
    if (hr != NULL) {
      first = hr->hrs_index();
    } else {
633
      first = G1_NULL_HRS_INDEX;
634 635 636 637 638 639 640 641 642 643 644
    }
  } else {
    // We can't allocate humongous regions while cleanupComplete() is
    // running, since some of the regions we find to be empty might not
    // yet be added to the free list and it is not straightforward to
    // know which list they are on so that we can remove them. Note
    // that we only need to do this if we need to allocate more than
    // one region to satisfy the current humongous allocation
    // request. If we are only allocating one region we use the common
    // region allocation code (see above).
    wait_while_free_regions_coming();
T
tonyp 已提交
645
    append_secondary_free_list_if_not_empty_with_lock();
646 647

    if (free_regions() >= num_regions) {
648 649
      first = _hrs.find_contiguous(num_regions);
      if (first != G1_NULL_HRS_INDEX) {
650
        for (uint i = first; i < first + num_regions; ++i) {
651
          HeapRegion* hr = region_at(i);
652
          assert(hr->is_empty(), "sanity");
T
tonyp 已提交
653
          assert(is_on_master_free_list(hr), "sanity");
654 655 656 657 658 659 660 661 662
          hr->set_pending_removal(true);
        }
        _free_list.remove_all_pending(num_regions);
      }
    }
  }
  return first;
}

T
tonyp 已提交
663
HeapWord*
664 665
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
                                                           uint num_regions,
T
tonyp 已提交
666
                                                           size_t word_size) {
667
  assert(first != G1_NULL_HRS_INDEX, "pre-condition");
T
tonyp 已提交
668 669 670 671
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
672
  uint last = first + num_regions;
T
tonyp 已提交
673 674 675 676 677 678 679 680 681 682

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
683
  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
T
tonyp 已提交
684 685 686
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
687
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
688 689 690 691
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
S
sla 已提交
692
  // should also match the end of the last region in the series.
T
tonyp 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);

  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
722
  for (uint i = first + 1; i < last; ++i) {
723
    hr = region_at(i);
T
tonyp 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
    hr->set_continuesHumongous(first_hr);
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
744 745 746 747 748 749 750 751 752 753 754
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
768
  for (uint i = first + 1; i < last; ++i) {
769
    hr = region_at(i);
T
tonyp 已提交
770 771 772 773 774
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
775
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
776 777 778 779
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
780
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
  _summary_bytes_used += first_hr->used();
  _humongous_set.add(first_hr);

  return new_obj;
}

796 797 798
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
799
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
800
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
801

802
  verify_region_sets_optional();
803

804 805 806 807 808
  size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
  uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
  uint x_num = expansion_regions();
  uint fs = _hrs.free_suffix();
  uint first = humongous_obj_allocate_find_first(num_regions, word_size);
809
  if (first == G1_NULL_HRS_INDEX) {
810
    // The only thing we can do now is attempt expansion.
811
    if (fs + x_num >= num_regions) {
812 813 814 815 816 817 818 819 820 821
      // If the number of regions we're trying to allocate for this
      // object is at most the number of regions in the free suffix,
      // then the call to humongous_obj_allocate_find_first() above
      // should have succeeded and we wouldn't be here.
      //
      // We should only be trying to expand when the free suffix is
      // not sufficient for the object _and_ we have some expansion
      // room available.
      assert(num_regions > fs, "earlier allocation should have succeeded");

822 823 824 825 826
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);
827
      if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
828 829 830
        // Even though the heap was expanded, it might not have
        // reached the desired size. So, we cannot assume that the
        // allocation will succeed.
831 832
        first = humongous_obj_allocate_find_first(num_regions, word_size);
      }
833 834
    }
  }
835

T
tonyp 已提交
836
  HeapWord* result = NULL;
837
  if (first != G1_NULL_HRS_INDEX) {
T
tonyp 已提交
838 839 840
    result =
      humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
    assert(result != NULL, "it should always return a valid result");
841 842 843 844 845

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
846
  }
847 848

  verify_region_sets_optional();
T
tonyp 已提交
849 850

  return result;
851 852
}

853 854 855
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
856

857
  unsigned int dummy_gc_count_before;
858 859
  int dummy_gclocker_retry_count = 0;
  return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
860 861 862
}

HeapWord*
863 864 865
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
866

S
sla 已提交
867
  // Loop until the allocation is satisfied, or unsatisfied after GC.
868
  for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
869
    unsigned int gc_count_before;
870

871 872
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
873
      result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
874
    } else {
875
      result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
876 877 878 879
    }
    if (result != NULL) {
      return result;
    }
880

881 882 883 884
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
885

886 887 888 889 890 891
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
892
        // Allocations that take place on VM operations do not do any
893 894
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
895 896 897
        dirty_young_block(result, word_size);
      }
      return result;
898
    } else {
899 900 901
      if (gclocker_retry_count > GCLockerRetryAllocationCount) {
        return NULL;
      }
902 903
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
904 905 906 907 908
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
909
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
910 911 912
    }
  }

913
  ShouldNotReachHere();
914 915 916
  return NULL;
}

917
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
918 919
                                           unsigned int *gc_count_before_ret,
                                           int* gclocker_retry_count_ret) {
920 921 922 923 924
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
925

926 927 928 929 930 931 932
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
933
  HeapWord* result = NULL;
934 935 936
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    unsigned int gc_count_before;
937

938 939 940 941 942 943 944
    {
      MutexLockerEx x(Heap_lock);

      result = _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
      if (result != NULL) {
        return result;
945
      }
946

947 948 949
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
      assert(_mutator_alloc_region.get() == NULL, "only way to get here");
950

951 952
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
953 954
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
955 956 957 958 959 960 961 962
          result = _mutator_alloc_region.attempt_allocation_force(word_size,
                                                      false /* bot_updates */);
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
963 964 965 966 967 968 969 970 971 972 973 974
        // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
975 976
      }
    }
977

978 979
    if (should_try_gc) {
      bool succeeded;
980 981
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_inc_collection_pause);
982
      if (result != NULL) {
983
        assert(succeeded, "only way to get back a non-NULL result");
984 985 986
        return result;
      }

987 988 989 990 991
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
992
        *gc_count_before_ret = total_collections();
993 994 995
        return NULL;
      }
    } else {
996 997 998 999 1000
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
1001 1002 1003
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
1004
      GC_locker::stall_until_clear();
1005
      (*gclocker_retry_count_ret) += 1;
1006 1007
    }

S
sla 已提交
1008
    // We can reach here if we were unsuccessful in scheduling a
1009 1010 1011 1012 1013 1014 1015 1016 1017
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
    result = _mutator_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
1018
    if (result != NULL) {
1019
      return result;
1020 1021
    }

1022 1023 1024
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1025
      warning("G1CollectedHeap::attempt_allocation_slow() "
1026
              "retries %d times", try_count);
1027 1028 1029
    }
  }

1030 1031
  ShouldNotReachHere();
  return NULL;
1032 1033
}

1034
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1035 1036
                                          unsigned int * gc_count_before_ret,
                                          int* gclocker_retry_count_ret) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

1048
  assert_heap_not_locked_and_not_at_safepoint();
1049 1050
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
1051

1052 1053 1054 1055 1056
  // Humongous objects can exhaust the heap quickly, so we should check if we
  // need to start a marking cycle at each humongous object allocation. We do
  // the check before we do the actual allocation. The reason for doing it
  // before the allocation is that we avoid having to keep track of the newly
  // allocated memory while we do a GC.
1057 1058
  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
                                           word_size)) {
1059 1060 1061
    collect(GCCause::_g1_humongous_allocation);
  }

1062 1063 1064 1065 1066
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1067
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1068
    bool should_try_gc;
1069
    unsigned int gc_count_before;
1070

1071
    {
1072
      MutexLockerEx x(Heap_lock);
1073

1074 1075 1076 1077
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
      result = humongous_obj_allocate(word_size);
1078 1079
      if (result != NULL) {
        return result;
1080
      }
1081

1082 1083 1084
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
      } else {
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
         // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
1097 1098 1099
      }
    }

1100 1101 1102 1103
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1104

1105
      bool succeeded;
1106 1107
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_humongous_allocation);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
1118
        *gc_count_before_ret = total_collections();
1119
        return NULL;
1120 1121
      }
    } else {
1122 1123 1124 1125 1126
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
1127 1128 1129
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
1130
      GC_locker::stall_until_clear();
1131
      (*gclocker_retry_count_ret) += 1;
1132 1133
    }

S
sla 已提交
1134
    // We can reach here if we were unsuccessful in scheduling a
1135 1136 1137 1138 1139 1140
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1141 1142
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1143 1144
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1145 1146
    }
  }
1147 1148

  ShouldNotReachHere();
1149
  return NULL;
1150 1151
}

1152 1153
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                       bool expect_null_mutator_alloc_region) {
1154
  assert_at_safepoint(true /* should_be_vm_thread */);
1155 1156 1157
  assert(_mutator_alloc_region.get() == NULL ||
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1158

1159 1160 1161 1162
  if (!isHumongous(word_size)) {
    return _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
  } else {
1163 1164 1165 1166 1167
    HeapWord* result = humongous_obj_allocate(word_size);
    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
      g1_policy()->set_initiate_conc_mark_if_possible();
    }
    return result;
1168
  }
1169 1170

  ShouldNotReachHere();
1171 1172 1173
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
1174
  G1CollectedHeap* _g1h;
1175 1176
  ModRefBarrierSet* _mr_bs;
public:
1177
  PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
J
johnc 已提交
1178 1179
    _g1h(g1h), _mr_bs(mr_bs) {}

1180
  bool doHeapRegion(HeapRegion* r) {
J
johnc 已提交
1181 1182
    HeapRegionRemSet* hrrs = r->rem_set();

1183
    if (r->continuesHumongous()) {
J
johnc 已提交
1184 1185 1186
      // We'll assert that the strong code root list and RSet is empty
      assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
      assert(hrrs->occupied() == 0, "RSet should be empty");
1187
      return false;
1188
    }
J
johnc 已提交
1189

1190
    _g1h->reset_gc_time_stamps(r);
J
johnc 已提交
1191
    hrrs->clear();
1192 1193 1194 1195 1196 1197
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
J
johnc 已提交
1198

1199 1200 1201 1202
    return false;
  }
};

1203
void G1CollectedHeap::clear_rsets_post_compaction() {
1204
  PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1205 1206
  heap_region_iterate(&rs_clear);
}
1207

1208 1209 1210 1211 1212 1213
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1214
    _cl(g1->g1_rem_set(), worker_i),
1215 1216 1217
    _worker_i(worker_i),
    _g1h(g1)
  { }
1218

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

1236 1237 1238
  void work(uint worker_id) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1239
                                          _g1->workers()->active_workers(),
1240 1241 1242 1243
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
    // We only generate output for non-empty regions.
    if (!hr->is_empty()) {
      if (!hr->isHumongous()) {
        _hr_printer->post_compaction(hr, G1HRPrinter::Old);
      } else if (hr->startsHumongous()) {
1255
        if (hr->region_num() == 1) {
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
          // single humongous region
          _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
        } else {
          _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
        }
      } else {
        assert(hr->continuesHumongous(), "only way to get here");
        _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
      }
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1273 1274 1275 1276 1277
void G1CollectedHeap::print_hrs_post_compaction() {
  PostCompactionPrinterClosure cl(hr_printer());
  heap_region_iterate(&cl);
}

1278
bool G1CollectedHeap::do_collection(bool explicit_gc,
1279
                                    bool clear_all_soft_refs,
1280
                                    size_t word_size) {
1281 1282
  assert_at_safepoint(true /* should_be_vm_thread */);

1283
  if (GC_locker::check_active_before_gc()) {
1284
    return false;
1285 1286
  }

S
sla 已提交
1287
  STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1288
  gc_timer->register_gc_start();
S
sla 已提交
1289 1290 1291 1292

  SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());

1293
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1294 1295
  ResourceMark rm;

1296
  print_heap_before_gc();
S
sla 已提交
1297
  trace_heap_before_gc(gc_tracer);
1298

1299
  size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
1300

T
tonyp 已提交
1301
  HRSPhaseSetter x(HRSPhaseFullGC);
1302
  verify_region_sets_optional();
1303

1304 1305 1306 1307 1308
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1309 1310 1311 1312
  {
    IsGCActiveMark x;

    // Timing
B
brutisso 已提交
1313
    assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1314 1315
    gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
1316

1317
    {
S
sla 已提交
1318
      GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
      TraceCollectorStats tcs(g1mm()->full_collection_counters());
      TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());

      double start = os::elapsedTime();
      g1_policy()->record_full_collection_start();

      // Note: When we have a more flexible GC logging framework that
      // allows us to add optional attributes to a GC log record we
      // could consider timing and reporting how long we wait in the
      // following two methods.
      wait_while_free_regions_coming();
      // If we start the compaction before the CM threads finish
      // scanning the root regions we might trip them over as we'll
      // be moving objects / updating references. So let's wait until
      // they are done. By telling them to abort, they should complete
      // early.
      _cm->root_regions()->abort();
      _cm->root_regions()->wait_until_scan_finished();
      append_secondary_free_list_if_not_empty_with_lock();
1338

1339 1340 1341
      gc_prologue(true);
      increment_total_collections(true /* full gc */);
      increment_old_marking_cycles_started();
1342

1343
      assert(used() == recalculate_used(), "Should be equal");
1344

1345
      verify_before_gc();
1346

S
sla 已提交
1347
      pre_full_gc_dump(gc_timer);
1348

1349
      COMPILER2_PRESENT(DerivedPointerTable::clear());
1350

1351 1352 1353 1354 1355
      // Disable discovery and empty the discovered lists
      // for the CM ref processor.
      ref_processor_cm()->disable_discovery();
      ref_processor_cm()->abandon_partial_discovery();
      ref_processor_cm()->verify_no_references_recorded();
1356

1357 1358 1359 1360
      // Abandon current iterations of concurrent marking and concurrent
      // refinement, if any are in progress. We have to do this before
      // wait_until_scan_finished() below.
      concurrent_mark()->abort();
1361

1362 1363 1364 1365
      // Make sure we'll choose a new allocation region afterwards.
      release_mutator_alloc_region();
      abandon_gc_alloc_regions();
      g1_rem_set()->cleanupHRRS();
1366

1367 1368 1369 1370
      // We should call this after we retire any currently active alloc
      // regions so that all the ALLOC / RETIRE events are generated
      // before the start GC event.
      _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1371

1372 1373 1374 1375 1376 1377 1378
      // We may have added regions to the current incremental collection
      // set between the last GC or pause and now. We need to clear the
      // incremental collection set and then start rebuilding it afresh
      // after this full GC.
      abandon_collection_set(g1_policy()->inc_cset_head());
      g1_policy()->clear_incremental_cset();
      g1_policy()->stop_incremental_cset_building();
1379

1380 1381
      tear_down_region_sets(false /* free_list_only */);
      g1_policy()->set_gcs_are_young(true);
1382

1383 1384 1385
      // See the comments in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() about
      // how reference processing currently works in G1.
1386

1387 1388
      // Temporarily make discovery by the STW ref processor single threaded (non-MT).
      ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1389

1390 1391
      // Temporarily clear the STW ref processor's _is_alive_non_header field.
      ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1392

1393 1394
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
      ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1395

1396 1397 1398 1399 1400
      // Do collection work
      {
        HandleMark hm;  // Discard invalid handles created during gc
        G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
      }
1401

1402 1403
      assert(free_regions() == 0, "we should not have added any free regions");
      rebuild_region_sets(false /* free_list_only */);
1404

1405 1406 1407
      // Enqueue any discovered reference objects that have
      // not been removed from the discovered lists.
      ref_processor_stw()->enqueue_discovered_references();
1408

1409
      COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1410

1411
      MemoryService::track_memory_usage();
1412

1413 1414
      assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
      ref_processor_stw()->verify_no_references_recorded();
1415

1416 1417
      // Delete metaspaces for unloaded class loaders and clean up loader_data graph
      ClassLoaderDataGraph::purge();
J
johnc 已提交
1418
      MetaspaceAux::verify_metrics();
1419

1420 1421 1422 1423 1424 1425
      // Note: since we've just done a full GC, concurrent
      // marking is no longer active. Therefore we need not
      // re-enable reference discovery for the CM ref processor.
      // That will be done at the start of the next marking cycle.
      assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
      ref_processor_cm()->verify_no_references_recorded();
1426

1427 1428
      reset_gc_time_stamp();
      // Since everything potentially moved, we will clear all remembered
S
sla 已提交
1429
      // sets, and clear all cards.  Later we will rebuild remembered
1430 1431 1432
      // sets. We will also reset the GC time stamps of the regions.
      clear_rsets_post_compaction();
      check_gc_time_stamps();
1433

1434 1435
      // Resize the heap if necessary.
      resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1436

1437 1438 1439 1440
      if (_hr_printer.is_active()) {
        // We should do this after we potentially resize the heap so
        // that all the COMMIT / UNCOMMIT events are generated before
        // the end GC event.
1441

1442 1443 1444
        print_hrs_post_compaction();
        _hr_printer.end_gc(true /* full */, (size_t) total_collections());
      }
1445

1446 1447 1448 1449
      G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
      if (hot_card_cache->use_cache()) {
        hot_card_cache->reset_card_counts();
        hot_card_cache->reset_hot_cache();
1450
      }
1451

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
      // Rebuild remembered sets of all regions.
      if (G1CollectedHeap::use_parallel_gc_threads()) {
        uint n_workers =
          AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                                  workers()->active_workers(),
                                                  Threads::number_of_non_daemon_threads());
        assert(UseDynamicNumberOfGCThreads ||
               n_workers == workers()->total_workers(),
               "If not dynamic should be using all the  workers");
        workers()->set_active_workers(n_workers);
        // Set parallel threads in the heap (_n_par_threads) only
        // before a parallel phase and always reset it to 0 after
        // the phase so that the number of parallel threads does
        // no get carried forward to a serial phase where there
        // may be code that is "possibly_parallel".
        set_par_threads(n_workers);

        ParRebuildRSTask rebuild_rs_task(this);
        assert(check_heap_region_claim_values(
               HeapRegion::InitialClaimValue), "sanity check");
        assert(UseDynamicNumberOfGCThreads ||
               workers()->active_workers() == workers()->total_workers(),
               "Unless dynamic should use total workers");
        // Use the most recent number of  active workers
        assert(workers()->active_workers() > 0,
               "Active workers not properly set");
        set_par_threads(workers()->active_workers());
        workers()->run_task(&rebuild_rs_task);
        set_par_threads(0);
        assert(check_heap_region_claim_values(
               HeapRegion::RebuildRSClaimValue), "sanity check");
        reset_heap_region_claim_values();
      } else {
        RebuildRSOutOfRegionClosure rebuild_rs(this);
        heap_region_iterate(&rebuild_rs);
      }
1488

J
johnc 已提交
1489 1490 1491
      // Rebuild the strong code root lists for each region
      rebuild_strong_code_roots();

1492 1493 1494
      if (true) { // FIXME
        MetaspaceGC::compute_new_size();
      }
1495

1496 1497 1498
#ifdef TRACESPINNING
      ParallelTaskTerminator::print_termination_counts();
#endif
1499

1500 1501 1502 1503 1504
      // Discard all rset updates
      JavaThread::dirty_card_queue_set().abandon_logs();
      assert(!G1DeferredRSUpdate
             || (G1DeferredRSUpdate &&
                (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1505

1506 1507 1508 1509 1510
      _young_list->reset_sampled_info();
      // At this point there should be no regions in the
      // entire heap tagged as young.
      assert(check_young_list_empty(true /* check_heap */),
             "young list should be empty at this point");
1511

1512 1513
      // Update the number of full collections that have been completed.
      increment_old_marking_cycles_completed(false /* concurrent */);
1514

1515 1516
      _hrs.verify_optional();
      verify_region_sets_optional();
1517

1518 1519
      verify_after_gc();

1520 1521 1522
      // Start a new incremental collection set for the next pause
      assert(g1_policy()->collection_set() == NULL, "must be");
      g1_policy()->start_incremental_cset_building();
1523

1524 1525 1526 1527
      // Clear the _cset_fast_test bitmap in anticipation of adding
      // regions to the incremental collection set for the next
      // evacuation pause.
      clear_cset_fast_test();
1528

1529
      init_mutator_alloc_region();
1530

1531 1532
      double end = os::elapsedTime();
      g1_policy()->record_full_collection_end();
1533

1534 1535 1536
      if (G1Log::fine()) {
        g1_policy()->print_heap_transition();
      }
1537

1538 1539 1540 1541 1542
      // We must call G1MonitoringSupport::update_sizes() in the same scoping level
      // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
      // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
      // before any GC notifications are raised.
      g1mm()->update_sizes();
1543

1544 1545
      gc_epilogue(true);
    }
1546

1547
    if (G1Log::finer()) {
1548
      g1_policy()->print_detailed_heap_transition(true /* full */);
1549
    }
1550 1551

    print_heap_after_gc();
S
sla 已提交
1552 1553 1554
    trace_heap_after_gc(gc_tracer);

    post_full_gc_dump(gc_timer);
1555

1556
    gc_timer->register_gc_end();
S
sla 已提交
1557
    gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1558
  }
1559

1560
  return true;
1561 1562 1563
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1564 1565 1566 1567 1568 1569 1570 1571
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1584 1585 1586 1587
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1588
  // We don't have floating point command-line arguments
1589
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1590
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1591
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1592 1593
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1630

1631
  if (capacity_after_gc < minimum_desired_capacity) {
1632 1633
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);
1644 1645

    // No expansion, now see if we want to shrink
1646
  } else if (capacity_after_gc > maximum_desired_capacity) {
1647 1648
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1649 1650 1651 1652 1653 1654 1655 1656 1657
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
1658 1659 1660 1661 1662 1663
    shrink(shrink_bytes);
  }
}


HeapWord*
1664 1665
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                           bool* succeeded) {
1666
  assert_at_safepoint(true /* should_be_vm_thread */);
1667 1668 1669

  *succeeded = true;
  // Let's attempt the allocation first.
1670 1671 1672
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
                                 false /* expect_null_mutator_alloc_region */);
1673 1674 1675 1676
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1677 1678 1679 1680 1681 1682 1683

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size);
  if (result != NULL) {
1684
    assert(*succeeded, "sanity");
1685 1686 1687
    return result;
  }

1688 1689 1690 1691 1692 1693 1694 1695
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1696

1697 1698
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1699
                                  true /* expect_null_mutator_alloc_region */);
1700
  if (result != NULL) {
1701
    assert(*succeeded, "sanity");
1702 1703 1704
    return result;
  }

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1716
                                  true /* expect_null_mutator_alloc_region */);
1717
  if (result != NULL) {
1718
    assert(*succeeded, "sanity");
1719 1720 1721
    return result;
  }

1722
  assert(!collector_policy()->should_clear_all_soft_refs(),
1723
         "Flag should have been handled and cleared prior to this point");
1724

1725 1726 1727 1728
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1729
  assert(*succeeded, "sanity");
1730 1731 1732 1733 1734 1735 1736 1737 1738
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1739 1740 1741
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1742

1743
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1744 1745 1746 1747 1748
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
1749
  if (expand(expand_bytes)) {
1750
    _hrs.verify_optional();
1751 1752
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1753
                                 false /* expect_null_mutator_alloc_region */);
1754
  }
1755
  return NULL;
1756 1757
}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
void G1CollectedHeap::update_committed_space(HeapWord* old_end,
                                             HeapWord* new_end) {
  assert(old_end != new_end, "don't call this otherwise");
  assert((HeapWord*) _g1_storage.high() == new_end, "invariant");

  // Update the committed mem region.
  _g1_committed.set_end(new_end);
  // Tell the card table about the update.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  // Tell the BOT about the update.
  _bot_shared->resize(_g1_committed.word_size());
1769 1770
  // Tell the hot card cache about the update
  _cg1r->hot_card_cache()->resize_card_counts(capacity());
1771 1772
}

1773 1774
bool G1CollectedHeap::expand(size_t expand_bytes) {
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1775 1776
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1777 1778 1779 1780 1781
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);
1782

1783 1784 1785 1786 1787 1788 1789
  if (_g1_storage.uncommitted_size() == 0) {
    ergo_verbose0(ErgoHeapSizing,
                      "did not expand the heap",
                      ergo_format_reason("heap already fully expanded"));
    return false;
  }

1790 1791
  // First commit the memory.
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1792 1793
  bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  if (successful) {
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
    // Then propagate this update to the necessary data structures.
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    update_committed_space(old_end, new_end);

    FreeRegionList expansion_list("Local Expansion List");
    MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
    assert(mr.start() == old_end, "post-condition");
    // mr might be a smaller region than what was requested if
    // expand_by() was unable to allocate the HeapRegion instances
    assert(mr.end() <= new_end, "post-condition");

    size_t actual_expand_bytes = mr.byte_size();
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
    assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
           "post-condition");
    if (actual_expand_bytes < aligned_expand_bytes) {
      // We could not expand _hrs to the desired size. In this case we
      // need to shrink the committed space accordingly.
      assert(mr.end() < new_end, "invariant");

      size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
      // First uncommit the memory.
      _g1_storage.shrink_by(diff_bytes);
      // Then propagate this update to the necessary data structures.
      update_committed_space(new_end, mr.end());
1819
    }
1820
    _free_list.add_as_tail(&expansion_list);
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830

    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.start();
      while (curr < mr.end()) {
        HeapWord* curr_end = curr + HeapRegion::GrainWords;
        _hr_printer.commit(curr, curr_end);
        curr = curr_end;
      }
      assert(curr == mr.end(), "post-condition");
    }
1831
    g1_policy()->record_new_heap_size(n_regions());
1832
  } else {
1833 1834 1835
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
1836 1837 1838 1839 1840
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
        _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
      // We had head room...
1841
      vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1842 1843
    }
  }
1844
  return successful;
1845 1846
}

1847
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1848 1849 1850 1851
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
1852 1853 1854
  uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);

  uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1855
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1856
  size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1857 1858 1859 1860 1861 1862

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
1863 1864 1865 1866 1867
                shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  if (num_regions_removed > 0) {
    _g1_storage.shrink_by(shrunk_bytes);
    HeapWord* new_end = (HeapWord*) _g1_storage.high();

1868
    if (_hr_printer.is_active()) {
1869 1870
      HeapWord* curr = old_end;
      while (curr > new_end) {
1871 1872 1873 1874 1875 1876
        HeapWord* curr_end = curr;
        curr -= HeapRegion::GrainWords;
        _hr_printer.uncommit(curr, curr_end);
      }
    }

1877
    _expansion_regions += num_regions_removed;
1878 1879
    update_committed_space(old_end, new_end);
    HeapRegionRemSet::shrink_heap(n_regions());
1880
    g1_policy()->record_new_heap_size(n_regions());
1881 1882 1883 1884
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
1885 1886 1887 1888
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1889 1890
  verify_region_sets_optional();

1891 1892 1893 1894 1895
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
  abandon_gc_alloc_regions();

1896 1897 1898
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
T
tonyp 已提交
1899
  tear_down_region_sets(true /* free_list_only */);
1900
  shrink_helper(shrink_bytes);
T
tonyp 已提交
1901
  rebuild_region_sets(true /* free_list_only */);
1902

1903
  _hrs.verify_optional();
1904
  verify_region_sets_optional();
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1917
  _dirty_card_queue_set(false),
J
johnc 已提交
1918
  _into_cset_dirty_card_queue_set(false),
1919 1920 1921 1922
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
1923 1924
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
S
sla 已提交
1925
  _evac_failure_scan_stack(NULL),
1926
  _mark_in_progress(false),
1927
  _cg1r(NULL), _summary_bytes_used(0),
1928
  _g1mm(NULL),
1929 1930
  _refine_cte_cl(NULL),
  _full_collection(false),
1931 1932
  _free_list("Master Free List"),
  _secondary_free_list("Secondary Free List"),
T
tonyp 已提交
1933
  _old_set("Old Set"),
1934 1935
  _humongous_set("Master Humongous Set"),
  _free_regions_coming(false),
1936 1937
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1938
  _retained_old_gc_alloc_region(NULL),
1939 1940
  _survivor_plab_stats(YoungPLABSize, PLABWeight),
  _old_plab_stats(OldPLABSize, PLABWeight),
1941
  _expand_heap_after_alloc_failure(true),
1942
  _surviving_young_words(NULL),
1943 1944
  _old_marking_cycles_started(0),
  _old_marking_cycles_completed(0),
S
sla 已提交
1945
  _concurrent_cycle_started(false),
1946
  _in_cset_fast_test(NULL),
1947
  _in_cset_fast_test_base(NULL),
1948 1949
  _dirty_cards_region_list(NULL),
  _worker_cset_start_region(NULL),
S
sla 已提交
1950 1951 1952 1953 1954 1955 1956
  _worker_cset_start_region_time_stamp(NULL),
  _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {

  _g1h = this;
1957 1958 1959
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1960 1961 1962

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1963 1964 1965 1966 1967 1968
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

  int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  assert(n_rem_sets > 0, "Invariant.");

Z
zgu 已提交
1969 1970
  _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
S
sla 已提交
1971
  _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1972

1973 1974 1975 1976
  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
S
sla 已提交
1977
    ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1978
  }
1979 1980
  clear_cset_start_regions();

1981 1982 1983
  // Initialize the G1EvacuationFailureALot counters and flags.
  NOT_PRODUCT(reset_evacuation_should_fail();)

1984 1985 1986 1987
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1988
  CollectedHeap::pre_initialize();
1989 1990
  os::enable_vtime();

1991 1992
  G1Log::init();

1993 1994 1995 1996
  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1997 1998 1999 2000
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

2001 2002 2003 2004 2005 2006 2007 2008 2009
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();
2010
  size_t heap_alignment = collector_policy()->heap_alignment();
2011 2012 2013 2014

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2015
  Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2016

2017
  _cg1r = new ConcurrentG1Refine(this);
2018 2019

  // Reserve the maximum.
2020

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

2032
  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2033
                                                 heap_alignment);
2034 2035

  // It is important to do this in a way such that concurrent readers can't
S
sla 已提交
2036
  // temporarily think something is in the heap.  (I've actually seen this
2037 2038 2039 2040 2041
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

2042
  _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2043 2044 2045 2046

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
2047 2048
  if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
    vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2049 2050 2051 2052
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
2053
  _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2054 2055 2056 2057 2058 2059 2060 2061 2062

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2063
  _hrs.initialize((HeapWord*) _g1_reserved.start(),
2064 2065 2066 2067
                  (HeapWord*) _g1_reserved.end());
  assert(_hrs.max_length() == _expansion_regions,
         err_msg("max length: %u expansion regions: %u",
                 _hrs.max_length(), _expansion_regions));
2068

2069 2070 2071
  // Do later initialization work for concurrent refinement.
  _cg1r->init();

2072 2073
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
2074
  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2075 2076 2077
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2078
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2079
  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2080
            "too many cards per region");
2081

2082 2083
  HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);

2084 2085 2086 2087 2088
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

2089 2090
  _in_cset_fast_test_length = max_regions();
  _in_cset_fast_test_base =
Z
zgu 已提交
2091
                   NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2092

2093 2094 2095 2096
  // We're biasing _in_cset_fast_test to avoid subtracting the
  // beginning of the heap every time we want to index; basically
  // it's the same with what we do with the card table.
  _in_cset_fast_test = _in_cset_fast_test_base -
2097
               ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2098

2099 2100 2101 2102
  // Clear the _cset_fast_test bitmap in anticipation of adding
  // regions to the incremental collection set for the first
  // evacuation pause.
  clear_cset_fast_test();
2103

2104 2105
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
2106 2107 2108 2109 2110
  _cm = new ConcurrentMark(this, heap_rs);
  if (_cm == NULL || !_cm->completed_initialization()) {
    vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
    return JNI_ENOMEM;
  }
2111 2112 2113 2114 2115
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2116
  // Now expand into the initial heap size.
2117
  if (!expand(init_byte_size)) {
2118
    vm_shutdown_during_initialization("Failed to allocate initial heap.");
2119 2120
    return JNI_ENOMEM;
  }
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  _refine_cte_cl =
    new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
                                    g1_rem_set(),
                                    concurrent_g1_refine());
  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2133
                                               G1SATBProcessCompletedThreshold,
2134
                                               Shared_SATB_Q_lock);
2135 2136 2137

  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
2138 2139
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2140 2141
                                                Shared_DirtyCardQ_lock);

2142 2143 2144
  if (G1DeferredRSUpdate) {
    dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                      DirtyCardQ_FL_lock,
2145 2146
                                      -1, // never trigger processing
                                      -1, // no limit on length
2147 2148 2149
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
J
johnc 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
  _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2160 2161 2162 2163
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

2164 2165 2166
  // Here we allocate the dummy full region that is required by the
  // G1AllocRegion class. If we don't pass an address in the reserved
  // space here, lots of asserts fire.
2167 2168 2169

  HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
                                             _g1_reserved.start());
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
  // BOT updates. So we'll tag the dummy region as young to avoid that.
  dummy_region->set_young();
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

  init_mutator_alloc_region();

2181 2182
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
2183
  _g1mm = new G1MonitoringSupport(this);
2184

2185 2186 2187
  return JNI_OK;
}

2188 2189 2190 2191
size_t G1CollectedHeap::conservative_max_heap_alignment() {
  return HeapRegion::max_region_size();
}

2192
void G1CollectedHeap::ref_processing_init() {
2193 2194
  // Reference processing in G1 currently works as follows:
  //
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.
2227

2228 2229
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           (int) ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
                           &_is_alive_closure_cm,
                                // is alive closure
                                // (for efficiency/performance)
                           true);
                                // Setting next fields of discovered
                                // lists requires a barrier.

  // STW ref processor
  _ref_processor_stw =
2253
    new ReferenceProcessor(mr,    // span
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
                           &_is_alive_closure_stw,
                                // is alive closure
                                // (for efficiency/performance)
                           false);
                                // Setting next fields of discovered
                                // lists requires a barrier.
2270 2271 2272 2273 2274 2275
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  assert(!hr->continuesHumongous(), "pre-condition");
  hr->reset_gc_time_stamp();
  if (hr->startsHumongous()) {
    uint first_index = hr->hrs_index() + 1;
    uint last_index = hr->last_hc_index();
    for (uint i = first_index; i < last_index; i += 1) {
      HeapRegion* chr = region_at(i);
      assert(chr->continuesHumongous(), "sanity");
      chr->reset_gc_time_stamp();
    }
  }
}

#ifndef PRODUCT
class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
private:
  unsigned _gc_time_stamp;
  bool _failures;

public:
  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
    _gc_time_stamp(gc_time_stamp), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
    if (_gc_time_stamp != region_gc_time_stamp) {
      gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
                             "expected %d", HR_FORMAT_PARAMS(hr),
                             region_gc_time_stamp, _gc_time_stamp);
      _failures = true;
    }
    return false;
  }

  bool failures() { return _failures; }
};

void G1CollectedHeap::check_gc_time_stamps() {
  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "all GC time stamps should have been reset");
}
#endif // PRODUCT

J
johnc 已提交
2321 2322 2323
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2324
                                                 int worker_i) {
2325
  // Clean cards in the hot card cache
2326 2327
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2328

2329 2330
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2331
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2332 2333
    n_completed_buffers++;
  }
2334
  g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2335 2336 2337 2338 2339 2340 2341 2342
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
2343 2344
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
2345
  size_t result = _summary_bytes_used;
2346
  // Read only once in case it is set to NULL concurrently
2347
  HeapRegion* hr = _mutator_alloc_region.get();
2348 2349
  if (hr != NULL)
    result += hr->used();
2350 2351 2352
  return result;
}

2353 2354 2355 2356 2357
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
  SumUsedClosure blk;
2373
  heap_region_iterate(&blk);
2374 2375 2376 2377
  return blk.result();
}

size_t G1CollectedHeap::unsafe_max_alloc() {
2378
  if (free_regions() > 0) return HeapRegion::GrainBytes;
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
2389 2390
  HeapRegion* hr = _mutator_alloc_region.get();
  if (hr == NULL) {
2391 2392
    return 0;
  }
2393
  return hr->free();
2394 2395
}

2396
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2397 2398 2399 2400 2401 2402
  switch (cause) {
    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
    case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
    case GCCause::_g1_humongous_allocation: return true;
    default:                                return false;
  }
2403 2404
}

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
    HeapWord* dummy_obj = humongous_obj_allocate(word_size);
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
void G1CollectedHeap::increment_old_marking_cycles_started() {
  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
    _old_marking_cycles_started == _old_marking_cycles_completed + 1,
    err_msg("Wrong marking cycle count (started: %d, completed: %d)",
    _old_marking_cycles_started, _old_marking_cycles_completed));

  _old_marking_cycles_started++;
}

void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2437 2438
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2439 2440 2441 2442 2443
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2444 2445 2446 2447 2448 2449 2450 2451
  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2452
  assert(concurrent ||
2453 2454 2455 2456 2457
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
         err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2458 2459

  // This is the case for the outer caller, i.e. the concurrent cycle.
2460
  assert(!concurrent ||
2461
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2462
         err_msg("for outer caller (concurrent cycle): "
2463 2464 2465
                 "_old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2466

2467
  _old_marking_cycles_completed += 1;
2468

2469 2470 2471
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
S
sla 已提交
2472
  // incorrectly see that a marking cycle is still in progress.
2473
  if (concurrent) {
2474 2475 2476
    _cmThread->clear_in_progress();
  }

2477 2478 2479 2480 2481 2482 2483
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2484
void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
S
sla 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
  _concurrent_cycle_started = true;
  _gc_timer_cm->register_gc_start(start_time);

  _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  trace_heap_before_gc(_gc_tracer_cm);
}

void G1CollectedHeap::register_concurrent_cycle_end() {
  if (_concurrent_cycle_started) {
    if (_cm->has_aborted()) {
      _gc_tracer_cm->report_concurrent_mode_failure();
    }
2497

2498
    _gc_timer_cm->register_gc_end();
S
sla 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());

    _concurrent_cycle_started = false;
  }
}

void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  if (_concurrent_cycle_started) {
    trace_heap_after_gc(_gc_tracer_cm);
  }
}

G1YCType G1CollectedHeap::yc_type() {
  bool is_young = g1_policy()->gcs_are_young();
  bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  bool is_during_mark = mark_in_progress();

  if (is_initial_mark) {
    return InitialMark;
  } else if (is_during_mark) {
    return DuringMark;
  } else if (is_young) {
    return Normal;
  } else {
    return Mixed;
  }
}

2527
void G1CollectedHeap::collect(GCCause::Cause cause) {
2528
  assert_heap_not_locked();
2529

2530
  unsigned int gc_count_before;
2531
  unsigned int old_marking_count_before;
2532 2533 2534 2535 2536 2537 2538
  bool retry_gc;

  do {
    retry_gc = false;

    {
      MutexLocker ml(Heap_lock);
2539

2540 2541
      // Read the GC count while holding the Heap_lock
      gc_count_before = total_collections();
2542
      old_marking_count_before = _old_marking_cycles_started;
2543 2544 2545 2546 2547 2548
    }

    if (should_do_concurrent_full_gc(cause)) {
      // Schedule an initial-mark evacuation pause that will start a
      // concurrent cycle. We're setting word_size to 0 which means that
      // we are not requesting a post-GC allocation.
2549
      VM_G1IncCollectionPause op(gc_count_before,
2550
                                 0,     /* word_size */
2551
                                 true,  /* should_initiate_conc_mark */
2552 2553
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2554

2555
      VMThread::execute(&op);
2556
      if (!op.pause_succeeded()) {
2557
        if (old_marking_count_before == _old_marking_cycles_started) {
2558
          retry_gc = op.should_retry_gc();
2559 2560 2561 2562 2563
        } else {
          // A Full GC happened while we were trying to schedule the
          // initial-mark GC. No point in starting a new cycle given
          // that the whole heap was collected anyway.
        }
2564 2565 2566 2567 2568 2569

        if (retry_gc) {
          if (GC_locker::is_active_and_needs_gc()) {
            GC_locker::stall_until_clear();
          }
        }
2570
      }
2571
    } else {
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
      if (cause == GCCause::_gc_locker
          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

        // Schedule a standard evacuation pause. We're setting word_size
        // to 0 which means that we are not requesting a post-GC allocation.
        VM_G1IncCollectionPause op(gc_count_before,
                                   0,     /* word_size */
                                   false, /* should_initiate_conc_mark */
                                   g1_policy()->max_pause_time_ms(),
                                   cause);
        VMThread::execute(&op);
      } else {
        // Schedule a Full GC.
2585
        VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2586 2587
        VMThread::execute(&op);
      }
2588
    }
2589
  } while (retry_gc);
2590 2591 2592
}

bool G1CollectedHeap::is_in(const void* p) const {
S
stefank 已提交
2593 2594 2595 2596 2597
  if (_g1_committed.contains(p)) {
    // Given that we know that p is in the committed space,
    // heap_region_containing_raw() should successfully
    // return the containing region.
    HeapRegion* hr = heap_region_containing_raw(p);
2598 2599
    return hr->is_in(p);
  } else {
2600
    return false;
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
2611
  ExtendedOopClosure* _cl;
2612
public:
2613
  IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2614 2615
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
2616
    if (!r->continuesHumongous()) {
2617 2618 2619 2620 2621 2622
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2623
void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2624
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
2625
  heap_region_iterate(&blk);
2626 2627
}

2628
void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2629
  IterateOopClosureRegionClosure blk(mr, cl);
2630
  heap_region_iterate(&blk);
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2647
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2648
  IterateObjectClosureRegionClosure blk(cl);
2649
  heap_region_iterate(&blk);
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2666
  heap_region_iterate(&blk);
2667 2668
}

2669 2670
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  _hrs.iterate(cl);
2671 2672 2673 2674
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2675
                                                 uint worker_id,
2676
                                                 uint no_of_par_workers,
2677
                                                 jint claim_value) {
2678
  const uint regions = n_regions();
2679
  const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2680 2681 2682 2683 2684
                             no_of_par_workers :
                             1);
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
2685
  // try to spread out the starting points of the workers
2686 2687 2688
  const HeapRegion* start_hr =
                        start_region_for_worker(worker_id, no_of_par_workers);
  const uint start_index = start_hr->hrs_index();
2689 2690

  // each worker will actually look at all regions
2691 2692
  for (uint count = 0; count < regions; ++count) {
    const uint index = (start_index + count) % regions;
2693 2694 2695 2696 2697 2698 2699 2700 2701
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
2702
    if (r->claimHeapRegion(claim_value)) {
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
2714
        for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2715 2716 2717 2718 2719 2720 2721 2722 2723
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

S
sla 已提交
2724
          // No one should have claimed it directly. We can given
2725 2726 2727 2728 2729
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
S
sla 已提交
2730
            // we should always be able to claim it; no one else should
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
2746
      }
2747 2748 2749 2750

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
2751 2752 2753 2754
    }
  }
}

2755 2756 2757 2758 2759 2760 2761 2762
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

2763
void G1CollectedHeap::reset_heap_region_claim_values() {
2764 2765 2766 2767
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2768 2769 2770 2771 2772
void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  collection_set_iterate(&blk);
}

2773 2774 2775 2776 2777 2778 2779 2780 2781
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
2782
  uint _failures;
2783
  HeapRegion* _sh_region;
2784

2785 2786 2787 2788 2789
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
2790
      gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2791
                             "claim value = %d, should be %d",
2792 2793
                             HR_FORMAT_PARAMS(r),
                             r->claim_value(), _claim_value);
2794 2795 2796 2797 2798 2799 2800 2801
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
2802
        gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2803
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2804
                               HR_FORMAT_PARAMS(r),
2805 2806 2807 2808 2809 2810 2811
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
2812
  uint failures() { return _failures; }
2813 2814 2815 2816 2817 2818 2819
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
2820 2821

class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2822 2823 2824
private:
  jint _claim_value;
  uint _failures;
2825 2826 2827

public:
  CheckClaimValuesInCSetHRClosure(jint claim_value) :
2828
    _claim_value(claim_value), _failures(0) { }
2829

2830
  uint failures() { return _failures; }
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850

  bool doHeapRegion(HeapRegion* hr) {
    assert(hr->in_collection_set(), "how?");
    assert(!hr->isHumongous(), "H-region in CSet");
    if (hr->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
                             "claim value = %d, should be %d",
                             HR_FORMAT_PARAMS(hr),
                             hr->claim_value(), _claim_value);
      _failures += 1;
    }
    return false;
  }
};

bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesInCSetHRClosure cl(claim_value);
  collection_set_iterate(&cl);
  return cl.failures() == 0;
}
2851 2852
#endif // ASSERT

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
// Clear the cached CSet starting regions and (more importantly)
// the time stamps. Called when we reset the GC time stamp.
void G1CollectedHeap::clear_cset_start_regions() {
  assert(_worker_cset_start_region != NULL, "sanity");
  assert(_worker_cset_start_region_time_stamp != NULL, "sanity");

  int n_queues = MAX2((int)ParallelGCThreads, 1);
  for (int i = 0; i < n_queues; i++) {
    _worker_cset_start_region[i] = NULL;
    _worker_cset_start_region_time_stamp[i] = 0;
  }
}
2865

2866 2867
// Given the id of a worker, obtain or calculate a suitable
// starting region for iterating over the current collection set.
2868
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
  assert(get_gc_time_stamp() > 0, "should have been updated by now");

  HeapRegion* result = NULL;
  unsigned gc_time_stamp = get_gc_time_stamp();

  if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
    // Cached starting region for current worker was set
    // during the current pause - so it's valid.
    // Note: the cached starting heap region may be NULL
    // (when the collection set is empty).
    result = _worker_cset_start_region[worker_i];
    assert(result == NULL || result->in_collection_set(), "sanity");
    return result;
  }

  // The cached entry was not valid so let's calculate
  // a suitable starting heap region for this worker.

  // We want the parallel threads to start their collection
  // set iteration at different collection set regions to
  // avoid contention.
  // If we have:
  //          n collection set regions
  //          p threads
  // Then thread t will start at region floor ((t * n) / p)

  result = g1_policy()->collection_set();
2896
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2897
    uint cs_size = g1_policy()->cset_region_length();
2898
    uint active_workers = workers()->active_workers();
2899 2900 2901 2902
    assert(UseDynamicNumberOfGCThreads ||
             active_workers == workers()->total_workers(),
             "Unless dynamic should use total workers");

2903 2904
    uint end_ind   = (cs_size * worker_i) / active_workers;
    uint start_ind = 0;
2905 2906 2907 2908 2909 2910 2911 2912 2913

    if (worker_i > 0 &&
        _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
      // Previous workers starting region is valid
      // so let's iterate from there
      start_ind = (cs_size * (worker_i - 1)) / active_workers;
      result = _worker_cset_start_region[worker_i - 1];
    }

2914
    for (uint i = start_ind; i < end_ind; i++) {
2915 2916 2917
      result = result->next_in_collection_set();
    }
  }
2918 2919 2920 2921 2922 2923 2924 2925 2926

  // Note: the calculated starting heap region may be NULL
  // (when the collection set is empty).
  assert(result == NULL || result->in_collection_set(), "sanity");
  assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
         "should be updated only once per pause");
  _worker_cset_start_region[worker_i] = result;
  OrderAccess::storestore();
  _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2927 2928 2929
  return result;
}

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
                                                     uint no_of_par_workers) {
  uint worker_num =
           G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
  const uint start_index = n_regions() * worker_i / worker_num;
  return region_at(start_index);
}

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2955 2956 2957 2958 2959
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2983
  return n_regions() > 0 ? region_at(0) : NULL;
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  return HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

3023
  // Also, this value can be at most the humongous object threshold,
S
sla 已提交
3024
  // since we can't allow tlabs to grow big enough to accommodate
3025 3026
  // humongous objects.

3027
  HeapRegion* hr = _mutator_alloc_region.get();
3028
  size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
3029
  if (hr == NULL) {
3030
    return max_tlab_size;
3031
  } else {
3032
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
3033 3034 3035 3036
  }
}

size_t G1CollectedHeap::max_capacity() const {
3037
  return _g1_reserved.byte_size();
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
                                              VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking:
    return hr->obj_allocated_since_prev_marking(obj);
  case VerifyOption_G1UseNextMarking:
    return hr->obj_allocated_since_next_marking(obj);
  case VerifyOption_G1UseMarkWord:
    return false;
  default:
    ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  case VerifyOption_G1UseMarkWord:    return NULL;
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return "PTAMS";
  case VerifyOption_G1UseNextMarking: return "NTAMS";
  case VerifyOption_G1UseMarkWord:    return "NONE";
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

3097
class VerifyRootsClosure: public OopClosure {
J
johnc 已提交
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
private:
  G1CollectedHeap* _g1h;
  VerifyOption     _vo;
  bool             _failures;
public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
    _g1h(G1CollectedHeap::heap()),
    _vo(vo),
    _failures(false) { }

  bool failures() { return _failures; }

  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
        }
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
};

3133
class G1VerifyCodeRootOopClosure: public OopClosure {
J
johnc 已提交
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
  G1CollectedHeap* _g1h;
  OopClosure* _root_cl;
  nmethod* _nm;
  VerifyOption _vo;
  bool _failures;

  template <class T> void do_oop_work(T* p) {
    // First verify that this root is live
    _root_cl->do_oop(p);

    if (!G1VerifyHeapRegionCodeRoots) {
      // We're not verifying the code roots attached to heap region.
      return;
    }

    // Don't check the code roots during marking verification in a full GC
    if (_vo == VerifyOption_G1UseMarkWord) {
      return;
    }

    // Now verify that the current nmethod (which contains p) is
    // in the code root list of the heap region containing the
    // object referenced by p.

    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);

      // Now fetch the region containing the object
      HeapRegion* hr = _g1h->heap_region_containing(obj);
      HeapRegionRemSet* hrrs = hr->rem_set();
      // Verify that the strong code root list for this region
      // contains the nmethod
      if (!hrrs->strong_code_roots_list_contains(_nm)) {
        gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
                              "from nmethod "PTR_FORMAT" not in strong "
                              "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
                              p, _nm, hr->bottom(), hr->end());
        _failures = true;
      }
    }
  }

public:
  G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
    _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}

  void do_oop(oop* p) { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }

  void set_nmethod(nmethod* nm) { _nm = nm; }
  bool failures() { return _failures; }
};

class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  G1VerifyCodeRootOopClosure* _oop_cl;

public:
  G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
    _oop_cl(oop_cl) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL) {
      _oop_cl->set_nmethod(nm);
      nm->oops_do(_oop_cl);
    }
  }
};

class YoungRefCounterClosure : public OopClosure {
  G1CollectedHeap* _g1h;
  int              _count;
 public:
  YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  void do_oop(narrowOop* p) { ShouldNotReachHere(); }

  int count() { return _count; }
  void reset_count() { _count = 0; };
};

class VerifyKlassClosure: public KlassClosure {
  YoungRefCounterClosure _young_ref_counter_closure;
  OopClosure *_oop_closure;
 public:
  VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  void do_klass(Klass* k) {
    k->oops_do(_oop_closure);

    _young_ref_counter_closure.reset_count();
    k->oops_do(&_young_ref_counter_closure);
    if (_young_ref_counter_closure.count() > 0) {
      guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
    }
  }
};

3232
class VerifyLivenessOopClosure: public OopClosure {
3233 3234
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
3235
public:
3236 3237 3238
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
3239 3240 3241 3242 3243
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
3244
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3245
              "Dead object referenced by a not dead object");
3246 3247 3248 3249
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
3250
private:
3251 3252 3253
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
3254
  VerifyOption _vo;
3255
public:
3256 3257 3258 3259 3260
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
3261 3262 3263
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
3264
    VerifyLivenessOopClosure isLive(_g1h, _vo);
3265
    assert(o != NULL, "Huh?");
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

3278
      o->oop_iterate_no_header(&isLive);
3279 3280 3281 3282
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
3318
private:
3319 3320 3321
  bool             _par;
  VerifyOption     _vo;
  bool             _failures;
3322
public:
3323 3324 3325
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3326 3327
  VerifyRegionClosure(bool par, VerifyOption vo)
    : _par(par),
3328
      _vo(vo),
3329 3330 3331 3332 3333
      _failures(false) {}

  bool failures() {
    return _failures;
  }
3334

3335
  bool doHeapRegion(HeapRegion* r) {
3336
    if (!r->continuesHumongous()) {
3337
      bool failures = false;
3338
      r->verify(_vo, &failures);
3339 3340 3341
      if (failures) {
        _failures = true;
      } else {
3342
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3343
        r->object_iterate(&not_dead_yet_cl);
3344 3345 3346 3347 3348 3349 3350
        if (_vo != VerifyOption_G1UseNextMarking) {
          if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
            gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                   "max_live_bytes "SIZE_FORMAT" "
                                   "< calculated "SIZE_FORMAT,
                                   r->bottom(), r->end(),
                                   r->max_live_bytes(),
3351
                                 not_dead_yet_cl.live_bytes());
3352 3353 3354 3355 3356 3357
            _failures = true;
          }
        } else {
          // When vo == UseNextMarking we cannot currently do a sanity
          // check on the live bytes as the calculation has not been
          // finalized yet.
3358 3359
        }
      }
3360
    }
3361
    return false; // stop the region iteration if we hit a failure
3362 3363 3364
  }
};

J
johnc 已提交
3365
// This is the task used for parallel verification of the heap regions
3366 3367 3368 3369

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
3370 3371
  VerifyOption     _vo;
  bool             _failures;
3372 3373

public:
3374 3375 3376
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3377
  G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3378
    AbstractGangTask("Parallel verify task"),
3379
    _g1h(g1h),
3380
    _vo(vo),
3381 3382 3383 3384 3385
    _failures(false) { }

  bool failures() {
    return _failures;
  }
3386

3387
  void work(uint worker_id) {
3388
    HandleMark hm;
3389
    VerifyRegionClosure blk(true, _vo);
3390
    _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3391
                                          _g1h->workers()->active_workers(),
3392
                                          HeapRegion::ParVerifyClaimValue);
3393 3394 3395
    if (blk.failures()) {
      _failures = true;
    }
3396 3397 3398
  }
};

J
johnc 已提交
3399
void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3400
  if (SafepointSynchronize::is_at_safepoint()) {
3401
    assert(Thread::current()->is_VM_thread(),
3402
           "Expected to be executed serially by the VM thread at this point");
3403

J
johnc 已提交
3404 3405 3406 3407
    if (!silent) { gclog_or_tty->print("Roots "); }
    VerifyRootsClosure rootsCl(vo);
    G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
    G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3408
    VerifyKlassClosure klassCl(this, &rootsCl);
3409

3410 3411
    // We apply the relevant closures to all the oops in the
    // system dictionary, the string table and the code cache.
3412
    const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3413

3414 3415 3416
    // Need cleared claim bits for the strong roots processing
    ClassLoaderDataGraph::clear_claimed_marks();

3417
    process_strong_roots(true,      // activate StrongRootsScope
3418 3419
                         false,     // we set "is scavenging" to false,
                                    // so we don't reset the dirty cards.
3420
                         ScanningOption(so),  // roots scanning options
3421
                         &rootsCl,
3422
                         &blobsCl,
3423 3424
                         &klassCl
                         );
3425

J
johnc 已提交
3426
    bool failures = rootsCl.failures() || codeRootsCl.failures();
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

3437
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3438 3439 3440 3441
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3442
      G1ParVerifyTask task(this, vo);
3443 3444 3445 3446
      assert(UseDynamicNumberOfGCThreads ||
        workers()->active_workers() == workers()->total_workers(),
        "If not dynamic should be using all the workers");
      int n_workers = workers()->active_workers();
3447 3448 3449
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3450 3451 3452
      if (task.failures()) {
        failures = true;
      }
3453

3454 3455
      // Checks that the expected amount of parallel work was done.
      // The implication is that n_workers is > 0.
3456 3457 3458 3459 3460 3461 3462 3463
      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3464
      VerifyRegionClosure blk(false, vo);
3465
      heap_region_iterate(&blk);
3466 3467 3468
      if (blk.failures()) {
        failures = true;
      }
3469
    }
3470
    if (!silent) gclog_or_tty->print("RemSet ");
3471
    rem_set()->verify();
3472 3473 3474

    if (failures) {
      gclog_or_tty->print_cr("Heap:");
3475 3476 3477 3478
      // It helps to have the per-region information in the output to
      // help us track down what went wrong. This is why we call
      // print_extended_on() instead of print_on().
      print_extended_on(gclog_or_tty);
3479
      gclog_or_tty->print_cr("");
3480
#ifndef PRODUCT
3481
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3482
        concurrent_mark()->print_reachable("at-verification-failure",
3483
                                           vo, false /* all */);
3484
      }
3485
#endif
3486 3487 3488
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3489
  } else {
3490 3491
    if (!silent)
      gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3492 3493 3494
  }
}

J
johnc 已提交
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
void G1CollectedHeap::verify(bool silent) {
  verify(silent, VerifyOption_G1UsePrevMarking);
}

double G1CollectedHeap::verify(bool guard, const char* msg) {
  double verify_time_ms = 0.0;

  if (guard && total_collections() >= VerifyGCStartAt) {
    double verify_start = os::elapsedTime();
    HandleMark hm;  // Discard invalid handles created during verification
    prepare_for_verify();
    Universe::verify(VerifyOption_G1UsePrevMarking, msg);
    verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  }

  return verify_time_ms;
}

void G1CollectedHeap::verify_before_gc() {
  double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}

void G1CollectedHeap::verify_after_gc() {
  double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
}

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

void G1CollectedHeap::print_on(outputStream* st) const {
3534 3535
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3536
            capacity()/K, used_unlocked()/K);
3537 3538 3539 3540 3541
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
3542
  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3543 3544 3545 3546 3547 3548
  uint young_regions = _young_list->length();
  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
            (size_t) young_regions * HeapRegion::GrainBytes / K);
  uint survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3549
  st->cr();
3550
  MetaspaceAux::print_on(st);
3551 3552
}

3553 3554 3555 3556 3557
void G1CollectedHeap::print_extended_on(outputStream* st) const {
  print_on(st);

  // Print the per-region information.
  st->cr();
3558 3559 3560 3561 3562
  st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
               "HS=humongous(starts), HC=humongous(continues), "
               "CS=collection set, F=free, TS=gc time stamp, "
               "PTAMS=previous top-at-mark-start, "
               "NTAMS=next top-at-mark-start)");
3563
  PrintRegionClosure blk(st);
3564
  heap_region_iterate(&blk);
3565 3566
}

3567 3568 3569 3570 3571 3572 3573 3574 3575
void G1CollectedHeap::print_on_error(outputStream* st) const {
  this->CollectedHeap::print_on_error(st);

  if (_cm != NULL) {
    st->cr();
    _cm->print_on_error(st);
  }
}

3576
void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3577
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3578
    workers()->print_worker_threads_on(st);
3579
  }
T
tonyp 已提交
3580
  _cmThread->print_on(st);
3581
  st->cr();
T
tonyp 已提交
3582 3583
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
3584 3585 3586
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3587
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3588 3589 3590
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3591
  _cg1r->threads_do(tc);
3592 3593 3594 3595 3596 3597 3598 3599 3600
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3601
  if (G1SummarizeRSetStats) {
3602 3603
    g1_rem_set()->print_summary_info();
  }
3604
  if (G1SummarizeConcMark) {
3605 3606 3607 3608 3609 3610
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->print_cr(msg);
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3661 3662 3663 3664 3665 3666 3667
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3668
  // always_do_update_barrier = false;
3669 3670 3671
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Fill TLAB's and such
  ensure_parsability(true);
3672 3673 3674 3675 3676

  if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  }
3677 3678 3679
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3680 3681 3682 3683 3684

  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      // we are at the end of the GC. Total collections has already been increased.
      ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3685
    g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3686 3687
  }

3688 3689 3690 3691 3692
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3693
  // always_do_update_barrier = true;
3694 3695 3696 3697

  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
3698 3699
}

3700 3701
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
3702 3703
                                               bool* succeeded,
                                               GCCause::Cause gc_cause) {
3704
  assert_heap_not_locked_and_not_at_safepoint();
3705
  g1_policy()->record_stop_world_start();
3706 3707 3708 3709
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
3710
                             gc_cause);
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3721 3722 3723 3724
}

void
G1CollectedHeap::doConcurrentMark() {
3725 3726 3727 3728
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
  }
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();

3744 3745 3746 3747
  // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  // in bytes - not the number of 'entries'. We need to convert
  // into a number of cards.
  return (buffer_size * buffer_num + extra_cards) / oopSize;
3748 3749 3750
}

size_t G1CollectedHeap::cards_scanned() {
3751
  return g1_rem_set()->cardsScanned();
3752 3753 3754 3755
}

void
G1CollectedHeap::setup_surviving_young_words() {
3756 3757
  assert(_surviving_young_words == NULL, "pre-condition");
  uint array_length = g1_policy()->young_cset_region_length();
Z
zgu 已提交
3758
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3759
  if (_surviving_young_words == NULL) {
3760
    vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3761 3762
                          "Not enough space for young surv words summary.");
  }
3763
  memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3764
#ifdef ASSERT
3765
  for (uint i = 0;  i < array_length; ++i) {
3766
    assert( _surviving_young_words[i] == 0, "memset above" );
3767
  }
3768
#endif // !ASSERT
3769 3770 3771 3772 3773
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3774 3775
  uint array_length = g1_policy()->young_cset_region_length();
  for (uint i = 0; i < array_length; ++i) {
3776
    _surviving_young_words[i] += surv_young_words[i];
3777
  }
3778 3779 3780 3781 3782
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
Z
zgu 已提交
3783
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3784 3785 3786
  _surviving_young_words = NULL;
}

3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3804 3805 3806
    return false;
  }
};
3807
#endif // ASSERT
3808

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3820
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3831
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3832 3833 3834 3835 3836 3837
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3838 3839 3840 3841 3842 3843 3844 3845 3846
void G1CollectedHeap::log_gc_header() {
  if (!G1Log::fine()) {
    return;
  }

  gclog_or_tty->date_stamp(PrintGCDateStamps);
  gclog_or_tty->stamp(PrintGCTimeStamps);

  GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3847
    .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
    .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");

  gclog_or_tty->print("[%s", (const char*)gc_cause_str);
}

void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  if (!G1Log::fine()) {
    return;
  }

  if (G1Log::finer()) {
    if (evacuation_failed()) {
      gclog_or_tty->print(" (to-space exhausted)");
    }
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
    g1_policy()->phase_times()->note_gc_end();
    g1_policy()->phase_times()->print(pause_time_sec);
    g1_policy()->print_detailed_heap_transition();
  } else {
    if (evacuation_failed()) {
      gclog_or_tty->print("--");
    }
    g1_policy()->print_heap_transition();
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  }
3873
  gclog_or_tty->flush();
3874 3875
}

3876
bool
3877
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3878 3879 3880
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3881
  if (GC_locker::check_active_before_gc()) {
3882
    return false;
3883 3884
  }

3885
  _gc_timer_stw->register_gc_start();
S
sla 已提交
3886 3887 3888

  _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());

3889
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3890 3891
  ResourceMark rm;

3892
  print_heap_before_gc();
S
sla 已提交
3893
  trace_heap_before_gc(_gc_tracer_stw);
3894

T
tonyp 已提交
3895
  HRSPhaseSetter x(HRSPhaseEvacuation);
3896
  verify_region_sets_optional();
3897
  verify_dirty_young_regions();
3898

3899 3900 3901 3902 3903 3904 3905 3906
  // This call will decide whether this pause is an initial-mark
  // pause. If it is, during_initial_mark_pause() will return true
  // for the duration of this pause.
  g1_policy()->decide_on_conc_mark_initiation();

  // We do not allow initial-mark to be piggy-backed on a mixed GC.
  assert(!g1_policy()->during_initial_mark_pause() ||
          g1_policy()->gcs_are_young(), "sanity");
3907

3908 3909
  // We also do not allow mixed GCs during marking.
  assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3910

3911 3912 3913 3914
  // Record whether this pause is an initial mark. When the current
  // thread has completed its logging output and it's safe to signal
  // the CM thread, the flag's value in the policy has been reset.
  bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3915

3916 3917
  // Inner scope for scope based logging, timers, and stats collection
  {
S
sla 已提交
3918 3919
    EvacuationInfo evacuation_info;

3920 3921 3922
    if (g1_policy()->during_initial_mark_pause()) {
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
3923
      increment_old_marking_cycles_started();
S
sla 已提交
3924
      register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3925
    }
S
sla 已提交
3926 3927 3928

    _gc_tracer_stw->report_yc_type(yc_type());

3929
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
3930

3931 3932
    int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                                workers()->active_workers() : 1);
3933 3934
    double pause_start_sec = os::elapsedTime();
    g1_policy()->phase_times()->note_gc_start(active_workers);
3935
    log_gc_header();
3936

3937
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3938
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3939

T
tonyp 已提交
3940 3941 3942 3943 3944 3945
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3946
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3947
      append_secondary_free_list_if_not_empty_with_lock();
3948
    }
3949

J
johnc 已提交
3950 3951 3952
    assert(check_young_list_well_formed(), "young list should be well formed");
    assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
3953

3954 3955 3956 3957
    // Don't dynamically change the number of GC threads this early.  A value of
    // 0 is used to indicate serial work.  When parallel work is done,
    // it will be set.

3958 3959 3960 3961 3962
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3963
      increment_gc_time_stamp();
3964

3965
      verify_before_gc();
3966

3967
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3968

3969 3970 3971
      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.
3972

3973 3974 3975
      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
                                            true /*verify_no_refs*/);
3976

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
        release_mutator_alloc_region();

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

3993 3994 3995 3996 3997 3998
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        //
        // Preserving the old comment here if that helps the investigation:
        //
3999 4000
        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
4001
        double sample_start_time_sec = os::elapsedTime();
4002

4003
#if YOUNG_LIST_VERBOSE
4004 4005 4006
        gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4007 4008
#endif // YOUNG_LIST_VERBOSE

4009
        g1_policy()->record_collection_pause_start(sample_start_time_sec);
4010

4011 4012 4013 4014 4015 4016
        double scan_wait_start = os::elapsedTime();
        // We have to wait until the CM threads finish scanning the
        // root regions as it's the only way to ensure that all the
        // objects on them have been correctly scanned before we start
        // moving them during the GC.
        bool waited = _cm->root_regions()->wait_until_scan_finished();
4017
        double wait_time_ms = 0.0;
4018 4019
        if (waited) {
          double scan_wait_end = os::elapsedTime();
4020
          wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4021
        }
4022
        g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4023

4024
#if YOUNG_LIST_VERBOSE
4025 4026
        gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
        _young_list->print();
4027
#endif // YOUNG_LIST_VERBOSE
4028

4029 4030 4031
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }
4032

4033
#if YOUNG_LIST_VERBOSE
4034 4035 4036
        gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4037
#endif // YOUNG_LIST_VERBOSE
4038

S
sla 已提交
4039
        g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4040

4041 4042 4043
        _cm->note_start_of_gc();
        // We should not verify the per-thread SATB buffers given that
        // we have not filtered them yet (we'll do so during the
4044
        // GC). We also call this after finalize_cset() to
4045 4046 4047 4048 4049 4050
        // ensure that the CSet has been finalized.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 false /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            G1HRPrinter::RegionType type;
            if (!hr->is_young()) {
              type = G1HRPrinter::Old;
            } else if (hr->is_survivor()) {
              type = G1HRPrinter::Survivor;
            } else {
              type = G1HRPrinter::Eden;
            }
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
4064 4065 4066
          }
        }

4067
#ifdef ASSERT
4068 4069
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
4070
#endif // ASSERT
4071

4072
        setup_surviving_young_words();
4073

4074
        // Initialize the GC alloc regions.
S
sla 已提交
4075
        init_gc_alloc_regions(evacuation_info);
4076

4077
        // Actually do the work...
S
sla 已提交
4078
        evacuate_collection_set(evacuation_info);
4079

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
        // We do this to mainly verify the per-thread SATB buffers
        // (which have been filtered by now) since we didn't verify
        // them earlier. No point in re-checking the stacks / enqueued
        // buffers given that the CSet has not changed since last time
        // we checked.
        _cm->verify_no_cset_oops(false /* verify_stacks */,
                                 false /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

S
sla 已提交
4090
        free_collection_set(g1_policy()->collection_set(), evacuation_info);
4091
        g1_policy()->clear_collection_set();
4092

4093
        cleanup_surviving_young_words();
4094

4095 4096
        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();
4097

4098 4099 4100 4101
        // Clear the _cset_fast_test bitmap in anticipation of adding
        // regions to the incremental collection set for the next
        // evacuation pause.
        clear_cset_fast_test();
4102

4103
        _young_list->reset_sampled_info();
4104

4105 4106 4107 4108 4109 4110
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");
4111 4112

#if YOUNG_LIST_VERBOSE
4113 4114
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
4115
#endif // YOUNG_LIST_VERBOSE
4116

4117
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
S
sla 已提交
4118 4119
                                             _young_list->first_survivor_region(),
                                             _young_list->last_survivor_region());
4120

4121
        _young_list->reset_auxilary_lists();
4122

4123 4124
        if (evacuation_failed()) {
          _summary_bytes_used = recalculate_used();
S
sla 已提交
4125 4126 4127 4128 4129 4130
          uint n_queues = MAX2((int)ParallelGCThreads, 1);
          for (uint i = 0; i < n_queues; i++) {
            if (_evacuation_failed_info_array[i].has_failed()) {
              _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
            }
          }
4131 4132 4133 4134 4135
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
          _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
        }
4136

4137
        if (g1_policy()->during_initial_mark_pause()) {
4138 4139 4140
          // We have to do this before we notify the CM threads that
          // they can start working to make sure that all the
          // appropriate initialization is done on the CM object.
4141 4142
          concurrent_mark()->checkpointRootsInitialPost();
          set_marking_started();
4143 4144 4145
          // Note that we don't actually trigger the CM thread at
          // this point. We do that later when we're sure that
          // the current thread has completed its logging output.
4146
        }
4147

4148
        allocate_dummy_regions();
4149

4150
#if YOUNG_LIST_VERBOSE
4151 4152 4153
        gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4154
#endif // YOUNG_LIST_VERBOSE
4155

4156 4157 4158 4159 4160 4161
        init_mutator_alloc_region();

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
4162 4163
            // No need for an ergo verbose message here,
            // expansion_amount() does this when it returns a value > 0.
4164 4165 4166 4167 4168 4169
            if (!expand(expand_bytes)) {
              // We failed to expand the heap so let's verify that
              // committed/uncommitted amount match the backing store
              assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
              assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
            }
4170 4171 4172
          }
        }

S
sla 已提交
4173
        // We redo the verification but now wrt to the new CSet which
4174 4175 4176 4177 4178 4179 4180
        // has just got initialized after the previous CSet was freed.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);
        _cm->note_end_of_gc();

4181 4182 4183 4184 4185
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        double sample_end_time_sec = os::elapsedTime();
        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
S
sla 已提交
4186
        g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

4213
        verify_after_gc();
4214

4215 4216
        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();
4217

4218 4219
        // CM reference discovery will be re-enabled if necessary.
      }
4220

4221 4222 4223 4224 4225 4226
      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

4227 4228 4229
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
4230 4231

#ifdef TRACESPINNING
4232
      ParallelTaskTerminator::print_termination_counts();
4233
#endif
4234

4235 4236
      gc_epilogue(false);
    }
4237

4238 4239 4240
    // Print the remainder of the GC log output.
    log_gc_footer(os::elapsedTime() - pause_start_sec);

4241
    // It is not yet to safe to tell the concurrent mark to
4242 4243 4244
    // start as we have some optional output below. We don't want the
    // output from the concurrent mark thread interfering with this
    // logging output either.
4245

4246 4247 4248 4249 4250
    _hrs.verify_optional();
    verify_region_sets_optional();

    TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4251

4252
    print_heap_after_gc();
S
sla 已提交
4253
    trace_heap_after_gc(_gc_tracer_stw);
4254

4255 4256 4257 4258 4259
    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
    // before any GC notifications are raised.
    g1mm()->update_sizes();
4260

S
sla 已提交
4261 4262
    _gc_tracer_stw->report_evacuation_info(&evacuation_info);
    _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4263
    _gc_timer_stw->register_gc_end();
S
sla 已提交
4264 4265
    _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  }
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
  // It should now be safe to tell the concurrent mark thread to start
  // without its logging output interfering with the logging output
  // that came from the pause.

  if (should_start_conc_mark) {
    // CAUTION: after the doConcurrentMark() call below,
    // the concurrent marking thread(s) could be running
    // concurrently with us. Make sure that anything after
    // this point does not assume that we are the only GC thread
    // running. Note: of course, the actual marking work will
    // not start until the safepoint itself is released in
    // ConcurrentGCThread::safepoint_desynchronize().
    doConcurrentMark();
  }

4281
  return true;
4282 4283
}

4284 4285 4286 4287 4288
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
4289
      gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4290 4291
      break;
    case GCAllocForTenured:
4292
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4293 4294 4295
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
4296
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4297 4298
      break;
  }
4299 4300 4301 4302 4303 4304

  // Prevent humongous PLAB sizes for two reasons:
  // * PLABs are allocated using a similar paths as oops, but should
  //   never be in a humongous region
  // * Allowing humongous PLABs needlessly churns the region free lists
  return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4305 4306
}

4307 4308 4309 4310 4311 4312 4313 4314 4315
void G1CollectedHeap::init_mutator_alloc_region() {
  assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  _mutator_alloc_region.init();
}

void G1CollectedHeap::release_mutator_alloc_region() {
  _mutator_alloc_region.release();
  assert(_mutator_alloc_region.get() == NULL, "post-condition");
}
4316

S
sla 已提交
4317
void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4318
  assert_at_safepoint(true /* should_be_vm_thread */);
4319

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
  _survivor_gc_alloc_region.init();
  _old_gc_alloc_region.init();
  HeapRegion* retained_region = _retained_old_gc_alloc_region;
  _retained_old_gc_alloc_region = NULL;

  // We will discard the current GC alloc region if:
  // a) it's in the collection set (it can happen!),
  // b) it's already full (no point in using it),
  // c) it's empty (this means that it was emptied during
  // a cleanup and it should be on the free list now), or
  // d) it's humongous (this means that it was emptied
  // during a cleanup and was added to the free list, but
S
sla 已提交
4332
  // has been subsequently used to allocate a humongous
4333 4334 4335 4336 4337 4338 4339
  // object that may be less than the region size).
  if (retained_region != NULL &&
      !retained_region->in_collection_set() &&
      !(retained_region->top() == retained_region->end()) &&
      !retained_region->is_empty() &&
      !retained_region->isHumongous()) {
    retained_region->set_saved_mark();
T
tonyp 已提交
4340 4341 4342 4343 4344
    // The retained region was added to the old region set when it was
    // retired. We have to remove it now, since we don't allow regions
    // we allocate to in the region sets. We'll re-add it later, when
    // it's retired again.
    _old_set.remove(retained_region);
4345 4346
    bool during_im = g1_policy()->during_initial_mark_pause();
    retained_region->note_start_of_copying(during_im);
4347 4348
    _old_gc_alloc_region.set(retained_region);
    _hr_printer.reuse(retained_region);
S
sla 已提交
4349
    evacuation_info.set_alloc_regions_used_before(retained_region->used());
4350 4351 4352
  }
}

S
sla 已提交
4353 4354 4355
void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
  evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
                                         _old_gc_alloc_region.count());
4356 4357 4358 4359 4360 4361 4362
  _survivor_gc_alloc_region.release();
  // If we have an old GC alloc region to release, we'll save it in
  // _retained_old_gc_alloc_region. If we don't
  // _retained_old_gc_alloc_region will become NULL. This is what we
  // want either way so no reason to check explicitly for either
  // condition.
  _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4363 4364

  if (ResizePLAB) {
J
johnc 已提交
4365 4366
    _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
    _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4367
  }
4368 4369
}

4370 4371 4372 4373
void G1CollectedHeap::abandon_gc_alloc_regions() {
  assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  _retained_old_gc_alloc_region = NULL;
4374 4375
}

4376 4377 4378
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
Z
zgu 已提交
4379
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4380 4381 4382 4383 4384 4385 4386
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
4387
  delete _evac_failure_scan_stack;
4388 4389 4390
  _evac_failure_scan_stack = NULL;
}

4391 4392
void G1CollectedHeap::remove_self_forwarding_pointers() {
  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4393

4394
  G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4395

4396 4397 4398 4399
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads();
    workers()->run_task(&rsfp_task);
    set_par_threads(0);
4400
  } else {
4401
    rsfp_task.work(0);
4402
  }
4403 4404 4405 4406 4407 4408 4409

  assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");

  // Reset the claim values in the regions in the collection set.
  reset_cset_heap_region_claim_values();

  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4410 4411

  // Now restore saved marks, if any.
4412 4413 4414 4415 4416 4417
  assert(_objs_with_preserved_marks.size() ==
            _preserved_marks_of_objs.size(), "Both or none.");
  while (!_objs_with_preserved_marks.is_empty()) {
    oop obj = _objs_with_preserved_marks.pop();
    markOop m = _preserved_marks_of_objs.pop();
    obj->set_mark(m);
4418
  }
4419 4420
  _objs_with_preserved_marks.clear(true);
  _preserved_marks_of_objs.clear(true);
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
S
sla 已提交
4438
G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4439
                                               oop old) {
4440 4441 4442
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
4443 4444 4445 4446
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
S
sla 已提交
4447 4448 4449
    assert(_par_scan_state != NULL, "par scan state");
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    uint queue_num = _par_scan_state->queue_num();
4450

S
sla 已提交
4451 4452
    _evacuation_failed = true;
    _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4471 4472 4473 4474 4475 4476 4477
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4488
    _hr_printer.evac_failure(r);
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4502 4503 4504 4505
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4506 4507
    _objs_with_preserved_marks.push(obj);
    _preserved_marks_of_objs.push(m);
4508 4509 4510 4511 4512
  }
}

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
4513 4514 4515 4516
  if (purpose == GCAllocForSurvived) {
    HeapWord* result = survivor_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4517
    } else {
4518 4519 4520
      // Let's try to allocate in the old gen in case we can fit the
      // object there.
      return old_attempt_allocation(word_size);
4521
    }
4522 4523 4524 4525 4526
  } else {
    assert(purpose ==  GCAllocForTenured, "sanity");
    HeapWord* result = old_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4527
    } else {
4528 4529 4530
      // Let's try to allocate in the survivors in case we can fit the
      // object there.
      return survivor_attempt_allocation(word_size);
4531 4532 4533
    }
  }

4534 4535 4536
  ShouldNotReachHere();
  // Trying to keep some compilers happy.
  return NULL;
4537 4538
}

4539
G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4540
  ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4541

4542
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4543 4544 4545
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
4546
    _ct_bs(g1h->g1_barrier_set()),
4547 4548 4549
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
4550 4551
    _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
    _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4552 4553
    _age_table(false),
    _strong_roots_time(0), _term_time(0),
4554
    _alloc_buffer_waste(0), _undo_waste(0) {
4555 4556 4557 4558 4559
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
4560 4561 4562 4563
  uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  uint array_length = PADDING_ELEM_NUM +
                      real_length +
                      PADDING_ELEM_NUM;
Z
zgu 已提交
4564
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4565
  if (_surviving_young_words_base == NULL)
4566
    vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4567 4568
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4569
  memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4570

4571 4572 4573
  _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;

4574 4575
  _start = os::elapsedTime();
}
4576

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
                   " ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
                   "  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
                   " ------- ------- -------");
}

void
G1ParScanThreadState::print_termination_stats(int i,
                                              outputStream* const st) const
{
  const double elapsed_ms = elapsed_time() * 1000.0;
  const double s_roots_ms = strong_roots_time() * 1000.0;
  const double term_ms    = term_time() * 1000.0;
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
               (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
               alloc_buffer_waste() * HeapWordSize / K,
               undo_waste() * HeapWordSize / K);
}

4606 4607 4608 4609 4610 4611 4612
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  assert(ref != NULL, "invariant");
  assert(UseCompressedOops, "sanity");
  assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  oop p = oopDesc::load_decode_heap_oop(ref);
  assert(_g1h->is_in_g1_reserved(p),
4613
         err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4614 4615 4616 4617 4618 4619 4620 4621 4622
  return true;
}

bool G1ParScanThreadState::verify_ref(oop* ref) const {
  assert(ref != NULL, "invariant");
  if (has_partial_array_mask(ref)) {
    // Must be in the collection set--it's already been copied.
    oop p = clear_partial_array_mask(ref);
    assert(_g1h->obj_in_cs(p),
4623
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4624 4625 4626
  } else {
    oop p = oopDesc::load_decode_heap_oop(ref);
    assert(_g1h->is_in_g1_reserved(p),
4627
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
  }
  return true;
}

bool G1ParScanThreadState::verify_task(StarTask ref) const {
  if (ref.is_narrow()) {
    return verify_ref((narrowOop*) ref);
  } else {
    return verify_ref((oop*) ref);
  }
}
#endif // ASSERT

void G1ParScanThreadState::trim_queue() {
4642 4643 4644 4645
  assert(_evac_cl != NULL, "not set");
  assert(_evac_failure_cl != NULL, "not set");
  assert(_partial_scan_cl != NULL, "not set");

4646 4647 4648 4649 4650 4651
  StarTask ref;
  do {
    // Drain the overflow stack first, so other threads can steal.
    while (refs()->pop_overflow(ref)) {
      deal_with_reference(ref);
    }
4652

4653 4654 4655 4656 4657 4658
    while (refs()->pop_local(ref)) {
      deal_with_reference(ref);
    }
  } while (!refs()->is_empty());
}

4659 4660
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
                                     G1ParScanThreadState* par_scan_state) :
4661
  _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4662
  _par_scan_state(par_scan_state),
4663
  _worker_id(par_scan_state->queue_num()),
4664 4665
  _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  _mark_in_progress(_g1->mark_in_progress()) { }
4666

4667 4668
template <G1Barrier barrier, bool do_mark_object>
void G1ParCopyClosure<barrier, do_mark_object>::mark_object(oop obj) {
4669 4670 4671 4672 4673 4674 4675
#ifdef ASSERT
  HeapRegion* hr = _g1->heap_region_containing(obj);
  assert(hr != NULL, "sanity");
  assert(!hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // We know that the object is not moving so it's safe to read its size.
4676
  _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4677 4678
}

4679 4680
template <G1Barrier barrier, bool do_mark_object>
void G1ParCopyClosure<barrier, do_mark_object>
B
brutisso 已提交
4681
  ::mark_forwarded_object(oop from_obj, oop to_obj) {
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
#ifdef ASSERT
  assert(from_obj->is_forwarded(), "from obj should be forwarded");
  assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  assert(from_obj != to_obj, "should not be self-forwarded");

  HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  assert(from_hr != NULL, "sanity");
  assert(from_hr->in_collection_set(), "from obj should be in the CSet");

  HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  assert(to_hr != NULL, "sanity");
  assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // The object might be in the process of being copied by another
  // worker so we cannot trust that its to-space image is
  // well-formed. So we have to read its size from its from-space
  // image which we know should not be changing.
4700
  _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4701 4702
}

4703 4704
template <G1Barrier barrier, bool do_mark_object>
oop G1ParCopyClosure<barrier, do_mark_object>
B
brutisso 已提交
4705
  ::copy_to_survivor_space(oop old) {
4706
  size_t word_sz = old->size();
4707 4708 4709
  HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  // +1 to make the -1 indexes valid...
  int       young_index = from_region->young_index_in_cset()+1;
4710 4711
  assert( (from_region->is_young() && young_index >  0) ||
         (!from_region->is_young() && young_index == 0), "invariant" );
4712 4713
  G1CollectorPolicy* g1p = _g1->g1_policy();
  markOop m = old->mark();
4714 4715 4716
  int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
                                           : m->age();
  GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4717 4718
                                                             word_sz);
  HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4719 4720 4721 4722 4723 4724 4725 4726 4727
#ifndef PRODUCT
  // Should this evacuation fail?
  if (_g1->evacuation_should_fail()) {
    if (obj_ptr != NULL) {
      _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
      obj_ptr = NULL;
    }
  }
#endif // !PRODUCT
4728 4729 4730 4731

  if (obj_ptr == NULL) {
    // This will either forward-to-self, or detect that someone else has
    // installed a forwarding pointer.
S
sla 已提交
4732
    return _g1->handle_evacuation_failure_par(_par_scan_state, old);
4733 4734
  }

4735 4736
  oop obj = oop(obj_ptr);

4737 4738 4739
  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

4740 4741 4742 4743
  oop forward_ptr = old->forward_to_atomic(obj);
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
    if (g1p->track_object_age(alloc_purpose)) {
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
      // We could simply do obj->incr_age(). However, this causes a
      // performance issue. obj->incr_age() will first check whether
      // the object has a displaced mark by checking its mark word;
      // getting the mark word from the new location of the object
      // stalls. So, given that we already have the mark word and we
      // are about to install it anyway, it's better to increase the
      // age on the mark word, when the object does not have a
      // displaced mark word. We're not expecting many objects to have
      // a displaced marked word, so that case is not optimized
      // further (it could be...) and we simply call obj->incr_age().

      if (m->has_displaced_mark_helper()) {
        // in this case, we have to install the mark word first,
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
        obj->set_mark(m);
        obj->incr_age();
      } else {
        m = m->incr_age();
4763
        obj->set_mark(m);
4764
      }
4765 4766 4767
      _par_scan_state->age_table()->add(obj, word_sz);
    } else {
      obj->set_mark(m);
4768
    }
4769

4770 4771 4772 4773
    size_t* surv_young_words = _par_scan_state->surviving_young_words();
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4774 4775 4776 4777
      // We keep track of the next start index in the length field of
      // the to-space object. The actual length can be found in the
      // length field of the from-space object.
      arrayOop(obj)->set_length(0);
4778 4779
      oop* old_p = set_partial_array_mask(old);
      _par_scan_state->push_on_queue(old_p);
4780
    } else {
4781 4782
      // No point in using the slower heap_region_containing() method,
      // given that we know obj is in the heap.
B
brutisso 已提交
4783 4784
      _scanner.set_region(_g1->heap_region_containing_raw(obj));
      obj->oop_iterate_backwards(&_scanner);
4785 4786 4787 4788 4789 4790 4791 4792
    }
  } else {
    _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
    obj = forward_ptr;
  }
  return obj;
}

4793 4794 4795 4796 4797 4798 4799
template <class T>
void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
    _scanned_klass->record_modified_oops();
  }
}

4800
template <G1Barrier barrier, bool do_mark_object>
4801
template <class T>
4802
void G1ParCopyClosure<barrier, do_mark_object>
4803 4804
::do_oop_work(T* p) {
  oop obj = oopDesc::load_decode_heap_oop(p);
4805

4806 4807
  assert(_worker_id == _par_scan_state->queue_num(), "sanity");

4808
  // here the null check is implicit in the cset_fast_test() test
4809
  if (_g1->in_cset_fast_test(obj)) {
4810
    oop forwardee;
4811
    if (obj->is_forwarded()) {
4812
      forwardee = obj->forwardee();
4813
    } else {
4814 4815 4816 4817 4818 4819 4820 4821
      forwardee = copy_to_survivor_space(obj);
    }
    assert(forwardee != NULL, "forwardee should not be NULL");
    oopDesc::encode_store_heap_oop(p, forwardee);
    if (do_mark_object && forwardee != obj) {
      // If the object is self-forwarded we don't need to explicitly
      // mark it, the evacuation failure protocol will do so.
      mark_forwarded_object(obj, forwardee);
4822
    }
4823

4824
    if (barrier == G1BarrierKlass) {
4825
      do_klass_barrier(p, forwardee);
4826
    }
4827 4828 4829 4830
  } else {
    // The object is not in collection set. If we're a root scanning
    // closure during an initial mark pause (i.e. do_mark_object will
    // be true) then attempt to mark the object.
4831 4832
    if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
      mark_object(obj);
4833
    }
4834
  }
4835

4836
  if (barrier == G1BarrierEvac && obj != NULL) {
4837
    _par_scan_state->update_rs(_from, p, _worker_id);
4838
  }
4839 4840
}

4841 4842
template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4843

4844
template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4845
  assert(has_partial_array_mask(p), "invariant");
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
  oop from_obj = clear_partial_array_mask(p);

  assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  assert(from_obj->is_objArray(), "must be obj array");
  objArrayOop from_obj_array = objArrayOop(from_obj);
  // The from-space object contains the real length.
  int length                 = from_obj_array->length();

  assert(from_obj->is_forwarded(), "must be forwarded");
  oop to_obj                 = from_obj->forwardee();
  assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  objArrayOop to_obj_array   = objArrayOop(to_obj);
  // We keep track of the next start index in the length field of the
  // to-space object.
  int next_index             = to_obj_array->length();
  assert(0 <= next_index && next_index < length,
         err_msg("invariant, next index: %d, length: %d", next_index, length));

  int start                  = next_index;
  int end                    = length;
  int remainder              = end - start;
  // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4868 4869
  if (remainder > 2 * ParGCArrayScanChunk) {
    end = start + ParGCArrayScanChunk;
4870 4871 4872 4873 4874
    to_obj_array->set_length(end);
    // Push the remainder before we process the range in case another
    // worker has run out of things to do and can steal it.
    oop* from_obj_p = set_partial_array_mask(from_obj);
    _par_scan_state->push_on_queue(from_obj_p);
4875
  } else {
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
    assert(length == end, "sanity");
    // We'll process the final range for this object. Restore the length
    // so that the heap remains parsable in case of evacuation failure.
    to_obj_array->set_length(end);
  }
  _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  // Process indexes [start,end). It will also process the header
  // along with the first chunk (i.e., the chunk with start == 0).
  // Note that at this point the length field of to_obj_array is not
  // correct given that we are using it to keep track of the next
  // start index. oop_iterate_range() (thankfully!) ignores the length
  // field and only relies on the start / end parameters.  It does
  // however return the size of the object which will be incorrect. So
  // we have to ignore it even if we wanted to use it.
  to_obj_array->oop_iterate_range(&_scanner, start, end);
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
}

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4912
  void do_void();
4913

4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  StarTask stolen_task;
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();

  do {
    while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
      assert(pss->verify_task(stolen_task), "sanity");
      if (stolen_task.is_narrow()) {
4935
        pss->deal_with_reference((narrowOop*) stolen_task);
4936
      } else {
4937
        pss->deal_with_reference((oop*) stolen_task);
4938
      }
4939 4940 4941 4942

      // We've just processed a reference and we might have made
      // available new entries on the queues. So we have to make sure
      // we drain the queues as necessary.
4943
      pss->trim_queue();
4944
    }
4945 4946 4947 4948
  } while (!offer_termination());

  pss->retire_alloc_buffers();
}
4949

4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
class G1KlassScanClosure : public KlassClosure {
 G1ParCopyHelper* _closure;
 bool             _process_only_dirty;
 int              _count;
 public:
  G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
      : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  void do_klass(Klass* klass) {
    // If the klass has not been dirtied we know that there's
    // no references into  the young gen and we can skip it.
   if (!_process_only_dirty || klass->has_modified_oops()) {
      // Clean the klass since we're going to scavenge all the metadata.
      klass->clear_modified_oops();

      // Tell the closure that this klass is the Klass to scavenge
      // and is the one to dirty if oops are left pointing into the young gen.
      _closure->set_scanned_klass(klass);

      klass->oops_do(_closure);

      _closure->set_scanned_klass(NULL);
    }
    _count++;
  }
};

4976 4977 4978 4979 4980
class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4981
  uint _n_workers;
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
4992 4993
  G1ParTask(G1CollectedHeap* g1h,
            RefToScanQueueSet *task_queues)
4994 4995 4996
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
4997 4998
      _terminator(0, _queues),
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4999 5000 5001 5002 5003 5004 5005 5006
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
  ParallelTaskTerminator* terminator() { return &_terminator; }

  virtual void set_for_termination(int active_workers) {
    // This task calls set_n_termination() in par_non_clean_card_iterate_work()
    // in the young space (_par_seq_tasks) in the G1 heap
    // for SequentialSubTasksDone.
    // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
    // both of which need setting by set_n_termination().
    _g1h->SharedHeap::set_n_termination(active_workers);
    _g1h->set_n_termination(active_workers);
    terminator()->reset_for_reuse(active_workers);
    _n_workers = active_workers;
  }

5021 5022
  void work(uint worker_id) {
    if (worker_id >= _n_workers) return;  // no work needed this round
5023 5024

    double start_time_ms = os::elapsedTime() * 1000.0;
5025
    _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5026

5027 5028 5029
    {
      ResourceMark rm;
      HandleMark   hm;
5030

5031
      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5032

5033 5034 5035 5036
      G1ParScanThreadState            pss(_g1h, worker_id);
      G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
      G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
      G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
5037

5038 5039 5040
      pss.set_evac_closure(&scan_evac_cl);
      pss.set_evac_failure_closure(&evac_failure_cl);
      pss.set_partial_scan_closure(&partial_scan_cl);
5041

5042
      G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5043
      G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5044

5045
      G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5046 5047 5048 5049 5050
      G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);

      bool only_young                 = _g1h->g1_policy()->gcs_are_young();
      G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
      G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5051

5052
      OopClosure*                    scan_root_cl = &only_scan_root_cl;
5053
      G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5054

5055 5056 5057
      if (_g1h->g1_policy()->during_initial_mark_pause()) {
        // We also need to mark copied objects.
        scan_root_cl = &scan_mark_root_cl;
5058
        scan_klasses_cl = &scan_mark_klasses_cl_s;
5059
      }
5060

5061
      G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5062

J
johnc 已提交
5063 5064 5065 5066 5067
      // Don't scan the scavengable methods in the code cache as part
      // of strong root scanning. The code roots that point into a
      // region in the collection set are scanned when we scan the
      // region's RSet.
      int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5068

5069
      pss.start_strong_roots();
5070 5071
      _g1h->g1_process_strong_roots(/* is scavenging */ true,
                                    SharedHeap::ScanningOption(so),
5072 5073
                                    scan_root_cl,
                                    &push_heap_rs_cl,
5074
                                    scan_klasses_cl,
5075 5076
                                    worker_id);
      pss.end_strong_roots();
5077

5078 5079 5080 5081 5082 5083
      {
        double start = os::elapsedTime();
        G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
        evac.do_void();
        double elapsed_ms = (os::elapsedTime()-start)*1000.0;
        double term_ms = pss.term_time()*1000.0;
5084
        _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5085
        _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5086 5087 5088 5089 5090 5091 5092 5093
      }
      _g1h->g1_policy()->record_thread_age_table(pss.age_table());
      _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

      if (ParallelGCVerbose) {
        MutexLocker x(stats_lock());
        pss.print_termination_stats(worker_id);
      }
5094

5095
      assert(pss.refs()->is_empty(), "should be empty");
5096

5097 5098 5099
      // Close the inner scope so that the ResourceMark and HandleMark
      // destructors are executed here and are included as part of the
      // "GC Worker Time".
5100 5101
    }

5102
    double end_time_ms = os::elapsedTime() * 1000.0;
5103
    _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5104 5105 5106 5107 5108
  }
};

// *** Common G1 Evacuation Stuff

5109 5110
// This method is run in a GC worker.

5111 5112
void
G1CollectedHeap::
5113
g1_process_strong_roots(bool is_scavenging,
5114
                        ScanningOption so,
5115 5116
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
5117
                        G1KlassScanClosure* scan_klasses,
5118
                        int worker_i) {
5119

5120
  // First scan the strong roots
5121 5122 5123 5124 5125
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);

J
johnc 已提交
5126 5127 5128 5129
  assert(so & SO_CodeCache || scan_rs != NULL, "must scan code roots somehow");
  // Walk the code cache/strong code roots w/o buffering, because StarTask
  // cannot handle unaligned oop locations.
  CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5130 5131

  process_strong_roots(false, // no scoping; this is parallel code
5132
                       is_scavenging, so,
5133
                       &buf_scan_non_heap_roots,
5134
                       &eager_scan_code_roots,
5135 5136
                       scan_klasses
                       );
5137

5138
  // Now the CM ref_processor roots.
5139
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5140 5141 5142 5143 5144
    // We need to treat the discovered reference lists of the
    // concurrent mark ref processor as roots and keep entries
    // (which are added by the marking threads) on them live
    // until they can be processed at the end of marking.
    ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5145 5146 5147
  }

  // Finish up any enqueued closure apps (attributed as object copy time).
5148
  buf_scan_non_heap_roots.done();
5149

5150 5151
  double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();

5152
  g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5153

5154
  double ext_root_time_ms =
5155
    ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5156

5157
  g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5158

5159 5160 5161
  // During conc marking we have to filter the per-thread SATB buffers
  // to make sure we remove any oops into the CSet (which will show up
  // as implicitly live).
5162
  double satb_filtering_ms = 0.0;
5163 5164
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
    if (mark_in_progress()) {
5165 5166
      double satb_filter_start = os::elapsedTime();

5167
      JavaThread::satb_mark_queue_set().filter_thread_buffers();
5168 5169

      satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5170
    }
5171
  }
5172
  g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5173

J
johnc 已提交
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
  // If this is an initial mark pause, and we're not scanning
  // the entire code cache, we need to mark the oops in the
  // strong code root lists for the regions that are not in
  // the collection set.
  // Note all threads participate in this set of root tasks.
  double mark_strong_code_roots_ms = 0.0;
  if (g1_policy()->during_initial_mark_pause() && !(so & SO_CodeCache)) {
    double mark_strong_roots_start = os::elapsedTime();
    mark_strong_code_roots(worker_i);
    mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
  }
  g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);

5187 5188
  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
J
johnc 已提交
5189
    g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5190 5191 5192 5193 5194
  }
  _process_strong_tasks->all_tasks_completed();
}

void
5195
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5196
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5197
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5198 5199
}

5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
private:
  BoolObjectClosure* _is_alive;
  int _initial_string_table_size;
  int _initial_symbol_table_size;

  bool  _process_strings;
  int _strings_processed;
  int _strings_removed;

  bool  _process_symbols;
  int _symbols_processed;
  int _symbols_removed;
public:
  G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
    AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
    _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
    _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {

    _initial_string_table_size = StringTable::the_table()->table_size();
    _initial_symbol_table_size = SymbolTable::the_table()->table_size();
    if (process_strings) {
      StringTable::clear_parallel_claimed_index();
    }
    if (process_symbols) {
      SymbolTable::clear_parallel_claimed_index();
    }
  }

  ~G1StringSymbolTableUnlinkTask() {
    guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
              err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
                      StringTable::parallel_claimed_index(), _initial_string_table_size));
    guarantee(!_process_strings || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
              err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
                      SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  }

  void work(uint worker_id) {
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      int strings_processed = 0;
      int strings_removed = 0;
      int symbols_processed = 0;
      int symbols_removed = 0;
      if (_process_strings) {
        StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
        Atomic::add(strings_processed, &_strings_processed);
        Atomic::add(strings_removed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
        Atomic::add(symbols_processed, &_symbols_processed);
        Atomic::add(symbols_removed, &_symbols_removed);
      }
    } else {
      if (_process_strings) {
        StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
      }
    }
  }

  size_t strings_processed() const { return (size_t)_strings_processed; }
  size_t strings_removed()   const { return (size_t)_strings_removed; }

  size_t symbols_processed() const { return (size_t)_symbols_processed; }
  size_t symbols_removed()   const { return (size_t)_symbols_removed; }
};

void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
                                                     bool process_strings, bool process_symbols) {
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                   _g1h->workers()->active_workers() : 1);

  G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&g1_unlink_task);
    set_par_threads(0);
  } else {
    g1_unlink_task.work(0);
  }
  if (G1TraceStringSymbolTableScrubbing) {
    gclog_or_tty->print_cr("Cleaned string and symbol table, "
                           "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
                           "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
                           g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
                           g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
  }
}

5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->obj_in_cs(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
    oop obj = *p;

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
5341
  OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5342 5343 5344 5345 5346
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
5347
                            OopsInHeapRegionClosure* metadata_obj_cl,
5348 5349 5350
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
5351
    _copy_metadata_obj_cl(metadata_obj_cl),
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

    if (_g1h->obj_in_cs(obj)) {
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
5376
      // use the the non-heap or metadata closures directly to copy
S
sla 已提交
5377
      // the referent object and update the pointer, while avoiding
5378 5379 5380 5381 5382
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
5383 5384 5385
        assert(!ClassLoaderDataGraph::contains((address)p),
               err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
                              PTR_FORMAT, p));
5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
          _copy_non_heap_obj_cl->do_oop(p);
        }
      }
    }
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*   _g1h;
  RefToScanQueueSet* _queues;
5424
  FlexibleWorkGang*  _workers;
5425 5426 5427 5428
  int                _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5429
                        FlexibleWorkGang* workers,
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
                        RefToScanQueueSet *task_queues,
                        int n_workers) :
    _g1h(g1h),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  RefToScanQueueSet *_task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                     G1CollectedHeap* g1h,
                     RefToScanQueueSet *task_queues,
                     ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

5466
  virtual void work(uint worker_id) {
5467 5468 5469 5470 5471 5472
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

5473
    G1ParScanThreadState pss(_g1h, worker_id);
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483

    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5484
    G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5485 5486

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5487
    G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5488 5489

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5490
    OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5491 5492 5493 5494

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
5495
      copy_metadata_cl = &copy_mark_metadata_cl;
5496 5497 5498
    }

    // Keep alive closure.
5499
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5500 5501 5502 5503 5504

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
5505
    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

5540 5541
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
5542 5543 5544
  }
};

S
sla 已提交
5545
// Driver routine for parallel reference enqueueing.
5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
5570
  uint _n_workers;
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

5581
  void work(uint worker_id) {
5582 5583 5584
    ResourceMark rm;
    HandleMark   hm;

5585
    G1ParScanThreadState            pss(_g1h, worker_id);
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    assert(pss.refs()->is_empty(), "both queue and overflow should be empty");


    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5598
    G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5599 5600

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5601
    G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5602 5603

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5604
    OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5605 5606 5607 5608

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
5609
      copy_metadata_cl = &copy_mark_metadata_cl;
5610 5611 5612 5613 5614 5615 5616
    }

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
5617
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5618 5619 5620

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

5621 5622
    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5623 5624 5625 5626

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
5627
    assert(0 <= worker_id && worker_id < limit, "sanity");
5628 5629 5630
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5631
    for (uint idx = worker_id; idx < limit; idx += stride) {
5632
      DiscoveredList& ref_list = rp->discovered_refs()[idx];
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
    assert(pss.refs()->is_empty(), "should be");
  }
};

// Weak Reference processing during an evacuation pause (part 1).
J
johnc 已提交
5658
void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
S
sla 已提交
5674
  // As a result the copy closure would not have been applied to the
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

5685
  assert(!G1CollectedHeap::use_parallel_gc_threads() ||
J
johnc 已提交
5686 5687
           no_of_gc_workers == workers()->active_workers(),
           "Need to reset active GC workers");
5688

J
johnc 已提交
5689 5690 5691 5692
  set_par_threads(no_of_gc_workers);
  G1ParPreserveCMReferentsTask keep_cm_referents(this,
                                                 no_of_gc_workers,
                                                 _task_queues);
5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    workers()->run_task(&keep_cm_referents);
  } else {
    keep_cm_referents.work(0);
  }

  set_par_threads(0);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
  G1ParScanThreadState pss(this, 0);

  // We do not embed a reference processor in the copying/scanning
  // closures while we're actually processing the discovered
  // reference objects.
  G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);

  pss.set_evac_closure(&scan_evac_cl);
  pss.set_evac_failure_closure(&evac_failure_cl);
  pss.set_partial_scan_closure(&partial_scan_cl);

  assert(pss.refs()->is_empty(), "pre-condition");

  G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5727
  G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5728 5729

  G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5730
  G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5731 5732

  OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5733
  OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5734 5735 5736 5737

  if (_g1h->g1_policy()->during_initial_mark_pause()) {
    // We also need to mark copied objects.
    copy_non_heap_cl = &copy_mark_non_heap_cl;
5738
    copy_metadata_cl = &copy_mark_metadata_cl;
5739 5740 5741
  }

  // Keep alive closure.
5742
  G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5743 5744 5745 5746 5747 5748 5749

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, &pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

S
sla 已提交
5750
  ReferenceProcessorStats stats;
5751 5752
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
S
sla 已提交
5753 5754 5755 5756 5757
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              NULL,
                                              _gc_timer_stw);
5758 5759
  } else {
    // Parallel reference processing
J
johnc 已提交
5760 5761
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5762

J
johnc 已提交
5763
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
S
sla 已提交
5764 5765 5766 5767 5768
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              &par_task_executor,
                                              _gc_timer_stw);
5769 5770
  }

S
sla 已提交
5771
  _gc_tracer_stw->report_gc_reference_stats(stats);
5772 5773 5774 5775 5776 5777 5778
  // We have completed copying any necessary live referent objects
  // (that were not copied during the actual pause) so we can
  // retire any active alloc buffers
  pss.retire_alloc_buffers();
  assert(pss.refs()->is_empty(), "both queue and overflow should be empty");

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
5779
  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5780 5781 5782
}

// Weak Reference processing during an evacuation pause (part 2).
J
johnc 已提交
5783
void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
S
sla 已提交
5795
    // Parallel reference enqueueing
5796

J
johnc 已提交
5797 5798 5799 5800
    assert(no_of_gc_workers == workers()->active_workers(),
           "Need to reset active workers");
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5801

J
johnc 已提交
5802
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5803 5804 5805 5806 5807 5808 5809 5810 5811
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
S
sla 已提交
5812
  // and could significantly increase the pause time.
5813 5814

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
5815
  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5816 5817
}

S
sla 已提交
5818
void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5819
  _expand_heap_after_alloc_failure = true;
S
sla 已提交
5820
  _evacuation_failed = false;
5821

5822 5823 5824
  // Should G1EvacuationFailureALot be in effect for this GC?
  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)

5825
  g1_rem_set()->prepare_for_oops_into_collection_set_do();
5826 5827 5828 5829 5830

  // Disable the hot card cache.
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->reset_hot_cache_claimed_index();
  hot_card_cache->set_use_cache(false);
5831

5832
  uint n_workers;
5833 5834 5835 5836 5837 5838 5839 5840
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    n_workers =
      AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                     workers()->active_workers(),
                                     Threads::number_of_non_daemon_threads());
    assert(UseDynamicNumberOfGCThreads ||
           n_workers == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
5841
    workers()->set_active_workers(n_workers);
5842 5843 5844 5845 5846 5847 5848 5849
    set_par_threads(n_workers);
  } else {
    assert(n_par_threads() == 0,
           "Should be the original non-parallel value");
    n_workers = 1;
  }

  G1ParTask g1_par_task(this, _task_queues);
5850 5851 5852 5853 5854

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

5855
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5856 5857
  double start_par_time_sec = os::elapsedTime();
  double end_par_time_sec;
5858

5859
  {
5860
    StrongRootsScope srs(this);
5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      // The individual threads will set their evac-failure closures.
      if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
      // These tasks use ShareHeap::_process_strong_tasks
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->run_task(&g1_par_task);
    } else {
      g1_par_task.set_for_termination(n_workers);
      g1_par_task.work(0);
    }
    end_par_time_sec = os::elapsedTime();

    // Closing the inner scope will execute the destructor
    // for the StrongRootsScope object. We record the current
    // elapsed time before closing the scope so that time
    // taken for the SRS destructor is NOT included in the
    // reported parallel time.
5881 5882
  }

5883
  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5884
  g1_policy()->phase_times()->record_par_time(par_time_ms);
5885 5886 5887

  double code_root_fixup_time_ms =
        (os::elapsedTime() - end_par_time_sec) * 1000.0;
5888
  g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5889

5890
  set_par_threads(0);
5891

5892 5893 5894 5895 5896
  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
J
johnc 已提交
5897
  process_discovered_references(n_workers);
5898

5899
  // Weak root processing.
5900
  {
5901
    G1STWIsAliveClosure is_alive(this);
5902 5903 5904
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  }
5905

S
sla 已提交
5906
  release_gc_alloc_regions(n_workers, evacuation_info);
5907
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5908

5909 5910 5911 5912 5913
  // Reset and re-enable the hot card cache.
  // Note the counts for the cards in the regions in the
  // collection set are reset when the collection set is freed.
  hot_card_cache->reset_hot_cache();
  hot_card_cache->set_use_cache(true);
5914

J
johnc 已提交
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925
  // Migrate the strong code roots attached to each region in
  // the collection set. Ideally we would like to do this
  // after we have finished the scanning/evacuation of the
  // strong code roots for a particular heap region.
  migrate_strong_code_roots();

  if (g1_policy()->during_initial_mark_pause()) {
    // Reset the claim values set during marking the strong code roots
    reset_heap_region_claim_values();
  }

5926 5927 5928 5929
  finalize_for_evac_failure();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
5930 5931 5932 5933 5934

    // Reset the G1EvacuationFailureALot counters and flags
    // Note: the values are reset only when an actual
    // evacuation failure occurs.
    NOT_PRODUCT(reset_evacuation_should_fail();)
5935 5936
  }

5937 5938 5939
  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
S
sla 已提交
5940
  // the act of enqueueing entries on to the pending list
5941 5942 5943
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
J
johnc 已提交
5944
  enqueue_discovered_references(n_workers);
5945

5946 5947 5948 5949
  if (G1DeferredRSUpdate) {
    RedirtyLoggedCardTableEntryFastClosure redirty;
    dirty_card_queue_set().set_closure(&redirty);
    dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5950 5951 5952

    DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
    dcq.merge_bufferlists(&dirty_card_queue_set());
5953 5954
    assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  }
5955 5956 5957
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

T
tonyp 已提交
5958
void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5959 5960
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
T
tonyp 已提交
5961
                                     OldRegionSet* old_proxy_set,
5962
                                     HumongousRegionSet* humongous_proxy_set,
T
tonyp 已提交
5963
                                     HRRSCleanupTask* hrrs_cleanup_task,
5964 5965 5966 5967 5968 5969
                                     bool par) {
  if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
    if (hr->isHumongous()) {
      assert(hr->startsHumongous(), "we should only see starts humongous");
      free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
    } else {
T
tonyp 已提交
5970
      _old_set.remove_with_proxy(hr, old_proxy_set);
5971 5972
      free_region(hr, pre_used, free_list, par);
    }
T
tonyp 已提交
5973 5974
  } else {
    hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5975 5976 5977
  }
}

5978 5979 5980
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  size_t* pre_used,
                                  FreeRegionList* free_list,
5981
                                  bool par) {
5982 5983 5984 5985
  assert(!hr->isHumongous(), "this is only for non-humongous regions");
  assert(!hr->is_empty(), "the region should not be empty");
  assert(free_list != NULL, "pre-condition");

5986 5987 5988 5989 5990 5991
  // Clear the card counts for this region.
  // Note: we only need to do this if the region is not young
  // (since we don't refine cards in young regions).
  if (!hr->is_young()) {
    _cg1r->hot_card_cache()->reset_card_counts(hr);
  }
5992 5993
  *pre_used += hr->used();
  hr->hr_clear(par, true /* clear_space */);
5994
  free_list->add_as_head(hr);
5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
                                     HumongousRegionSet* humongous_proxy_set,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");
  assert(humongous_proxy_set != NULL, "pre-condition");

  size_t hr_used = hr->used();
  size_t hr_capacity = hr->capacity();
  size_t hr_pre_used = 0;
  _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
6010 6011 6012
  // We need to read this before we make the region non-humongous,
  // otherwise the information will be gone.
  uint last_index = hr->last_hc_index();
6013 6014 6015
  hr->set_notHumongous();
  free_region(hr, &hr_pre_used, free_list, par);

6016
  uint i = hr->hrs_index() + 1;
6017
  while (i < last_index) {
6018
    HeapRegion* curr_hr = region_at(i);
6019
    assert(curr_hr->continuesHumongous(), "invariant");
6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
    curr_hr->set_notHumongous();
    free_region(curr_hr, &hr_pre_used, free_list, par);
    i += 1;
  }
  assert(hr_pre_used == hr_used,
         err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
                 "should be the same", hr_pre_used, hr_used));
  *pre_used += hr_pre_used;
}

void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
                                       FreeRegionList* free_list,
T
tonyp 已提交
6032
                                       OldRegionSet* old_proxy_set,
6033 6034 6035 6036
                                       HumongousRegionSet* humongous_proxy_set,
                                       bool par) {
  if (pre_used > 0) {
    Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
6037
    MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
6038 6039 6040 6041
    assert(_summary_bytes_used >= pre_used,
           err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
                   "should be >= pre_used: "SIZE_FORMAT,
                   _summary_bytes_used, pre_used));
6042
    _summary_bytes_used -= pre_used;
6043 6044 6045
  }
  if (free_list != NULL && !free_list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6046
    _free_list.add_as_head(free_list);
6047
  }
T
tonyp 已提交
6048 6049 6050 6051
  if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _old_set.update_from_proxy(old_proxy_set);
  }
6052 6053 6054
  if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _humongous_set.update_from_proxy(humongous_proxy_set);
6055 6056 6057
  }
}

6058
class G1ParCleanupCTTask : public AbstractGangTask {
6059
  G1SATBCardTableModRefBS* _ct_bs;
6060
  G1CollectedHeap* _g1h;
6061
  HeapRegion* volatile _su_head;
6062
public:
6063
  G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6064
                     G1CollectedHeap* g1h) :
6065
    AbstractGangTask("G1 Par Cleanup CT Task"),
6066
    _ct_bs(ct_bs), _g1h(g1h) { }
6067

6068
  void work(uint worker_id) {
6069 6070 6071 6072 6073
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
6074

6075
  void clear_cards(HeapRegion* r) {
6076
    // Cards of the survivors should have already been dirtied.
6077
    if (!r->is_survivor()) {
6078 6079 6080 6081 6082
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

6083 6084
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
6085
  G1CollectedHeap* _g1h;
6086
  G1SATBCardTableModRefBS* _ct_bs;
6087
public:
6088
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6089
    : _g1h(g1h), _ct_bs(ct_bs) { }
6090
  virtual bool doHeapRegion(HeapRegion* r) {
6091
    if (r->is_survivor()) {
6092
      _g1h->verify_dirty_region(r);
6093
    } else {
6094
      _g1h->verify_not_dirty_region(r);
6095 6096 6097 6098
    }
    return false;
  }
};
6099

6100 6101
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
6102
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
6115
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6116
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6117 6118 6119 6120 6121
  if (hr->is_young()) {
    ct_bs->verify_g1_young_region(mr);
  } else {
    ct_bs->verify_dirty_region(mr);
  }
6122 6123
}

6124
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6125
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6126
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6127
    verify_dirty_region(hr);
6128 6129 6130 6131 6132 6133
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
}
6134 6135
#endif

6136
void G1CollectedHeap::cleanUpCardTable() {
6137
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6138 6139
  double start = os::elapsedTime();

J
johnc 已提交
6140 6141 6142
  {
    // Iterate over the dirty cards region list.
    G1ParCleanupCTTask cleanup_task(ct_bs, this);
6143

6144 6145
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads();
J
johnc 已提交
6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157
      workers()->run_task(&cleanup_task);
      set_par_threads(0);
    } else {
      while (_dirty_cards_region_list) {
        HeapRegion* r = _dirty_cards_region_list;
        cleanup_task.clear_cards(r);
        _dirty_cards_region_list = r->get_next_dirty_cards_region();
        if (_dirty_cards_region_list == r) {
          // The last region.
          _dirty_cards_region_list = NULL;
        }
        r->set_next_dirty_cards_region(NULL);
6158 6159
      }
    }
J
johnc 已提交
6160 6161 6162 6163 6164 6165
#ifndef PRODUCT
    if (G1VerifyCTCleanup || VerifyAfterGC) {
      G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
      heap_region_iterate(&cleanup_verifier);
    }
#endif
6166
  }
6167

6168
  double elapsed = os::elapsedTime() - start;
6169
  g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6170 6171
}

S
sla 已提交
6172
void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6173 6174 6175
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

6176 6177 6178
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

6179 6180 6181 6182 6183
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
6194
    assert(!is_on_master_free_list(cur), "sanity");
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
6205 6206 6207 6208
      if (!cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;
6209

6210 6211 6212
        start_sec = os::elapsedTime();
        non_young = true;
      }
6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
    }

    rs_lengths += cur->rem_set()->occupied();

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
6224
      assert(index != -1, "invariant");
6225
      assert((uint) index < policy->young_cset_region_length(), "invariant");
6226 6227
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
6228 6229 6230 6231 6232 6233

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
6234 6235
    } else {
      int index = cur->young_index_in_cset();
6236
      assert(index == -1, "invariant");
6237 6238 6239 6240 6241 6242 6243
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
6244 6245
      MemRegion used_mr = cur->used_region();

6246
      // And the region is empty.
6247
      assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6248
      free_region(cur, &pre_used, &local_free_list, false /* par */);
6249 6250
    } else {
      cur->uninstall_surv_rate_group();
6251
      if (cur->is_young()) {
6252
        cur->set_young_index_in_cset(-1);
6253
      }
6254 6255
      cur->set_not_young();
      cur->set_evacuation_failed(false);
T
tonyp 已提交
6256 6257
      // The region is now considered to be old.
      _old_set.add(cur);
S
sla 已提交
6258
      evacuation_info.increment_collectionset_used_after(cur->used());
6259 6260 6261 6262
    }
    cur = next;
  }

S
sla 已提交
6263
  evacuation_info.set_regions_freed(local_free_list.length());
6264 6265 6266 6267 6268
  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
6269 6270

  if (non_young) {
6271
    non_young_time_ms += elapsed_ms;
6272
  } else {
6273
    young_time_ms += elapsed_ms;
6274
  }
6275

6276
  update_sets_after_freeing_regions(pre_used, &local_free_list,
T
tonyp 已提交
6277
                                    NULL /* old_proxy_set */,
6278 6279
                                    NULL /* humongous_proxy_set */,
                                    false /* par */);
6280 6281
  policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6282 6283
}

6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

6305 6306 6307 6308
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
6309 6310
  }

6311 6312
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
6313 6314
}

6315
void G1CollectedHeap::reset_free_regions_coming() {
6316 6317
  assert(free_regions_coming(), "pre-condition");

6318 6319 6320 6321
  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
6322 6323
  }

6324 6325 6326
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
6327 6328 6329
  }
}

6330 6331 6332 6333 6334
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
6335 6336
  }

6337 6338 6339
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
6340 6341 6342
  }

  {
6343 6344 6345
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6346 6347 6348
    }
  }

6349 6350 6351
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

6377 6378
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
6379

6380
  if (check_heap) {
6381 6382 6383 6384 6385 6386 6387 6388
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

T
tonyp 已提交
6389 6390 6391
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
  OldRegionSet *_old_set;
6392

T
tonyp 已提交
6393 6394
public:
  TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6395

T
tonyp 已提交
6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_empty()) {
      // We ignore empty regions, we'll empty the free list afterwards
    } else if (r->is_young()) {
      // We ignore young regions, we'll empty the young list afterwards
    } else if (r->isHumongous()) {
      // We ignore humongous regions, we're not tearing down the
      // humongous region set
    } else {
      // The rest should be old
      _old_set->remove(r);
    }
    return false;
  }

  ~TearDownRegionSetsClosure() {
    assert(_old_set->is_empty(), "post-condition");
  }
};

void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    TearDownRegionSetsClosure cl(&_old_set);
    heap_region_iterate(&cl);

    // Need to do this after the heap iteration to be able to
    // recognize the young regions and ignore them during the iteration.
    _young_list->empty_list();
  }
6427
  _free_list.remove_all();
6428 6429
}

T
tonyp 已提交
6430 6431 6432 6433 6434 6435
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
  bool            _free_list_only;
  OldRegionSet*   _old_set;
  FreeRegionList* _free_list;
  size_t          _total_used;
6436

6437
public:
T
tonyp 已提交
6438 6439 6440 6441 6442 6443 6444 6445 6446
  RebuildRegionSetsClosure(bool free_list_only,
                           OldRegionSet* old_set, FreeRegionList* free_list) :
    _free_list_only(free_list_only),
    _old_set(old_set), _free_list(free_list), _total_used(0) {
    assert(_free_list->is_empty(), "pre-condition");
    if (!free_list_only) {
      assert(_old_set->is_empty(), "pre-condition");
    }
  }
6447

6448
  bool doHeapRegion(HeapRegion* r) {
T
tonyp 已提交
6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463
    if (r->continuesHumongous()) {
      return false;
    }

    if (r->is_empty()) {
      // Add free regions to the free list
      _free_list->add_as_tail(r);
    } else if (!_free_list_only) {
      assert(!r->is_young(), "we should not come across young regions");

      if (r->isHumongous()) {
        // We ignore humongous regions, we left the humongous set unchanged
      } else {
        // The rest should be old, add them to the old set
        _old_set->add(r);
6464
      }
T
tonyp 已提交
6465
      _total_used += r->used();
6466
    }
T
tonyp 已提交
6467

6468 6469 6470
    return false;
  }

T
tonyp 已提交
6471 6472
  size_t total_used() {
    return _total_used;
6473
  }
6474 6475
};

T
tonyp 已提交
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  heap_region_iterate(&cl);

  if (!free_list_only) {
    _summary_bytes_used = cl.total_used();
  }
  assert(_summary_bytes_used == recalculate_used(),
         err_msg("inconsistent _summary_bytes_used, "
                 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
                 _summary_bytes_used, recalculate_used()));
6489 6490 6491 6492 6493 6494
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

6495 6496 6497
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
6498
    return false;
6499 6500
  } else {
    return hr->is_in(p);
6501
  }
6502 6503
}

6504 6505
// Methods for the mutator alloc region

6506 6507 6508 6509 6510
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
6511 6512
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
6513 6514 6515 6516
    HeapRegion* new_alloc_region = new_region(word_size,
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      set_region_short_lived_locked(new_alloc_region);
6517
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(alloc_region->is_young(), "all mutator alloc regions should be young");

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  _summary_bytes_used += allocated_bytes;
6531
  _hr_printer.retire(alloc_region);
6532 6533 6534 6535
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
6536 6537 6538 6539 6540 6541 6542
}

HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
                                                    bool force) {
  return _g1h->new_mutator_alloc_region(word_size, force);
}

6543 6544 6545
void G1CollectedHeap::set_par_threads() {
  // Don't change the number of workers.  Use the value previously set
  // in the workgroup.
6546
  assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6547
  uint n_workers = workers()->active_workers();
6548
  assert(UseDynamicNumberOfGCThreads ||
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
           n_workers == workers()->total_workers(),
      "Otherwise should be using the total number of workers");
  if (n_workers == 0) {
    assert(false, "Should have been set in prior evacuation pause.");
    n_workers = ParallelGCThreads;
    workers()->set_active_workers(n_workers);
  }
  set_par_threads(n_workers);
}

6559 6560 6561 6562 6563
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
                                       size_t allocated_bytes) {
  _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}

6564 6565 6566
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6567
                                                 uint count,
6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584
                                                 GCAllocPurpose ap) {
  assert(FreeList_lock->owned_by_self(), "pre-condition");

  if (count < g1_policy()->max_regions(ap)) {
    HeapRegion* new_alloc_region = new_region(word_size,
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
      new_alloc_region->set_saved_mark();
      if (ap == GCAllocForSurvived) {
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
      } else {
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
      }
6585 6586
      bool during_im = g1_policy()->during_initial_mark_pause();
      new_alloc_region->note_start_of_copying(during_im);
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597
      return new_alloc_region;
    } else {
      g1_policy()->note_alloc_region_limit_reached(ap);
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
                                             GCAllocPurpose ap) {
6598 6599
  bool during_im = g1_policy()->during_initial_mark_pause();
  alloc_region->note_end_of_copying(during_im);
6600 6601 6602
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  if (ap == GCAllocForSurvived) {
    young_list()->add_survivor_region(alloc_region);
T
tonyp 已提交
6603 6604
  } else {
    _old_set.add(alloc_region);
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
  }
  _hr_printer.retire(alloc_region);
}

HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
                                                       bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
}

void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                          size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForSurvived);
}

HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
                                                  bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
}

void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                     size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForTenured);
}
6632 6633
// Heap region set verification

6634 6635 6636
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
  FreeRegionList*     _free_list;
T
tonyp 已提交
6637 6638
  OldRegionSet*       _old_set;
  HumongousRegionSet* _humongous_set;
6639
  uint                _region_count;
6640 6641

public:
T
tonyp 已提交
6642 6643
  VerifyRegionListsClosure(OldRegionSet* old_set,
                           HumongousRegionSet* humongous_set,
6644
                           FreeRegionList* free_list) :
T
tonyp 已提交
6645 6646
    _old_set(old_set), _humongous_set(humongous_set),
    _free_list(free_list), _region_count(0) { }
6647

6648
  uint region_count() { return _region_count; }
6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662

  bool doHeapRegion(HeapRegion* hr) {
    _region_count += 1;

    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
      _humongous_set->verify_next_region(hr);
    } else if (hr->is_empty()) {
      _free_list->verify_next_region(hr);
T
tonyp 已提交
6663 6664
    } else {
      _old_set->verify_next_region(hr);
6665
    }
6666 6667 6668 6669
    return false;
  }
};

6670
HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6671 6672 6673 6674 6675
                                             HeapWord* bottom) {
  HeapWord* end = bottom + HeapRegion::GrainWords;
  MemRegion mr(bottom, end);
  assert(_g1_reserved.contains(mr), "invariant");
  // This might return NULL if the allocation fails
6676
  return new HeapRegion(hrs_index, _bot_shared, mr);
6677 6678
}

6679 6680
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6681

6682 6683 6684 6685 6686 6687 6688 6689 6690
  // First, check the explicit lists.
  _free_list.verify();
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _secondary_free_list.verify();
  }
T
tonyp 已提交
6691
  _old_set.verify();
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
  _humongous_set.verify();

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
6707

T
tonyp 已提交
6708 6709 6710 6711
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
6712

6713 6714
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
T
tonyp 已提交
6715
  _old_set.verify_start();
6716 6717
  _humongous_set.verify_start();
  _free_list.verify_start();
6718

T
tonyp 已提交
6719
  VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6720
  heap_region_iterate(&cl);
6721

T
tonyp 已提交
6722
  _old_set.verify_end();
6723 6724
  _humongous_set.verify_end();
  _free_list.verify_end();
6725
}
J
johnc 已提交
6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737

// Optimized nmethod scanning

class RegisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6738 6739 6740 6741
      assert(!hr->continuesHumongous(),
             err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
J
johnc 已提交
6742 6743 6744 6745 6746

      // HeapRegion::add_strong_code_root() avoids adding duplicate
      // entries but having duplicates is  OK since we "mark" nmethods
      // as visited when we scan the strong code root lists during the GC.
      hr->add_strong_code_root(_nm);
6747 6748 6749
      assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
             err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr)));
J
johnc 已提交
6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
    }
  }

public:
  RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

class UnregisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6770 6771 6772 6773 6774
      assert(!hr->continuesHumongous(),
             err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));

J
johnc 已提交
6775
      hr->remove_strong_code_root(_nm);
6776 6777 6778
      assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
             err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr)));
J
johnc 已提交
6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808
    }
  }

public:
  UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

void G1CollectedHeap::register_nmethod(nmethod* nm) {
  CollectedHeap::register_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  RegisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl);
}

void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  CollectedHeap::unregister_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  UnregisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl, true);
}

class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion *hr) {
6809 6810 6811
    assert(!hr->isHumongous(),
           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
                   HR_FORMAT_PARAMS(hr)));
J
johnc 已提交
6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890
    hr->migrate_strong_code_roots();
    return false;
  }
};

void G1CollectedHeap::migrate_strong_code_roots() {
  MigrateCodeRootsHeapRegionClosure cl;
  double migrate_start = os::elapsedTime();
  collection_set_iterate(&cl);
  double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
  g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
}

// Mark all the code roots that point into regions *not* in the
// collection set.
//
// Note we do not want to use a "marking" CodeBlobToOopClosure while
// walking the the code roots lists of regions not in the collection
// set. Suppose we have an nmethod (M) that points to objects in two
// separate regions - one in the collection set (R1) and one not (R2).
// Using a "marking" CodeBlobToOopClosure here would result in "marking"
// nmethod M when walking the code roots for R1. When we come to scan
// the code roots for R2, we would see that M is already marked and it
// would be skipped and the objects in R2 that are referenced from M
// would not be evacuated.

class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {

  class MarkStrongCodeRootOopClosure: public OopClosure {
    ConcurrentMark* _cm;
    HeapRegion* _hr;
    uint _worker_id;

    template <class T> void do_oop_work(T* p) {
      T heap_oop = oopDesc::load_heap_oop(p);
      if (!oopDesc::is_null(heap_oop)) {
        oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
        // Only mark objects in the region (which is assumed
        // to be not in the collection set).
        if (_hr->is_in(obj)) {
          _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
        }
      }
    }

  public:
    MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
      _cm(cm), _hr(hr), _worker_id(worker_id) {
      assert(!_hr->in_collection_set(), "sanity");
    }

    void do_oop(narrowOop* p) { do_oop_work(p); }
    void do_oop(oop* p)       { do_oop_work(p); }
  };

  MarkStrongCodeRootOopClosure _oop_cl;

public:
  MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
    _oop_cl(cm, hr, worker_id) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
    if (nm != NULL) {
      nm->oops_do(&_oop_cl);
    }
  }
};

class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
  G1CollectedHeap* _g1h;
  uint _worker_id;

public:
  MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
    _g1h(g1h), _worker_id(worker_id) {}

  bool doHeapRegion(HeapRegion *hr) {
    HeapRegionRemSet* hrrs = hr->rem_set();
6891 6892 6893 6894 6895 6896 6897
    if (hr->continuesHumongous()) {
      // Code roots should never be attached to a continuation of a humongous region
      assert(hrrs->strong_code_roots_list_length() == 0,
             err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT", but has "INT32_FORMAT,
                     HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
                     hrrs->strong_code_roots_list_length()));
J
johnc 已提交
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914
      return false;
    }

    if (hr->in_collection_set()) {
      // Don't mark code roots into regions in the collection set here.
      // They will be marked when we scan them.
      return false;
    }

    MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
    hr->strong_code_roots_do(&cb_cl);
    return false;
  }
};

void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
  MarkStrongCodeRootsHRClosure cl(this, worker_id);
6915 6916 6917 6918 6919 6920 6921 6922
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    heap_region_par_iterate_chunked(&cl,
                                    worker_id,
                                    workers()->active_workers(),
                                    HeapRegion::ParMarkRootClaimValue);
  } else {
    heap_region_iterate(&cl);
  }
J
johnc 已提交
6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947
}

class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  G1CollectedHeap* _g1h;

public:
  RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
    _g1h(g1h) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
    if (nm == NULL) {
      return;
    }

    if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) {
      _g1h->register_nmethod(nm);
    }
  }
};

void G1CollectedHeap::rebuild_strong_code_roots() {
  RebuildStrongCodeRootClosure blob_cl(this);
  CodeCache::blobs_do(&blob_cl);
}