g1CollectedHeap.cpp 234.0 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
31
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
32 33
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
34
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
35
#include "gc_implementation/g1/g1EvacFailure.hpp"
36
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
37
#include "gc_implementation/g1/g1Log.hpp"
38 39 40
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
41
#include "gc_implementation/g1/heapRegion.inline.hpp"
42 43 44 45 46 47 48
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/generationSpec.hpp"
49
#include "memory/referenceProcessor.hpp"
50 51 52 53
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/aprofiler.hpp"
#include "runtime/vmThread.hpp"
54

55 56
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

57 58 59
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
60
#define YOUNG_LIST_VERBOSE 0
61 62 63 64 65 66
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
67 68 69 70 71
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
72

73 74 75 76 77 78 79 80 81 82 83 84
// Notes on implementation of parallelism in different tasks.
//
// G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
// The number of GC workers is passed to heap_region_par_iterate_chunked().
// It does use run_task() which sets _n_workers in the task.
// G1ParTask executes g1_process_strong_roots() ->
// SharedHeap::process_strong_roots() which calls eventuall to
// CardTableModRefBS::par_non_clean_card_iterate_work() which uses
// SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
// directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
//

85 86 87 88 89 90 91 92 93 94 95 96 97 98
// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  SuspendibleThreadSet* _sts;
  G1RemSet* _g1rs;
  ConcurrentG1Refine* _cg1r;
  bool _concurrent;
public:
  RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
                              G1RemSet* g1rs,
                              ConcurrentG1Refine* cg1r) :
    _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  {}
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
J
johnc 已提交
99 100 101 102 103 104
    bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    if (_concurrent && _sts->should_yield()) {
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  int _histo[256];
public:
  ClearLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      unsigned char* ujb = (unsigned char*)card_ptr;
      int ind = (int)(*ujb);
      _histo[ind]++;
      *card_ptr = -1;
    }
    return true;
  }
  int calls() { return _calls; }
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
public:
  RedirtyLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      *card_ptr = 0;
    }
    return true;
  }
  int calls() { return _calls; }
};

171 172 173 174 175 176 177 178
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    *card_ptr = CardTableModRefBS::dirty_card_val();
    return true;
  }
};

179 180 181 182
YoungList::YoungList(G1CollectedHeap* g1h) :
    _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
  guarantee(check_list_empty(false), "just making sure...");
183 184 185 186 187 188 189 190 191
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

192
  _g1h->g1_policy()->set_region_eden(hr, (int) _length);
193 194 195 196
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
197
  assert(hr->is_survivor(), "should be flagged as survivor region");
198 199 200 201
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
202
    _survivor_tail = hr;
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  }
  _survivor_head = hr;
  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
227
  _survivor_tail = NULL;
228 229 230 231 232 233 234 235 236 237
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

238
  uint length = 0;
239 240 241
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
242
    if (!curr->is_young()) {
243
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
244
                             "incorrectly tagged (y: %d, surv: %d)",
245
                             curr->bottom(), curr->end(),
246
                             curr->is_young(), curr->is_survivor());
247 248 249 250 251 252 253 254 255 256
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
257
    gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
258 259 260
                           length, _length);
  }

261
  return ret;
262 263
}

264
bool YoungList::check_list_empty(bool check_sample) {
265 266 267
  bool ret = true;

  if (_length != 0) {
268
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

284
  return ret;
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
301 302 303 304 305 306 307 308 309 310 311 312
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

313 314 315 316 317 318 319 320 321 322 323 324 325 326
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
327
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
328

329
  int young_index_in_cset = 0;
330 331 332
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
333
    _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
334 335 336 337 338

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
339
    young_index_in_cset += 1;
340
  }
341
  assert((uint) young_index_in_cset == _survivor_length, "post-condition");
342 343
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

344 345
  _head   = _survivor_head;
  _length = _survivor_length;
346
  if (_survivor_head != NULL) {
347 348 349
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
350 351
  }

352 353 354 355
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
356

357
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
358 359 360 361 362

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
363 364
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
365 366 367 368 369 370 371

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
372 373
      gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                             HR_FORMAT_PARAMS(curr),
374 375
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
376
                             curr->age_in_surv_rate_group_cond());
377 378 379 380 381 382 383
      curr = curr->get_next_young_region();
    }
  }

  gclog_or_tty->print_cr("");
}

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

437
void G1CollectedHeap::stop_conc_gc_threads() {
438
  _cg1r->stop();
439 440 441
  _cmThread->stop();
}

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
  return hr != NULL && hr->in_collection_set();
}
#endif

// Returns true if the reference points to an object that
// can move in an incremental collecction.
bool G1CollectedHeap::is_scavengable(const void* p) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
466 467
     // null
     assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
468 469 470 471 472 473
     return false;
  } else {
    return !hr->isHumongous();
  }
}

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
  dcqs.set_closure(&clear);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
  JavaThread::dirty_card_queue_set().set_closure(&redirty);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
                         clear.calls(), orig_count);
  guarantee(redirty.calls() == clear.calls(),
            "Or else mechanism is broken.");

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }

  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

525
HeapRegion*
T
tonyp 已提交
526
G1CollectedHeap::new_region_try_secondary_free_list() {
527 528 529 530 531
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
532
                               "secondary_free_list has %u entries",
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

      assert(!_free_list.is_empty(), "if the secondary_free_list was not "
             "empty we should have moved at least one entry to the free_list");
      HeapRegion* res = _free_list.remove_head();
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

    // Wait here until we get notifed either when (a) there are no
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
563

564
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
565
  assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
566 567
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
568

569 570 571 572 573 574 575
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
T
tonyp 已提交
576
      res = new_region_try_secondary_free_list();
577 578 579 580 581 582 583 584 585 586 587
      if (res != NULL) {
        return res;
      }
    }
  }
  res = _free_list.remove_head_or_null();
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
T
tonyp 已提交
588
    res = new_region_try_secondary_free_list();
589
  }
590 591 592 593 594 595 596
  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
    // Currently, only attempts to allocate GC alloc regions set
    // do_expand to true. So, we should only reach here during a
    // safepoint. If this assumption changes we might have to
    // reconsider the use of _expand_heap_after_alloc_failure.
    assert(SafepointSynchronize::is_at_safepoint(), "invariant");

597 598 599 600 601
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
602
    if (expand(word_size * HeapWordSize)) {
603 604 605 606 607 608 609
      // Given that expand() succeeded in expanding the heap, and we
      // always expand the heap by an amount aligned to the heap
      // region size, the free list should in theory not be empty. So
      // it would probably be OK to use remove_head(). But the extra
      // check for NULL is unlikely to be a performance issue here (we
      // just expanded the heap!) so let's just be conservative and
      // use remove_head_or_null().
610
      res = _free_list.remove_head_or_null();
611 612
    } else {
      _expand_heap_after_alloc_failure = false;
613
    }
614 615 616 617
  }
  return res;
}

618 619
uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
                                                        size_t word_size) {
T
tonyp 已提交
620 621 622
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

623
  uint first = G1_NULL_HRS_INDEX;
624 625 626 627
  if (num_regions == 1) {
    // Only one region to allocate, no need to go through the slower
    // path. The caller will attempt the expasion if this fails, so
    // let's not try to expand here too.
628
    HeapRegion* hr = new_region(word_size, false /* do_expand */);
629 630 631
    if (hr != NULL) {
      first = hr->hrs_index();
    } else {
632
      first = G1_NULL_HRS_INDEX;
633 634 635 636 637 638 639 640 641 642 643
    }
  } else {
    // We can't allocate humongous regions while cleanupComplete() is
    // running, since some of the regions we find to be empty might not
    // yet be added to the free list and it is not straightforward to
    // know which list they are on so that we can remove them. Note
    // that we only need to do this if we need to allocate more than
    // one region to satisfy the current humongous allocation
    // request. If we are only allocating one region we use the common
    // region allocation code (see above).
    wait_while_free_regions_coming();
T
tonyp 已提交
644
    append_secondary_free_list_if_not_empty_with_lock();
645 646

    if (free_regions() >= num_regions) {
647 648
      first = _hrs.find_contiguous(num_regions);
      if (first != G1_NULL_HRS_INDEX) {
649
        for (uint i = first; i < first + num_regions; ++i) {
650
          HeapRegion* hr = region_at(i);
651
          assert(hr->is_empty(), "sanity");
T
tonyp 已提交
652
          assert(is_on_master_free_list(hr), "sanity");
653 654 655 656 657 658 659 660 661
          hr->set_pending_removal(true);
        }
        _free_list.remove_all_pending(num_regions);
      }
    }
  }
  return first;
}

T
tonyp 已提交
662
HeapWord*
663 664
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
                                                           uint num_regions,
T
tonyp 已提交
665
                                                           size_t word_size) {
666
  assert(first != G1_NULL_HRS_INDEX, "pre-condition");
T
tonyp 已提交
667 668 669 670
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
671
  uint last = first + num_regions;
T
tonyp 已提交
672 673 674 675 676 677 678 679 680 681

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
682
  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
T
tonyp 已提交
683 684 685
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
686
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
  // should also match the end of the last region in the seriers.
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);

  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
721
  for (uint i = first + 1; i < last; ++i) {
722
    hr = region_at(i);
T
tonyp 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
    hr->set_continuesHumongous(first_hr);
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
743 744 745 746 747 748 749 750 751 752 753
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
767
  for (uint i = first + 1; i < last; ++i) {
768
    hr = region_at(i);
T
tonyp 已提交
769 770 771 772 773
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
774
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
775 776 777 778
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
779
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
  _summary_bytes_used += first_hr->used();
  _humongous_set.add(first_hr);

  return new_obj;
}

795 796 797
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
798
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
799
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
800

801
  verify_region_sets_optional();
802

803 804 805 806 807
  size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
  uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
  uint x_num = expansion_regions();
  uint fs = _hrs.free_suffix();
  uint first = humongous_obj_allocate_find_first(num_regions, word_size);
808
  if (first == G1_NULL_HRS_INDEX) {
809
    // The only thing we can do now is attempt expansion.
810
    if (fs + x_num >= num_regions) {
811 812 813 814 815 816 817 818 819 820
      // If the number of regions we're trying to allocate for this
      // object is at most the number of regions in the free suffix,
      // then the call to humongous_obj_allocate_find_first() above
      // should have succeeded and we wouldn't be here.
      //
      // We should only be trying to expand when the free suffix is
      // not sufficient for the object _and_ we have some expansion
      // room available.
      assert(num_regions > fs, "earlier allocation should have succeeded");

821 822 823 824 825
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);
826
      if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
827 828 829
        // Even though the heap was expanded, it might not have
        // reached the desired size. So, we cannot assume that the
        // allocation will succeed.
830 831
        first = humongous_obj_allocate_find_first(num_regions, word_size);
      }
832 833
    }
  }
834

T
tonyp 已提交
835
  HeapWord* result = NULL;
836
  if (first != G1_NULL_HRS_INDEX) {
T
tonyp 已提交
837 838 839
    result =
      humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
    assert(result != NULL, "it should always return a valid result");
840 841 842 843 844

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
845
  }
846 847

  verify_region_sets_optional();
T
tonyp 已提交
848 849

  return result;
850 851
}

852 853 854
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
855

856
  unsigned int dummy_gc_count_before;
857 858
  int dummy_gclocker_retry_count = 0;
  return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
859 860 861
}

HeapWord*
862 863 864
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
865

866
  // Loop until the allocation is satisified, or unsatisfied after GC.
867
  for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
868
    unsigned int gc_count_before;
869

870 871
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
872
      result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
873
    } else {
874
      result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
875 876 877 878
    }
    if (result != NULL) {
      return result;
    }
879

880 881 882 883
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
884

885 886 887 888 889 890
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
891
        // Allocations that take place on VM operations do not do any
892 893
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
894 895 896
        dirty_young_block(result, word_size);
      }
      return result;
897
    } else {
898 899 900
      if (gclocker_retry_count > GCLockerRetryAllocationCount) {
        return NULL;
      }
901 902
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
903 904 905 906 907
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
908
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
909 910 911
    }
  }

912
  ShouldNotReachHere();
913 914 915
  return NULL;
}

916
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
917 918
                                           unsigned int *gc_count_before_ret,
                                           int* gclocker_retry_count_ret) {
919 920 921 922 923
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
924

925 926 927 928 929 930 931
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
932
  HeapWord* result = NULL;
933 934 935
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    unsigned int gc_count_before;
936

937 938 939 940 941 942 943
    {
      MutexLockerEx x(Heap_lock);

      result = _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
      if (result != NULL) {
        return result;
944
      }
945

946 947 948
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
      assert(_mutator_alloc_region.get() == NULL, "only way to get here");
949

950 951
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
952 953
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
954 955 956 957 958 959 960 961
          result = _mutator_alloc_region.attempt_allocation_force(word_size,
                                                      false /* bot_updates */);
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
962 963 964 965 966 967 968 969 970 971 972 973
        // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
974 975
      }
    }
976

977 978
    if (should_try_gc) {
      bool succeeded;
979 980
      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      if (result != NULL) {
981
        assert(succeeded, "only way to get back a non-NULL result");
982 983 984
        return result;
      }

985 986 987 988 989
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
990
        *gc_count_before_ret = total_collections();
991 992 993
        return NULL;
      }
    } else {
994 995 996 997 998
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
999 1000 1001
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
1002
      GC_locker::stall_until_clear();
1003
      (*gclocker_retry_count_ret) += 1;
1004 1005
    }

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
    // We can reach here if we were unsuccessul in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
    result = _mutator_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
1016
    if (result != NULL) {
1017
      return result;
1018 1019
    }

1020 1021 1022
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1023
      warning("G1CollectedHeap::attempt_allocation_slow() "
1024
              "retries %d times", try_count);
1025 1026 1027
    }
  }

1028 1029
  ShouldNotReachHere();
  return NULL;
1030 1031
}

1032
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1033 1034
                                          unsigned int * gc_count_before_ret,
                                          int* gclocker_retry_count_ret) {
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

1046
  assert_heap_not_locked_and_not_at_safepoint();
1047 1048
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
1049

1050 1051 1052 1053 1054
  // Humongous objects can exhaust the heap quickly, so we should check if we
  // need to start a marking cycle at each humongous object allocation. We do
  // the check before we do the actual allocation. The reason for doing it
  // before the allocation is that we avoid having to keep track of the newly
  // allocated memory while we do a GC.
1055 1056
  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
                                           word_size)) {
1057 1058 1059
    collect(GCCause::_g1_humongous_allocation);
  }

1060 1061 1062 1063 1064
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1065
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1066
    bool should_try_gc;
1067
    unsigned int gc_count_before;
1068

1069
    {
1070
      MutexLockerEx x(Heap_lock);
1071

1072 1073 1074 1075
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
      result = humongous_obj_allocate(word_size);
1076 1077
      if (result != NULL) {
        return result;
1078
      }
1079

1080 1081 1082
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
      } else {
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
         // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
1095 1096 1097
      }
    }

1098 1099 1100 1101
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
      bool succeeded;
      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
1115
        *gc_count_before_ret = total_collections();
1116
        return NULL;
1117 1118
      }
    } else {
1119 1120 1121 1122 1123
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
1124 1125 1126
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
1127
      GC_locker::stall_until_clear();
1128
      (*gclocker_retry_count_ret) += 1;
1129 1130
    }

1131 1132 1133 1134 1135 1136 1137
    // We can reach here if we were unsuccessul in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1138 1139
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1140 1141
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1142 1143
    }
  }
1144 1145

  ShouldNotReachHere();
1146
  return NULL;
1147 1148
}

1149 1150
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                       bool expect_null_mutator_alloc_region) {
1151
  assert_at_safepoint(true /* should_be_vm_thread */);
1152 1153 1154
  assert(_mutator_alloc_region.get() == NULL ||
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1155

1156 1157 1158 1159
  if (!isHumongous(word_size)) {
    return _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
  } else {
1160 1161 1162 1163 1164
    HeapWord* result = humongous_obj_allocate(word_size);
    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
      g1_policy()->set_initiate_conc_mark_if_possible();
    }
    return result;
1165
  }
1166 1167

  ShouldNotReachHere();
1168 1169 1170
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
1171
  G1CollectedHeap* _g1h;
1172 1173
  ModRefBarrierSet* _mr_bs;
public:
1174 1175
  PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
    _g1h(g1h), _mr_bs(mr_bs) { }
1176
  bool doHeapRegion(HeapRegion* r) {
1177
    if (r->continuesHumongous()) {
1178
      return false;
1179 1180
    }
    _g1h->reset_gc_time_stamps(r);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    HeapRegionRemSet* hrrs = r->rem_set();
    if (hrrs != NULL) hrrs->clear();
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
    return false;
  }
};

1193 1194 1195 1196
void G1CollectedHeap::clear_rsets_post_compaction() {
  PostMCRemSetClearClosure rs_clear(this, mr_bs());
  heap_region_iterate(&rs_clear);
}
1197

1198 1199 1200 1201 1202 1203
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1204
    _cl(g1->g1_rem_set(), worker_i),
1205 1206 1207
    _worker_i(worker_i),
    _g1h(g1)
  { }
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

1226 1227 1228
  void work(uint worker_id) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1229
                                          _g1->workers()->active_workers(),
1230 1231 1232 1233
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
    // We only generate output for non-empty regions.
    if (!hr->is_empty()) {
      if (!hr->isHumongous()) {
        _hr_printer->post_compaction(hr, G1HRPrinter::Old);
      } else if (hr->startsHumongous()) {
1245
        if (hr->region_num() == 1) {
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
          // single humongous region
          _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
        } else {
          _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
        }
      } else {
        assert(hr->continuesHumongous(), "only way to get here");
        _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
      }
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1263 1264 1265 1266 1267
void G1CollectedHeap::print_hrs_post_compaction() {
  PostCompactionPrinterClosure cl(hr_printer());
  heap_region_iterate(&cl);
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
double G1CollectedHeap::verify(bool guard, const char* msg) {
  double verify_time_ms = 0.0;

  if (guard && total_collections() >= VerifyGCStartAt) {
    double verify_start = os::elapsedTime();
    HandleMark hm;  // Discard invalid handles created during verification
    gclog_or_tty->print(msg);
    prepare_for_verify();
    Universe::verify(false /* silent */, VerifyOption_G1UsePrevMarking);
    verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  }

  return verify_time_ms;
}

void G1CollectedHeap::verify_before_gc() {
  double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}

void G1CollectedHeap::verify_after_gc() {
  double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
}

1293
bool G1CollectedHeap::do_collection(bool explicit_gc,
1294
                                    bool clear_all_soft_refs,
1295
                                    size_t word_size) {
1296 1297
  assert_at_safepoint(true /* should_be_vm_thread */);

1298
  if (GC_locker::check_active_before_gc()) {
1299
    return false;
1300 1301
  }

1302
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1303 1304
  ResourceMark rm;

1305
  print_heap_before_gc();
1306

1307 1308
  size_t metadata_prev_used = MetaspaceAux::used_in_bytes();

T
tonyp 已提交
1309
  HRSPhaseSetter x(HRSPhaseFullGC);
1310
  verify_region_sets_optional();
1311

1312 1313 1314 1315 1316
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1317 1318 1319 1320
  {
    IsGCActiveMark x;

    // Timing
B
brutisso 已提交
1321
    assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1322 1323
    gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
1324

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
    {
      TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
      TraceCollectorStats tcs(g1mm()->full_collection_counters());
      TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());

      double start = os::elapsedTime();
      g1_policy()->record_full_collection_start();

      // Note: When we have a more flexible GC logging framework that
      // allows us to add optional attributes to a GC log record we
      // could consider timing and reporting how long we wait in the
      // following two methods.
      wait_while_free_regions_coming();
      // If we start the compaction before the CM threads finish
      // scanning the root regions we might trip them over as we'll
      // be moving objects / updating references. So let's wait until
      // they are done. By telling them to abort, they should complete
      // early.
      _cm->root_regions()->abort();
      _cm->root_regions()->wait_until_scan_finished();
      append_secondary_free_list_if_not_empty_with_lock();
1346

1347 1348 1349
      gc_prologue(true);
      increment_total_collections(true /* full gc */);
      increment_old_marking_cycles_started();
1350

1351
      assert(used() == recalculate_used(), "Should be equal");
1352

1353
      verify_before_gc();
1354

1355
      pre_full_gc_dump();
1356

1357
      COMPILER2_PRESENT(DerivedPointerTable::clear());
1358

1359 1360 1361 1362 1363
      // Disable discovery and empty the discovered lists
      // for the CM ref processor.
      ref_processor_cm()->disable_discovery();
      ref_processor_cm()->abandon_partial_discovery();
      ref_processor_cm()->verify_no_references_recorded();
1364

1365 1366 1367 1368
      // Abandon current iterations of concurrent marking and concurrent
      // refinement, if any are in progress. We have to do this before
      // wait_until_scan_finished() below.
      concurrent_mark()->abort();
1369

1370 1371 1372 1373
      // Make sure we'll choose a new allocation region afterwards.
      release_mutator_alloc_region();
      abandon_gc_alloc_regions();
      g1_rem_set()->cleanupHRRS();
1374

1375 1376 1377 1378
      // We should call this after we retire any currently active alloc
      // regions so that all the ALLOC / RETIRE events are generated
      // before the start GC event.
      _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1379

1380 1381 1382 1383 1384 1385 1386
      // We may have added regions to the current incremental collection
      // set between the last GC or pause and now. We need to clear the
      // incremental collection set and then start rebuilding it afresh
      // after this full GC.
      abandon_collection_set(g1_policy()->inc_cset_head());
      g1_policy()->clear_incremental_cset();
      g1_policy()->stop_incremental_cset_building();
1387

1388 1389
      tear_down_region_sets(false /* free_list_only */);
      g1_policy()->set_gcs_are_young(true);
1390

1391 1392 1393
      // See the comments in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() about
      // how reference processing currently works in G1.
1394

1395 1396
      // Temporarily make discovery by the STW ref processor single threaded (non-MT).
      ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1397

1398 1399
      // Temporarily clear the STW ref processor's _is_alive_non_header field.
      ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1400

1401 1402
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
      ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1403

1404 1405 1406 1407 1408
      // Do collection work
      {
        HandleMark hm;  // Discard invalid handles created during gc
        G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
      }
1409

1410 1411
      assert(free_regions() == 0, "we should not have added any free regions");
      rebuild_region_sets(false /* free_list_only */);
1412

1413 1414 1415
      // Enqueue any discovered reference objects that have
      // not been removed from the discovered lists.
      ref_processor_stw()->enqueue_discovered_references();
1416

1417
      COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1418

1419
      MemoryService::track_memory_usage();
1420

1421
      verify_after_gc();
1422

1423 1424
      assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
      ref_processor_stw()->verify_no_references_recorded();
1425

1426 1427
      // Delete metaspaces for unloaded class loaders and clean up loader_data graph
      ClassLoaderDataGraph::purge();
1428

1429 1430 1431 1432 1433 1434
      // Note: since we've just done a full GC, concurrent
      // marking is no longer active. Therefore we need not
      // re-enable reference discovery for the CM ref processor.
      // That will be done at the start of the next marking cycle.
      assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
      ref_processor_cm()->verify_no_references_recorded();
1435

1436 1437 1438 1439 1440 1441
      reset_gc_time_stamp();
      // Since everything potentially moved, we will clear all remembered
      // sets, and clear all cards.  Later we will rebuild remebered
      // sets. We will also reset the GC time stamps of the regions.
      clear_rsets_post_compaction();
      check_gc_time_stamps();
1442

1443 1444
      // Resize the heap if necessary.
      resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1445

1446 1447 1448 1449
      if (_hr_printer.is_active()) {
        // We should do this after we potentially resize the heap so
        // that all the COMMIT / UNCOMMIT events are generated before
        // the end GC event.
1450

1451 1452 1453
        print_hrs_post_compaction();
        _hr_printer.end_gc(true /* full */, (size_t) total_collections());
      }
1454

1455 1456 1457 1458
      if (_cg1r->use_cache()) {
        _cg1r->clear_and_record_card_counts();
        _cg1r->clear_hot_cache();
      }
1459

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
      // Rebuild remembered sets of all regions.
      if (G1CollectedHeap::use_parallel_gc_threads()) {
        uint n_workers =
          AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                                  workers()->active_workers(),
                                                  Threads::number_of_non_daemon_threads());
        assert(UseDynamicNumberOfGCThreads ||
               n_workers == workers()->total_workers(),
               "If not dynamic should be using all the  workers");
        workers()->set_active_workers(n_workers);
        // Set parallel threads in the heap (_n_par_threads) only
        // before a parallel phase and always reset it to 0 after
        // the phase so that the number of parallel threads does
        // no get carried forward to a serial phase where there
        // may be code that is "possibly_parallel".
        set_par_threads(n_workers);

        ParRebuildRSTask rebuild_rs_task(this);
        assert(check_heap_region_claim_values(
               HeapRegion::InitialClaimValue), "sanity check");
        assert(UseDynamicNumberOfGCThreads ||
               workers()->active_workers() == workers()->total_workers(),
               "Unless dynamic should use total workers");
        // Use the most recent number of  active workers
        assert(workers()->active_workers() > 0,
               "Active workers not properly set");
        set_par_threads(workers()->active_workers());
        workers()->run_task(&rebuild_rs_task);
        set_par_threads(0);
        assert(check_heap_region_claim_values(
               HeapRegion::RebuildRSClaimValue), "sanity check");
        reset_heap_region_claim_values();
      } else {
        RebuildRSOutOfRegionClosure rebuild_rs(this);
        heap_region_iterate(&rebuild_rs);
      }
1496

1497 1498 1499
      if (true) { // FIXME
        MetaspaceGC::compute_new_size();
      }
1500

1501 1502 1503
#ifdef TRACESPINNING
      ParallelTaskTerminator::print_termination_counts();
#endif
1504

1505 1506 1507 1508 1509
      // Discard all rset updates
      JavaThread::dirty_card_queue_set().abandon_logs();
      assert(!G1DeferredRSUpdate
             || (G1DeferredRSUpdate &&
                (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1510

1511 1512 1513 1514 1515
      _young_list->reset_sampled_info();
      // At this point there should be no regions in the
      // entire heap tagged as young.
      assert(check_young_list_empty(true /* check_heap */),
             "young list should be empty at this point");
1516

1517 1518
      // Update the number of full collections that have been completed.
      increment_old_marking_cycles_completed(false /* concurrent */);
1519

1520 1521
      _hrs.verify_optional();
      verify_region_sets_optional();
1522

1523 1524 1525
      // Start a new incremental collection set for the next pause
      assert(g1_policy()->collection_set() == NULL, "must be");
      g1_policy()->start_incremental_cset_building();
1526

1527 1528 1529 1530
      // Clear the _cset_fast_test bitmap in anticipation of adding
      // regions to the incremental collection set for the next
      // evacuation pause.
      clear_cset_fast_test();
1531

1532
      init_mutator_alloc_region();
1533

1534 1535
      double end = os::elapsedTime();
      g1_policy()->record_full_collection_end();
1536

1537 1538 1539
      if (G1Log::fine()) {
        g1_policy()->print_heap_transition();
      }
1540

1541 1542 1543 1544 1545
      // We must call G1MonitoringSupport::update_sizes() in the same scoping level
      // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
      // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
      // before any GC notifications are raised.
      g1mm()->update_sizes();
1546

1547 1548
      gc_epilogue(true);
    }
1549

1550 1551 1552
    if (G1Log::finer()) {
      g1_policy()->print_detailed_heap_transition();
    }
1553 1554 1555

    print_heap_after_gc();

1556
    post_full_gc_dump();
1557
  }
1558

1559
  return true;
1560 1561 1562
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1563 1564 1565 1566 1567 1568 1569 1570
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");

  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1585 1586 1587 1588
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1589
  // We don't have floating point command-line arguments
1590
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1591
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1592
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1593 1594
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1631

1632
  if (capacity_after_gc < minimum_desired_capacity) {
1633 1634
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);
1645 1646

    // No expansion, now see if we want to shrink
1647
  } else if (capacity_after_gc > maximum_desired_capacity) {
1648 1649
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1650 1651 1652 1653 1654 1655 1656 1657 1658
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
1659 1660 1661 1662 1663 1664
    shrink(shrink_bytes);
  }
}


HeapWord*
1665 1666
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                           bool* succeeded) {
1667
  assert_at_safepoint(true /* should_be_vm_thread */);
1668 1669 1670

  *succeeded = true;
  // Let's attempt the allocation first.
1671 1672 1673
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
                                 false /* expect_null_mutator_alloc_region */);
1674 1675 1676 1677
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1678 1679 1680 1681 1682 1683 1684

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size);
  if (result != NULL) {
1685
    assert(*succeeded, "sanity");
1686 1687 1688
    return result;
  }

1689 1690 1691 1692 1693 1694 1695 1696
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1697

1698 1699
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1700
                                  true /* expect_null_mutator_alloc_region */);
1701
  if (result != NULL) {
1702
    assert(*succeeded, "sanity");
1703 1704 1705
    return result;
  }

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1717
                                  true /* expect_null_mutator_alloc_region */);
1718
  if (result != NULL) {
1719
    assert(*succeeded, "sanity");
1720 1721 1722
    return result;
  }

1723
  assert(!collector_policy()->should_clear_all_soft_refs(),
1724
         "Flag should have been handled and cleared prior to this point");
1725

1726 1727 1728 1729
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1730
  assert(*succeeded, "sanity");
1731 1732 1733 1734 1735 1736 1737 1738 1739
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1740 1741 1742
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1743

1744
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1745 1746 1747 1748 1749
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
1750
  if (expand(expand_bytes)) {
1751
    _hrs.verify_optional();
1752 1753
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1754
                                 false /* expect_null_mutator_alloc_region */);
1755
  }
1756
  return NULL;
1757 1758
}

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
void G1CollectedHeap::update_committed_space(HeapWord* old_end,
                                             HeapWord* new_end) {
  assert(old_end != new_end, "don't call this otherwise");
  assert((HeapWord*) _g1_storage.high() == new_end, "invariant");

  // Update the committed mem region.
  _g1_committed.set_end(new_end);
  // Tell the card table about the update.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  // Tell the BOT about the update.
  _bot_shared->resize(_g1_committed.word_size());
}

1772
bool G1CollectedHeap::expand(size_t expand_bytes) {
1773
  size_t old_mem_size = _g1_storage.committed_size();
1774
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1775 1776
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1777 1778 1779 1780 1781
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);
1782

1783 1784
  // First commit the memory.
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1785 1786
  bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  if (successful) {
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
    // Then propagate this update to the necessary data structures.
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    update_committed_space(old_end, new_end);

    FreeRegionList expansion_list("Local Expansion List");
    MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
    assert(mr.start() == old_end, "post-condition");
    // mr might be a smaller region than what was requested if
    // expand_by() was unable to allocate the HeapRegion instances
    assert(mr.end() <= new_end, "post-condition");

    size_t actual_expand_bytes = mr.byte_size();
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
    assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
           "post-condition");
    if (actual_expand_bytes < aligned_expand_bytes) {
      // We could not expand _hrs to the desired size. In this case we
      // need to shrink the committed space accordingly.
      assert(mr.end() < new_end, "invariant");

      size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
      // First uncommit the memory.
      _g1_storage.shrink_by(diff_bytes);
      // Then propagate this update to the necessary data structures.
      update_committed_space(new_end, mr.end());
1812
    }
1813
    _free_list.add_as_tail(&expansion_list);
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.start();
      while (curr < mr.end()) {
        HeapWord* curr_end = curr + HeapRegion::GrainWords;
        _hr_printer.commit(curr, curr_end);
        curr = curr_end;
      }
      assert(curr == mr.end(), "post-condition");
    }
1824
    g1_policy()->record_new_heap_size(n_regions());
1825
  } else {
1826 1827 1828
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
1829 1830 1831 1832 1833
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
        _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
      // We had head room...
1834
      vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1835 1836
    }
  }
1837
  return successful;
1838 1839
}

1840
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1841 1842 1843 1844 1845
  size_t old_mem_size = _g1_storage.committed_size();
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
1846
  uint num_regions_deleted = 0;
1847 1848 1849
  MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
  assert(mr.end() == old_end, "post-condition");
1850 1851 1852 1853 1854 1855 1856

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
                shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1857
  if (mr.byte_size() > 0) {
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.end();
      while (curr > mr.start()) {
        HeapWord* curr_end = curr;
        curr -= HeapRegion::GrainWords;
        _hr_printer.uncommit(curr, curr_end);
      }
      assert(curr == mr.start(), "post-condition");
    }

1868
    _g1_storage.shrink_by(mr.byte_size());
1869 1870 1871 1872 1873 1874
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    assert(mr.start() == new_end, "post-condition");

    _expansion_regions += num_regions_deleted;
    update_committed_space(old_end, new_end);
    HeapRegionRemSet::shrink_heap(n_regions());
1875
    g1_policy()->record_new_heap_size(n_regions());
1876 1877 1878 1879
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
1880 1881 1882 1883
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1884 1885
  verify_region_sets_optional();

1886 1887 1888 1889 1890
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
  abandon_gc_alloc_regions();

1891 1892 1893
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
T
tonyp 已提交
1894
  tear_down_region_sets(true /* free_list_only */);
1895
  shrink_helper(shrink_bytes);
T
tonyp 已提交
1896
  rebuild_region_sets(true /* free_list_only */);
1897

1898
  _hrs.verify_optional();
1899
  verify_region_sets_optional();
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1912
  _dirty_card_queue_set(false),
J
johnc 已提交
1913
  _into_cset_dirty_card_queue_set(false),
1914 1915 1916 1917
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
1918 1919 1920 1921
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
  _evac_failure_scan_stack(NULL) ,
  _mark_in_progress(false),
1922
  _cg1r(NULL), _summary_bytes_used(0),
1923
  _g1mm(NULL),
1924 1925
  _refine_cte_cl(NULL),
  _full_collection(false),
1926 1927
  _free_list("Master Free List"),
  _secondary_free_list("Secondary Free List"),
T
tonyp 已提交
1928
  _old_set("Old Set"),
1929 1930
  _humongous_set("Master Humongous Set"),
  _free_regions_coming(false),
1931 1932
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1933
  _retained_old_gc_alloc_region(NULL),
1934 1935
  _survivor_plab_stats(YoungPLABSize, PLABWeight),
  _old_plab_stats(OldPLABSize, PLABWeight),
1936
  _expand_heap_after_alloc_failure(true),
1937
  _surviving_young_words(NULL),
1938 1939
  _old_marking_cycles_started(0),
  _old_marking_cycles_completed(0),
1940
  _in_cset_fast_test(NULL),
1941
  _in_cset_fast_test_base(NULL),
1942 1943 1944
  _dirty_cards_region_list(NULL),
  _worker_cset_start_region(NULL),
  _worker_cset_start_region_time_stamp(NULL) {
1945 1946 1947 1948
  _g1h = this; // To catch bugs.
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1949 1950 1951

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1952 1953 1954 1955 1956 1957 1958
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

  int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  assert(n_rem_sets > 0, "Invariant.");

  HeapRegionRemSetIterator** iter_arr =
Z
zgu 已提交
1959
    NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
1960 1961 1962 1963 1964
  for (int i = 0; i < n_queues; i++) {
    iter_arr[i] = new HeapRegionRemSetIterator();
  }
  _rem_set_iterator = iter_arr;

Z
zgu 已提交
1965 1966
  _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1967

1968 1969 1970 1971 1972 1973
  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
  }

1974 1975
  clear_cset_start_regions();

1976 1977 1978
  // Initialize the G1EvacuationFailureALot counters and flags.
  NOT_PRODUCT(reset_evacuation_should_fail();)

1979 1980 1981 1982
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1983
  CollectedHeap::pre_initialize();
1984 1985
  os::enable_vtime();

1986 1987
  G1Log::init();

1988 1989 1990 1991
  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1992 1993 1994 1995
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");

  _cg1r = new ConcurrentG1Refine();

  // Reserve the maximum.
2013

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

  // Since max_byte_size is aligned to the size of a heap region (checked
2026 2027
  // above).
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2028

2029 2030
  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
                                                 HeapRegion::GrainBytes);
2031 2032 2033 2034 2035 2036 2037 2038

  // It is important to do this in a way such that concurrent readers can't
  // temporarily think somethings in the heap.  (I've actually seen this
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

2039
  _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
  if (barrier_set()->is_a(BarrierSet::ModRef)) {
    _mr_bs = (ModRefBarrierSet*)_barrier_set;
  } else {
    vm_exit_during_initialization("G1 requires a mod ref bs.");
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
2052 2053
  if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
    _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2054
  } else {
2055 2056
    vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
    return JNI_ENOMEM;
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
  }

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2067 2068 2069
  _hrs.initialize((HeapWord*) _g1_reserved.start(),
                  (HeapWord*) _g1_reserved.end(),
                  _expansion_regions);
2070

2071 2072
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
2073
  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2074 2075 2076
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2077
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2078
  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2079
            "too many cards per region");
2080

2081 2082
  HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);

2083 2084 2085 2086 2087
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

2088
   _in_cset_fast_test_length = max_regions();
2089
   _in_cset_fast_test_base =
Z
zgu 已提交
2090
                   NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2091 2092 2093 2094 2095

   // We're biasing _in_cset_fast_test to avoid subtracting the
   // beginning of the heap every time we want to index; basically
   // it's the same with what we do with the card table.
   _in_cset_fast_test = _in_cset_fast_test_base -
2096
               ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2097 2098 2099 2100 2101 2102

   // Clear the _cset_fast_test bitmap in anticipation of adding
   // regions to the incremental collection set for the first
   // evacuation pause.
   clear_cset_fast_test();

2103 2104
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
2105 2106 2107 2108 2109
  _cm = new ConcurrentMark(this, heap_rs);
  if (_cm == NULL || !_cm->completed_initialization()) {
    vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
    return JNI_ENOMEM;
  }
2110 2111 2112 2113 2114
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2115
  // Now expand into the initial heap size.
2116
  if (!expand(init_byte_size)) {
2117
    vm_shutdown_during_initialization("Failed to allocate initial heap.");
2118 2119
    return JNI_ENOMEM;
  }
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  _refine_cte_cl =
    new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
                                    g1_rem_set(),
                                    concurrent_g1_refine());
  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2132
                                               G1SATBProcessCompletedThreshold,
2133
                                               Shared_SATB_Q_lock);
2134 2135 2136

  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
2137 2138
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2139 2140
                                                Shared_DirtyCardQ_lock);

2141 2142 2143
  if (G1DeferredRSUpdate) {
    dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                      DirtyCardQ_FL_lock,
2144 2145
                                      -1, // never trigger processing
                                      -1, // no limit on length
2146 2147 2148
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
J
johnc 已提交
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
  _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2159 2160 2161 2162 2163 2164 2165
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

  // Do later initialization work for concurrent refinement.
  _cg1r->init();

2166 2167 2168
  // Here we allocate the dummy full region that is required by the
  // G1AllocRegion class. If we don't pass an address in the reserved
  // space here, lots of asserts fire.
2169 2170 2171

  HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
                                             _g1_reserved.start());
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
  // BOT updates. So we'll tag the dummy region as young to avoid that.
  dummy_region->set_young();
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

  init_mutator_alloc_region();

2183 2184
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
2185
  _g1mm = new G1MonitoringSupport(this);
2186

2187 2188 2189 2190
  return JNI_OK;
}

void G1CollectedHeap::ref_processing_init() {
2191 2192
  // Reference processing in G1 currently works as follows:
  //
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.
2225

2226 2227
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           (int) ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
                           &_is_alive_closure_cm,
                                // is alive closure
                                // (for efficiency/performance)
                           true);
                                // Setting next fields of discovered
                                // lists requires a barrier.

  // STW ref processor
  _ref_processor_stw =
2251
    new ReferenceProcessor(mr,    // span
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
                           &_is_alive_closure_stw,
                                // is alive closure
                                // (for efficiency/performance)
                           false);
                                // Setting next fields of discovered
                                // lists requires a barrier.
2268 2269 2270 2271 2272 2273
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  assert(!hr->continuesHumongous(), "pre-condition");
  hr->reset_gc_time_stamp();
  if (hr->startsHumongous()) {
    uint first_index = hr->hrs_index() + 1;
    uint last_index = hr->last_hc_index();
    for (uint i = first_index; i < last_index; i += 1) {
      HeapRegion* chr = region_at(i);
      assert(chr->continuesHumongous(), "sanity");
      chr->reset_gc_time_stamp();
    }
  }
}

#ifndef PRODUCT
class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
private:
  unsigned _gc_time_stamp;
  bool _failures;

public:
  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
    _gc_time_stamp(gc_time_stamp), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
    if (_gc_time_stamp != region_gc_time_stamp) {
      gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
                             "expected %d", HR_FORMAT_PARAMS(hr),
                             region_gc_time_stamp, _gc_time_stamp);
      _failures = true;
    }
    return false;
  }

  bool failures() { return _failures; }
};

void G1CollectedHeap::check_gc_time_stamps() {
  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "all GC time stamps should have been reset");
}
#endif // PRODUCT

J
johnc 已提交
2319 2320 2321
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2322
                                                 int worker_i) {
2323
  // Clean cards in the hot card cache
J
johnc 已提交
2324
  concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2325

2326 2327
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2328
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2329 2330
    n_completed_buffers++;
  }
2331
  g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2332 2333 2334 2335 2336 2337 2338 2339
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
2340 2341
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
2342
  size_t result = _summary_bytes_used;
2343
  // Read only once in case it is set to NULL concurrently
2344
  HeapRegion* hr = _mutator_alloc_region.get();
2345 2346
  if (hr != NULL)
    result += hr->used();
2347 2348 2349
  return result;
}

2350 2351 2352 2353 2354
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
  SumUsedClosure blk;
2370
  heap_region_iterate(&blk);
2371 2372 2373 2374
  return blk.result();
}

size_t G1CollectedHeap::unsafe_max_alloc() {
2375
  if (free_regions() > 0) return HeapRegion::GrainBytes;
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
2386 2387
  HeapRegion* hr = _mutator_alloc_region.get();
  if (hr == NULL) {
2388 2389
    return 0;
  }
2390
  return hr->free();
2391 2392
}

2393
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2394 2395 2396 2397 2398 2399
  switch (cause) {
    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
    case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
    case GCCause::_g1_humongous_allocation: return true;
    default:                                return false;
  }
2400 2401
}

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
    HeapWord* dummy_obj = humongous_obj_allocate(word_size);
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
void G1CollectedHeap::increment_old_marking_cycles_started() {
  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
    _old_marking_cycles_started == _old_marking_cycles_completed + 1,
    err_msg("Wrong marking cycle count (started: %d, completed: %d)",
    _old_marking_cycles_started, _old_marking_cycles_completed));

  _old_marking_cycles_started++;
}

void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2434 2435
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2436 2437 2438 2439 2440
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2441 2442 2443 2444 2445 2446 2447 2448
  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2449
  assert(concurrent ||
2450 2451 2452 2453 2454
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
         err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2455 2456

  // This is the case for the outer caller, i.e. the concurrent cycle.
2457
  assert(!concurrent ||
2458
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2459
         err_msg("for outer caller (concurrent cycle): "
2460 2461 2462
                 "_old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2463

2464
  _old_marking_cycles_completed += 1;
2465

2466 2467 2468 2469
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
  // incorrectly see that a marking cyle is still in progress.
2470
  if (concurrent) {
2471 2472 2473
    _cmThread->clear_in_progress();
  }

2474 2475 2476 2477 2478 2479 2480
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2481
void G1CollectedHeap::collect(GCCause::Cause cause) {
2482
  assert_heap_not_locked();
2483

2484
  unsigned int gc_count_before;
2485
  unsigned int old_marking_count_before;
2486 2487 2488 2489 2490 2491 2492
  bool retry_gc;

  do {
    retry_gc = false;

    {
      MutexLocker ml(Heap_lock);
2493

2494 2495
      // Read the GC count while holding the Heap_lock
      gc_count_before = total_collections();
2496
      old_marking_count_before = _old_marking_cycles_started;
2497 2498 2499 2500 2501 2502
    }

    if (should_do_concurrent_full_gc(cause)) {
      // Schedule an initial-mark evacuation pause that will start a
      // concurrent cycle. We're setting word_size to 0 which means that
      // we are not requesting a post-GC allocation.
2503
      VM_G1IncCollectionPause op(gc_count_before,
2504
                                 0,     /* word_size */
2505
                                 true,  /* should_initiate_conc_mark */
2506 2507
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2508

2509
      VMThread::execute(&op);
2510
      if (!op.pause_succeeded()) {
2511
        if (old_marking_count_before == _old_marking_cycles_started) {
2512
          retry_gc = op.should_retry_gc();
2513 2514 2515 2516 2517
        } else {
          // A Full GC happened while we were trying to schedule the
          // initial-mark GC. No point in starting a new cycle given
          // that the whole heap was collected anyway.
        }
2518 2519 2520 2521 2522 2523

        if (retry_gc) {
          if (GC_locker::is_active_and_needs_gc()) {
            GC_locker::stall_until_clear();
          }
        }
2524
      }
2525
    } else {
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
      if (cause == GCCause::_gc_locker
          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

        // Schedule a standard evacuation pause. We're setting word_size
        // to 0 which means that we are not requesting a post-GC allocation.
        VM_G1IncCollectionPause op(gc_count_before,
                                   0,     /* word_size */
                                   false, /* should_initiate_conc_mark */
                                   g1_policy()->max_pause_time_ms(),
                                   cause);
        VMThread::execute(&op);
      } else {
        // Schedule a Full GC.
2539
        VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2540 2541
        VMThread::execute(&op);
      }
2542
    }
2543
  } while (retry_gc);
2544 2545 2546
}

bool G1CollectedHeap::is_in(const void* p) const {
S
stefank 已提交
2547 2548 2549 2550 2551
  if (_g1_committed.contains(p)) {
    // Given that we know that p is in the committed space,
    // heap_region_containing_raw() should successfully
    // return the containing region.
    HeapRegion* hr = heap_region_containing_raw(p);
2552 2553
    return hr->is_in(p);
  } else {
2554
    return false;
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
2565
  ExtendedOopClosure* _cl;
2566
public:
2567
  IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2568 2569
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
2570
    if (!r->continuesHumongous()) {
2571 2572 2573 2574 2575 2576
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2577
void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2578
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
2579
  heap_region_iterate(&blk);
2580 2581
}

2582
void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2583
  IterateOopClosureRegionClosure blk(mr, cl);
2584
  heap_region_iterate(&blk);
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2601
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2602
  IterateObjectClosureRegionClosure blk(cl);
2603
  heap_region_iterate(&blk);
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
}

void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  // FIXME: is this right?
  guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2625
  heap_region_iterate(&blk);
2626 2627
}

2628 2629
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  _hrs.iterate(cl);
2630 2631 2632 2633
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2634
                                                 uint worker_id,
2635
                                                 uint no_of_par_workers,
2636
                                                 jint claim_value) {
2637
  const uint regions = n_regions();
2638
  const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2639 2640 2641 2642 2643
                             no_of_par_workers :
                             1);
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
2644
  // try to spread out the starting points of the workers
2645 2646 2647
  const HeapRegion* start_hr =
                        start_region_for_worker(worker_id, no_of_par_workers);
  const uint start_index = start_hr->hrs_index();
2648 2649

  // each worker will actually look at all regions
2650 2651
  for (uint count = 0; count < regions; ++count) {
    const uint index = (start_index + count) % regions;
2652 2653 2654 2655 2656 2657 2658 2659 2660
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
2661
    if (r->claimHeapRegion(claim_value)) {
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
2673
        for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

          // Noone should have claimed it directly. We can given
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
            // we should always be able to claim it; noone else should
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
2705
      }
2706 2707 2708 2709

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
2710 2711 2712 2713
    }
  }
}

2714 2715 2716 2717 2718 2719 2720 2721
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

2722
void G1CollectedHeap::reset_heap_region_claim_values() {
2723 2724 2725 2726
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2727 2728 2729 2730 2731
void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  collection_set_iterate(&blk);
}

2732 2733 2734 2735 2736 2737 2738 2739 2740
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
2741
  uint _failures;
2742
  HeapRegion* _sh_region;
2743

2744 2745 2746 2747 2748
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
2749
      gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2750
                             "claim value = %d, should be %d",
2751 2752
                             HR_FORMAT_PARAMS(r),
                             r->claim_value(), _claim_value);
2753 2754 2755 2756 2757 2758 2759 2760
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
2761
        gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2762
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2763
                               HR_FORMAT_PARAMS(r),
2764 2765 2766 2767 2768 2769 2770
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
2771
  uint failures() { return _failures; }
2772 2773 2774 2775 2776 2777 2778
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
2779 2780

class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2781 2782 2783
private:
  jint _claim_value;
  uint _failures;
2784 2785 2786

public:
  CheckClaimValuesInCSetHRClosure(jint claim_value) :
2787
    _claim_value(claim_value), _failures(0) { }
2788

2789
  uint failures() { return _failures; }
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809

  bool doHeapRegion(HeapRegion* hr) {
    assert(hr->in_collection_set(), "how?");
    assert(!hr->isHumongous(), "H-region in CSet");
    if (hr->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
                             "claim value = %d, should be %d",
                             HR_FORMAT_PARAMS(hr),
                             hr->claim_value(), _claim_value);
      _failures += 1;
    }
    return false;
  }
};

bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesInCSetHRClosure cl(claim_value);
  collection_set_iterate(&cl);
  return cl.failures() == 0;
}
2810 2811
#endif // ASSERT

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
// Clear the cached CSet starting regions and (more importantly)
// the time stamps. Called when we reset the GC time stamp.
void G1CollectedHeap::clear_cset_start_regions() {
  assert(_worker_cset_start_region != NULL, "sanity");
  assert(_worker_cset_start_region_time_stamp != NULL, "sanity");

  int n_queues = MAX2((int)ParallelGCThreads, 1);
  for (int i = 0; i < n_queues; i++) {
    _worker_cset_start_region[i] = NULL;
    _worker_cset_start_region_time_stamp[i] = 0;
  }
}
2824

2825 2826
// Given the id of a worker, obtain or calculate a suitable
// starting region for iterating over the current collection set.
2827
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
  assert(get_gc_time_stamp() > 0, "should have been updated by now");

  HeapRegion* result = NULL;
  unsigned gc_time_stamp = get_gc_time_stamp();

  if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
    // Cached starting region for current worker was set
    // during the current pause - so it's valid.
    // Note: the cached starting heap region may be NULL
    // (when the collection set is empty).
    result = _worker_cset_start_region[worker_i];
    assert(result == NULL || result->in_collection_set(), "sanity");
    return result;
  }

  // The cached entry was not valid so let's calculate
  // a suitable starting heap region for this worker.

  // We want the parallel threads to start their collection
  // set iteration at different collection set regions to
  // avoid contention.
  // If we have:
  //          n collection set regions
  //          p threads
  // Then thread t will start at region floor ((t * n) / p)

  result = g1_policy()->collection_set();
2855
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2856
    uint cs_size = g1_policy()->cset_region_length();
2857
    uint active_workers = workers()->active_workers();
2858 2859 2860 2861
    assert(UseDynamicNumberOfGCThreads ||
             active_workers == workers()->total_workers(),
             "Unless dynamic should use total workers");

2862 2863
    uint end_ind   = (cs_size * worker_i) / active_workers;
    uint start_ind = 0;
2864 2865 2866 2867 2868 2869 2870 2871 2872

    if (worker_i > 0 &&
        _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
      // Previous workers starting region is valid
      // so let's iterate from there
      start_ind = (cs_size * (worker_i - 1)) / active_workers;
      result = _worker_cset_start_region[worker_i - 1];
    }

2873
    for (uint i = start_ind; i < end_ind; i++) {
2874 2875 2876
      result = result->next_in_collection_set();
    }
  }
2877 2878 2879 2880 2881 2882 2883 2884 2885

  // Note: the calculated starting heap region may be NULL
  // (when the collection set is empty).
  assert(result == NULL || result->in_collection_set(), "sanity");
  assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
         "should be updated only once per pause");
  _worker_cset_start_region[worker_i] = result;
  OrderAccess::storestore();
  _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2886 2887 2888
  return result;
}

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
                                                     uint no_of_par_workers) {
  uint worker_num =
           G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
  const uint start_index = n_regions() * worker_i / worker_num;
  return region_at(start_index);
}

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2914 2915 2916 2917 2918
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2942
  return n_regions() > 0 ? region_at(0) : NULL;
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  return HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2982 2983 2984 2985
  // Also, this value can be at most the humongous object threshold,
  // since we can't allow tlabs to grow big enough to accomodate
  // humongous objects.

2986
  HeapRegion* hr = _mutator_alloc_region.get();
2987
  size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2988
  if (hr == NULL) {
2989
    return max_tlab_size;
2990
  } else {
2991
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2992 2993 2994 2995
  }
}

size_t G1CollectedHeap::max_capacity() const {
2996
  return _g1_reserved.byte_size();
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
                                              VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking:
    return hr->obj_allocated_since_prev_marking(obj);
  case VerifyOption_G1UseNextMarking:
    return hr->obj_allocated_since_next_marking(obj);
  case VerifyOption_G1UseMarkWord:
    return false;
  default:
    ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  case VerifyOption_G1UseMarkWord:    return NULL;
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return "PTAMS";
  case VerifyOption_G1UseNextMarking: return "NTAMS";
  case VerifyOption_G1UseMarkWord:    return "NONE";
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

3056
class VerifyLivenessOopClosure: public OopClosure {
3057 3058
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
3059
public:
3060 3061 3062
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
3063 3064 3065 3066 3067
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
3068
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3069
              "Dead object referenced by a not dead object");
3070 3071 3072 3073
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
3074
private:
3075 3076 3077
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
3078
  VerifyOption _vo;
3079
public:
3080 3081 3082 3083 3084
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
3085 3086 3087
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
3088
    VerifyLivenessOopClosure isLive(_g1h, _vo);
3089
    assert(o != NULL, "Huh?");
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

3102
      o->oop_iterate_no_header(&isLive);
3103 3104 3105 3106
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
3142
private:
3143 3144 3145
  bool             _par;
  VerifyOption     _vo;
  bool             _failures;
3146
public:
3147 3148 3149
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3150 3151
  VerifyRegionClosure(bool par, VerifyOption vo)
    : _par(par),
3152
      _vo(vo),
3153 3154 3155 3156 3157
      _failures(false) {}

  bool failures() {
    return _failures;
  }
3158

3159
  bool doHeapRegion(HeapRegion* r) {
3160
    if (!r->continuesHumongous()) {
3161
      bool failures = false;
3162
      r->verify(_vo, &failures);
3163 3164 3165
      if (failures) {
        _failures = true;
      } else {
3166
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3167
        r->object_iterate(&not_dead_yet_cl);
3168 3169 3170 3171 3172 3173 3174
        if (_vo != VerifyOption_G1UseNextMarking) {
          if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
            gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                   "max_live_bytes "SIZE_FORMAT" "
                                   "< calculated "SIZE_FORMAT,
                                   r->bottom(), r->end(),
                                   r->max_live_bytes(),
3175
                                 not_dead_yet_cl.live_bytes());
3176 3177 3178 3179 3180 3181
            _failures = true;
          }
        } else {
          // When vo == UseNextMarking we cannot currently do a sanity
          // check on the live bytes as the calculation has not been
          // finalized yet.
3182 3183
        }
      }
3184
    }
3185
    return false; // stop the region iteration if we hit a failure
3186 3187 3188
  }
};

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
class YoungRefCounterClosure : public OopClosure {
  G1CollectedHeap* _g1h;
  int              _count;
 public:
  YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  void do_oop(narrowOop* p) { ShouldNotReachHere(); }

  int count() { return _count; }
  void reset_count() { _count = 0; };
};

class VerifyKlassClosure: public KlassClosure {
  YoungRefCounterClosure _young_ref_counter_closure;
  OopClosure *_oop_closure;
 public:
  VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  void do_klass(Klass* k) {
    k->oops_do(_oop_closure);

    _young_ref_counter_closure.reset_count();
    k->oops_do(&_young_ref_counter_closure);
    if (_young_ref_counter_closure.count() > 0) {
      guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
    }
  }
};

// TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
//       pass it as the perm_blk to SharedHeap::process_strong_roots.
//       When process_strong_roots stop calling perm_blk->younger_refs_iterate
//       we can change this closure to extend the simpler OopClosure.
3221 3222 3223
class VerifyRootsClosure: public OopsInGenClosure {
private:
  G1CollectedHeap* _g1h;
3224
  VerifyOption     _vo;
3225
  bool             _failures;
3226
public:
3227 3228 3229 3230
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
3231
    _g1h(G1CollectedHeap::heap()),
3232
    _vo(vo),
3233
    _failures(false) { }
3234 3235 3236

  bool failures() { return _failures; }

3237 3238 3239 3240
  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3241
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
3242
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3243
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
3244 3245 3246
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
        }
3247 3248 3249 3250 3251
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }
3252 3253 3254

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
3255 3256
};

3257 3258 3259 3260 3261
// This is the task used for parallel heap verification.

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
3262 3263
  VerifyOption     _vo;
  bool             _failures;
3264 3265

public:
3266 3267 3268
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3269
  G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3270
    AbstractGangTask("Parallel verify task"),
3271
    _g1h(g1h),
3272
    _vo(vo),
3273 3274 3275 3276 3277
    _failures(false) { }

  bool failures() {
    return _failures;
  }
3278

3279
  void work(uint worker_id) {
3280
    HandleMark hm;
3281
    VerifyRegionClosure blk(true, _vo);
3282
    _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3283
                                          _g1h->workers()->active_workers(),
3284
                                          HeapRegion::ParVerifyClaimValue);
3285 3286 3287
    if (blk.failures()) {
      _failures = true;
    }
3288 3289 3290
  }
};

3291 3292
void G1CollectedHeap::verify(bool silent) {
  verify(silent, VerifyOption_G1UsePrevMarking);
3293 3294
}

3295
void G1CollectedHeap::verify(bool silent,
3296
                             VerifyOption vo) {
3297
  if (SafepointSynchronize::is_at_safepoint()) {
3298
    if (!silent) { gclog_or_tty->print("Roots "); }
3299
    VerifyRootsClosure rootsCl(vo);
3300 3301

    assert(Thread::current()->is_VM_thread(),
3302
           "Expected to be executed serially by the VM thread at this point");
3303

3304
    CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3305
    VerifyKlassClosure klassCl(this, &rootsCl);
3306

3307 3308
    // We apply the relevant closures to all the oops in the
    // system dictionary, the string table and the code cache.
3309
    const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3310

3311 3312 3313
    // Need cleared claim bits for the strong roots processing
    ClassLoaderDataGraph::clear_claimed_marks();

3314
    process_strong_roots(true,      // activate StrongRootsScope
3315 3316
                         false,     // we set "is scavenging" to false,
                                    // so we don't reset the dirty cards.
3317
                         ScanningOption(so),  // roots scanning options
3318
                         &rootsCl,
3319
                         &blobsCl,
3320 3321
                         &klassCl
                         );
3322

3323
    bool failures = rootsCl.failures();
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

3334
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3335 3336 3337 3338
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3339
      G1ParVerifyTask task(this, vo);
3340 3341 3342 3343
      assert(UseDynamicNumberOfGCThreads ||
        workers()->active_workers() == workers()->total_workers(),
        "If not dynamic should be using all the workers");
      int n_workers = workers()->active_workers();
3344 3345 3346
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3347 3348 3349
      if (task.failures()) {
        failures = true;
      }
3350

3351 3352
      // Checks that the expected amount of parallel work was done.
      // The implication is that n_workers is > 0.
3353 3354 3355 3356 3357 3358 3359 3360
      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3361
      VerifyRegionClosure blk(false, vo);
3362
      heap_region_iterate(&blk);
3363 3364 3365
      if (blk.failures()) {
        failures = true;
      }
3366
    }
3367
    if (!silent) gclog_or_tty->print("RemSet ");
3368
    rem_set()->verify();
3369 3370 3371

    if (failures) {
      gclog_or_tty->print_cr("Heap:");
3372 3373 3374 3375
      // It helps to have the per-region information in the output to
      // help us track down what went wrong. This is why we call
      // print_extended_on() instead of print_on().
      print_extended_on(gclog_or_tty);
3376
      gclog_or_tty->print_cr("");
3377
#ifndef PRODUCT
3378
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3379
        concurrent_mark()->print_reachable("at-verification-failure",
3380
                                           vo, false /* all */);
3381
      }
3382
#endif
3383 3384 3385
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3386
  } else {
3387 3388
    if (!silent)
      gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
  }
}

class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

void G1CollectedHeap::print_on(outputStream* st) const {
3403 3404
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3405
            capacity()/K, used_unlocked()/K);
3406 3407 3408 3409 3410
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
3411
  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3412 3413 3414 3415 3416 3417
  uint young_regions = _young_list->length();
  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
            (size_t) young_regions * HeapRegion::GrainBytes / K);
  uint survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3418
  st->cr();
3419
  MetaspaceAux::print_on(st);
3420 3421
}

3422 3423 3424 3425 3426
void G1CollectedHeap::print_extended_on(outputStream* st) const {
  print_on(st);

  // Print the per-region information.
  st->cr();
3427 3428 3429 3430 3431
  st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
               "HS=humongous(starts), HC=humongous(continues), "
               "CS=collection set, F=free, TS=gc time stamp, "
               "PTAMS=previous top-at-mark-start, "
               "NTAMS=next top-at-mark-start)");
3432
  PrintRegionClosure blk(st);
3433
  heap_region_iterate(&blk);
3434 3435
}

3436 3437 3438 3439 3440 3441 3442 3443 3444
void G1CollectedHeap::print_on_error(outputStream* st) const {
  this->CollectedHeap::print_on_error(st);

  if (_cm != NULL) {
    st->cr();
    _cm->print_on_error(st);
  }
}

3445
void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3446
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3447
    workers()->print_worker_threads_on(st);
3448
  }
T
tonyp 已提交
3449
  _cmThread->print_on(st);
3450
  st->cr();
T
tonyp 已提交
3451 3452
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
3453 3454 3455
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3456
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3457 3458 3459
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3460
  _cg1r->threads_do(tc);
3461 3462 3463 3464 3465 3466 3467 3468 3469
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3470
  if (G1SummarizeRSetStats) {
3471 3472
    g1_rem_set()->print_summary_info();
  }
3473
  if (G1SummarizeConcMark) {
3474 3475 3476 3477 3478 3479
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->print_cr(msg);
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3530 3531 3532 3533 3534 3535 3536
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3537
  // always_do_update_barrier = false;
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Call allocation profiler
  AllocationProfiler::iterate_since_last_gc();
  // Fill TLAB's and such
  ensure_parsability(true);
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3551
  // always_do_update_barrier = true;
3552 3553 3554 3555

  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
3556 3557
}

3558 3559 3560 3561
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
                                               bool* succeeded) {
  assert_heap_not_locked_and_not_at_safepoint();
3562
  g1_policy()->record_stop_world_start();
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
                             GCCause::_g1_inc_collection_pause);
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3578 3579 3580 3581
}

void
G1CollectedHeap::doConcurrentMark() {
3582 3583 3584 3585
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
  }
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();

3601 3602 3603 3604
  // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  // in bytes - not the number of 'entries'. We need to convert
  // into a number of cards.
  return (buffer_size * buffer_num + extra_cards) / oopSize;
3605 3606 3607
}

size_t G1CollectedHeap::cards_scanned() {
3608
  return g1_rem_set()->cardsScanned();
3609 3610 3611 3612
}

void
G1CollectedHeap::setup_surviving_young_words() {
3613 3614
  assert(_surviving_young_words == NULL, "pre-condition");
  uint array_length = g1_policy()->young_cset_region_length();
Z
zgu 已提交
3615
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3616
  if (_surviving_young_words == NULL) {
3617
    vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3618 3619
                          "Not enough space for young surv words summary.");
  }
3620
  memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3621
#ifdef ASSERT
3622
  for (uint i = 0;  i < array_length; ++i) {
3623
    assert( _surviving_young_words[i] == 0, "memset above" );
3624
  }
3625
#endif // !ASSERT
3626 3627 3628 3629 3630
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3631 3632
  uint array_length = g1_policy()->young_cset_region_length();
  for (uint i = 0; i < array_length; ++i) {
3633
    _surviving_young_words[i] += surv_young_words[i];
3634
  }
3635 3636 3637 3638 3639
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
Z
zgu 已提交
3640
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3641 3642 3643
  _surviving_young_words = NULL;
}

3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3661 3662 3663
    return false;
  }
};
3664
#endif // ASSERT
3665

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3677
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3688
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3689 3690 3691 3692 3693 3694
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3695 3696 3697 3698 3699 3700 3701 3702 3703
void G1CollectedHeap::log_gc_header() {
  if (!G1Log::fine()) {
    return;
  }

  gclog_or_tty->date_stamp(PrintGCDateStamps);
  gclog_or_tty->stamp(PrintGCTimeStamps);

  GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3704
    .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
    .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");

  gclog_or_tty->print("[%s", (const char*)gc_cause_str);
}

void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  if (!G1Log::fine()) {
    return;
  }

  if (G1Log::finer()) {
    if (evacuation_failed()) {
      gclog_or_tty->print(" (to-space exhausted)");
    }
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
    g1_policy()->phase_times()->note_gc_end();
    g1_policy()->phase_times()->print(pause_time_sec);
    g1_policy()->print_detailed_heap_transition();
  } else {
    if (evacuation_failed()) {
      gclog_or_tty->print("--");
    }
    g1_policy()->print_heap_transition();
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  }
3730
  gclog_or_tty->flush();
3731 3732
}

3733
bool
3734
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3735 3736 3737
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3738
  if (GC_locker::check_active_before_gc()) {
3739
    return false;
3740 3741
  }

3742
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3743 3744
  ResourceMark rm;

3745
  print_heap_before_gc();
3746

T
tonyp 已提交
3747
  HRSPhaseSetter x(HRSPhaseEvacuation);
3748
  verify_region_sets_optional();
3749
  verify_dirty_young_regions();
3750

3751 3752 3753 3754 3755 3756 3757 3758
  // This call will decide whether this pause is an initial-mark
  // pause. If it is, during_initial_mark_pause() will return true
  // for the duration of this pause.
  g1_policy()->decide_on_conc_mark_initiation();

  // We do not allow initial-mark to be piggy-backed on a mixed GC.
  assert(!g1_policy()->during_initial_mark_pause() ||
          g1_policy()->gcs_are_young(), "sanity");
3759

3760 3761
  // We also do not allow mixed GCs during marking.
  assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3762

3763 3764 3765 3766
  // Record whether this pause is an initial mark. When the current
  // thread has completed its logging output and it's safe to signal
  // the CM thread, the flag's value in the policy has been reset.
  bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3767

3768 3769
  // Inner scope for scope based logging, timers, and stats collection
  {
3770 3771 3772
    if (g1_policy()->during_initial_mark_pause()) {
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
3773
      increment_old_marking_cycles_started();
3774
    }
3775
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
3776

3777 3778
    int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                                workers()->active_workers() : 1);
3779 3780
    double pause_start_sec = os::elapsedTime();
    g1_policy()->phase_times()->note_gc_start(active_workers);
3781
    log_gc_header();
3782

3783
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3784
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3785

T
tonyp 已提交
3786 3787 3788 3789 3790 3791
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3792
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3793
      append_secondary_free_list_if_not_empty_with_lock();
3794
    }
3795

3796 3797
    assert(check_young_list_well_formed(),
      "young list should be well formed");
3798

3799 3800 3801 3802
    // Don't dynamically change the number of GC threads this early.  A value of
    // 0 is used to indicate serial work.  When parallel work is done,
    // it will be set.

3803 3804 3805 3806 3807
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3808
      increment_gc_time_stamp();
3809

3810
      verify_before_gc();
3811

3812
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3813

3814 3815 3816
      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.
3817

3818 3819 3820
      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
                                            true /*verify_no_refs*/);
3821

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
        release_mutator_alloc_region();

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

3838 3839 3840 3841 3842 3843
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        //
        // Preserving the old comment here if that helps the investigation:
        //
3844 3845
        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
3846
        double sample_start_time_sec = os::elapsedTime();
3847

3848
#if YOUNG_LIST_VERBOSE
3849 3850 3851
        gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3852 3853
#endif // YOUNG_LIST_VERBOSE

3854
        g1_policy()->record_collection_pause_start(sample_start_time_sec);
3855

3856 3857 3858 3859 3860 3861
        double scan_wait_start = os::elapsedTime();
        // We have to wait until the CM threads finish scanning the
        // root regions as it's the only way to ensure that all the
        // objects on them have been correctly scanned before we start
        // moving them during the GC.
        bool waited = _cm->root_regions()->wait_until_scan_finished();
3862
        double wait_time_ms = 0.0;
3863 3864
        if (waited) {
          double scan_wait_end = os::elapsedTime();
3865
          wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3866
        }
3867
        g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3868

3869
#if YOUNG_LIST_VERBOSE
3870 3871
        gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
        _young_list->print();
3872
#endif // YOUNG_LIST_VERBOSE
3873

3874 3875 3876
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }
3877

3878
#if YOUNG_LIST_VERBOSE
3879 3880 3881
        gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3882
#endif // YOUNG_LIST_VERBOSE
3883

3884
        g1_policy()->finalize_cset(target_pause_time_ms);
3885

3886 3887 3888
        _cm->note_start_of_gc();
        // We should not verify the per-thread SATB buffers given that
        // we have not filtered them yet (we'll do so during the
3889
        // GC). We also call this after finalize_cset() to
3890 3891 3892 3893 3894 3895
        // ensure that the CSet has been finalized.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 false /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            G1HRPrinter::RegionType type;
            if (!hr->is_young()) {
              type = G1HRPrinter::Old;
            } else if (hr->is_survivor()) {
              type = G1HRPrinter::Survivor;
            } else {
              type = G1HRPrinter::Eden;
            }
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
3909 3910 3911
          }
        }

3912
#ifdef ASSERT
3913 3914
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
3915
#endif // ASSERT
3916

3917
        setup_surviving_young_words();
3918

3919 3920
        // Initialize the GC alloc regions.
        init_gc_alloc_regions();
3921

3922 3923
        // Actually do the work...
        evacuate_collection_set();
3924

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
        // We do this to mainly verify the per-thread SATB buffers
        // (which have been filtered by now) since we didn't verify
        // them earlier. No point in re-checking the stacks / enqueued
        // buffers given that the CSet has not changed since last time
        // we checked.
        _cm->verify_no_cset_oops(false /* verify_stacks */,
                                 false /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

3935 3936
        free_collection_set(g1_policy()->collection_set());
        g1_policy()->clear_collection_set();
3937

3938
        cleanup_surviving_young_words();
3939

3940 3941
        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();
3942

3943 3944 3945 3946
        // Clear the _cset_fast_test bitmap in anticipation of adding
        // regions to the incremental collection set for the next
        // evacuation pause.
        clear_cset_fast_test();
3947

3948
        _young_list->reset_sampled_info();
3949

3950 3951 3952 3953 3954 3955
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");
3956 3957

#if YOUNG_LIST_VERBOSE
3958 3959
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
3960
#endif // YOUNG_LIST_VERBOSE
3961

3962 3963 3964
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
                                            _young_list->first_survivor_region(),
                                            _young_list->last_survivor_region());
3965

3966
        _young_list->reset_auxilary_lists();
3967

3968 3969 3970 3971 3972 3973 3974
        if (evacuation_failed()) {
          _summary_bytes_used = recalculate_used();
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
          _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
        }
3975

3976
        if (g1_policy()->during_initial_mark_pause()) {
3977 3978 3979
          // We have to do this before we notify the CM threads that
          // they can start working to make sure that all the
          // appropriate initialization is done on the CM object.
3980 3981
          concurrent_mark()->checkpointRootsInitialPost();
          set_marking_started();
3982 3983 3984
          // Note that we don't actually trigger the CM thread at
          // this point. We do that later when we're sure that
          // the current thread has completed its logging output.
3985
        }
3986

3987
        allocate_dummy_regions();
3988

3989
#if YOUNG_LIST_VERBOSE
3990 3991 3992
        gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3993
#endif // YOUNG_LIST_VERBOSE
3994

3995 3996 3997 3998 3999 4000
        init_mutator_alloc_region();

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
4001 4002
            // No need for an ergo verbose message here,
            // expansion_amount() does this when it returns a value > 0.
4003 4004 4005 4006 4007 4008
            if (!expand(expand_bytes)) {
              // We failed to expand the heap so let's verify that
              // committed/uncommitted amount match the backing store
              assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
              assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
            }
4009 4010 4011
          }
        }

4012 4013 4014 4015 4016 4017 4018 4019
        // We redo the verificaiton but now wrt to the new CSet which
        // has just got initialized after the previous CSet was freed.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);
        _cm->note_end_of_gc();

4020 4021 4022 4023 4024 4025
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        double sample_end_time_sec = os::elapsedTime();
        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
        g1_policy()->record_collection_pause_end(pause_time_ms);
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

4052
        verify_after_gc();
4053

4054 4055
        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();
4056

4057 4058
        // CM reference discovery will be re-enabled if necessary.
      }
4059

4060 4061 4062 4063 4064 4065
      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

4066 4067 4068
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
4069 4070

#ifdef TRACESPINNING
4071
      ParallelTaskTerminator::print_termination_counts();
4072
#endif
4073

4074 4075
      gc_epilogue(false);
    }
4076

4077 4078 4079
    // Print the remainder of the GC log output.
    log_gc_footer(os::elapsedTime() - pause_start_sec);

4080
    // It is not yet to safe to tell the concurrent mark to
4081 4082 4083
    // start as we have some optional output below. We don't want the
    // output from the concurrent mark thread interfering with this
    // logging output either.
4084

4085 4086 4087 4088 4089
    _hrs.verify_optional();
    verify_region_sets_optional();

    TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4090

4091
    print_heap_after_gc();
4092

4093 4094 4095 4096 4097 4098
    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
    // before any GC notifications are raised.
    g1mm()->update_sizes();
  }
4099

4100 4101 4102 4103 4104
  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_summary_info();
  }
4105

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
  // It should now be safe to tell the concurrent mark thread to start
  // without its logging output interfering with the logging output
  // that came from the pause.

  if (should_start_conc_mark) {
    // CAUTION: after the doConcurrentMark() call below,
    // the concurrent marking thread(s) could be running
    // concurrently with us. Make sure that anything after
    // this point does not assume that we are the only GC thread
    // running. Note: of course, the actual marking work will
    // not start until the safepoint itself is released in
    // ConcurrentGCThread::safepoint_desynchronize().
    doConcurrentMark();
  }

4121
  return true;
4122 4123
}

4124 4125 4126 4127 4128
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
4129
      gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4130 4131
      break;
    case GCAllocForTenured:
4132
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4133 4134 4135
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
4136
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4137 4138
      break;
  }
4139 4140 4141 4142 4143 4144

  // Prevent humongous PLAB sizes for two reasons:
  // * PLABs are allocated using a similar paths as oops, but should
  //   never be in a humongous region
  // * Allowing humongous PLABs needlessly churns the region free lists
  return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4145 4146
}

4147 4148 4149 4150 4151 4152 4153 4154 4155
void G1CollectedHeap::init_mutator_alloc_region() {
  assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  _mutator_alloc_region.init();
}

void G1CollectedHeap::release_mutator_alloc_region() {
  _mutator_alloc_region.release();
  assert(_mutator_alloc_region.get() == NULL, "post-condition");
}
4156

4157
void G1CollectedHeap::init_gc_alloc_regions() {
4158
  assert_at_safepoint(true /* should_be_vm_thread */);
4159

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
  _survivor_gc_alloc_region.init();
  _old_gc_alloc_region.init();
  HeapRegion* retained_region = _retained_old_gc_alloc_region;
  _retained_old_gc_alloc_region = NULL;

  // We will discard the current GC alloc region if:
  // a) it's in the collection set (it can happen!),
  // b) it's already full (no point in using it),
  // c) it's empty (this means that it was emptied during
  // a cleanup and it should be on the free list now), or
  // d) it's humongous (this means that it was emptied
  // during a cleanup and was added to the free list, but
  // has been subseqently used to allocate a humongous
  // object that may be less than the region size).
  if (retained_region != NULL &&
      !retained_region->in_collection_set() &&
      !(retained_region->top() == retained_region->end()) &&
      !retained_region->is_empty() &&
      !retained_region->isHumongous()) {
    retained_region->set_saved_mark();
T
tonyp 已提交
4180 4181 4182 4183 4184
    // The retained region was added to the old region set when it was
    // retired. We have to remove it now, since we don't allow regions
    // we allocate to in the region sets. We'll re-add it later, when
    // it's retired again.
    _old_set.remove(retained_region);
4185 4186
    bool during_im = g1_policy()->during_initial_mark_pause();
    retained_region->note_start_of_copying(during_im);
4187 4188 4189 4190 4191
    _old_gc_alloc_region.set(retained_region);
    _hr_printer.reuse(retained_region);
  }
}

J
johnc 已提交
4192
void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers) {
4193 4194 4195 4196 4197 4198 4199
  _survivor_gc_alloc_region.release();
  // If we have an old GC alloc region to release, we'll save it in
  // _retained_old_gc_alloc_region. If we don't
  // _retained_old_gc_alloc_region will become NULL. This is what we
  // want either way so no reason to check explicitly for either
  // condition.
  _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4200 4201

  if (ResizePLAB) {
J
johnc 已提交
4202 4203
    _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
    _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4204
  }
4205 4206
}

4207 4208 4209 4210
void G1CollectedHeap::abandon_gc_alloc_regions() {
  assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  _retained_old_gc_alloc_region = NULL;
4211 4212
}

4213 4214 4215
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
Z
zgu 已提交
4216
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4217 4218 4219 4220 4221 4222 4223
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
4224
  delete _evac_failure_scan_stack;
4225 4226 4227
  _evac_failure_scan_stack = NULL;
}

4228 4229
void G1CollectedHeap::remove_self_forwarding_pointers() {
  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4230

4231
  G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4232

4233 4234 4235 4236
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads();
    workers()->run_task(&rsfp_task);
    set_par_threads(0);
4237
  } else {
4238
    rsfp_task.work(0);
4239
  }
4240 4241 4242 4243 4244 4245 4246

  assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");

  // Reset the claim values in the regions in the collection set.
  reset_cset_heap_region_claim_values();

  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4247 4248

  // Now restore saved marks, if any.
4249 4250 4251 4252 4253 4254
  assert(_objs_with_preserved_marks.size() ==
            _preserved_marks_of_objs.size(), "Both or none.");
  while (!_objs_with_preserved_marks.is_empty()) {
    oop obj = _objs_with_preserved_marks.pop();
    markOop m = _preserved_marks_of_objs.pop();
    obj->set_mark(m);
4255
  }
4256 4257
  _objs_with_preserved_marks.clear(true);
  _preserved_marks_of_objs.clear(true);
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4276
                                               oop old) {
4277 4278 4279
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
4280 4281 4282 4283
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
4284

4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4303 4304 4305 4306 4307 4308 4309
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  set_evacuation_failed(true);

  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4322
    _hr_printer.evac_failure(r);
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4336 4337 4338 4339
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4340 4341
    _objs_with_preserved_marks.push(obj);
    _preserved_marks_of_objs.push(m);
4342 4343 4344 4345 4346
  }
}

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
4347 4348 4349 4350
  if (purpose == GCAllocForSurvived) {
    HeapWord* result = survivor_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4351
    } else {
4352 4353 4354
      // Let's try to allocate in the old gen in case we can fit the
      // object there.
      return old_attempt_allocation(word_size);
4355
    }
4356 4357 4358 4359 4360
  } else {
    assert(purpose ==  GCAllocForTenured, "sanity");
    HeapWord* result = old_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4361
    } else {
4362 4363 4364
      // Let's try to allocate in the survivors in case we can fit the
      // object there.
      return survivor_attempt_allocation(word_size);
4365 4366 4367
    }
  }

4368 4369 4370
  ShouldNotReachHere();
  // Trying to keep some compilers happy.
  return NULL;
4371 4372
}

4373
G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4374
  ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4375

4376
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4377 4378 4379 4380 4381 4382 4383
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
    _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
4384 4385
    _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
    _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4386 4387
    _age_table(false),
    _strong_roots_time(0), _term_time(0),
4388
    _alloc_buffer_waste(0), _undo_waste(0) {
4389 4390 4391 4392 4393
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
4394 4395 4396 4397
  uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  uint array_length = PADDING_ELEM_NUM +
                      real_length +
                      PADDING_ELEM_NUM;
Z
zgu 已提交
4398
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4399
  if (_surviving_young_words_base == NULL)
4400
    vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4401 4402
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4403
  memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4404

4405 4406 4407
  _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;

4408 4409
  _start = os::elapsedTime();
}
4410

4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
                   " ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
                   "  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
                   " ------- ------- -------");
}

void
G1ParScanThreadState::print_termination_stats(int i,
                                              outputStream* const st) const
{
  const double elapsed_ms = elapsed_time() * 1000.0;
  const double s_roots_ms = strong_roots_time() * 1000.0;
  const double term_ms    = term_time() * 1000.0;
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
               (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
               alloc_buffer_waste() * HeapWordSize / K,
               undo_waste() * HeapWordSize / K);
}

4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  assert(ref != NULL, "invariant");
  assert(UseCompressedOops, "sanity");
  assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  oop p = oopDesc::load_decode_heap_oop(ref);
  assert(_g1h->is_in_g1_reserved(p),
         err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  return true;
}

bool G1ParScanThreadState::verify_ref(oop* ref) const {
  assert(ref != NULL, "invariant");
  if (has_partial_array_mask(ref)) {
    // Must be in the collection set--it's already been copied.
    oop p = clear_partial_array_mask(ref);
    assert(_g1h->obj_in_cs(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  } else {
    oop p = oopDesc::load_decode_heap_oop(ref);
    assert(_g1h->is_in_g1_reserved(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  }
  return true;
}

bool G1ParScanThreadState::verify_task(StarTask ref) const {
  if (ref.is_narrow()) {
    return verify_ref((narrowOop*) ref);
  } else {
    return verify_ref((oop*) ref);
  }
}
#endif // ASSERT

void G1ParScanThreadState::trim_queue() {
4476 4477 4478 4479
  assert(_evac_cl != NULL, "not set");
  assert(_evac_failure_cl != NULL, "not set");
  assert(_partial_scan_cl != NULL, "not set");

4480 4481 4482 4483 4484 4485
  StarTask ref;
  do {
    // Drain the overflow stack first, so other threads can steal.
    while (refs()->pop_overflow(ref)) {
      deal_with_reference(ref);
    }
4486

4487 4488 4489 4490 4491 4492
    while (refs()->pop_local(ref)) {
      deal_with_reference(ref);
    }
  } while (!refs()->is_empty());
}

4493 4494
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
                                     G1ParScanThreadState* par_scan_state) :
4495
  _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4496
  _par_scan_state(par_scan_state),
4497
  _worker_id(par_scan_state->queue_num()),
4498 4499
  _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  _mark_in_progress(_g1->mark_in_progress()) { }
4500

B
brutisso 已提交
4501 4502
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4503 4504 4505 4506 4507 4508 4509
#ifdef ASSERT
  HeapRegion* hr = _g1->heap_region_containing(obj);
  assert(hr != NULL, "sanity");
  assert(!hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // We know that the object is not moving so it's safe to read its size.
4510
  _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4511 4512
}

B
brutisso 已提交
4513 4514 4515
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  ::mark_forwarded_object(oop from_obj, oop to_obj) {
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
#ifdef ASSERT
  assert(from_obj->is_forwarded(), "from obj should be forwarded");
  assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  assert(from_obj != to_obj, "should not be self-forwarded");

  HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  assert(from_hr != NULL, "sanity");
  assert(from_hr->in_collection_set(), "from obj should be in the CSet");

  HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  assert(to_hr != NULL, "sanity");
  assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // The object might be in the process of being copied by another
  // worker so we cannot trust that its to-space image is
  // well-formed. So we have to read its size from its from-space
  // image which we know should not be changing.
4534
  _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4535 4536
}

B
brutisso 已提交
4537 4538 4539
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  ::copy_to_survivor_space(oop old) {
4540
  size_t word_sz = old->size();
4541 4542 4543
  HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  // +1 to make the -1 indexes valid...
  int       young_index = from_region->young_index_in_cset()+1;
4544 4545
  assert( (from_region->is_young() && young_index >  0) ||
         (!from_region->is_young() && young_index == 0), "invariant" );
4546 4547
  G1CollectorPolicy* g1p = _g1->g1_policy();
  markOop m = old->mark();
4548 4549 4550
  int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
                                           : m->age();
  GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4551 4552
                                                             word_sz);
  HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4553 4554 4555 4556 4557 4558 4559 4560 4561
#ifndef PRODUCT
  // Should this evacuation fail?
  if (_g1->evacuation_should_fail()) {
    if (obj_ptr != NULL) {
      _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
      obj_ptr = NULL;
    }
  }
#endif // !PRODUCT
4562 4563 4564 4565 4566

  if (obj_ptr == NULL) {
    // This will either forward-to-self, or detect that someone else has
    // installed a forwarding pointer.
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4567
    return _g1->handle_evacuation_failure_par(cl, old);
4568 4569
  }

4570 4571
  oop obj = oop(obj_ptr);

4572 4573 4574
  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

4575 4576 4577 4578
  oop forward_ptr = old->forward_to_atomic(obj);
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
    if (g1p->track_object_age(alloc_purpose)) {
4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
      // We could simply do obj->incr_age(). However, this causes a
      // performance issue. obj->incr_age() will first check whether
      // the object has a displaced mark by checking its mark word;
      // getting the mark word from the new location of the object
      // stalls. So, given that we already have the mark word and we
      // are about to install it anyway, it's better to increase the
      // age on the mark word, when the object does not have a
      // displaced mark word. We're not expecting many objects to have
      // a displaced marked word, so that case is not optimized
      // further (it could be...) and we simply call obj->incr_age().

      if (m->has_displaced_mark_helper()) {
        // in this case, we have to install the mark word first,
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
        obj->set_mark(m);
        obj->incr_age();
      } else {
        m = m->incr_age();
4598
        obj->set_mark(m);
4599
      }
4600 4601 4602
      _par_scan_state->age_table()->add(obj, word_sz);
    } else {
      obj->set_mark(m);
4603
    }
4604

4605 4606 4607 4608
    size_t* surv_young_words = _par_scan_state->surviving_young_words();
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4609 4610 4611 4612
      // We keep track of the next start index in the length field of
      // the to-space object. The actual length can be found in the
      // length field of the from-space object.
      arrayOop(obj)->set_length(0);
4613 4614
      oop* old_p = set_partial_array_mask(old);
      _par_scan_state->push_on_queue(old_p);
4615
    } else {
4616 4617
      // No point in using the slower heap_region_containing() method,
      // given that we know obj is in the heap.
B
brutisso 已提交
4618 4619
      _scanner.set_region(_g1->heap_region_containing_raw(obj));
      obj->oop_iterate_backwards(&_scanner);
4620 4621 4622 4623 4624 4625 4626 4627
    }
  } else {
    _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
    obj = forward_ptr;
  }
  return obj;
}

4628 4629 4630 4631 4632 4633 4634
template <class T>
void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
    _scanned_klass->record_modified_oops();
  }
}

4635
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4636
template <class T>
4637
void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4638 4639
::do_oop_work(T* p) {
  oop obj = oopDesc::load_decode_heap_oop(p);
4640
  assert(barrier != G1BarrierRS || obj != NULL,
4641
         "Precondition: G1BarrierRS implies obj is non-NULL");
4642

4643 4644
  assert(_worker_id == _par_scan_state->queue_num(), "sanity");

4645
  // here the null check is implicit in the cset_fast_test() test
4646
  if (_g1->in_cset_fast_test(obj)) {
4647
    oop forwardee;
4648
    if (obj->is_forwarded()) {
4649
      forwardee = obj->forwardee();
4650
    } else {
4651 4652 4653 4654 4655 4656 4657 4658
      forwardee = copy_to_survivor_space(obj);
    }
    assert(forwardee != NULL, "forwardee should not be NULL");
    oopDesc::encode_store_heap_oop(p, forwardee);
    if (do_mark_object && forwardee != obj) {
      // If the object is self-forwarded we don't need to explicitly
      // mark it, the evacuation failure protocol will do so.
      mark_forwarded_object(obj, forwardee);
4659
    }
4660

4661 4662
    // When scanning the RS, we only care about objs in CS.
    if (barrier == G1BarrierRS) {
4663
      _par_scan_state->update_rs(_from, p, _worker_id);
4664 4665
    } else if (barrier == G1BarrierKlass) {
      do_klass_barrier(p, forwardee);
4666
    }
4667 4668 4669 4670
  } else {
    // The object is not in collection set. If we're a root scanning
    // closure during an initial mark pause (i.e. do_mark_object will
    // be true) then attempt to mark the object.
4671 4672
    if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
      mark_object(obj);
4673
    }
4674
  }
4675

4676
  if (barrier == G1BarrierEvac && obj != NULL) {
4677
    _par_scan_state->update_rs(_from, p, _worker_id);
4678 4679 4680 4681
  }

  if (do_gen_barrier && obj != NULL) {
    par_do_barrier(p);
4682 4683 4684
  }
}

4685 4686
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4687

4688
template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4689
  assert(has_partial_array_mask(p), "invariant");
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
  oop from_obj = clear_partial_array_mask(p);

  assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  assert(from_obj->is_objArray(), "must be obj array");
  objArrayOop from_obj_array = objArrayOop(from_obj);
  // The from-space object contains the real length.
  int length                 = from_obj_array->length();

  assert(from_obj->is_forwarded(), "must be forwarded");
  oop to_obj                 = from_obj->forwardee();
  assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  objArrayOop to_obj_array   = objArrayOop(to_obj);
  // We keep track of the next start index in the length field of the
  // to-space object.
  int next_index             = to_obj_array->length();
  assert(0 <= next_index && next_index < length,
         err_msg("invariant, next index: %d, length: %d", next_index, length));

  int start                  = next_index;
  int end                    = length;
  int remainder              = end - start;
  // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4712 4713
  if (remainder > 2 * ParGCArrayScanChunk) {
    end = start + ParGCArrayScanChunk;
4714 4715 4716 4717 4718
    to_obj_array->set_length(end);
    // Push the remainder before we process the range in case another
    // worker has run out of things to do and can steal it.
    oop* from_obj_p = set_partial_array_mask(from_obj);
    _par_scan_state->push_on_queue(from_obj_p);
4719
  } else {
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
    assert(length == end, "sanity");
    // We'll process the final range for this object. Restore the length
    // so that the heap remains parsable in case of evacuation failure.
    to_obj_array->set_length(end);
  }
  _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  // Process indexes [start,end). It will also process the header
  // along with the first chunk (i.e., the chunk with start == 0).
  // Note that at this point the length field of to_obj_array is not
  // correct given that we are using it to keep track of the next
  // start index. oop_iterate_range() (thankfully!) ignores the length
  // field and only relies on the start / end parameters.  It does
  // however return the size of the object which will be incorrect. So
  // we have to ignore it even if we wanted to use it.
  to_obj_array->oop_iterate_range(&_scanner, start, end);
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
}

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4756
  void do_void();
4757

4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  StarTask stolen_task;
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();

  do {
    while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
      assert(pss->verify_task(stolen_task), "sanity");
      if (stolen_task.is_narrow()) {
4779
        pss->deal_with_reference((narrowOop*) stolen_task);
4780
      } else {
4781
        pss->deal_with_reference((oop*) stolen_task);
4782
      }
4783 4784 4785 4786

      // We've just processed a reference and we might have made
      // available new entries on the queues. So we have to make sure
      // we drain the queues as necessary.
4787
      pss->trim_queue();
4788
    }
4789 4790 4791 4792
  } while (!offer_termination());

  pss->retire_alloc_buffers();
}
4793

4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
class G1KlassScanClosure : public KlassClosure {
 G1ParCopyHelper* _closure;
 bool             _process_only_dirty;
 int              _count;
 public:
  G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
      : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  void do_klass(Klass* klass) {
    // If the klass has not been dirtied we know that there's
    // no references into  the young gen and we can skip it.
   if (!_process_only_dirty || klass->has_modified_oops()) {
      // Clean the klass since we're going to scavenge all the metadata.
      klass->clear_modified_oops();

      // Tell the closure that this klass is the Klass to scavenge
      // and is the one to dirty if oops are left pointing into the young gen.
      _closure->set_scanned_klass(klass);

      klass->oops_do(_closure);

      _closure->set_scanned_klass(NULL);
    }
    _count++;
  }
};

4820 4821 4822 4823 4824
class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4825
  uint _n_workers;
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
4836 4837
  G1ParTask(G1CollectedHeap* g1h,
            RefToScanQueueSet *task_queues)
4838 4839 4840
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
4841 4842
      _terminator(0, _queues),
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4843 4844 4845 4846 4847 4848 4849 4850
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
  ParallelTaskTerminator* terminator() { return &_terminator; }

  virtual void set_for_termination(int active_workers) {
    // This task calls set_n_termination() in par_non_clean_card_iterate_work()
    // in the young space (_par_seq_tasks) in the G1 heap
    // for SequentialSubTasksDone.
    // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
    // both of which need setting by set_n_termination().
    _g1h->SharedHeap::set_n_termination(active_workers);
    _g1h->set_n_termination(active_workers);
    terminator()->reset_for_reuse(active_workers);
    _n_workers = active_workers;
  }

4865 4866
  void work(uint worker_id) {
    if (worker_id >= _n_workers) return;  // no work needed this round
4867 4868

    double start_time_ms = os::elapsedTime() * 1000.0;
4869
    _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4870

4871 4872 4873
    {
      ResourceMark rm;
      HandleMark   hm;
4874

4875
      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4876

4877 4878 4879 4880
      G1ParScanThreadState            pss(_g1h, worker_id);
      G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
      G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
      G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4881

4882 4883 4884
      pss.set_evac_closure(&scan_evac_cl);
      pss.set_evac_failure_closure(&evac_failure_cl);
      pss.set_partial_scan_closure(&partial_scan_cl);
4885

4886
      G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4887
      G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
4888

4889
      G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4890 4891 4892 4893 4894
      G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);

      bool only_young                 = _g1h->g1_policy()->gcs_are_young();
      G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
      G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
4895

4896
      OopClosure*                    scan_root_cl = &only_scan_root_cl;
4897
      G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
4898

4899 4900 4901
      if (_g1h->g1_policy()->during_initial_mark_pause()) {
        // We also need to mark copied objects.
        scan_root_cl = &scan_mark_root_cl;
4902
        scan_klasses_cl = &scan_mark_klasses_cl_s;
4903
      }
4904

4905
      G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4906

4907 4908
      int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;

4909
      pss.start_strong_roots();
4910 4911
      _g1h->g1_process_strong_roots(/* is scavenging */ true,
                                    SharedHeap::ScanningOption(so),
4912 4913
                                    scan_root_cl,
                                    &push_heap_rs_cl,
4914
                                    scan_klasses_cl,
4915 4916
                                    worker_id);
      pss.end_strong_roots();
4917

4918 4919 4920 4921 4922 4923
      {
        double start = os::elapsedTime();
        G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
        evac.do_void();
        double elapsed_ms = (os::elapsedTime()-start)*1000.0;
        double term_ms = pss.term_time()*1000.0;
4924
        _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4925
        _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4926 4927 4928 4929 4930 4931 4932 4933
      }
      _g1h->g1_policy()->record_thread_age_table(pss.age_table());
      _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

      if (ParallelGCVerbose) {
        MutexLocker x(stats_lock());
        pss.print_termination_stats(worker_id);
      }
4934

4935
      assert(pss.refs()->is_empty(), "should be empty");
4936

4937 4938 4939
      // Close the inner scope so that the ResourceMark and HandleMark
      // destructors are executed here and are included as part of the
      // "GC Worker Time".
4940 4941
    }

4942
    double end_time_ms = os::elapsedTime() * 1000.0;
4943
    _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4944 4945 4946 4947 4948
  }
};

// *** Common G1 Evacuation Stuff

4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
// Closures that support the filtering of CodeBlobs scanned during
// external root scanning.

// Closure applied to reference fields in code blobs (specifically nmethods)
// to determine whether an nmethod contains references that point into
// the collection set. Used as a predicate when walking code roots so
// that only nmethods that point into the collection set are added to the
// 'marked' list.

class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {

  class G1PointsIntoCSOopClosure : public OopClosure {
    G1CollectedHeap* _g1;
    bool _points_into_cs;
  public:
    G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
      _g1(g1), _points_into_cs(false) { }

    bool points_into_cs() const { return _points_into_cs; }

    template <class T>
    void do_oop_nv(T* p) {
      if (!_points_into_cs) {
        T heap_oop = oopDesc::load_heap_oop(p);
        if (!oopDesc::is_null(heap_oop) &&
            _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
          _points_into_cs = true;
        }
      }
    }

    virtual void do_oop(oop* p)        { do_oop_nv(p); }
    virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
  };

  G1CollectedHeap* _g1;

public:
  G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
    CodeBlobToOopClosure(cl, true), _g1(g1) { }

  virtual void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL && !(nm->test_oops_do_mark())) {
      G1PointsIntoCSOopClosure predicate_cl(_g1);
      nm->oops_do(&predicate_cl);

      if (predicate_cl.points_into_cs()) {
        // At least one of the reference fields or the oop relocations
        // in the nmethod points into the collection set. We have to
        // 'mark' this nmethod.
        // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
        // or MarkingCodeBlobClosure::do_code_blob() change.
        if (!nm->test_set_oops_do_mark()) {
          do_newly_marked_nmethod(nm);
        }
      }
    }
  }
};

5010 5011
// This method is run in a GC worker.

5012 5013
void
G1CollectedHeap::
5014
g1_process_strong_roots(bool is_scavenging,
5015
                        ScanningOption so,
5016 5017
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
5018
                        G1KlassScanClosure* scan_klasses,
5019
                        int worker_i) {
5020

5021
  // First scan the strong roots
5022 5023 5024 5025 5026
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);

5027 5028
  // Walk the code cache w/o buffering, because StarTask cannot handle
  // unaligned oop locations.
5029
  G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
5030 5031

  process_strong_roots(false, // no scoping; this is parallel code
5032
                       is_scavenging, so,
5033
                       &buf_scan_non_heap_roots,
5034
                       &eager_scan_code_roots,
5035 5036
                       scan_klasses
                       );
5037

5038
  // Now the CM ref_processor roots.
5039
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5040 5041 5042 5043 5044
    // We need to treat the discovered reference lists of the
    // concurrent mark ref processor as roots and keep entries
    // (which are added by the marking threads) on them live
    // until they can be processed at the end of marking.
    ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5045 5046 5047
  }

  // Finish up any enqueued closure apps (attributed as object copy time).
5048
  buf_scan_non_heap_roots.done();
5049

5050 5051
  double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();

5052
  g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5053

5054
  double ext_root_time_ms =
5055
    ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5056

5057
  g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5058

5059 5060 5061
  // During conc marking we have to filter the per-thread SATB buffers
  // to make sure we remove any oops into the CSet (which will show up
  // as implicitly live).
5062
  double satb_filtering_ms = 0.0;
5063 5064
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
    if (mark_in_progress()) {
5065 5066
      double satb_filter_start = os::elapsedTime();

5067
      JavaThread::satb_mark_queue_set().filter_thread_buffers();
5068 5069

      satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5070
    }
5071
  }
5072
  g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083

  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
    g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  }
  _process_strong_tasks->all_tasks_completed();
}

void
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
                                       OopClosure* non_root_closure) {
5084 5085
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
5086 5087
}

5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_object(oop p) { assert(false, "Do not call."); }
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->obj_in_cs(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
    oop obj = *p;

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
5137
  OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5138 5139 5140 5141 5142
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
5143
                            OopsInHeapRegionClosure* metadata_obj_cl,
5144 5145 5146
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
5147
    _copy_metadata_obj_cl(metadata_obj_cl),
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

    if (_g1h->obj_in_cs(obj)) {
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
5172
      // use the the non-heap or metadata closures directly to copy
5173 5174 5175 5176 5177 5178
      // the refernt object and update the pointer, while avoiding
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
5179 5180 5181
        assert(!ClassLoaderDataGraph::contains((address)p),
               err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
                              PTR_FORMAT, p));
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
          _copy_non_heap_obj_cl->do_oop(p);
        }
      }
    }
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*   _g1h;
  RefToScanQueueSet* _queues;
5220
  FlexibleWorkGang*  _workers;
5221 5222 5223 5224
  int                _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5225
                        FlexibleWorkGang* workers,
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
                        RefToScanQueueSet *task_queues,
                        int n_workers) :
    _g1h(g1h),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  RefToScanQueueSet *_task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                     G1CollectedHeap* g1h,
                     RefToScanQueueSet *task_queues,
                     ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

5262
  virtual void work(uint worker_id) {
5263 5264 5265 5266 5267 5268
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

5269
    G1ParScanThreadState pss(_g1h, worker_id);
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279

    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5280
    G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5281 5282

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5283
    G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5284 5285

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5286
    OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5287 5288 5289 5290

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
5291
      copy_metadata_cl = &copy_mark_metadata_cl;
5292 5293 5294
    }

    // Keep alive closure.
5295
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5296 5297 5298 5299 5300

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
5301
    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

5336 5337
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
  }
};

// Driver routine for parallel reference enqueing.
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
5366
  uint _n_workers;
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

5377
  void work(uint worker_id) {
5378 5379 5380
    ResourceMark rm;
    HandleMark   hm;

5381
    G1ParScanThreadState            pss(_g1h, worker_id);
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    assert(pss.refs()->is_empty(), "both queue and overflow should be empty");


    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5394
    G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5395 5396

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5397
    G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5398 5399

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5400
    OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5401 5402 5403 5404

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
5405
      copy_metadata_cl = &copy_mark_metadata_cl;
5406 5407 5408 5409 5410 5411 5412
    }

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
5413
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5414 5415 5416

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

5417 5418
    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5419 5420 5421 5422

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
5423
    assert(0 <= worker_id && worker_id < limit, "sanity");
5424 5425 5426
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5427
    for (uint idx = worker_id; idx < limit; idx += stride) {
5428
      DiscoveredList& ref_list = rp->discovered_refs()[idx];
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
    assert(pss.refs()->is_empty(), "should be");
  }
};

// Weak Reference processing during an evacuation pause (part 1).
J
johnc 已提交
5454
void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
  // As a reult the copy closure would not have been applied to the
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

5481
  assert(!G1CollectedHeap::use_parallel_gc_threads() ||
J
johnc 已提交
5482 5483
           no_of_gc_workers == workers()->active_workers(),
           "Need to reset active GC workers");
5484

J
johnc 已提交
5485 5486 5487 5488
  set_par_threads(no_of_gc_workers);
  G1ParPreserveCMReferentsTask keep_cm_referents(this,
                                                 no_of_gc_workers,
                                                 _task_queues);
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    workers()->run_task(&keep_cm_referents);
  } else {
    keep_cm_referents.work(0);
  }

  set_par_threads(0);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
  G1ParScanThreadState pss(this, 0);

  // We do not embed a reference processor in the copying/scanning
  // closures while we're actually processing the discovered
  // reference objects.
  G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);

  pss.set_evac_closure(&scan_evac_cl);
  pss.set_evac_failure_closure(&evac_failure_cl);
  pss.set_partial_scan_closure(&partial_scan_cl);

  assert(pss.refs()->is_empty(), "pre-condition");

  G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5523
  G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5524 5525

  G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5526
  G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5527 5528

  OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5529
  OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5530 5531 5532 5533

  if (_g1h->g1_policy()->during_initial_mark_pause()) {
    // We also need to mark copied objects.
    copy_non_heap_cl = &copy_mark_non_heap_cl;
5534
    copy_metadata_cl = &copy_mark_metadata_cl;
5535 5536 5537
  }

  // Keep alive closure.
5538
  G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, &pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->process_discovered_references(&is_alive,
                                      &keep_alive,
                                      &drain_queue,
                                      NULL);
  } else {
    // Parallel reference processing
J
johnc 已提交
5554 5555
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5556

J
johnc 已提交
5557
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
    rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  }

  // We have completed copying any necessary live referent objects
  // (that were not copied during the actual pause) so we can
  // retire any active alloc buffers
  pss.retire_alloc_buffers();
  assert(pss.refs()->is_empty(), "both queue and overflow should be empty");

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
5568
  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5569 5570 5571
}

// Weak Reference processing during an evacuation pause (part 2).
J
johnc 已提交
5572
void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
    // Parallel reference enqueuing

J
johnc 已提交
5586 5587 5588 5589
    assert(no_of_gc_workers == workers()->active_workers(),
           "Need to reset active workers");
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5590

J
johnc 已提交
5591
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
  // and could signicantly increase the pause time.

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
5604
  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5605 5606
}

5607
void G1CollectedHeap::evacuate_collection_set() {
5608
  _expand_heap_after_alloc_failure = true;
5609 5610
  set_evacuation_failed(false);

5611 5612 5613
  // Should G1EvacuationFailureALot be in effect for this GC?
  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)

5614 5615
  g1_rem_set()->prepare_for_oops_into_collection_set_do();
  concurrent_g1_refine()->set_use_cache(false);
5616 5617
  concurrent_g1_refine()->clear_hot_cache_claimed_index();

5618
  uint n_workers;
5619 5620 5621 5622 5623 5624 5625 5626
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    n_workers =
      AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                     workers()->active_workers(),
                                     Threads::number_of_non_daemon_threads());
    assert(UseDynamicNumberOfGCThreads ||
           n_workers == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
5627
    workers()->set_active_workers(n_workers);
5628 5629 5630 5631 5632 5633 5634 5635
    set_par_threads(n_workers);
  } else {
    assert(n_par_threads() == 0,
           "Should be the original non-parallel value");
    n_workers = 1;
  }

  G1ParTask g1_par_task(this, _task_queues);
5636 5637 5638 5639 5640

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

5641
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5642 5643
  double start_par_time_sec = os::elapsedTime();
  double end_par_time_sec;
5644

5645
  {
5646
    StrongRootsScope srs(this);
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      // The individual threads will set their evac-failure closures.
      if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
      // These tasks use ShareHeap::_process_strong_tasks
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->run_task(&g1_par_task);
    } else {
      g1_par_task.set_for_termination(n_workers);
      g1_par_task.work(0);
    }
    end_par_time_sec = os::elapsedTime();

    // Closing the inner scope will execute the destructor
    // for the StrongRootsScope object. We record the current
    // elapsed time before closing the scope so that time
    // taken for the SRS destructor is NOT included in the
    // reported parallel time.
5667 5668
  }

5669
  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5670
  g1_policy()->phase_times()->record_par_time(par_time_ms);
5671 5672 5673

  double code_root_fixup_time_ms =
        (os::elapsedTime() - end_par_time_sec) * 1000.0;
5674
  g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5675

5676
  set_par_threads(0);
5677

5678 5679 5680 5681 5682
  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
J
johnc 已提交
5683
  process_discovered_references(n_workers);
5684

5685 5686 5687 5688
  // Weak root processing.
  // Note: when JSR 292 is enabled and code blobs can contain
  // non-perm oops then we will need to process the code blobs
  // here too.
5689
  {
5690
    G1STWIsAliveClosure is_alive(this);
5691 5692 5693
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  }
5694

J
johnc 已提交
5695
  release_gc_alloc_regions(n_workers);
5696
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5697

5698
  concurrent_g1_refine()->clear_hot_cache();
5699 5700 5701 5702 5703 5704
  concurrent_g1_refine()->set_use_cache(true);

  finalize_for_evac_failure();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
5705 5706 5707 5708 5709

    // Reset the G1EvacuationFailureALot counters and flags
    // Note: the values are reset only when an actual
    // evacuation failure occurs.
    NOT_PRODUCT(reset_evacuation_should_fail();)
5710 5711
  }

5712 5713 5714 5715 5716 5717 5718
  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
  // the act of enqueuing entries on to the pending list
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
J
johnc 已提交
5719
  enqueue_discovered_references(n_workers);
5720

5721 5722 5723 5724
  if (G1DeferredRSUpdate) {
    RedirtyLoggedCardTableEntryFastClosure redirty;
    dirty_card_queue_set().set_closure(&redirty);
    dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5725 5726 5727

    DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
    dcq.merge_bufferlists(&dirty_card_queue_set());
5728 5729
    assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  }
5730 5731 5732
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

T
tonyp 已提交
5733
void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5734 5735
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
T
tonyp 已提交
5736
                                     OldRegionSet* old_proxy_set,
5737
                                     HumongousRegionSet* humongous_proxy_set,
T
tonyp 已提交
5738
                                     HRRSCleanupTask* hrrs_cleanup_task,
5739 5740 5741 5742 5743 5744
                                     bool par) {
  if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
    if (hr->isHumongous()) {
      assert(hr->startsHumongous(), "we should only see starts humongous");
      free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
    } else {
T
tonyp 已提交
5745
      _old_set.remove_with_proxy(hr, old_proxy_set);
5746 5747
      free_region(hr, pre_used, free_list, par);
    }
T
tonyp 已提交
5748 5749
  } else {
    hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5750 5751 5752
  }
}

5753 5754 5755
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  size_t* pre_used,
                                  FreeRegionList* free_list,
5756
                                  bool par) {
5757 5758 5759 5760 5761 5762
  assert(!hr->isHumongous(), "this is only for non-humongous regions");
  assert(!hr->is_empty(), "the region should not be empty");
  assert(free_list != NULL, "pre-condition");

  *pre_used += hr->used();
  hr->hr_clear(par, true /* clear_space */);
5763
  free_list->add_as_head(hr);
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
                                     HumongousRegionSet* humongous_proxy_set,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");
  assert(humongous_proxy_set != NULL, "pre-condition");

  size_t hr_used = hr->used();
  size_t hr_capacity = hr->capacity();
  size_t hr_pre_used = 0;
  _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5779 5780 5781
  // We need to read this before we make the region non-humongous,
  // otherwise the information will be gone.
  uint last_index = hr->last_hc_index();
5782 5783 5784
  hr->set_notHumongous();
  free_region(hr, &hr_pre_used, free_list, par);

5785
  uint i = hr->hrs_index() + 1;
5786
  while (i < last_index) {
5787
    HeapRegion* curr_hr = region_at(i);
5788
    assert(curr_hr->continuesHumongous(), "invariant");
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
    curr_hr->set_notHumongous();
    free_region(curr_hr, &hr_pre_used, free_list, par);
    i += 1;
  }
  assert(hr_pre_used == hr_used,
         err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
                 "should be the same", hr_pre_used, hr_used));
  *pre_used += hr_pre_used;
}

void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
                                       FreeRegionList* free_list,
T
tonyp 已提交
5801
                                       OldRegionSet* old_proxy_set,
5802 5803 5804 5805
                                       HumongousRegionSet* humongous_proxy_set,
                                       bool par) {
  if (pre_used > 0) {
    Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5806
    MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5807 5808 5809 5810
    assert(_summary_bytes_used >= pre_used,
           err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
                   "should be >= pre_used: "SIZE_FORMAT,
                   _summary_bytes_used, pre_used));
5811
    _summary_bytes_used -= pre_used;
5812 5813 5814
  }
  if (free_list != NULL && !free_list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5815
    _free_list.add_as_head(free_list);
5816
  }
T
tonyp 已提交
5817 5818 5819 5820
  if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _old_set.update_from_proxy(old_proxy_set);
  }
5821 5822 5823
  if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _humongous_set.update_from_proxy(humongous_proxy_set);
5824 5825 5826
  }
}

5827 5828 5829
class G1ParCleanupCTTask : public AbstractGangTask {
  CardTableModRefBS* _ct_bs;
  G1CollectedHeap* _g1h;
5830
  HeapRegion* volatile _su_head;
5831 5832
public:
  G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5833
                     G1CollectedHeap* g1h) :
5834
    AbstractGangTask("G1 Par Cleanup CT Task"),
5835
    _ct_bs(ct_bs), _g1h(g1h) { }
5836

5837
  void work(uint worker_id) {
5838 5839 5840 5841 5842
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
5843

5844
  void clear_cards(HeapRegion* r) {
5845
    // Cards of the survivors should have already been dirtied.
5846
    if (!r->is_survivor()) {
5847 5848 5849 5850 5851
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

5852 5853
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
5854
  G1CollectedHeap* _g1h;
5855 5856
  CardTableModRefBS* _ct_bs;
public:
5857 5858
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
    : _g1h(g1h), _ct_bs(ct_bs) { }
5859
  virtual bool doHeapRegion(HeapRegion* r) {
5860
    if (r->is_survivor()) {
5861
      _g1h->verify_dirty_region(r);
5862
    } else {
5863
      _g1h->verify_not_dirty_region(r);
5864 5865 5866 5867
    }
    return false;
  }
};
5868

5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  ct_bs->verify_dirty_region(mr);
}

5889
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5890
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5891
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5892
    verify_dirty_region(hr);
5893 5894 5895 5896 5897 5898
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
}
5899 5900
#endif

5901 5902 5903 5904
void G1CollectedHeap::cleanUpCardTable() {
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  double start = os::elapsedTime();

J
johnc 已提交
5905 5906 5907
  {
    // Iterate over the dirty cards region list.
    G1ParCleanupCTTask cleanup_task(ct_bs, this);
5908

5909 5910
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads();
J
johnc 已提交
5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
      workers()->run_task(&cleanup_task);
      set_par_threads(0);
    } else {
      while (_dirty_cards_region_list) {
        HeapRegion* r = _dirty_cards_region_list;
        cleanup_task.clear_cards(r);
        _dirty_cards_region_list = r->get_next_dirty_cards_region();
        if (_dirty_cards_region_list == r) {
          // The last region.
          _dirty_cards_region_list = NULL;
        }
        r->set_next_dirty_cards_region(NULL);
5923 5924
      }
    }
J
johnc 已提交
5925 5926 5927 5928 5929 5930
#ifndef PRODUCT
    if (G1VerifyCTCleanup || VerifyAfterGC) {
      G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
      heap_region_iterate(&cleanup_verifier);
    }
#endif
5931
  }
5932

5933
  double elapsed = os::elapsedTime() - start;
5934
  g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5935 5936 5937
}

void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5938 5939 5940
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

5941 5942 5943
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

5944 5945 5946 5947 5948
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
5959
    assert(!is_on_master_free_list(cur), "sanity");
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
5970 5971 5972 5973
      if (!cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;
5974

5975 5976 5977
        start_sec = os::elapsedTime();
        non_young = true;
      }
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
    }

    rs_lengths += cur->rem_set()->occupied();

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
5989
      assert(index != -1, "invariant");
5990
      assert((uint) index < policy->young_cset_region_length(), "invariant");
5991 5992
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
5993 5994 5995 5996 5997 5998

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
5999 6000
    } else {
      int index = cur->young_index_in_cset();
6001
      assert(index == -1, "invariant");
6002 6003 6004 6005 6006 6007 6008
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
6009 6010
      MemRegion used_mr = cur->used_region();

6011
      // And the region is empty.
6012
      assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6013
      free_region(cur, &pre_used, &local_free_list, false /* par */);
6014 6015
    } else {
      cur->uninstall_surv_rate_group();
6016
      if (cur->is_young()) {
6017
        cur->set_young_index_in_cset(-1);
6018
      }
6019 6020
      cur->set_not_young();
      cur->set_evacuation_failed(false);
T
tonyp 已提交
6021 6022
      // The region is now considered to be old.
      _old_set.add(cur);
6023 6024 6025 6026 6027 6028 6029 6030 6031
    }
    cur = next;
  }

  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
6032 6033

  if (non_young) {
6034
    non_young_time_ms += elapsed_ms;
6035
  } else {
6036
    young_time_ms += elapsed_ms;
6037
  }
6038

6039
  update_sets_after_freeing_regions(pre_used, &local_free_list,
T
tonyp 已提交
6040
                                    NULL /* old_proxy_set */,
6041 6042
                                    NULL /* humongous_proxy_set */,
                                    false /* par */);
6043 6044
  policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6045 6046
}

6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

6068 6069 6070 6071
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
6072 6073
  }

6074 6075
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
6076 6077
}

6078
void G1CollectedHeap::reset_free_regions_coming() {
6079 6080
  assert(free_regions_coming(), "pre-condition");

6081 6082 6083 6084
  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
6085 6086
  }

6087 6088 6089
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
6090 6091 6092
  }
}

6093 6094 6095 6096 6097
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
6098 6099
  }

6100 6101 6102
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
6103 6104 6105
  }

  {
6106 6107 6108
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6109 6110 6111
    }
  }

6112 6113 6114
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

6140 6141
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
6142

6143
  if (check_heap) {
6144 6145 6146 6147 6148 6149 6150 6151
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

T
tonyp 已提交
6152 6153 6154
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
  OldRegionSet *_old_set;
6155

T
tonyp 已提交
6156 6157
public:
  TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6158

T
tonyp 已提交
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_empty()) {
      // We ignore empty regions, we'll empty the free list afterwards
    } else if (r->is_young()) {
      // We ignore young regions, we'll empty the young list afterwards
    } else if (r->isHumongous()) {
      // We ignore humongous regions, we're not tearing down the
      // humongous region set
    } else {
      // The rest should be old
      _old_set->remove(r);
    }
    return false;
  }

  ~TearDownRegionSetsClosure() {
    assert(_old_set->is_empty(), "post-condition");
  }
};

void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    TearDownRegionSetsClosure cl(&_old_set);
    heap_region_iterate(&cl);

    // Need to do this after the heap iteration to be able to
    // recognize the young regions and ignore them during the iteration.
    _young_list->empty_list();
  }
6190
  _free_list.remove_all();
6191 6192
}

T
tonyp 已提交
6193 6194 6195 6196 6197 6198
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
  bool            _free_list_only;
  OldRegionSet*   _old_set;
  FreeRegionList* _free_list;
  size_t          _total_used;
6199

6200
public:
T
tonyp 已提交
6201 6202 6203 6204 6205 6206 6207 6208 6209
  RebuildRegionSetsClosure(bool free_list_only,
                           OldRegionSet* old_set, FreeRegionList* free_list) :
    _free_list_only(free_list_only),
    _old_set(old_set), _free_list(free_list), _total_used(0) {
    assert(_free_list->is_empty(), "pre-condition");
    if (!free_list_only) {
      assert(_old_set->is_empty(), "pre-condition");
    }
  }
6210

6211
  bool doHeapRegion(HeapRegion* r) {
T
tonyp 已提交
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226
    if (r->continuesHumongous()) {
      return false;
    }

    if (r->is_empty()) {
      // Add free regions to the free list
      _free_list->add_as_tail(r);
    } else if (!_free_list_only) {
      assert(!r->is_young(), "we should not come across young regions");

      if (r->isHumongous()) {
        // We ignore humongous regions, we left the humongous set unchanged
      } else {
        // The rest should be old, add them to the old set
        _old_set->add(r);
6227
      }
T
tonyp 已提交
6228
      _total_used += r->used();
6229
    }
T
tonyp 已提交
6230

6231 6232 6233
    return false;
  }

T
tonyp 已提交
6234 6235
  size_t total_used() {
    return _total_used;
6236
  }
6237 6238
};

T
tonyp 已提交
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  heap_region_iterate(&cl);

  if (!free_list_only) {
    _summary_bytes_used = cl.total_used();
  }
  assert(_summary_bytes_used == recalculate_used(),
         err_msg("inconsistent _summary_bytes_used, "
                 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
                 _summary_bytes_used, recalculate_used()));
6252 6253 6254 6255 6256 6257
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

6258 6259 6260
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
6261
    return false;
6262 6263
  } else {
    return hr->is_in(p);
6264
  }
6265 6266
}

6267 6268
// Methods for the mutator alloc region

6269 6270 6271 6272 6273
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
6274 6275
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
6276 6277 6278 6279
    HeapRegion* new_alloc_region = new_region(word_size,
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      set_region_short_lived_locked(new_alloc_region);
6280
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(alloc_region->is_young(), "all mutator alloc regions should be young");

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  _summary_bytes_used += allocated_bytes;
6294
  _hr_printer.retire(alloc_region);
6295 6296 6297 6298
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
6299 6300 6301 6302 6303 6304 6305
}

HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
                                                    bool force) {
  return _g1h->new_mutator_alloc_region(word_size, force);
}

6306 6307 6308
void G1CollectedHeap::set_par_threads() {
  // Don't change the number of workers.  Use the value previously set
  // in the workgroup.
6309
  assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6310
  uint n_workers = workers()->active_workers();
6311
  assert(UseDynamicNumberOfGCThreads ||
6312 6313 6314 6315 6316 6317 6318 6319 6320 6321
           n_workers == workers()->total_workers(),
      "Otherwise should be using the total number of workers");
  if (n_workers == 0) {
    assert(false, "Should have been set in prior evacuation pause.");
    n_workers = ParallelGCThreads;
    workers()->set_active_workers(n_workers);
  }
  set_par_threads(n_workers);
}

6322 6323 6324 6325 6326
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
                                       size_t allocated_bytes) {
  _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}

6327 6328 6329
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6330
                                                 uint count,
6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
                                                 GCAllocPurpose ap) {
  assert(FreeList_lock->owned_by_self(), "pre-condition");

  if (count < g1_policy()->max_regions(ap)) {
    HeapRegion* new_alloc_region = new_region(word_size,
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
      new_alloc_region->set_saved_mark();
      if (ap == GCAllocForSurvived) {
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
      } else {
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
      }
6348 6349
      bool during_im = g1_policy()->during_initial_mark_pause();
      new_alloc_region->note_start_of_copying(during_im);
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
      return new_alloc_region;
    } else {
      g1_policy()->note_alloc_region_limit_reached(ap);
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
                                             GCAllocPurpose ap) {
6361 6362
  bool during_im = g1_policy()->during_initial_mark_pause();
  alloc_region->note_end_of_copying(during_im);
6363 6364 6365
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  if (ap == GCAllocForSurvived) {
    young_list()->add_survivor_region(alloc_region);
T
tonyp 已提交
6366 6367
  } else {
    _old_set.add(alloc_region);
6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
  }
  _hr_printer.retire(alloc_region);
}

HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
                                                       bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
}

void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                          size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForSurvived);
}

HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
                                                  bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
}

void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                     size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForTenured);
}
6395 6396
// Heap region set verification

6397 6398 6399
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
  FreeRegionList*     _free_list;
T
tonyp 已提交
6400 6401
  OldRegionSet*       _old_set;
  HumongousRegionSet* _humongous_set;
6402
  uint                _region_count;
6403 6404

public:
T
tonyp 已提交
6405 6406
  VerifyRegionListsClosure(OldRegionSet* old_set,
                           HumongousRegionSet* humongous_set,
6407
                           FreeRegionList* free_list) :
T
tonyp 已提交
6408 6409
    _old_set(old_set), _humongous_set(humongous_set),
    _free_list(free_list), _region_count(0) { }
6410

6411
  uint region_count() { return _region_count; }
6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425

  bool doHeapRegion(HeapRegion* hr) {
    _region_count += 1;

    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
      _humongous_set->verify_next_region(hr);
    } else if (hr->is_empty()) {
      _free_list->verify_next_region(hr);
T
tonyp 已提交
6426 6427
    } else {
      _old_set->verify_next_region(hr);
6428
    }
6429 6430 6431 6432
    return false;
  }
};

6433
HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6434 6435 6436 6437 6438
                                             HeapWord* bottom) {
  HeapWord* end = bottom + HeapRegion::GrainWords;
  MemRegion mr(bottom, end);
  assert(_g1_reserved.contains(mr), "invariant");
  // This might return NULL if the allocation fails
6439
  return new HeapRegion(hrs_index, _bot_shared, mr);
6440 6441
}

6442 6443
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6444

6445 6446 6447 6448 6449 6450 6451 6452 6453
  // First, check the explicit lists.
  _free_list.verify();
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _secondary_free_list.verify();
  }
T
tonyp 已提交
6454
  _old_set.verify();
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
  _humongous_set.verify();

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
6470

T
tonyp 已提交
6471 6472 6473 6474
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
6475

6476 6477
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
T
tonyp 已提交
6478
  _old_set.verify_start();
6479 6480
  _humongous_set.verify_start();
  _free_list.verify_start();
6481

T
tonyp 已提交
6482
  VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6483
  heap_region_iterate(&cl);
6484

T
tonyp 已提交
6485
  _old_set.verify_end();
6486 6487
  _humongous_set.verify_end();
  _free_list.verify_end();
6488
}