sparc.ad 341.0 KB
Newer Older
D
duke 已提交
1
//
2
// Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
19 20 21
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
D
duke 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
//
//

// SPARC Architecture Description File

//----------REGISTER DEFINITION BLOCK------------------------------------------
// This information is used by the matcher and the register allocator to
// describe individual registers and classes of registers within the target
// archtecture.
register %{
//----------Architecture Description Register Definitions----------------------
// General Registers
// "reg_def"  name ( register save type, C convention save type,
//                   ideal register type, encoding, vm name );
// Register Save Types:
//
// NS  = No-Save:       The register allocator assumes that these registers
//                      can be used without saving upon entry to the method, &
//                      that they do not need to be saved at call sites.
//
// SOC = Save-On-Call:  The register allocator assumes that these registers
//                      can be used without saving upon entry to the method,
//                      but that they must be saved at call sites.
//
// SOE = Save-On-Entry: The register allocator assumes that these registers
//                      must be saved before using them upon entry to the
//                      method, but they do not need to be saved at call
//                      sites.
//
// AS  = Always-Save:   The register allocator assumes that these registers
//                      must be saved before using them upon entry to the
//                      method, & that they must be saved at call sites.
//
// Ideal Register Type is used to determine how to save & restore a
// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
//
// The encoding number is the actual bit-pattern placed into the opcodes.


// ----------------------------
// Integer/Long Registers
// ----------------------------

// Need to expose the hi/lo aspect of 64-bit registers
// This register set is used for both the 64-bit build and
// the 32-bit build with 1-register longs.

// Global Registers 0-7
reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());

// Output Registers 0-7
reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());

// Local Registers 0-7
reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());

// Input Registers 0-7
reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());

// ----------------------------
// Float/Double Registers
// ----------------------------

// Float Registers
reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());

// Double Registers
// The rules of ADL require that double registers be defined in pairs.
// Each pair must be two 32-bit values, but not necessarily a pair of
// single float registers.  In each pair, ADLC-assigned register numbers
// must be adjacent, with the lower number even.  Finally, when the
// CPU stores such a register pair to memory, the word associated with
// the lower ADLC-assigned number must be stored to the lower address.

// These definitions specify the actual bit encodings of the sparc
// double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
// wants 0-63, so we have to convert every time we want to use fp regs
// with the macroassembler, using reg_to_DoubleFloatRegister_object().
T
twisti 已提交
192
// 255 is a flag meaning "don't go here".
D
duke 已提交
193 194 195
// I believe we can't handle callee-save doubles D32 and up until
// the place in the sparc stack crawler that asserts on the 255 is
// fixed up.
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
D
duke 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397


// ----------------------------
// Special Registers
// Condition Codes Flag Registers
// I tried to break out ICC and XCC but it's not very pretty.
// Every Sparc instruction which defs/kills one also kills the other.
// Hence every compare instruction which defs one kind of flags ends
// up needing a kill of the other.
reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());

reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());

// ----------------------------
// Specify the enum values for the registers.  These enums are only used by the
// OptoReg "class". We can convert these enum values at will to VMReg when needed
// for visibility to the rest of the vm. The order of this enum influences the
// register allocator so having the freedom to set this order and not be stuck
// with the order that is natural for the rest of the vm is worth it.
alloc_class chunk0(
  R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
  R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
  R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
  R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);

// Note that a register is not allocatable unless it is also mentioned
// in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.

alloc_class chunk1(
  // The first registers listed here are those most likely to be used
  // as temporaries.  We move F0..F7 away from the front of the list,
  // to reduce the likelihood of interferences with parameters and
  // return values.  Likewise, we avoid using F0/F1 for parameters,
  // since they are used for return values.
  // This FPU fine-tuning is worth about 1% on the SPEC geomean.
  R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
  R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
  R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
  R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
  R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
  R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
  R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
  R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);

alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);

//----------Architecture Description Register Classes--------------------------
// Several register classes are automatically defined based upon information in
// this architecture description.
// 1) reg_class inline_cache_reg           ( as defined in frame section )
// 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
//

// G0 is not included in integer class since it has special meaning.
reg_class g0_reg(R_G0);

// ----------------------------
// Integer Register Classes
// ----------------------------
// Exclusions from i_reg:
// R_G0: hardwired zero
// R_G2: reserved by HotSpot to the TLS register (invariant within Java)
// R_G6: reserved by Solaris ABI to tools
// R_G7: reserved by Solaris ABI to libthread
// R_O7: Used as a temp in many encodings
reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);

// Class for all integer registers, except the G registers.  This is used for
// encodings which use G registers as temps.  The regular inputs to such
// instructions use a "notemp_" prefix, as a hack to ensure that the allocator
// will not put an input into a temp register.
reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);

reg_class g1_regI(R_G1);
reg_class g3_regI(R_G3);
reg_class g4_regI(R_G4);
reg_class o0_regI(R_O0);
reg_class o7_regI(R_O7);

// ----------------------------
// Pointer Register Classes
// ----------------------------
#ifdef _LP64
// 64-bit build means 64-bit pointers means hi/lo pairs
reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
                  R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
                  R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
                  R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
// Lock encodings use G3 and G4 internally
reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
                  R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
                  R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
                  R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
// Special class for storeP instructions, which can store SP or RPC to TLS.
// It is also used for memory addressing, allowing direct TLS addressing.
reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
                  R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
                  R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
                  R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
// R_L7 is the lowest-priority callee-save (i.e., NS) register
// We use it to save R_G2 across calls out of Java.
reg_class l7_regP(R_L7H,R_L7);

// Other special pointer regs
reg_class g1_regP(R_G1H,R_G1);
reg_class g2_regP(R_G2H,R_G2);
reg_class g3_regP(R_G3H,R_G3);
reg_class g4_regP(R_G4H,R_G4);
reg_class g5_regP(R_G5H,R_G5);
reg_class i0_regP(R_I0H,R_I0);
reg_class o0_regP(R_O0H,R_O0);
reg_class o1_regP(R_O1H,R_O1);
reg_class o2_regP(R_O2H,R_O2);
reg_class o7_regP(R_O7H,R_O7);

#else // _LP64
// 32-bit build means 32-bit pointers means 1 register.
reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
                  R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
                  R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
                  R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
// Lock encodings use G3 and G4 internally
reg_class lock_ptr_reg(R_G1,               R_G5,
                  R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
                  R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
                  R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
// Special class for storeP instructions, which can store SP or RPC to TLS.
// It is also used for memory addressing, allowing direct TLS addressing.
reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
                  R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
                  R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
                  R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
// R_L7 is the lowest-priority callee-save (i.e., NS) register
// We use it to save R_G2 across calls out of Java.
reg_class l7_regP(R_L7);

// Other special pointer regs
reg_class g1_regP(R_G1);
reg_class g2_regP(R_G2);
reg_class g3_regP(R_G3);
reg_class g4_regP(R_G4);
reg_class g5_regP(R_G5);
reg_class i0_regP(R_I0);
reg_class o0_regP(R_O0);
reg_class o1_regP(R_O1);
reg_class o2_regP(R_O2);
reg_class o7_regP(R_O7);
#endif // _LP64


// ----------------------------
// Long Register Classes
// ----------------------------
// Longs in 1 register.  Aligned adjacent hi/lo pairs.
// Note:  O7 is never in this class; it is sometimes used as an encoding temp.
reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
                   ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
#ifdef _LP64
// 64-bit, longs in 1 register: use all 64-bit integer registers
// 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
                   ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
                   ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
#endif // _LP64
                  );

reg_class g1_regL(R_G1H,R_G1);
398
reg_class g3_regL(R_G3H,R_G3);
D
duke 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
reg_class o2_regL(R_O2H,R_O2);
reg_class o7_regL(R_O7H,R_O7);

// ----------------------------
// Special Class for Condition Code Flags Register
reg_class int_flags(CCR);
reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
reg_class float_flag0(FCC0);


// ----------------------------
// Float Point Register Classes
// ----------------------------
// Skip F30/F31, they are reserved for mem-mem copies
reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);

// Paired floating point registers--they show up in the same order as the floats,
// but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
                   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
                   /* Use extra V9 double registers; this AD file does not support V8 */
                   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
                   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
                   );

// Paired floating point registers--they show up in the same order as the floats,
// but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
// This class is usable for mis-aligned loads as happen in I2C adapters.
reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
K
kvn 已提交
428
                   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
D
duke 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
%}

//----------DEFINITION BLOCK---------------------------------------------------
// Define name --> value mappings to inform the ADLC of an integer valued name
// Current support includes integer values in the range [0, 0x7FFFFFFF]
// Format:
//        int_def  <name>         ( <int_value>, <expression>);
// Generated Code in ad_<arch>.hpp
//        #define  <name>   (<expression>)
//        // value == <int_value>
// Generated code in ad_<arch>.cpp adlc_verification()
//        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
//
definitions %{
// The default cost (of an ALU instruction).
  int_def DEFAULT_COST      (    100,     100);
  int_def HUGE_COST         (1000000, 1000000);

// Memory refs are twice as expensive as run-of-the-mill.
  int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);

// Branches are even more expensive.
  int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
  int_def CALL_COST         (    300, DEFAULT_COST * 3);
%}


//----------SOURCE BLOCK-------------------------------------------------------
// This is a block of C++ code which provides values, functions, and
// definitions necessary in the rest of the architecture description
source_hpp %{
// Must be visible to the DFA in dfa_sparc.cpp
extern bool can_branch_register( Node *bol, Node *cmp );

K
kvn 已提交
463 464
extern bool use_block_zeroing(Node* count);

D
duke 已提交
465 466
// Macros to extract hi & lo halves from a long pair.
// G0 is not part of any long pair, so assert on that.
T
twisti 已提交
467
// Prevents accidentally using G1 instead of G0.
D
duke 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
#define LONG_HI_REG(x) (x)
#define LONG_LO_REG(x) (x)

%}

source %{
#define __ _masm.

// tertiary op of a LoadP or StoreP encoding
#define REGP_OP true

static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
static Register reg_to_register_object(int register_encoding);

// Used by the DFA in dfa_sparc.cpp.
// Check for being able to use a V9 branch-on-register.  Requires a
// compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
// extended.  Doesn't work following an integer ADD, for example, because of
// overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
// 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
// replace them with zero, which could become sign-extension in a different OS
// release.  There's no obvious reason why an interrupt will ever fill these
// bits with non-zero junk (the registers are reloaded with standard LD
// instructions which either zero-fill or sign-fill).
bool can_branch_register( Node *bol, Node *cmp ) {
  if( !BranchOnRegister ) return false;
#ifdef _LP64
  if( cmp->Opcode() == Op_CmpP )
    return true;  // No problems with pointer compares
#endif
  if( cmp->Opcode() == Op_CmpL )
    return true;  // No problems with long compares

  if( !SparcV9RegsHiBitsZero ) return false;
  if( bol->as_Bool()->_test._test != BoolTest::ne &&
      bol->as_Bool()->_test._test != BoolTest::eq )
     return false;

  // Check for comparing against a 'safe' value.  Any operation which
  // clears out the high word is safe.  Thus, loads and certain shifts
  // are safe, as are non-negative constants.  Any operation which
  // preserves zero bits in the high word is safe as long as each of its
  // inputs are safe.  Thus, phis and bitwise booleans are safe if their
  // inputs are safe.  At present, the only important case to recognize
  // seems to be loads.  Constants should fold away, and shifts &
  // logicals can use the 'cc' forms.
  Node *x = cmp->in(1);
  if( x->is_Load() ) return true;
  if( x->is_Phi() ) {
    for( uint i = 1; i < x->req(); i++ )
      if( !x->in(i)->is_Load() )
        return false;
    return true;
  }
  return false;
}

K
kvn 已提交
526 527 528 529 530 531
bool use_block_zeroing(Node* count) {
  // Use BIS for zeroing if count is not constant
  // or it is >= BlockZeroingLowLimit.
  return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
}

D
duke 已提交
532 533 534 535 536 537 538 539 540 541
// ****************************************************************************

// REQUIRED FUNCTIONALITY

// !!!!! Special hack to get all type of calls to specify the byte offset
//       from the start of the call to the point where the return address
//       will point.
//       The "return address" is the address of the call instruction, plus 8.

int MachCallStaticJavaNode::ret_addr_offset() {
542 543 544 545
  int offset = NativeCall::instruction_size;  // call; delay slot
  if (_method_handle_invoke)
    offset += 4;  // restore SP
  return offset;
D
duke 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558
}

int MachCallDynamicJavaNode::ret_addr_offset() {
  int vtable_index = this->_vtable_index;
  if (vtable_index < 0) {
    // must be invalid_vtable_index, not nonvirtual_vtable_index
    assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
    return (NativeMovConstReg::instruction_size +
           NativeCall::instruction_size);  // sethi; setlo; call; delay slot
  } else {
    assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
    int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
    int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
559 560
    int klass_load_size;
    if (UseCompressedOops) {
561 562 563 564 565
      assert(Universe::heap() != NULL, "java heap should be initialized");
      if (Universe::narrow_oop_base() == NULL)
        klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
      else
        klass_load_size = 3*BytesPerInstWord;
566 567 568
    } else {
      klass_load_size = 1*BytesPerInstWord;
    }
569
    if (Assembler::is_simm13(v_off)) {
570 571
      return klass_load_size +
             (2*BytesPerInstWord +           // ld_ptr, ld_ptr
D
duke 已提交
572 573
             NativeCall::instruction_size);  // call; delay slot
    } else {
574 575
      return klass_load_size +
             (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
D
duke 已提交
576 577 578 579 580 581 582
             NativeCall::instruction_size);  // call; delay slot
    }
  }
}

int MachCallRuntimeNode::ret_addr_offset() {
#ifdef _LP64
583 584 585 586 587
  if (MacroAssembler::is_far_target(entry_point())) {
    return NativeFarCall::instruction_size;
  } else {
    return NativeCall::instruction_size;
  }
D
duke 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
#else
  return NativeCall::instruction_size;  // call; delay slot
#endif
}

// Indicate if the safepoint node needs the polling page as an input.
// Since Sparc does not have absolute addressing, it does.
bool SafePointNode::needs_polling_address_input() {
  return true;
}

// emit an interrupt that is caught by the debugger (for debugging compiler)
void emit_break(CodeBuffer &cbuf) {
  MacroAssembler _masm(&cbuf);
  __ breakpoint_trap();
}

#ifndef PRODUCT
void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
  st->print("TA");
}
#endif

void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  emit_break(cbuf);
}

uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
  return MachNode::size(ra_);
}

// Traceable jump
void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
  MacroAssembler _masm(&cbuf);
  Register rdest = reg_to_register_object(jump_target);
  __ JMP(rdest, 0);
  __ delayed()->nop();
}

// Traceable jump and set exception pc
void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
  MacroAssembler _masm(&cbuf);
  Register rdest = reg_to_register_object(jump_target);
  __ JMP(rdest, 0);
  __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
}

void emit_nop(CodeBuffer &cbuf) {
  MacroAssembler _masm(&cbuf);
  __ nop();
}

void emit_illtrap(CodeBuffer &cbuf) {
  MacroAssembler _masm(&cbuf);
  __ illtrap(0);
}


intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
  assert(n->rule() != loadUB_rule, "");

  intptr_t offset = 0;
  const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
  const Node* addr = n->get_base_and_disp(offset, adr_type);
  assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
  assert(addr != NULL && addr != (Node*)-1, "invalid addr");
  assert(addr->bottom_type()->isa_oopptr() == atype, "");
  atype = atype->add_offset(offset);
  assert(disp32 == offset, "wrong disp32");
  return atype->_offset;
}


intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
  assert(n->rule() != loadUB_rule, "");

  intptr_t offset = 0;
  Node* addr = n->in(2);
  assert(addr->bottom_type()->isa_oopptr() == atype, "");
  if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
    Node* a = addr->in(2/*AddPNode::Address*/);
    Node* o = addr->in(3/*AddPNode::Offset*/);
    offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
    atype = a->bottom_type()->is_ptr()->add_offset(offset);
    assert(atype->isa_oop_ptr(), "still an oop");
  }
  offset = atype->is_ptr()->_offset;
  if (offset != Type::OffsetBot)  offset += disp32;
  return offset;
}

679 680
static inline jdouble replicate_immI(int con, int count, int width) {
  // Load a constant replicated "count" times with width "width"
681
  assert(count*width == 8 && width <= 4, "sanity");
682
  int bit_width = width * 8;
683 684
  jlong val = con;
  val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
685
  for (int i = 0; i < count - 1; i++) {
686
    val |= (val << bit_width);
687 688 689 690 691
  }
  jdouble dval = *((jdouble*) &val);  // coerce to double type
  return dval;
}

692 693 694 695 696 697 698 699 700
static inline jdouble replicate_immF(float con) {
  // Replicate float con 2 times and pack into vector.
  int val = *((int*)&con);
  jlong lval = val;
  lval = (lval << 32) | (lval & 0xFFFFFFFFl);
  jdouble dval = *((jdouble*) &lval);  // coerce to double type
  return dval;
}

D
duke 已提交
701 702 703 704 705 706 707 708 709 710
// Standard Sparc opcode form2 field breakdown
static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
  f0 &= (1<<19)-1;     // Mask displacement to 19 bits
  int op = (f30 << 30) |
           (f29 << 29) |
           (f25 << 25) |
           (f22 << 22) |
           (f20 << 20) |
           (f19 << 19) |
           (f0  <<  0);
T
twisti 已提交
711
  cbuf.insts()->emit_int32(op);
D
duke 已提交
712 713 714 715 716 717 718 719 720 721
}

// Standard Sparc opcode form2 field breakdown
static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
  f0 >>= 10;           // Drop 10 bits
  f0 &= (1<<22)-1;     // Mask displacement to 22 bits
  int op = (f30 << 30) |
           (f25 << 25) |
           (f22 << 22) |
           (f0  <<  0);
T
twisti 已提交
722
  cbuf.insts()->emit_int32(op);
D
duke 已提交
723 724 725 726 727 728 729 730 731 732
}

// Standard Sparc opcode form3 field breakdown
static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
  int op = (f30 << 30) |
           (f25 << 25) |
           (f19 << 19) |
           (f14 << 14) |
           (f5  <<  5) |
           (f0  <<  0);
T
twisti 已提交
733
  cbuf.insts()->emit_int32(op);
D
duke 已提交
734 735 736 737 738 739 740 741 742 743 744
}

// Standard Sparc opcode form3 field breakdown
static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
  simm13 &= (1<<13)-1; // Mask to 13 bits
  int op = (f30 << 30) |
           (f25 << 25) |
           (f19 << 19) |
           (f14 << 14) |
           (1   << 13) | // bit to indicate immediate-mode
           (simm13<<0);
T
twisti 已提交
745
  cbuf.insts()->emit_int32(op);
D
duke 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
}

static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
  simm10 &= (1<<10)-1; // Mask to 10 bits
  emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
}

#ifdef ASSERT
// Helper function for VerifyOops in emit_form3_mem_reg
void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
  warning("VerifyOops encountered unexpected instruction:");
  n->dump(2);
  warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
}
#endif


void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
                        int src1_enc, int disp32, int src2_enc, int dst_enc) {

#ifdef ASSERT
  // The following code implements the +VerifyOops feature.
  // It verifies oop values which are loaded into or stored out of
  // the current method activation.  +VerifyOops complements techniques
  // like ScavengeALot, because it eagerly inspects oops in transit,
  // as they enter or leave the stack, as opposed to ScavengeALot,
  // which inspects oops "at rest", in the stack or heap, at safepoints.
  // For this reason, +VerifyOops can sometimes detect bugs very close
  // to their point of creation.  It can also serve as a cross-check
  // on the validity of oop maps, when used toegether with ScavengeALot.

  // It would be good to verify oops at other points, especially
  // when an oop is used as a base pointer for a load or store.
  // This is presently difficult, because it is hard to know when
  // a base address is biased or not.  (If we had such information,
  // it would be easy and useful to make a two-argument version of
  // verify_oop which unbiases the base, and performs verification.)

  assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
  bool is_verified_oop_base  = false;
  bool is_verified_oop_load  = false;
  bool is_verified_oop_store = false;
  int tmp_enc = -1;
  if (VerifyOops && src1_enc != R_SP_enc) {
    // classify the op, mainly for an assert check
    int st_op = 0, ld_op = 0;
    switch (primary) {
    case Assembler::stb_op3:  st_op = Op_StoreB; break;
    case Assembler::sth_op3:  st_op = Op_StoreC; break;
    case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
    case Assembler::stw_op3:  st_op = Op_StoreI; break;
    case Assembler::std_op3:  st_op = Op_StoreL; break;
    case Assembler::stf_op3:  st_op = Op_StoreF; break;
    case Assembler::stdf_op3: st_op = Op_StoreD; break;

    case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
802
    case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
803
    case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
D
duke 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
    case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
    case Assembler::ldx_op3:  // may become LoadP or stay LoadI
    case Assembler::ldsw_op3: // may become LoadP or stay LoadI
    case Assembler::lduw_op3: ld_op = Op_LoadI; break;
    case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
    case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
    case Assembler::lddf_op3: ld_op = Op_LoadD; break;
    case Assembler::prefetch_op3: ld_op = Op_LoadI; break;

    default: ShouldNotReachHere();
    }
    if (tertiary == REGP_OP) {
      if      (st_op == Op_StoreI)  st_op = Op_StoreP;
      else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
      else                          ShouldNotReachHere();
      if (st_op) {
        // a store
        // inputs are (0:control, 1:memory, 2:address, 3:value)
        Node* n2 = n->in(3);
        if (n2 != NULL) {
          const Type* t = n2->bottom_type();
          is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
        }
      } else {
        // a load
        const Type* t = n->bottom_type();
        is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
      }
    }

    if (ld_op) {
      // a Load
      // inputs are (0:control, 1:memory, 2:address)
      if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
          !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
          !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
          !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
          !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
          !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
          !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
          !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
          !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
          !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
          !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
          !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
          !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
K
kvn 已提交
850
          !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
851
          !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
D
duke 已提交
852 853 854 855 856 857 858 859 860 861 862
          !(n->rule() == loadUB_rule)) {
        verify_oops_warning(n, n->ideal_Opcode(), ld_op);
      }
    } else if (st_op) {
      // a Store
      // inputs are (0:control, 1:memory, 2:address, 3:value)
      if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
          !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
          !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
          !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
          !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
863
          !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
D
duke 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
          !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
        verify_oops_warning(n, n->ideal_Opcode(), st_op);
      }
    }

    if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
      Node* addr = n->in(2);
      if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
        const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
        if (atype != NULL) {
          intptr_t offset = get_offset_from_base(n, atype, disp32);
          intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
          if (offset != offset_2) {
            get_offset_from_base(n, atype, disp32);
            get_offset_from_base_2(n, atype, disp32);
          }
          assert(offset == offset_2, "different offsets");
          if (offset == disp32) {
            // we now know that src1 is a true oop pointer
            is_verified_oop_base = true;
            if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
              if( primary == Assembler::ldd_op3 ) {
                is_verified_oop_base = false; // Cannot 'ldd' into O7
              } else {
                tmp_enc = dst_enc;
                dst_enc = R_O7_enc; // Load into O7; preserve source oop
                assert(src1_enc != dst_enc, "");
              }
            }
          }
          if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
                       || offset == oopDesc::mark_offset_in_bytes())) {
                      // loading the mark should not be allowed either, but
                      // we don't check this since it conflicts with InlineObjectHash
                      // usage of LoadINode to get the mark. We could keep the
                      // check if we create a new LoadMarkNode
            // but do not verify the object before its header is initialized
            ShouldNotReachHere();
          }
        }
      }
    }
  }
#endif

  uint instr;
  instr = (Assembler::ldst_op << 30)
        | (dst_enc        << 25)
        | (primary        << 19)
        | (src1_enc       << 14);

  uint index = src2_enc;
  int disp = disp32;

  if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
    disp += STACK_BIAS;

  // We should have a compiler bailout here rather than a guarantee.
  // Better yet would be some mechanism to handle variable-size matches correctly.
  guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );

  if( disp == 0 ) {
    // use reg-reg form
    // bit 13 is already zero
    instr |= index;
  } else {
    // use reg-imm form
    instr |= 0x00002000;          // set bit 13 to one
    instr |= disp & 0x1FFF;
  }

T
twisti 已提交
935
  cbuf.insts()->emit_int32(instr);
D
duke 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955

#ifdef ASSERT
  {
    MacroAssembler _masm(&cbuf);
    if (is_verified_oop_base) {
      __ verify_oop(reg_to_register_object(src1_enc));
    }
    if (is_verified_oop_store) {
      __ verify_oop(reg_to_register_object(dst_enc));
    }
    if (tmp_enc != -1) {
      __ mov(O7, reg_to_register_object(tmp_enc));
    }
    if (is_verified_oop_load) {
      __ verify_oop(reg_to_register_object(dst_enc));
    }
  }
#endif
}

956
void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
D
duke 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
  // The method which records debug information at every safepoint
  // expects the call to be the first instruction in the snippet as
  // it creates a PcDesc structure which tracks the offset of a call
  // from the start of the codeBlob. This offset is computed as
  // code_end() - code_begin() of the code which has been emitted
  // so far.
  // In this particular case we have skirted around the problem by
  // putting the "mov" instruction in the delay slot but the problem
  // may bite us again at some other point and a cleaner/generic
  // solution using relocations would be needed.
  MacroAssembler _masm(&cbuf);
  __ set_inst_mark();

  // We flush the current window just so that there is a valid stack copy
  // the fact that the current window becomes active again instantly is
  // not a problem there is nothing live in it.

#ifdef ASSERT
  int startpos = __ offset();
#endif /* ASSERT */

978
  __ call((address)entry_point, rtype);
D
duke 已提交
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

  if (preserve_g2)   __ delayed()->mov(G2, L7);
  else __ delayed()->nop();

  if (preserve_g2)   __ mov(L7, G2);

#ifdef ASSERT
  if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
#ifdef _LP64
    // Trash argument dump slots.
    __ set(0xb0b8ac0db0b8ac0d, G1);
    __ mov(G1, G5);
    __ stx(G1, SP, STACK_BIAS + 0x80);
    __ stx(G1, SP, STACK_BIAS + 0x88);
    __ stx(G1, SP, STACK_BIAS + 0x90);
    __ stx(G1, SP, STACK_BIAS + 0x98);
    __ stx(G1, SP, STACK_BIAS + 0xA0);
    __ stx(G1, SP, STACK_BIAS + 0xA8);
#else // _LP64
    // this is also a native call, so smash the first 7 stack locations,
    // and the various registers

    // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
    // while [SP+0x44..0x58] are the argument dump slots.
    __ set((intptr_t)0xbaadf00d, G1);
    __ mov(G1, G5);
    __ sllx(G1, 32, G1);
    __ or3(G1, G5, G1);
    __ mov(G1, G5);
    __ stx(G1, SP, 0x40);
    __ stx(G1, SP, 0x48);
    __ stx(G1, SP, 0x50);
    __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
#endif // _LP64
  }
#endif /*ASSERT*/
}

//=============================================================================
// REQUIRED FUNCTIONALITY for encoding
void emit_lo(CodeBuffer &cbuf, int val) {  }
void emit_hi(CodeBuffer &cbuf, int val) {  }


1023
//=============================================================================
1024
const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1025

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
int Compile::ConstantTable::calculate_table_base_offset() const {
  if (UseRDPCForConstantTableBase) {
    // The table base offset might be less but then it fits into
    // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
    return Assembler::min_simm13();
  } else {
    int offset = -(size() / 2);
    if (!Assembler::is_simm13(offset)) {
      offset = Assembler::min_simm13();
    }
    return offset;
  }
}

1040 1041 1042 1043 1044 1045
void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  Compile* C = ra_->C;
  Compile::ConstantTable& constant_table = C->constant_table();
  MacroAssembler _masm(&cbuf);

  Register r = as_Register(ra_->get_encode(this));
1046 1047 1048
  CodeSection* consts_section = __ code()->consts();
  int consts_size = consts_section->align_at_start(consts_section->size());
  assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1049 1050 1051 1052 1053 1054 1055

  if (UseRDPCForConstantTableBase) {
    // For the following RDPC logic to work correctly the consts
    // section must be allocated right before the insts section.  This
    // assert checks for that.  The layout and the SECT_* constants
    // are defined in src/share/vm/asm/codeBuffer.hpp.
    assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
    int insts_offset = __ offset();

    // Layout:
    //
    // |----------- consts section ------------|----------- insts section -----------...
    // |------ constant table -----|- padding -|------------------x----
    //                                                            \ current PC (RDPC instruction)
    // |<------------- consts_size ----------->|<- insts_offset ->|
    //                                                            \ table base
    // The table base offset is later added to the load displacement
    // so it has to be negative.
    int table_base_offset = -(consts_size + insts_offset);
1068 1069 1070 1071 1072
    int disp;

    // If the displacement from the current PC to the constant table
    // base fits into simm13 we set the constant table base to the
    // current PC.
1073 1074
    if (Assembler::is_simm13(table_base_offset)) {
      constant_table.set_table_base_offset(table_base_offset);
1075 1076
      disp = 0;
    } else {
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
      // Otherwise we set the constant table base offset to the
      // maximum negative displacement of load instructions to keep
      // the disp as small as possible:
      //
      // |<------------- consts_size ----------->|<- insts_offset ->|
      // |<--------- min_simm13 --------->|<-------- disp --------->|
      //                                  \ table base
      table_base_offset = Assembler::min_simm13();
      constant_table.set_table_base_offset(table_base_offset);
      disp = (consts_size + insts_offset) + table_base_offset;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    }

    __ rdpc(r);

    if (disp != 0) {
      assert(r != O7, "need temporary");
      __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
    }
  }
  else {
    // Materialize the constant table base.
1098
    address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1099 1100 1101 1102 1103 1104 1105 1106 1107
    RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
    AddressLiteral base(baseaddr, rspec);
    __ set(base, r);
  }
}

uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  if (UseRDPCForConstantTableBase) {
    // This is really the worst case but generally it's only 1 instruction.
1108
    return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1109
  } else {
1110
    return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
  }
}

#ifndef PRODUCT
void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  char reg[128];
  ra_->dump_register(this, reg);
  if (UseRDPCForConstantTableBase) {
    st->print("RDPC   %s\t! constant table base", reg);
  } else {
    st->print("SET    &constanttable,%s\t! constant table base", reg);
  }
}
#endif


D
duke 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
//=============================================================================

#ifndef PRODUCT
void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  Compile* C = ra_->C;

  for (int i = 0; i < OptoPrologueNops; i++) {
    st->print_cr("NOP"); st->print("\t");
  }

  if( VerifyThread ) {
    st->print_cr("Verify_Thread"); st->print("\t");
  }

  size_t framesize = C->frame_slots() << LogBytesPerInt;

  // Calls to C2R adapters often do not accept exceptional returns.
  // We require that their callers must bang for them.  But be careful, because
  // some VM calls (such as call site linkage) can use several kilobytes of
  // stack.  But the stack safety zone should account for that.
  // See bugs 4446381, 4468289, 4497237.
  if (C->need_stack_bang(framesize)) {
    st->print_cr("! stack bang"); st->print("\t");
  }

  if (Assembler::is_simm13(-framesize)) {
    st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  } else {
    st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
    st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
    st->print   ("SAVE   R_SP,R_G3,R_SP");
  }

}
#endif

void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  Compile* C = ra_->C;
  MacroAssembler _masm(&cbuf);

  for (int i = 0; i < OptoPrologueNops; i++) {
    __ nop();
  }

  __ verify_thread();

  size_t framesize = C->frame_slots() << LogBytesPerInt;
  assert(framesize >= 16*wordSize, "must have room for reg. save area");
  assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");

  // Calls to C2R adapters often do not accept exceptional returns.
  // We require that their callers must bang for them.  But be careful, because
  // some VM calls (such as call site linkage) can use several kilobytes of
  // stack.  But the stack safety zone should account for that.
  // See bugs 4446381, 4468289, 4497237.
  if (C->need_stack_bang(framesize)) {
    __ generate_stack_overflow_check(framesize);
  }

  if (Assembler::is_simm13(-framesize)) {
    __ save(SP, -framesize, SP);
  } else {
    __ sethi(-framesize & ~0x3ff, G3);
    __ add(G3, -framesize & 0x3ff, G3);
    __ save(SP, G3, SP);
  }
  C->set_frame_complete( __ offset() );
1194 1195 1196 1197 1198 1199 1200

  if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
    // NOTE: We set the table base offset here because users might be
    // emitted before MachConstantBaseNode.
    Compile::ConstantTable& constant_table = C->constant_table();
    constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  }
D
duke 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
}

uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  return MachNode::size(ra_);
}

int MachPrologNode::reloc() const {
  return 10; // a large enough number
}

//=============================================================================
#ifndef PRODUCT
void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  Compile* C = ra_->C;

  if( do_polling() && ra_->C->is_method_compilation() ) {
    st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
#ifdef _LP64
    st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
#else
    st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
#endif
  }

  if( do_polling() )
    st->print("RET\n\t");

  st->print("RESTORE");
}
#endif

void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  MacroAssembler _masm(&cbuf);
  Compile* C = ra_->C;

  __ verify_thread();

  // If this does safepoint polling, then do it here
  if( do_polling() && ra_->C->is_method_compilation() ) {
1240 1241
    AddressLiteral polling_page(os::get_polling_page());
    __ sethi(polling_page, L0);
D
duke 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
    __ relocate(relocInfo::poll_return_type);
    __ ld_ptr( L0, 0, G0 );
  }

  // If this is a return, then stuff the restore in the delay slot
  if( do_polling() ) {
    __ ret();
    __ delayed()->restore();
  } else {
    __ restore();
  }
}

uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  return MachNode::size(ra_);
}

int MachEpilogNode::reloc() const {
  return 16; // a large enough number
}

const Pipeline * MachEpilogNode::pipeline() const {
  return MachNode::pipeline_class();
}

int MachEpilogNode::safepoint_offset() const {
  assert( do_polling(), "no return for this epilog node");
1269
  return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
D
duke 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
}

//=============================================================================

// Figure out which register class each belongs in: rc_int, rc_float, rc_stack
enum RC { rc_bad, rc_int, rc_float, rc_stack };
static enum RC rc_class( OptoReg::Name reg ) {
  if( !OptoReg::is_valid(reg)  ) return rc_bad;
  if (OptoReg::is_stack(reg)) return rc_stack;
  VMReg r = OptoReg::as_VMReg(reg);
  if (r->is_Register()) return rc_int;
  assert(r->is_FloatRegister(), "must be");
  return rc_float;
}

static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  if( cbuf ) {
    // Better yet would be some mechanism to handle variable-size matches correctly
    if (!Assembler::is_simm13(offset + STACK_BIAS)) {
      ra_->C->record_method_not_compilable("unable to handle large constant offsets");
    } else {
      emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
    }
  }
#ifndef PRODUCT
  else if( !do_size ) {
    if( size != 0 ) st->print("\n\t");
    if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
    else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  }
#endif
  return size+4;
}

static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
#ifndef PRODUCT
  else if( !do_size ) {
    if( size != 0 ) st->print("\n\t");
    st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  }
#endif
  return size+4;
}

uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
                                        PhaseRegAlloc *ra_,
                                        bool do_size,
                                        outputStream* st ) const {
  // Get registers to move
  OptoReg::Name src_second = ra_->get_reg_second(in(1));
  OptoReg::Name src_first = ra_->get_reg_first(in(1));
  OptoReg::Name dst_second = ra_->get_reg_second(this );
  OptoReg::Name dst_first = ra_->get_reg_first(this );

  enum RC src_second_rc = rc_class(src_second);
  enum RC src_first_rc = rc_class(src_first);
  enum RC dst_second_rc = rc_class(dst_second);
  enum RC dst_first_rc = rc_class(dst_first);

  assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );

  // Generate spill code!
  int size = 0;

  if( src_first == dst_first && src_second == dst_second )
    return size;            // Self copy, no move

  // --------------------------------------
  // Check for mem-mem move.  Load into unused float registers and fall into
  // the float-store case.
  if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
    int offset = ra_->reg2offset(src_first);
    // Further check for aligned-adjacent pair, so we can use a double load
    if( (src_first&1)==0 && src_first+1 == src_second ) {
      src_second    = OptoReg::Name(R_F31_num);
      src_second_rc = rc_float;
      size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
    } else {
      size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
    }
    src_first    = OptoReg::Name(R_F30_num);
    src_first_rc = rc_float;
  }

  if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
    int offset = ra_->reg2offset(src_second);
    size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
    src_second    = OptoReg::Name(R_F31_num);
    src_second_rc = rc_float;
  }

  // --------------------------------------
  // Check for float->int copy; requires a trip through memory
K
kvn 已提交
1364
  if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
D
duke 已提交
1365
    int offset = frame::register_save_words*wordSize;
K
kvn 已提交
1366
    if (cbuf) {
D
duke 已提交
1367 1368 1369 1370 1371 1372
      emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
      impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
      impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
      emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
    }
#ifndef PRODUCT
K
kvn 已提交
1373 1374
    else if (!do_size) {
      if (size != 0) st->print("\n\t");
D
duke 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383
      st->print(  "SUB    R_SP,16,R_SP\n");
      impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
      impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
      st->print("\tADD    R_SP,16,R_SP\n");
    }
#endif
    size += 16;
  }

K
kvn 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
  // Check for float->int copy on T4
  if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
    // Further check for aligned-adjacent pair, so we can use a double move
    if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
      return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
    size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  }
  // Check for int->float copy on T4
  if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
    // Further check for aligned-adjacent pair, so we can use a double move
    if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
      return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
    size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  }

D
duke 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
  // --------------------------------------
  // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  // In such cases, I have to do the big-endian swap.  For aligned targets, the
  // hardware does the flop for me.  Doubles are always aligned, so no problem
  // there.  Misaligned sources only come from native-long-returns (handled
  // special below).
#ifndef _LP64
  if( src_first_rc == rc_int &&     // source is already big-endian
      src_second_rc != rc_bad &&    // 64-bit move
      ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
    assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
    // Do the big-endian flop.
    OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
    enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  }
#endif

  // --------------------------------------
  // Check for integer reg-reg copy
  if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
#ifndef _LP64
    if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
      // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
      //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
      //       operand contains the least significant word of the 64-bit value and vice versa.
      OptoReg::Name tmp = OptoReg::Name(R_O7_num);
      assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
      // Shift O0 left in-place, zero-extend O1, then OR them into the dst
      if( cbuf ) {
        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
        emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
#ifndef PRODUCT
      } else if( !do_size ) {
        if( size != 0 ) st->print("\n\t");
        st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
        st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
        st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
#endif
      }
      return size+12;
    }
    else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
      // returning a long value in I0/I1
      // a SpillCopy must be able to target a return instruction's reg_class
      // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
      //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
      //       operand contains the least significant word of the 64-bit value and vice versa.
      OptoReg::Name tdest = dst_first;

      if (src_first == dst_first) {
        tdest = OptoReg::Name(R_O7_num);
        size += 4;
      }

      if( cbuf ) {
        assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
        // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
        // ShrL_reg_imm6
        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
        // ShrR_reg_imm6  src, 0, dst
        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
        if (tdest != dst_first) {
          emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
        }
      }
#ifndef PRODUCT
      else if( !do_size ) {
        if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
        st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
        st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
        if (tdest != dst_first) {
          st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
        }
      }
#endif // PRODUCT
      return size+8;
    }
#endif // !_LP64
    // Else normal reg-reg copy
    assert( src_second != dst_first, "smashed second before evacuating it" );
    size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
    assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
    // This moves an aligned adjacent pair.
    // See if we are done.
    if( src_first+1 == src_second && dst_first+1 == dst_second )
      return size;
  }

  // Check for integer store
  if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
    int offset = ra_->reg2offset(dst_first);
    // Further check for aligned-adjacent pair, so we can use a double store
    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
      return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
    size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  }

  // Check for integer load
  if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
    int offset = ra_->reg2offset(src_first);
    // Further check for aligned-adjacent pair, so we can use a double load
    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
      return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
    size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  }

  // Check for float reg-reg copy
  if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
    // Further check for aligned-adjacent pair, so we can use a double move
    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
      return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
    size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  }

  // Check for float store
  if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
    int offset = ra_->reg2offset(dst_first);
    // Further check for aligned-adjacent pair, so we can use a double store
    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
      return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
    size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  }

  // Check for float load
  if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
    int offset = ra_->reg2offset(src_first);
    // Further check for aligned-adjacent pair, so we can use a double load
    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
      return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
    size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  }

  // --------------------------------------------------------------------
  // Check for hi bits still needing moving.  Only happens for misaligned
  // arguments to native calls.
  if( src_second == dst_second )
    return size;               // Self copy; no move
  assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );

#ifndef _LP64
  // In the LP64 build, all registers can be moved as aligned/adjacent
T
twisti 已提交
1541
  // pairs, so there's never any need to move the high bits separately.
D
duke 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
  // The 32-bit builds have to deal with the 32-bit ABI which can force
  // all sorts of silly alignment problems.

  // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  // 32-bits of a 64-bit register, but are needed in low bits of another
  // register (else it's a hi-bits-to-hi-bits copy which should have
  // happened already as part of a 64-bit move)
  if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
    assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
    assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
    // Shift src_second down to dst_second's low bits.
    if( cbuf ) {
      emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
#ifndef PRODUCT
    } else if( !do_size ) {
      if( size != 0 ) st->print("\n\t");
      st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
#endif
    }
    return size+4;
  }

  // Check for high word integer store.  Must down-shift the hi bits
  // into a temp register, then fall into the case of storing int bits.
  if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
    // Shift src_second down to dst_second's low bits.
    if( cbuf ) {
      emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
#ifndef PRODUCT
    } else if( !do_size ) {
      if( size != 0 ) st->print("\n\t");
      st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
#endif
    }
    size+=4;
    src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  }

  // Check for high word integer load
  if( dst_second_rc == rc_int && src_second_rc == rc_stack )
    return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);

  // Check for high word integer store
  if( src_second_rc == rc_int && dst_second_rc == rc_stack )
    return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);

  // Check for high word float store
  if( src_second_rc == rc_float && dst_second_rc == rc_stack )
    return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);

#endif // !_LP64

  Unimplemented();
}

#ifndef PRODUCT
void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  implementation( NULL, ra_, false, st );
}
#endif

void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  implementation( &cbuf, ra_, false, NULL );
}

uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  return implementation( NULL, ra_, true, NULL );
}

//=============================================================================
#ifndef PRODUCT
void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
}
#endif

void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  MacroAssembler _masm(&cbuf);
  for(int i = 0; i < _count; i += 1) {
    __ nop();
  }
}

uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  return 4 * _count;
}


//=============================================================================
#ifndef PRODUCT
void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  int reg = ra_->get_reg_first(this);
  st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
}
#endif

void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  MacroAssembler _masm(&cbuf);
  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  int reg = ra_->get_encode(this);

  if (Assembler::is_simm13(offset)) {
     __ add(SP, offset, reg_to_register_object(reg));
  } else {
     __ set(offset, O7);
     __ add(SP, O7, reg_to_register_object(reg));
  }
}

uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  assert(ra_ == ra_->C->regalloc(), "sanity");
  return ra_->C->scratch_emit_size(this);
}

//=============================================================================

// emit call stub, compiled java to interpretor
void emit_java_to_interp(CodeBuffer &cbuf ) {

  // Stub is fixed up when the corresponding call is converted from calling
  // compiled code to calling interpreted code.
  // set (empty), G5
  // jmp -1

T
twisti 已提交
1668
  address mark = cbuf.insts_mark();  // get mark within main instrs section
D
duke 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

  MacroAssembler _masm(&cbuf);

  address base =
  __ start_a_stub(Compile::MAX_stubs_size);
  if (base == NULL)  return;  // CodeBuffer::expand failed

  // static stub relocation stores the instruction address of the call
  __ relocate(static_stub_Relocation::spec(mark));

  __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));

  __ set_inst_mark();
1682 1683
  AddressLiteral addrlit(-1);
  __ JUMP(addrlit, G3, 0);
D
duke 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

  __ delayed()->nop();

  // Update current stubs pointer and restore code_end.
  __ end_a_stub();
}

// size of call stub, compiled java to interpretor
uint size_java_to_interp() {
  // This doesn't need to be accurate but it must be larger or equal to
  // the real size of the stub.
  return (NativeMovConstReg::instruction_size +  // sethi/setlo;
          NativeJump::instruction_size + // sethi; jmp; nop
          (TraceJumps ? 20 * BytesPerInstWord : 0) );
}
// relocation entries for call stub, compiled java to interpretor
uint reloc_java_to_interp() {
  return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
}


//=============================================================================
#ifndef PRODUCT
void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  st->print_cr("\nUEP:");
#ifdef    _LP64
1710
  if (UseCompressedOops) {
1711
    assert(Universe::heap() != NULL, "java heap should be initialized");
1712 1713
    st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
    st->print_cr("\tSLL    R_G5,3,R_G5");
1714 1715
    if (Universe::narrow_oop_base() != NULL)
      st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1716 1717 1718
  } else {
    st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  }
D
duke 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
  st->print_cr("\tCMP    R_G5,R_G3" );
  st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
#else  // _LP64
  st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  st->print_cr("\tCMP    R_G5,R_G3" );
  st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
#endif // _LP64
}
#endif

void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  MacroAssembler _masm(&cbuf);
  Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  Register temp_reg   = G3;
  assert( G5_ic_reg != temp_reg, "conflicting registers" );

T
twisti 已提交
1735
  // Load klass from receiver
1736
  __ load_klass(O0, temp_reg);
D
duke 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
  // Compare against expected klass
  __ cmp(temp_reg, G5_ic_reg);
  // Branch to miss code, checks xcc or icc depending
  __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
}

uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  return MachNode::size(ra_);
}


//=============================================================================

uint size_exception_handler() {
  if (TraceJumps) {
    return (400); // just a guess
  }
  return ( NativeJump::instruction_size ); // sethi;jmp;nop
}

uint size_deopt_handler() {
  if (TraceJumps) {
    return (400); // just a guess
  }
  return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
}

// Emit exception handler code.
int emit_exception_handler(CodeBuffer& cbuf) {
  Register temp_reg = G3;
T
twisti 已提交
1767
  AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
D
duke 已提交
1768 1769 1770 1771 1772 1773 1774 1775
  MacroAssembler _masm(&cbuf);

  address base =
  __ start_a_stub(size_exception_handler());
  if (base == NULL)  return 0;  // CodeBuffer::expand failed

  int offset = __ offset();

1776
  __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
D
duke 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
  __ delayed()->nop();

  assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");

  __ end_a_stub();

  return offset;
}

int emit_deopt_handler(CodeBuffer& cbuf) {
  // Can't use any of the current frame's registers as we may have deopted
  // at a poll and everything (including G3) can be live.
  Register temp_reg = L0;
1790
  AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
D
duke 已提交
1791 1792 1793 1794 1795 1796 1797 1798
  MacroAssembler _masm(&cbuf);

  address base =
  __ start_a_stub(size_deopt_handler());
  if (base == NULL)  return 0;  // CodeBuffer::expand failed

  int offset = __ offset();
  __ save_frame(0);
1799
  __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
D
duke 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
  __ delayed()->restore();

  assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");

  __ end_a_stub();
  return offset;

}

// Given a register encoding, produce a Integer Register object
static Register reg_to_register_object(int register_encoding) {
  assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  return as_Register(register_encoding);
}

// Given a register encoding, produce a single-precision Float Register object
static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  return as_SingleFloatRegister(register_encoding);
}

// Given a register encoding, produce a double-precision Float Register object
static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  return as_DoubleFloatRegister(register_encoding);
}

1828 1829 1830 1831 1832 1833 1834 1835 1836
const bool Matcher::match_rule_supported(int opcode) {
  if (!has_match_rule(opcode))
    return false;

  switch (opcode) {
  case Op_CountLeadingZerosI:
  case Op_CountLeadingZerosL:
  case Op_CountTrailingZerosI:
  case Op_CountTrailingZerosL:
1837 1838
  case Op_PopCountI:
  case Op_PopCountL:
1839 1840 1841 1842 1843 1844 1845 1846
    if (!UsePopCountInstruction)
      return false;
    break;
  }

  return true;  // Per default match rules are supported.
}

D
duke 已提交
1847 1848 1849 1850 1851 1852 1853 1854
int Matcher::regnum_to_fpu_offset(int regnum) {
  return regnum - 32; // The FP registers are in the second chunk
}

#ifdef ASSERT
address last_rethrow = NULL;  // debugging aid for Rethrow encoding
#endif

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
// Map Types to machine register types
const int Matcher::base2reg[Type::lastype] = {
  Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
  Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
  0, Op_RegD, 0, 0, /* Vectors */
  Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
  0, 0/*abio*/,
  Op_RegP /* Return address */, 0, /* the memories */
  Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
  0  /*bottom*/
};

D
duke 已提交
1867
// Vector width in bytes
1868 1869
const int Matcher::vector_width_in_bytes(BasicType bt) {
  assert(MaxVectorSize == 8, "");
D
duke 已提交
1870 1871 1872 1873
  return 8;
}

// Vector ideal reg
1874 1875
const int Matcher::vector_ideal_reg(int size) {
  assert(MaxVectorSize == 8, "");
D
duke 已提交
1876 1877 1878
  return Op_RegD;
}

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
// Limits on vector size (number of elements) loaded into vector.
const int Matcher::max_vector_size(const BasicType bt) {
  assert(is_java_primitive(bt), "only primitive type vectors");
  return vector_width_in_bytes(bt)/type2aelembytes(bt);
}

const int Matcher::min_vector_size(const BasicType bt) {
  return max_vector_size(bt); // Same as max.
}

// SPARC doesn't support misaligned vectors store/load.
const bool Matcher::misaligned_vectors_ok() {
  return false;
}

D
duke 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902
// USII supports fxtof through the whole range of number, USIII doesn't
const bool Matcher::convL2FSupported(void) {
  return VM_Version::has_fast_fxtof();
}

// Is this branch offset short enough that a short branch can be used?
//
// NOTE: If the platform does not provide any short branch variants, then
//       this method should return false for offset 0.
1903 1904 1905
bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  // The passed offset is relative to address of the branch.
  // Don't need to adjust the offset.
1906
  return UseCBCond && Assembler::is_simm12(offset);
D
duke 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
}

const bool Matcher::isSimpleConstant64(jlong value) {
  // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  // Depends on optimizations in MacroAssembler::setx.
  int hi = (int)(value >> 32);
  int lo = (int)(value & ~0);
  return (hi == 0) || (hi == -1) || (lo == 0);
}

// No scaling for the parameter the ClearArray node.
const bool Matcher::init_array_count_is_in_bytes = true;

// Threshold size for cleararray.
const int Matcher::init_array_short_size = 8 * BytesPerLong;

K
kvn 已提交
1923 1924 1925 1926 1927 1928 1929 1930
// No additional cost for CMOVL.
const int Matcher::long_cmove_cost() { return 0; }

// CMOVF/CMOVD are expensive on T4 and on SPARC64.
const int Matcher::float_cmove_cost() {
  return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
}

D
duke 已提交
1931 1932 1933 1934 1935
// Should the Matcher clone shifts on addressing modes, expecting them to
// be subsumed into complex addressing expressions or compute them into
// registers?  True for Intel but false for most RISCs
const bool Matcher::clone_shift_expressions = false;

1936 1937 1938 1939
// Do we need to mask the count passed to shift instructions or does
// the cpu only look at the lower 5/6 bits anyway?
const bool Matcher::need_masked_shift_count = false;

1940 1941 1942 1943 1944 1945
bool Matcher::narrow_oop_use_complex_address() {
  NOT_LP64(ShouldNotCallThis());
  assert(UseCompressedOops, "only for compressed oops code");
  return false;
}

D
duke 已提交
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
// Is it better to copy float constants, or load them directly from memory?
// Intel can load a float constant from a direct address, requiring no
// extra registers.  Most RISCs will have to materialize an address into a
// register first, so they would do better to copy the constant from stack.
const bool Matcher::rematerialize_float_constants = false;

// If CPU can load and store mis-aligned doubles directly then no fixup is
// needed.  Else we split the double into 2 integer pieces and move it
// piece-by-piece.  Only happens when passing doubles into C code as the
// Java calling convention forces doubles to be aligned.
#ifdef _LP64
const bool Matcher::misaligned_doubles_ok = true;
#else
const bool Matcher::misaligned_doubles_ok = false;
#endif

// No-op on SPARC.
void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
}

// Advertise here if the CPU requires explicit rounding operations
// to implement the UseStrictFP mode.
const bool Matcher::strict_fp_requires_explicit_rounding = false;

1970 1971 1972
// Are floats conerted to double when stored to stack during deoptimization?
// Sparc does not handle callee-save floats.
bool Matcher::float_in_double() { return false; }
D
duke 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

// Do ints take an entire long register or just half?
// Note that we if-def off of _LP64.
// The relevant question is how the int is callee-saved.  In _LP64
// the whole long is written but de-opt'ing will have to extract
// the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
#ifdef _LP64
const bool Matcher::int_in_long = true;
#else
const bool Matcher::int_in_long = false;
#endif

// Return whether or not this register is ever used as an argument.  This
// function is used on startup to build the trampoline stubs in generateOptoStub.
// Registers not mentioned will be killed by the VM call in the trampoline, and
// arguments in those registers not be available to the callee.
bool Matcher::can_be_java_arg( int reg ) {
  // Standard sparc 6 args in registers
  if( reg == R_I0_num ||
      reg == R_I1_num ||
      reg == R_I2_num ||
      reg == R_I3_num ||
      reg == R_I4_num ||
      reg == R_I5_num ) return true;
#ifdef _LP64
  // 64-bit builds can pass 64-bit pointers and longs in
  // the high I registers
  if( reg == R_I0H_num ||
      reg == R_I1H_num ||
      reg == R_I2H_num ||
      reg == R_I3H_num ||
      reg == R_I4H_num ||
      reg == R_I5H_num ) return true;
2006 2007 2008 2009 2010

  if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
    return true;
  }

D
duke 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
#else
  // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  // Longs cannot be passed in O regs, because O regs become I regs
  // after a 'save' and I regs get their high bits chopped off on
  // interrupt.
  if( reg == R_G1H_num || reg == R_G1_num ) return true;
  if( reg == R_G4H_num || reg == R_G4_num ) return true;
#endif
  // A few float args in registers
  if( reg >= R_F0_num && reg <= R_F7_num ) return true;

  return false;
}

bool Matcher::is_spillable_arg( int reg ) {
  return can_be_java_arg(reg);
}

2029 2030 2031 2032 2033 2034
bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  // Use hardware SDIVX instruction when it is
  // faster than a code which use multiply.
  return VM_Version::has_fast_idiv();
}

D
duke 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
// Register for DIVI projection of divmodI
RegMask Matcher::divI_proj_mask() {
  ShouldNotReachHere();
  return RegMask();
}

// Register for MODI projection of divmodI
RegMask Matcher::modI_proj_mask() {
  ShouldNotReachHere();
  return RegMask();
}

// Register for DIVL projection of divmodL
RegMask Matcher::divL_proj_mask() {
  ShouldNotReachHere();
  return RegMask();
}

// Register for MODL projection of divmodL
RegMask Matcher::modL_proj_mask() {
  ShouldNotReachHere();
  return RegMask();
}

2059
const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2060
  return L7_REGP_mask();
2061 2062
}

D
duke 已提交
2063 2064 2065 2066 2067 2068
%}


// The intptr_t operand types, defined by textual substitution.
// (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
#ifdef _LP64
T
twisti 已提交
2069 2070 2071 2072 2073
#define immX      immL
#define immX13    immL13
#define immX13m7  immL13m7
#define iRegX     iRegL
#define g1RegX    g1RegL
D
duke 已提交
2074
#else
T
twisti 已提交
2075 2076 2077 2078 2079
#define immX      immI
#define immX13    immI13
#define immX13m7  immI13m7
#define iRegX     iRegI
#define g1RegX    g1RegI
D
duke 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
#endif

//----------ENCODING BLOCK-----------------------------------------------------
// This block specifies the encoding classes used by the compiler to output
// byte streams.  Encoding classes are parameterized macros used by
// Machine Instruction Nodes in order to generate the bit encoding of the
// instruction.  Operands specify their base encoding interface with the
// interface keyword.  There are currently supported four interfaces,
// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
// operand to generate a function which returns its register number when
// queried.   CONST_INTER causes an operand to generate a function which
// returns the value of the constant when queried.  MEMORY_INTER causes an
// operand to generate four functions which return the Base Register, the
// Index Register, the Scale Value, and the Offset Value of the operand when
// queried.  COND_INTER causes an operand to generate six functions which
// return the encoding code (ie - encoding bits for the instruction)
// associated with each basic boolean condition for a conditional instruction.
//
// Instructions specify two basic values for encoding.  Again, a function
// is available to check if the constant displacement is an oop. They use the
// ins_encode keyword to specify their encoding classes (which must be
// a sequence of enc_class names, and their parameters, specified in
// the encoding block), and they use the
// opcode keyword to specify, in order, their primary, secondary, and
// tertiary opcode.  Only the opcode sections which a particular instruction
// needs for encoding need to be specified.
encode %{
  enc_class enc_untested %{
#ifdef ASSERT
    MacroAssembler _masm(&cbuf);
    __ untested("encoding");
#endif
  %}

  enc_class form3_mem_reg( memory mem, iRegI dst ) %{
    emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
                       $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  %}

2119 2120 2121 2122 2123
  enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
    emit_form3_mem_reg(cbuf, this, $primary, -1,
                       $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  %}

D
duke 已提交
2124
  enc_class form3_mem_prefetch_read( memory mem ) %{
2125
    emit_form3_mem_reg(cbuf, this, $primary, -1,
D
duke 已提交
2126 2127 2128 2129
                       $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  %}

  enc_class form3_mem_prefetch_write( memory mem ) %{
2130
    emit_form3_mem_reg(cbuf, this, $primary, -1,
D
duke 已提交
2131 2132 2133 2134
                       $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  %}

  enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2135 2136
    assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
    assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
D
duke 已提交
2137
    guarantee($mem$$index == R_G0_enc, "double index?");
2138 2139
    emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
    emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
D
duke 已提交
2140 2141 2142 2143 2144
    emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
    emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  %}

  enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2145 2146
    assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
    assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
D
duke 已提交
2147 2148
    guarantee($mem$$index == R_G0_enc, "double index?");
    // Load long with 2 instructions
2149 2150
    emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
    emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
D
duke 已提交
2151 2152 2153 2154 2155
  %}

  //%%% form3_mem_plus_4_reg is a hack--get rid of it
  enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
    guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2156
    emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
D
duke 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
  %}

  enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
    // Encode a reg-reg copy.  If it is useless, then empty encoding.
    if( $rs2$$reg != $rd$$reg )
      emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  %}

  // Target lo half of long
  enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
    // Encode a reg-reg copy.  If it is useless, then empty encoding.
    if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
      emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  %}

  // Source lo half of long
  enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
    // Encode a reg-reg copy.  If it is useless, then empty encoding.
    if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
      emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  %}

  // Target hi half of long
  enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  %}

  // Source lo half of long, and leave it sign extended.
  enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
    // Sign extend low half
    emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  %}

  // Source hi half of long, and leave it sign extended.
  enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
    // Shift high half to low half
    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  %}

  // Source hi half of long
  enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
    // Encode a reg-reg copy.  If it is useless, then empty encoding.
    if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
      emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  %}

  enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  %}

  enc_class enc_to_bool( iRegI src, iRegI dst ) %{
    emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  %}

  enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
    emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
    // clear if nothing else is happening
    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
    // blt,a,pn done
    emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
    // mov dst,-1 in delay slot
    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  %}

  enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
    emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  %}

  enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
    emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  %}

  enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  %}

  enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
    emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  %}

  enc_class move_return_pc_to_o1() %{
    emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  %}

#ifdef _LP64
  /* %%% merge with enc_to_bool */
  enc_class enc_convP2B( iRegI dst, iRegP src ) %{
    MacroAssembler _masm(&cbuf);

    Register   src_reg = reg_to_register_object($src$$reg);
    Register   dst_reg = reg_to_register_object($dst$$reg);
    __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  %}
#endif

  enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
    // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
    MacroAssembler _masm(&cbuf);

    Register   p_reg = reg_to_register_object($p$$reg);
    Register   q_reg = reg_to_register_object($q$$reg);
    Register   y_reg = reg_to_register_object($y$$reg);
    Register tmp_reg = reg_to_register_object($tmp$$reg);

    __ subcc( p_reg, q_reg,   p_reg );
    __ add  ( p_reg, y_reg, tmp_reg );
    __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  %}

  enc_class form_d2i_helper(regD src, regF dst) %{
    // fcmp %fcc0,$src,$src
    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
    // branch %fcc0 not-nan, predict taken
    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
    // fdtoi $src,$dst
    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
    // fitos $dst,$dst (if nan)
    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
    // clear $dst (if nan)
    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
    // carry on here...
  %}

  enc_class form_d2l_helper(regD src, regD dst) %{
    // fcmp %fcc0,$src,$src  check for NAN
    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
    // branch %fcc0 not-nan, predict taken
    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
    // fdtox $src,$dst   convert in delay slot
    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
    // fxtod $dst,$dst  (if nan)
    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
    // clear $dst (if nan)
    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
    // carry on here...
  %}

  enc_class form_f2i_helper(regF src, regF dst) %{
    // fcmps %fcc0,$src,$src
    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
    // branch %fcc0 not-nan, predict taken
    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
    // fstoi $src,$dst
    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
    // fitos $dst,$dst (if nan)
    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
    // clear $dst (if nan)
    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
    // carry on here...
  %}

  enc_class form_f2l_helper(regF src, regD dst) %{
    // fcmps %fcc0,$src,$src
    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
    // branch %fcc0 not-nan, predict taken
    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
    // fstox $src,$dst
    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
    // fxtod $dst,$dst (if nan)
    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
    // clear $dst (if nan)
    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
    // carry on here...
  %}

  enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}

  enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}

  enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}

  enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  %}

  enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  %}

  enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
    emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  %}

  enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
    emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  %}

  enc_class form3_convI2F(regF rs2, regF rd) %{
    emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  %}

  // Encloding class for traceable jumps
  enc_class form_jmpl(g3RegP dest) %{
    emit_jmpl(cbuf, $dest$$reg);
  %}

  enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
    emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  %}

  enc_class form2_nop() %{
    emit_nop(cbuf);
  %}

  enc_class form2_illtrap() %{
    emit_illtrap(cbuf);
  %}


  // Compare longs and convert into -1, 0, 1.
  enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
    // CMP $src1,$src2
    emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
    // blt,a,pn done
    emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
    // mov dst,-1 in delay slot
    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
    // bgt,a,pn done
    emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
    // mov dst,1 in delay slot
    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
    // CLR    $dst
    emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  %}

  enc_class enc_PartialSubtypeCheck() %{
    MacroAssembler _masm(&cbuf);
    __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
    __ delayed()->nop();
  %}

K
kvn 已提交
2393
  enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
D
duke 已提交
2394
    MacroAssembler _masm(&cbuf);
K
kvn 已提交
2395
    Label* L = $labl$$label;
D
duke 已提交
2396
    Assembler::Predict predict_taken =
K
kvn 已提交
2397
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
D
duke 已提交
2398

K
kvn 已提交
2399
    __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
D
duke 已提交
2400 2401 2402
    __ delayed()->nop();
  %}

K
kvn 已提交
2403
  enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
D
duke 已提交
2404
    MacroAssembler _masm(&cbuf);
K
kvn 已提交
2405
    Label* L = $labl$$label;
D
duke 已提交
2406
    Assembler::Predict predict_taken =
K
kvn 已提交
2407
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
D
duke 已提交
2408

K
kvn 已提交
2409
    __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
D
duke 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
    __ delayed()->nop();
  %}

  enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
    int op = (Assembler::arith_op << 30) |
             ($dst$$reg << 25) |
             (Assembler::movcc_op3 << 19) |
             (1 << 18) |                    // cc2 bit for 'icc'
             ($cmp$$cmpcode << 14) |
             (0 << 13) |                    // select register move
             ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
             ($src$$reg << 0);
T
twisti 已提交
2422
    cbuf.insts()->emit_int32(op);
D
duke 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
  %}

  enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
    int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
    int op = (Assembler::arith_op << 30) |
             ($dst$$reg << 25) |
             (Assembler::movcc_op3 << 19) |
             (1 << 18) |                    // cc2 bit for 'icc'
             ($cmp$$cmpcode << 14) |
             (1 << 13) |                    // select immediate move
             ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
             (simm11 << 0);
T
twisti 已提交
2435
    cbuf.insts()->emit_int32(op);
D
duke 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
  %}

  enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
    int op = (Assembler::arith_op << 30) |
             ($dst$$reg << 25) |
             (Assembler::movcc_op3 << 19) |
             (0 << 18) |                    // cc2 bit for 'fccX'
             ($cmp$$cmpcode << 14) |
             (0 << 13) |                    // select register move
             ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
             ($src$$reg << 0);
T
twisti 已提交
2447
    cbuf.insts()->emit_int32(op);
D
duke 已提交
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
  %}

  enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
    int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
    int op = (Assembler::arith_op << 30) |
             ($dst$$reg << 25) |
             (Assembler::movcc_op3 << 19) |
             (0 << 18) |                    // cc2 bit for 'fccX'
             ($cmp$$cmpcode << 14) |
             (1 << 13) |                    // select immediate move
             ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
             (simm11 << 0);
T
twisti 已提交
2460
    cbuf.insts()->emit_int32(op);
D
duke 已提交
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
  %}

  enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
    int op = (Assembler::arith_op << 30) |
             ($dst$$reg << 25) |
             (Assembler::fpop2_op3 << 19) |
             (0 << 18) |
             ($cmp$$cmpcode << 14) |
             (1 << 13) |                    // select register move
             ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
             ($primary << 5) |              // select single, double or quad
             ($src$$reg << 0);
T
twisti 已提交
2473
    cbuf.insts()->emit_int32(op);
D
duke 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
  %}

  enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
    int op = (Assembler::arith_op << 30) |
             ($dst$$reg << 25) |
             (Assembler::fpop2_op3 << 19) |
             (0 << 18) |
             ($cmp$$cmpcode << 14) |
             ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
             ($primary << 5) |              // select single, double or quad
             ($src$$reg << 0);
T
twisti 已提交
2485
    cbuf.insts()->emit_int32(op);
D
duke 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
  %}

  // Used by the MIN/MAX encodings.  Same as a CMOV, but
  // the condition comes from opcode-field instead of an argument.
  enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
    int op = (Assembler::arith_op << 30) |
             ($dst$$reg << 25) |
             (Assembler::movcc_op3 << 19) |
             (1 << 18) |                    // cc2 bit for 'icc'
             ($primary << 14) |
             (0 << 13) |                    // select register move
             (0 << 11) |                    // cc1, cc0 bits for 'icc'
             ($src$$reg << 0);
T
twisti 已提交
2499
    cbuf.insts()->emit_int32(op);
D
duke 已提交
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
  %}

  enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
    int op = (Assembler::arith_op << 30) |
             ($dst$$reg << 25) |
             (Assembler::movcc_op3 << 19) |
             (6 << 16) |                    // cc2 bit for 'xcc'
             ($primary << 14) |
             (0 << 13) |                    // select register move
             (0 << 11) |                    // cc1, cc0 bits for 'icc'
             ($src$$reg << 0);
T
twisti 已提交
2511
    cbuf.insts()->emit_int32(op);
D
duke 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
  %}

  enc_class Set13( immI13 src, iRegI rd ) %{
    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  %}

  enc_class SetHi22( immI src, iRegI rd ) %{
    emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  %}

  enc_class Set32( immI src, iRegI rd ) %{
    MacroAssembler _masm(&cbuf);
    __ set($src$$constant, reg_to_register_object($rd$$reg));
  %}

  enc_class call_epilog %{
    if( VerifyStackAtCalls ) {
      MacroAssembler _masm(&cbuf);
      int framesize = ra_->C->frame_slots() << LogBytesPerInt;
      Register temp_reg = G3;
      __ add(SP, framesize, temp_reg);
      __ cmp(temp_reg, FP);
      __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
    }
  %}

  // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  // to G1 so the register allocator will not have to deal with the misaligned register
  // pair.
  enc_class adjust_long_from_native_call %{
#ifndef _LP64
    if (returns_long()) {
      //    sllx  O0,32,O0
      emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
      //    srl   O1,0,O1
      emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
      //    or    O0,O1,G1
      emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
    }
#endif
  %}

  enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
    // CALL directly to the runtime
    // The user of this is responsible for ensuring that R_L7 is empty (killed).
    emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2558
                    /*preserve_g2=*/true);
D
duke 已提交
2559 2560
  %}

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
  enc_class preserve_SP %{
    MacroAssembler _masm(&cbuf);
    __ mov(SP, L7_mh_SP_save);
  %}

  enc_class restore_SP %{
    MacroAssembler _masm(&cbuf);
    __ mov(L7_mh_SP_save, SP);
  %}

D
duke 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
  enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
    // who we intended to call.
    if ( !_method ) {
      emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
    } else if (_optimized_virtual) {
      emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
    } else {
      emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
    }
    if( _method ) {  // Emit stub for static call
      emit_java_to_interp(cbuf);
    }
  %}

  enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
    MacroAssembler _masm(&cbuf);
    __ set_inst_mark();
    int vtable_index = this->_vtable_index;
    // MachCallDynamicJavaNode::ret_addr_offset uses this same test
    if (vtable_index < 0) {
      // must be invalid_vtable_index, not nonvirtual_vtable_index
      assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
      Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
      assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
      assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
      // !!!!!
      // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
      // emit_call_dynamic_prologue( cbuf );
      __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);

      address  virtual_call_oop_addr = __ inst_mark();
      // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
      // who we intended to call.
      __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
      emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
    } else {
      assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
      // Just go thru the vtable
      // get receiver klass (receiver already checked for non-null)
      // If we end up going thru a c2i adapter interpreter expects method in G5
      int off = __ offset();
2613 2614 2615
      __ load_klass(O0, G3_scratch);
      int klass_load_size;
      if (UseCompressedOops) {
2616 2617 2618 2619 2620
        assert(Universe::heap() != NULL, "java heap should be initialized");
        if (Universe::narrow_oop_base() == NULL)
          klass_load_size = 2*BytesPerInstWord;
        else
          klass_load_size = 3*BytesPerInstWord;
2621 2622 2623
      } else {
        klass_load_size = 1*BytesPerInstWord;
      }
D
duke 已提交
2624 2625
      int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
      int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2626
      if (Assembler::is_simm13(v_off)) {
D
duke 已提交
2627 2628 2629 2630 2631 2632
        __ ld_ptr(G3, v_off, G5_method);
      } else {
        // Generate 2 instructions
        __ Assembler::sethi(v_off & ~0x3ff, G5_method);
        __ or3(G5_method, v_off & 0x3ff, G5_method);
        // ld_ptr, set_hi, set
2633 2634
        assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
               "Unexpected instruction size(s)");
D
duke 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
        __ ld_ptr(G3, G5_method, G5_method);
      }
      // NOTE: for vtable dispatches, the vtable entry will never be null.
      // However it may very well end up in handle_wrong_method if the
      // method is abstract for the particular class.
      __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
      // jump to target (either compiled code or c2iadapter)
      __ jmpl(G3_scratch, G0, O7);
      __ delayed()->nop();
    }
  %}

  enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
    MacroAssembler _masm(&cbuf);

    Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
    Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
                              // we might be calling a C2I adapter which needs it.

    assert(temp_reg != G5_ic_reg, "conflicting registers");
    // Load nmethod
    __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);

    // CALL to compiled java, indirect the contents of G3
    __ set_inst_mark();
    __ callr(temp_reg, G0);
    __ delayed()->nop();
  %}

enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
    MacroAssembler _masm(&cbuf);
    Register Rdividend = reg_to_register_object($src1$$reg);
    Register Rdivisor = reg_to_register_object($src2$$reg);
    Register Rresult = reg_to_register_object($dst$$reg);

    __ sra(Rdivisor, 0, Rdivisor);
    __ sra(Rdividend, 0, Rdividend);
    __ sdivx(Rdividend, Rdivisor, Rresult);
%}

enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
    MacroAssembler _masm(&cbuf);

    Register Rdividend = reg_to_register_object($src1$$reg);
    int divisor = $imm$$constant;
    Register Rresult = reg_to_register_object($dst$$reg);

    __ sra(Rdividend, 0, Rdividend);
    __ sdivx(Rdividend, divisor, Rresult);
%}

enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
    MacroAssembler _masm(&cbuf);
    Register Rsrc1 = reg_to_register_object($src1$$reg);
    Register Rsrc2 = reg_to_register_object($src2$$reg);
    Register Rdst  = reg_to_register_object($dst$$reg);

    __ sra( Rsrc1, 0, Rsrc1 );
    __ sra( Rsrc2, 0, Rsrc2 );
    __ mulx( Rsrc1, Rsrc2, Rdst );
    __ srlx( Rdst, 32, Rdst );
%}

enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
    MacroAssembler _masm(&cbuf);
    Register Rdividend = reg_to_register_object($src1$$reg);
    Register Rdivisor = reg_to_register_object($src2$$reg);
    Register Rresult = reg_to_register_object($dst$$reg);
    Register Rscratch = reg_to_register_object($scratch$$reg);

    assert(Rdividend != Rscratch, "");
    assert(Rdivisor  != Rscratch, "");

    __ sra(Rdividend, 0, Rdividend);
    __ sra(Rdivisor, 0, Rdivisor);
    __ sdivx(Rdividend, Rdivisor, Rscratch);
    __ mulx(Rscratch, Rdivisor, Rscratch);
    __ sub(Rdividend, Rscratch, Rresult);
%}

enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
    MacroAssembler _masm(&cbuf);

    Register Rdividend = reg_to_register_object($src1$$reg);
    int divisor = $imm$$constant;
    Register Rresult = reg_to_register_object($dst$$reg);
    Register Rscratch = reg_to_register_object($scratch$$reg);

    assert(Rdividend != Rscratch, "");

    __ sra(Rdividend, 0, Rdividend);
    __ sdivx(Rdividend, divisor, Rscratch);
    __ mulx(Rscratch, divisor, Rscratch);
    __ sub(Rdividend, Rscratch, Rresult);
%}

enc_class fabss (sflt_reg dst, sflt_reg src) %{
    MacroAssembler _masm(&cbuf);

    FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
    FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);

    __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
%}

enc_class fabsd (dflt_reg dst, dflt_reg src) %{
    MacroAssembler _masm(&cbuf);

    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);

    __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
%}

enc_class fnegd (dflt_reg dst, dflt_reg src) %{
    MacroAssembler _masm(&cbuf);

    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);

    __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
%}

enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
    MacroAssembler _masm(&cbuf);

    FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
    FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);

    __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
%}

enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
    MacroAssembler _masm(&cbuf);

    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);

    __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
%}

enc_class fmovs (dflt_reg dst, dflt_reg src) %{
    MacroAssembler _masm(&cbuf);

    FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
    FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);

    __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
%}

enc_class fmovd (dflt_reg dst, dflt_reg src) %{
    MacroAssembler _masm(&cbuf);

    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);

    __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
%}

enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
    MacroAssembler _masm(&cbuf);

    Register Roop  = reg_to_register_object($oop$$reg);
    Register Rbox  = reg_to_register_object($box$$reg);
    Register Rscratch = reg_to_register_object($scratch$$reg);
    Register Rmark =    reg_to_register_object($scratch2$$reg);

    assert(Roop  != Rscratch, "");
    assert(Roop  != Rmark, "");
    assert(Rbox  != Rscratch, "");
    assert(Rbox  != Rmark, "");

2807
    __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
D
duke 已提交
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
%}

enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
    MacroAssembler _masm(&cbuf);

    Register Roop  = reg_to_register_object($oop$$reg);
    Register Rbox  = reg_to_register_object($box$$reg);
    Register Rscratch = reg_to_register_object($scratch$$reg);
    Register Rmark =    reg_to_register_object($scratch2$$reg);

    assert(Roop  != Rscratch, "");
    assert(Roop  != Rmark, "");
    assert(Rbox  != Rscratch, "");
    assert(Rbox  != Rmark, "");

2823
    __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
D
duke 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
  %}

  enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
    MacroAssembler _masm(&cbuf);
    Register Rmem = reg_to_register_object($mem$$reg);
    Register Rold = reg_to_register_object($old$$reg);
    Register Rnew = reg_to_register_object($new$$reg);

    // casx_under_lock picks 1 of 3 encodings:
    // For 32-bit pointers you get a 32-bit CAS
    // For 64-bit pointers you get a 64-bit CASX
2835
    __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
D
duke 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
    __ cmp( Rold, Rnew );
  %}

  enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
    Register Rmem = reg_to_register_object($mem$$reg);
    Register Rold = reg_to_register_object($old$$reg);
    Register Rnew = reg_to_register_object($new$$reg);

    MacroAssembler _masm(&cbuf);
    __ mov(Rnew, O7);
    __ casx(Rmem, Rold, O7);
    __ cmp( Rold, O7 );
  %}

  // raw int cas, used for compareAndSwap
  enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
    Register Rmem = reg_to_register_object($mem$$reg);
    Register Rold = reg_to_register_object($old$$reg);
    Register Rnew = reg_to_register_object($new$$reg);

    MacroAssembler _masm(&cbuf);
    __ mov(Rnew, O7);
    __ cas(Rmem, Rold, O7);
    __ cmp( Rold, O7 );
  %}

  enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
    Register Rres = reg_to_register_object($res$$reg);

    MacroAssembler _masm(&cbuf);
    __ mov(1, Rres);
    __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  %}

  enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
    Register Rres = reg_to_register_object($res$$reg);

    MacroAssembler _masm(&cbuf);
    __ mov(1, Rres);
    __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  %}

  enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
    MacroAssembler _masm(&cbuf);
    Register Rdst = reg_to_register_object($dst$$reg);
    FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
                                     : reg_to_DoubleFloatRegister_object($src1$$reg);
    FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
                                     : reg_to_DoubleFloatRegister_object($src2$$reg);

    // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
    __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  %}


2891
  enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
D
duke 已提交
2892 2893 2894 2895 2896
    Label Ldone, Lloop;
    MacroAssembler _masm(&cbuf);

    Register   str1_reg = reg_to_register_object($str1$$reg);
    Register   str2_reg = reg_to_register_object($str2$$reg);
2897 2898
    Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
    Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
D
duke 已提交
2899 2900
    Register result_reg = reg_to_register_object($result$$reg);

2901 2902 2903 2904 2905
    assert(result_reg != str1_reg &&
           result_reg != str2_reg &&
           result_reg != cnt1_reg &&
           result_reg != cnt2_reg ,
           "need different registers");
D
duke 已提交
2906 2907 2908 2909 2910 2911 2912

    // Compute the minimum of the string lengths(str1_reg) and the
    // difference of the string lengths (stack)

    // See if the lengths are different, and calculate min in str1_reg.
    // Stash diff in O7 in case we need it for a tie-breaker.
    Label Lskip;
2913 2914
    __ subcc(cnt1_reg, cnt2_reg, O7);
    __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
D
duke 已提交
2915
    __ br(Assembler::greater, true, Assembler::pt, Lskip);
2916 2917
    // cnt2 is shorter, so use its count:
    __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
D
duke 已提交
2918 2919
    __ bind(Lskip);

2920
    // reallocate cnt1_reg, cnt2_reg, result_reg
D
duke 已提交
2921
    // Note:  limit_reg holds the string length pre-scaled by 2
2922 2923
    Register limit_reg =   cnt1_reg;
    Register  chr2_reg =   cnt2_reg;
D
duke 已提交
2924
    Register  chr1_reg = result_reg;
2925
    // str{12} are the base pointers
D
duke 已提交
2926 2927 2928 2929 2930 2931 2932

    // Is the minimum length zero?
    __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
    __ br(Assembler::equal, true, Assembler::pn, Ldone);
    __ delayed()->mov(O7, result_reg);  // result is difference in lengths

    // Load first characters
2933 2934
    __ lduh(str1_reg, 0, chr1_reg);
    __ lduh(str2_reg, 0, chr2_reg);
D
duke 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945

    // Compare first characters
    __ subcc(chr1_reg, chr2_reg, chr1_reg);
    __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
    assert(chr1_reg == result_reg, "result must be pre-placed");
    __ delayed()->nop();

    {
      // Check after comparing first character to see if strings are equivalent
      Label LSkip2;
      // Check if the strings start at same location
2946
      __ cmp(str1_reg, str2_reg);
D
duke 已提交
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
      __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
      __ delayed()->nop();

      // Check if the length difference is zero (in O7)
      __ cmp(G0, O7);
      __ br(Assembler::equal, true, Assembler::pn, Ldone);
      __ delayed()->mov(G0, result_reg);  // result is zero

      // Strings might not be equal
      __ bind(LSkip2);
    }

    __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
    __ br(Assembler::equal, true, Assembler::pn, Ldone);
    __ delayed()->mov(O7, result_reg);  // result is difference in lengths

2963 2964 2965
    // Shift str1_reg and str2_reg to the end of the arrays, negate limit
    __ add(str1_reg, limit_reg, str1_reg);
    __ add(str2_reg, limit_reg, str2_reg);
D
duke 已提交
2966 2967 2968
    __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)

    // Compare the rest of the characters
2969
    __ lduh(str1_reg, limit_reg, chr1_reg);
D
duke 已提交
2970
    __ bind(Lloop);
2971 2972
    // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
    __ lduh(str2_reg, limit_reg, chr2_reg);
D
duke 已提交
2973 2974 2975 2976 2977 2978
    __ subcc(chr1_reg, chr2_reg, chr1_reg);
    __ br(Assembler::notZero, false, Assembler::pt, Ldone);
    assert(chr1_reg == result_reg, "result must be pre-placed");
    __ delayed()->inccc(limit_reg, sizeof(jchar));
    // annul LDUH if branch is not taken to prevent access past end of string
    __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2979
    __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
D
duke 已提交
2980 2981 2982 2983 2984 2985 2986 2987

    // If strings are equal up to min length, return the length difference.
    __ mov(O7, result_reg);

    // Otherwise, return the difference between the first mismatched chars.
    __ bind(Ldone);
  %}

2988 2989
enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
    Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
C
cfang 已提交
2990 2991 2992 2993
    MacroAssembler _masm(&cbuf);

    Register   str1_reg = reg_to_register_object($str1$$reg);
    Register   str2_reg = reg_to_register_object($str2$$reg);
2994 2995
    Register    cnt_reg = reg_to_register_object($cnt$$reg);
    Register   tmp1_reg = O7;
C
cfang 已提交
2996 2997
    Register result_reg = reg_to_register_object($result$$reg);

2998 2999 3000 3001 3002
    assert(result_reg != str1_reg &&
           result_reg != str2_reg &&
           result_reg !=  cnt_reg &&
           result_reg != tmp1_reg ,
           "need different registers");
C
cfang 已提交
3003

3004
    __ cmp(str1_reg, str2_reg); //same char[] ?
C
cfang 已提交
3005 3006 3007
    __ brx(Assembler::equal, true, Assembler::pn, Ldone);
    __ delayed()->add(G0, 1, result_reg);

K
kvn 已提交
3008
    __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
3009 3010
    __ delayed()->add(G0, 1, result_reg); // count == 0

C
cfang 已提交
3011
    //rename registers
3012
    Register limit_reg =    cnt_reg;
C
cfang 已提交
3013
    Register  chr1_reg = result_reg;
3014
    Register  chr2_reg =   tmp1_reg;
C
cfang 已提交
3015 3016

    //check for alignment and position the pointers to the ends
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
    __ or3(str1_reg, str2_reg, chr1_reg);
    __ andcc(chr1_reg, 0x3, chr1_reg);
    // notZero means at least one not 4-byte aligned.
    // We could optimize the case when both arrays are not aligned
    // but it is not frequent case and it requires additional checks.
    __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
    __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count

    // Compare char[] arrays aligned to 4 bytes.
    __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
                          chr1_reg, chr2_reg, Ldone);
K
kvn 已提交
3028
    __ ba(Ldone);
C
cfang 已提交
3029 3030
    __ delayed()->add(G0, 1, result_reg);

3031
    // char by char compare
C
cfang 已提交
3032
    __ bind(Lchar);
3033 3034
    __ add(str1_reg, limit_reg, str1_reg);
    __ add(str2_reg, limit_reg, str2_reg);
C
cfang 已提交
3035 3036
    __ neg(limit_reg); //negate count

3037 3038
    __ lduh(str1_reg, limit_reg, chr1_reg);
    // Lchar_loop
C
cfang 已提交
3039
    __ bind(Lchar_loop);
3040
    __ lduh(str2_reg, limit_reg, chr2_reg);
C
cfang 已提交
3041 3042 3043 3044 3045
    __ cmp(chr1_reg, chr2_reg);
    __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
    __ delayed()->mov(G0, result_reg); //not equal
    __ inccc(limit_reg, sizeof(jchar));
    // annul LDUH if branch is not taken to prevent access past end of string
3046 3047
    __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
    __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
C
cfang 已提交
3048 3049 3050 3051 3052 3053

    __ add(G0, 1, result_reg);  //equal

    __ bind(Ldone);
  %}

3054
enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
C
cfang 已提交
3055 3056 3057 3058 3059 3060
    Label Lvector, Ldone, Lloop;
    MacroAssembler _masm(&cbuf);

    Register   ary1_reg = reg_to_register_object($ary1$$reg);
    Register   ary2_reg = reg_to_register_object($ary2$$reg);
    Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3061
    Register   tmp2_reg = O7;
C
cfang 已提交
3062 3063 3064 3065 3066 3067 3068
    Register result_reg = reg_to_register_object($result$$reg);

    int length_offset  = arrayOopDesc::length_offset_in_bytes();
    int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);

    // return true if the same array
    __ cmp(ary1_reg, ary2_reg);
3069
    __ brx(Assembler::equal, true, Assembler::pn, Ldone);
C
cfang 已提交
3070 3071 3072 3073 3074 3075 3076 3077 3078
    __ delayed()->add(G0, 1, result_reg); // equal

    __ br_null(ary1_reg, true, Assembler::pn, Ldone);
    __ delayed()->mov(G0, result_reg);    // not equal

    __ br_null(ary2_reg, true, Assembler::pn, Ldone);
    __ delayed()->mov(G0, result_reg);    // not equal

    //load the lengths of arrays
3079 3080
    __ ld(Address(ary1_reg, length_offset), tmp1_reg);
    __ ld(Address(ary2_reg, length_offset), tmp2_reg);
C
cfang 已提交
3081 3082 3083 3084 3085 3086

    // return false if the two arrays are not equal length
    __ cmp(tmp1_reg, tmp2_reg);
    __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
    __ delayed()->mov(G0, result_reg);     // not equal

K
kvn 已提交
3087
    __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
C
cfang 已提交
3088 3089 3090 3091 3092 3093 3094
    __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal

    // load array addresses
    __ add(ary1_reg, base_offset, ary1_reg);
    __ add(ary2_reg, base_offset, ary2_reg);

    // renaming registers
3095 3096
    Register chr1_reg  =  result_reg; // for characters in ary1
    Register chr2_reg  =  tmp2_reg;   // for characters in ary2
C
cfang 已提交
3097 3098 3099 3100 3101
    Register limit_reg =  tmp1_reg;   // length

    // set byte count
    __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);

3102 3103 3104
    // Compare char[] arrays aligned to 4 bytes.
    __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
                          chr1_reg, chr2_reg, Ldone);
C
cfang 已提交
3105 3106 3107 3108 3109
    __ add(G0, 1, result_reg); // equals

    __ bind(Ldone);
  %}

D
duke 已提交
3110
  enc_class enc_rethrow() %{
T
twisti 已提交
3111
    cbuf.set_insts_mark();
D
duke 已提交
3112
    Register temp_reg = G3;
3113
    AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
D
duke 已提交
3114 3115 3116 3117
    assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
    MacroAssembler _masm(&cbuf);
#ifdef ASSERT
    __ save_frame(0);
3118 3119 3120
    AddressLiteral last_rethrow_addrlit(&last_rethrow);
    __ sethi(last_rethrow_addrlit, L1);
    Address addr(L1, last_rethrow_addrlit.low10());
D
duke 已提交
3121 3122
    __ get_pc(L2);
    __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3123
    __ st_ptr(L2, addr);
D
duke 已提交
3124 3125
    __ restore();
#endif
3126
    __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
D
duke 已提交
3127 3128 3129 3130 3131
    __ delayed()->nop();
  %}

  enc_class emit_mem_nop() %{
    // Generates the instruction LDUXA [o6,g0],#0x82,g0
T
twisti 已提交
3132
    cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
D
duke 已提交
3133 3134 3135 3136
  %}

  enc_class emit_fadd_nop() %{
    // Generates the instruction FMOVS f31,f31
T
twisti 已提交
3137
    cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
D
duke 已提交
3138 3139 3140 3141
  %}

  enc_class emit_br_nop() %{
    // Generates the instruction BPN,PN .
T
twisti 已提交
3142
    cbuf.insts()->emit_int32((unsigned int) 0x00400000);
D
duke 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
  %}

  enc_class enc_membar_acquire %{
    MacroAssembler _masm(&cbuf);
    __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  %}

  enc_class enc_membar_release %{
    MacroAssembler _masm(&cbuf);
    __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  %}

  enc_class enc_membar_volatile %{
    MacroAssembler _masm(&cbuf);
    __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  %}
3159

D
duke 已提交
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
%}

//----------FRAME--------------------------------------------------------------
// Definition of frame structure and management information.
//
//  S T A C K   L A Y O U T    Allocators stack-slot number
//                             |   (to get allocators register number
//  G  Owned by    |        |  v    add VMRegImpl::stack0)
//  r   CALLER     |        |
//  o     |        +--------+      pad to even-align allocators stack-slot
//  w     V        |  pad0  |        numbers; owned by CALLER
//  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
//  h     ^        |   in   |  5
//        |        |  args  |  4   Holes in incoming args owned by SELF
//  |     |        |        |  3
//  |     |        +--------+
//  V     |        | old out|      Empty on Intel, window on Sparc
//        |    old |preserve|      Must be even aligned.
//        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
//        |        |   in   |  3   area for Intel ret address
//     Owned by    |preserve|      Empty on Sparc.
//       SELF      +--------+
//        |        |  pad2  |  2   pad to align old SP
//        |        +--------+  1
//        |        | locks  |  0
//        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
//        |        |  pad1  | 11   pad to align new SP
//        |        +--------+
//        |        |        | 10
//        |        | spills |  9   spills
//        V        |        |  8   (pad0 slot for callee)
//      -----------+--------+----> Matcher::_out_arg_limit, unaligned
//        ^        |  out   |  7
//        |        |  args  |  6   Holes in outgoing args owned by CALLEE
//     Owned by    +--------+
//      CALLEE     | new out|  6   Empty on Intel, window on Sparc
//        |    new |preserve|      Must be even-aligned.
//        |     SP-+--------+----> Matcher::_new_SP, even aligned
//        |        |        |
//
// Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
//         known from SELF's arguments and the Java calling convention.
//         Region 6-7 is determined per call site.
// Note 2: If the calling convention leaves holes in the incoming argument
//         area, those holes are owned by SELF.  Holes in the outgoing area
//         are owned by the CALLEE.  Holes should not be nessecary in the
//         incoming area, as the Java calling convention is completely under
//         the control of the AD file.  Doubles can be sorted and packed to
//         avoid holes.  Holes in the outgoing arguments may be nessecary for
//         varargs C calling conventions.
// Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
//         even aligned with pad0 as needed.
//         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
//         region 6-11 is even aligned; it may be padded out more so that
//         the region from SP to FP meets the minimum stack alignment.

frame %{
  // What direction does stack grow in (assumed to be same for native & Java)
  stack_direction(TOWARDS_LOW);

  // These two registers define part of the calling convention
  // between compiled code and the interpreter.
  inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter

  // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  cisc_spilling_operand_name(indOffset);

  // Number of stack slots consumed by a Monitor enter
#ifdef _LP64
  sync_stack_slots(2);
#else
  sync_stack_slots(1);
#endif

  // Compiled code's Frame Pointer
  frame_pointer(R_SP);

  // Stack alignment requirement
  stack_alignment(StackAlignmentInBytes);
  //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)

  // Number of stack slots between incoming argument block and the start of
  // a new frame.  The PROLOG must add this many slots to the stack.  The
  // EPILOG must remove this many slots.
  in_preserve_stack_slots(0);

  // Number of outgoing stack slots killed above the out_preserve_stack_slots
  // for calls to C.  Supports the var-args backing area for register parms.
  // ADLC doesn't support parsing expressions, so I folded the math by hand.
#ifdef _LP64
  // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  varargs_C_out_slots_killed(12);
#else
  // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  varargs_C_out_slots_killed( 7);
#endif

  // The after-PROLOG location of the return address.  Location of
  // return address specifies a type (REG or STACK) and a number
  // representing the register number (i.e. - use a register name) or
  // stack slot.
  return_addr(REG R_I7);          // Ret Addr is in register I7

  // Body of function which returns an OptoRegs array locating
  // arguments either in registers or in stack slots for calling
  // java
  calling_convention %{
    (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);

  %}

  // Body of function which returns an OptoRegs array locating
  // arguments either in registers or in stack slots for callin
  // C.
  c_calling_convention %{
    // This is obviously always outgoing
    (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  %}

  // Location of native (C/C++) and interpreter return values.  This is specified to
  // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  // to and from the register pairs is done by the appropriate call and epilog
  // opcodes.  This simplifies the register allocator.
  c_return_value %{
    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
#ifdef     _LP64
3289 3290 3291 3292
    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
D
duke 已提交
3293
#else  // !_LP64
3294 3295 3296 3297
    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
D
duke 已提交
3298 3299 3300 3301 3302 3303 3304 3305 3306
#endif
    return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
                        (is_outgoing?lo_out:lo_in)[ideal_reg] );
  %}

  // Location of compiled Java return values.  Same as C
  return_value %{
    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
#ifdef     _LP64
3307 3308 3309 3310
    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
D
duke 已提交
3311
#else  // !_LP64
3312 3313 3314 3315
    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
D
duke 已提交
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
#endif
    return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
                        (is_outgoing?lo_out:lo_in)[ideal_reg] );
  %}

%}


//----------ATTRIBUTES---------------------------------------------------------
//----------Operand Attributes-------------------------------------------------
op_attrib op_cost(1);          // Required cost attribute

//----------Instruction Attributes---------------------------------------------
ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
K
kvn 已提交
3330
ins_attrib ins_size(32);           // Required size attribute (in bits)
3331
ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
K
kvn 已提交
3332 3333
ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
                                   // non-matching short branch variant of some
D
duke 已提交
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
                                                            // long branch?

//----------OPERANDS-----------------------------------------------------------
// Operand definitions must precede instruction definitions for correct parsing
// in the ADLC because operands constitute user defined types which are used in
// instruction definitions.

//----------Simple Operands----------------------------------------------------
// Immediate Operands
// Integer Immediate: 32-bit
operand immI() %{
  match(ConI);

  op_cost(0);
  // formats are generated automatically for constants and base registers
  format %{ %}
  interface(CONST_INTER);
%}

T
twisti 已提交
3353 3354
// Integer Immediate: 8-bit
operand immI8() %{
3355
  predicate(Assembler::is_simm8(n->get_int()));
T
twisti 已提交
3356 3357 3358 3359 3360 3361
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

D
duke 已提交
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
// Integer Immediate: 13-bit
operand immI13() %{
  predicate(Assembler::is_simm13(n->get_int()));
  match(ConI);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

T
twisti 已提交
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
// Integer Immediate: 13-bit minus 7
operand immI13m7() %{
  predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  match(ConI);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

T
twisti 已提交
3382 3383
// Integer Immediate: 16-bit
operand immI16() %{
3384
  predicate(Assembler::is_simm16(n->get_int()));
T
twisti 已提交
3385 3386 3387 3388 3389 3390
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

D
duke 已提交
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
// Unsigned (positive) Integer Immediate: 13-bit
operand immU13() %{
  predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  match(ConI);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

// Integer Immediate: 6-bit
operand immU6() %{
  predicate(n->get_int() >= 0 && n->get_int() <= 63);
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Integer Immediate: 11-bit
operand immI11() %{
3412
  predicate(Assembler::is_simm11(n->get_int()));
D
duke 已提交
3413 3414 3415 3416 3417 3418
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

3419 3420
// Integer Immediate: 5-bit
operand immI5() %{
3421
  predicate(Assembler::is_simm5(n->get_int()));
3422 3423 3424 3425 3426 3427
  match(ConI);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

D
duke 已提交
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
// Integer Immediate: 0-bit
operand immI0() %{
  predicate(n->get_int() == 0);
  match(ConI);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

// Integer Immediate: the value 10
operand immI10() %{
  predicate(n->get_int() == 10);
  match(ConI);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

// Integer Immediate: the values 0-31
operand immU5() %{
  predicate(n->get_int() >= 0 && n->get_int() <= 31);
  match(ConI);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

// Integer Immediate: the values 1-31
operand immI_1_31() %{
  predicate(n->get_int() >= 1 && n->get_int() <= 31);
  match(ConI);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

// Integer Immediate: the values 32-63
operand immI_32_63() %{
  predicate(n->get_int() >= 32 && n->get_int() <= 63);
  match(ConI);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

T
twisti 已提交
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
// Immediates for special shifts (sign extend)

// Integer Immediate: the value 16
operand immI_16() %{
  predicate(n->get_int() == 16);
  match(ConI);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

// Integer Immediate: the value 24
operand immI_24() %{
  predicate(n->get_int() == 24);
  match(ConI);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

D
duke 已提交
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
// Integer Immediate: the value 255
operand immI_255() %{
  predicate( n->get_int() == 255 );
  match(ConI);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

T
twisti 已提交
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
// Integer Immediate: the value 65535
operand immI_65535() %{
  predicate(n->get_int() == 65535);
  match(ConI);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

D
duke 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
// Long Immediate: the value FF
operand immL_FF() %{
  predicate( n->get_long() == 0xFFL );
  match(ConL);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

// Long Immediate: the value FFFF
operand immL_FFFF() %{
  predicate( n->get_long() == 0xFFFFL );
  match(ConL);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

// Pointer Immediate: 32 or 64-bit
operand immP() %{
  match(ConP);

  op_cost(5);
  // formats are generated automatically for constants and base registers
  format %{ %}
  interface(CONST_INTER);
%}

3550 3551
#ifdef _LP64
// Pointer Immediate: 64-bit
3552
operand immP_set() %{
3553
  predicate(!VM_Version::is_niagara_plus());
3554 3555 3556 3557 3558 3559 3560 3561
  match(ConP);

  op_cost(5);
  // formats are generated automatically for constants and base registers
  format %{ %}
  interface(CONST_INTER);
%}

3562
// Pointer Immediate: 64-bit
3563 3564
// From Niagara2 processors on a load should be better than materializing.
operand immP_load() %{
3565
  predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3566 3567 3568 3569 3570 3571 3572 3573
  match(ConP);

  op_cost(5);
  // formats are generated automatically for constants and base registers
  format %{ %}
  interface(CONST_INTER);
%}

3574 3575
// Pointer Immediate: 64-bit
operand immP_no_oop_cheap() %{
3576
  predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3577 3578 3579 3580 3581 3582 3583 3584 3585
  match(ConP);

  op_cost(5);
  // formats are generated automatically for constants and base registers
  format %{ %}
  interface(CONST_INTER);
%}
#endif

D
duke 已提交
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
operand immP13() %{
  predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  match(ConP);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

operand immP0() %{
  predicate(n->get_ptr() == 0);
  match(ConP);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

operand immP_poll() %{
  predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  match(ConP);

  // formats are generated automatically for constants and base registers
  format %{ %}
  interface(CONST_INTER);
%}

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
// Pointer Immediate
operand immN()
%{
  match(ConN);

  op_cost(10);
  format %{ %}
  interface(CONST_INTER);
%}

// NULL Pointer Immediate
operand immN0()
%{
  predicate(n->get_narrowcon() == 0);
  match(ConN);

  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

D
duke 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
operand immL() %{
  match(ConL);
  op_cost(40);
  // formats are generated automatically for constants and base registers
  format %{ %}
  interface(CONST_INTER);
%}

operand immL0() %{
  predicate(n->get_long() == 0L);
  match(ConL);
  op_cost(0);
  // formats are generated automatically for constants and base registers
  format %{ %}
  interface(CONST_INTER);
%}

3651 3652
// Integer Immediate: 5-bit
operand immL5() %{
3653
  predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3654 3655 3656 3657 3658 3659
  match(ConL);
  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

D
duke 已提交
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
// Long Immediate: 13-bit
operand immL13() %{
  predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  match(ConL);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

T
twisti 已提交
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
// Long Immediate: 13-bit minus 7
operand immL13m7() %{
  predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  match(ConL);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

D
duke 已提交
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
// Long Immediate: low 32-bit mask
operand immL_32bits() %{
  predicate(n->get_long() == 0xFFFFFFFFL);
  match(ConL);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

3690 3691
// Long Immediate: cheap (materialize in <= 3 instructions)
operand immL_cheap() %{
3692
  predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3693 3694 3695 3696 3697 3698 3699 3700 3701
  match(ConL);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

// Long Immediate: expensive (materialize in > 3 instructions)
operand immL_expensive() %{
3702
  predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3703 3704 3705 3706 3707 3708 3709
  match(ConL);
  op_cost(0);

  format %{ %}
  interface(CONST_INTER);
%}

D
duke 已提交
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
// Double Immediate
operand immD() %{
  match(ConD);

  op_cost(40);
  format %{ %}
  interface(CONST_INTER);
%}

operand immD0() %{
#ifdef _LP64
  // on 64-bit architectures this comparision is faster
  predicate(jlong_cast(n->getd()) == 0);
#else
  predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
#endif
  match(ConD);

  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Float Immediate
operand immF() %{
  match(ConF);

  op_cost(20);
  format %{ %}
  interface(CONST_INTER);
%}

// Float Immediate: 0
operand immF0() %{
  predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  match(ConF);

  op_cost(0);
  format %{ %}
  interface(CONST_INTER);
%}

// Integer Register Operands
// Integer Register
operand iRegI() %{
  constraint(ALLOC_IN_RC(int_reg));
  match(RegI);

  match(notemp_iRegI);
  match(g1RegI);
  match(o0RegI);
  match(iRegIsafe);

  format %{ %}
  interface(REG_INTER);
%}

operand notemp_iRegI() %{
  constraint(ALLOC_IN_RC(notemp_int_reg));
  match(RegI);

  match(o0RegI);

  format %{ %}
  interface(REG_INTER);
%}

operand o0RegI() %{
  constraint(ALLOC_IN_RC(o0_regI));
  match(iRegI);

  format %{ %}
  interface(REG_INTER);
%}

// Pointer Register
operand iRegP() %{
  constraint(ALLOC_IN_RC(ptr_reg));
  match(RegP);

  match(lock_ptr_RegP);
  match(g1RegP);
  match(g2RegP);
  match(g3RegP);
  match(g4RegP);
  match(i0RegP);
  match(o0RegP);
  match(o1RegP);
  match(l7RegP);

  format %{ %}
  interface(REG_INTER);
%}

operand sp_ptr_RegP() %{
  constraint(ALLOC_IN_RC(sp_ptr_reg));
  match(RegP);
  match(iRegP);

  format %{ %}
  interface(REG_INTER);
%}

operand lock_ptr_RegP() %{
  constraint(ALLOC_IN_RC(lock_ptr_reg));
  match(RegP);
  match(i0RegP);
  match(o0RegP);
  match(o1RegP);
  match(l7RegP);

  format %{ %}
  interface(REG_INTER);
%}

operand g1RegP() %{
  constraint(ALLOC_IN_RC(g1_regP));
  match(iRegP);

  format %{ %}
  interface(REG_INTER);
%}

operand g2RegP() %{
  constraint(ALLOC_IN_RC(g2_regP));
  match(iRegP);

  format %{ %}
  interface(REG_INTER);
%}

operand g3RegP() %{
  constraint(ALLOC_IN_RC(g3_regP));
  match(iRegP);

  format %{ %}
  interface(REG_INTER);
%}

operand g1RegI() %{
  constraint(ALLOC_IN_RC(g1_regI));
  match(iRegI);

  format %{ %}
  interface(REG_INTER);
%}

operand g3RegI() %{
  constraint(ALLOC_IN_RC(g3_regI));
  match(iRegI);

  format %{ %}
  interface(REG_INTER);
%}

operand g4RegI() %{
  constraint(ALLOC_IN_RC(g4_regI));
  match(iRegI);

  format %{ %}
  interface(REG_INTER);
%}

operand g4RegP() %{
  constraint(ALLOC_IN_RC(g4_regP));
  match(iRegP);

  format %{ %}
  interface(REG_INTER);
%}

operand i0RegP() %{
  constraint(ALLOC_IN_RC(i0_regP));
  match(iRegP);

  format %{ %}
  interface(REG_INTER);
%}

operand o0RegP() %{
  constraint(ALLOC_IN_RC(o0_regP));
  match(iRegP);

  format %{ %}
  interface(REG_INTER);
%}

operand o1RegP() %{
  constraint(ALLOC_IN_RC(o1_regP));
  match(iRegP);

  format %{ %}
  interface(REG_INTER);
%}

operand o2RegP() %{
  constraint(ALLOC_IN_RC(o2_regP));
  match(iRegP);

  format %{ %}
  interface(REG_INTER);
%}

operand o7RegP() %{
  constraint(ALLOC_IN_RC(o7_regP));
  match(iRegP);

  format %{ %}
  interface(REG_INTER);
%}

operand l7RegP() %{
  constraint(ALLOC_IN_RC(l7_regP));
  match(iRegP);

  format %{ %}
  interface(REG_INTER);
%}

operand o7RegI() %{
  constraint(ALLOC_IN_RC(o7_regI));
  match(iRegI);

  format %{ %}
  interface(REG_INTER);
%}

3937 3938 3939 3940 3941 3942 3943 3944
operand iRegN() %{
  constraint(ALLOC_IN_RC(int_reg));
  match(RegN);

  format %{ %}
  interface(REG_INTER);
%}

D
duke 已提交
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
// Long Register
operand iRegL() %{
  constraint(ALLOC_IN_RC(long_reg));
  match(RegL);

  format %{ %}
  interface(REG_INTER);
%}

operand o2RegL() %{
  constraint(ALLOC_IN_RC(o2_regL));
  match(iRegL);

  format %{ %}
  interface(REG_INTER);
%}

operand o7RegL() %{
  constraint(ALLOC_IN_RC(o7_regL));
  match(iRegL);

  format %{ %}
  interface(REG_INTER);
%}

operand g1RegL() %{
  constraint(ALLOC_IN_RC(g1_regL));
  match(iRegL);

  format %{ %}
  interface(REG_INTER);
%}

3978 3979 3980 3981 3982 3983 3984 3985
operand g3RegL() %{
  constraint(ALLOC_IN_RC(g3_regL));
  match(iRegL);

  format %{ %}
  interface(REG_INTER);
%}

D
duke 已提交
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
// Int Register safe
// This is 64bit safe
operand iRegIsafe() %{
  constraint(ALLOC_IN_RC(long_reg));

  match(iRegI);

  format %{ %}
  interface(REG_INTER);
%}

// Condition Code Flag Register
operand flagsReg() %{
  constraint(ALLOC_IN_RC(int_flags));
  match(RegFlags);

  format %{ "ccr" %} // both ICC and XCC
  interface(REG_INTER);
%}

// Condition Code Register, unsigned comparisons.
operand flagsRegU() %{
  constraint(ALLOC_IN_RC(int_flags));
  match(RegFlags);

  format %{ "icc_U" %}
  interface(REG_INTER);
%}

// Condition Code Register, pointer comparisons.
operand flagsRegP() %{
  constraint(ALLOC_IN_RC(int_flags));
  match(RegFlags);

#ifdef _LP64
  format %{ "xcc_P" %}
#else
  format %{ "icc_P" %}
#endif
  interface(REG_INTER);
%}

// Condition Code Register, long comparisons.
operand flagsRegL() %{
  constraint(ALLOC_IN_RC(int_flags));
  match(RegFlags);

  format %{ "xcc_L" %}
  interface(REG_INTER);
%}

// Condition Code Register, floating comparisons, unordered same as "less".
operand flagsRegF() %{
  constraint(ALLOC_IN_RC(float_flags));
  match(RegFlags);
  match(flagsRegF0);

  format %{ %}
  interface(REG_INTER);
%}

operand flagsRegF0() %{
  constraint(ALLOC_IN_RC(float_flag0));
  match(RegFlags);

  format %{ %}
  interface(REG_INTER);
%}


// Condition Code Flag Register used by long compare
operand flagsReg_long_LTGE() %{
  constraint(ALLOC_IN_RC(int_flags));
  match(RegFlags);
  format %{ "icc_LTGE" %}
  interface(REG_INTER);
%}
operand flagsReg_long_EQNE() %{
  constraint(ALLOC_IN_RC(int_flags));
  match(RegFlags);
  format %{ "icc_EQNE" %}
  interface(REG_INTER);
%}
operand flagsReg_long_LEGT() %{
  constraint(ALLOC_IN_RC(int_flags));
  match(RegFlags);
  format %{ "icc_LEGT" %}
  interface(REG_INTER);
%}


operand regD() %{
  constraint(ALLOC_IN_RC(dflt_reg));
  match(RegD);

4081 4082
  match(regD_low);

D
duke 已提交
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
  format %{ %}
  interface(REG_INTER);
%}

operand regF() %{
  constraint(ALLOC_IN_RC(sflt_reg));
  match(RegF);

  format %{ %}
  interface(REG_INTER);
%}

operand regD_low() %{
  constraint(ALLOC_IN_RC(dflt_low_reg));
4097
  match(regD);
D
duke 已提交
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136

  format %{ %}
  interface(REG_INTER);
%}

// Special Registers

// Method Register
operand inline_cache_regP(iRegP reg) %{
  constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  match(reg);
  format %{ %}
  interface(REG_INTER);
%}

operand interpreter_method_oop_regP(iRegP reg) %{
  constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  match(reg);
  format %{ %}
  interface(REG_INTER);
%}


//----------Complex Operands---------------------------------------------------
// Indirect Memory Reference
operand indirect(sp_ptr_RegP reg) %{
  constraint(ALLOC_IN_RC(sp_ptr_reg));
  match(reg);

  op_cost(100);
  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x0);
    scale(0x0);
    disp(0x0);
  %}
%}

T
twisti 已提交
4137
// Indirect with simm13 Offset
D
duke 已提交
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  constraint(ALLOC_IN_RC(sp_ptr_reg));
  match(AddP reg offset);

  op_cost(100);
  format %{ "[$reg + $offset]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x0);
    scale(0x0);
    disp($offset);
  %}
%}

T
twisti 已提交
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
// Indirect with simm13 Offset minus 7
operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  constraint(ALLOC_IN_RC(sp_ptr_reg));
  match(AddP reg offset);

  op_cost(100);
  format %{ "[$reg + $offset]" %}
  interface(MEMORY_INTER) %{
    base($reg);
    index(0x0);
    scale(0x0);
    disp($offset);
  %}
%}

D
duke 已提交
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
// Note:  Intel has a swapped version also, like this:
//operand indOffsetX(iRegI reg, immP offset) %{
//  constraint(ALLOC_IN_RC(int_reg));
//  match(AddP offset reg);
//
//  op_cost(100);
//  format %{ "[$reg + $offset]" %}
//  interface(MEMORY_INTER) %{
//    base($reg);
//    index(0x0);
//    scale(0x0);
//    disp($offset);
//  %}
//%}
//// However, it doesn't make sense for SPARC, since
// we have no particularly good way to embed oops in
// single instructions.

// Indirect with Register Index
operand indIndex(iRegP addr, iRegX index) %{
  constraint(ALLOC_IN_RC(ptr_reg));
  match(AddP addr index);

  op_cost(100);
  format %{ "[$addr + $index]" %}
  interface(MEMORY_INTER) %{
    base($addr);
    index($index);
    scale(0x0);
    disp(0x0);
  %}
%}

//----------Special Memory Operands--------------------------------------------
// Stack Slot Operand - This operand is used for loading and storing temporary
//                      values on the stack where a match requires a value to
//                      flow through memory.
operand stackSlotI(sRegI reg) %{
  constraint(ALLOC_IN_RC(stack_slots));
  op_cost(100);
  //match(RegI);
  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base(0xE);   // R_SP
    index(0x0);
    scale(0x0);
    disp($reg);  // Stack Offset
  %}
%}

operand stackSlotP(sRegP reg) %{
  constraint(ALLOC_IN_RC(stack_slots));
  op_cost(100);
  //match(RegP);
  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base(0xE);   // R_SP
    index(0x0);
    scale(0x0);
    disp($reg);  // Stack Offset
  %}
%}

operand stackSlotF(sRegF reg) %{
  constraint(ALLOC_IN_RC(stack_slots));
  op_cost(100);
  //match(RegF);
  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base(0xE);   // R_SP
    index(0x0);
    scale(0x0);
    disp($reg);  // Stack Offset
  %}
%}
operand stackSlotD(sRegD reg) %{
  constraint(ALLOC_IN_RC(stack_slots));
  op_cost(100);
  //match(RegD);
  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base(0xE);   // R_SP
    index(0x0);
    scale(0x0);
    disp($reg);  // Stack Offset
  %}
%}
operand stackSlotL(sRegL reg) %{
  constraint(ALLOC_IN_RC(stack_slots));
  op_cost(100);
  //match(RegL);
  format %{ "[$reg]" %}
  interface(MEMORY_INTER) %{
    base(0xE);   // R_SP
    index(0x0);
    scale(0x0);
    disp($reg);  // Stack Offset
  %}
%}

// Operands for expressing Control Flow
// NOTE:  Label is a predefined operand which should not be redefined in
//        the AD file.  It is generically handled within the ADLC.

//----------Conditional Branch Operands----------------------------------------
// Comparison Op  - This is the operation of the comparison, and is limited to
//                  the following set of codes:
//                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
//
// Other attributes of the comparison, such as unsignedness, are specified
// by the comparison instruction that sets a condition code flags register.
// That result is represented by a flags operand whose subtype is appropriate
// to the unsignedness (etc.) of the comparison.
//
// Later, the instruction which matches both the Comparison Op (a Bool) and
// the flags (produced by the Cmp) specifies the coding of the comparison op
// by matching a specific subtype of Bool operand below, such as cmpOpU.

operand cmpOp() %{
  match(Bool);

  format %{ "" %}
  interface(COND_INTER) %{
    equal(0x1);
    not_equal(0x9);
    less(0x3);
    greater_equal(0xB);
    less_equal(0x2);
    greater(0xA);
  %}
%}

// Comparison Op, unsigned
operand cmpOpU() %{
  match(Bool);

  format %{ "u" %}
  interface(COND_INTER) %{
    equal(0x1);
    not_equal(0x9);
    less(0x5);
    greater_equal(0xD);
    less_equal(0x4);
    greater(0xC);
  %}
%}

// Comparison Op, pointer (same as unsigned)
operand cmpOpP() %{
  match(Bool);

  format %{ "p" %}
  interface(COND_INTER) %{
    equal(0x1);
    not_equal(0x9);
    less(0x5);
    greater_equal(0xD);
    less_equal(0x4);
    greater(0xC);
  %}
%}

// Comparison Op, branch-register encoding
operand cmpOp_reg() %{
  match(Bool);

  format %{ "" %}
  interface(COND_INTER) %{
    equal        (0x1);
    not_equal    (0x5);
    less         (0x3);
    greater_equal(0x7);
    less_equal   (0x2);
    greater      (0x6);
  %}
%}

// Comparison Code, floating, unordered same as less
operand cmpOpF() %{
  match(Bool);

  format %{ "fl" %}
  interface(COND_INTER) %{
    equal(0x9);
    not_equal(0x1);
    less(0x3);
    greater_equal(0xB);
    less_equal(0xE);
    greater(0x6);
  %}
%}

// Used by long compare
operand cmpOp_commute() %{
  match(Bool);

  format %{ "" %}
  interface(COND_INTER) %{
    equal(0x1);
    not_equal(0x9);
    less(0xA);
    greater_equal(0x2);
    less_equal(0xB);
    greater(0x3);
  %}
%}

//----------OPERAND CLASSES----------------------------------------------------
// Operand Classes are groups of operands that are used to simplify
T
twisti 已提交
4376
// instruction definitions by not requiring the AD writer to specify separate
D
duke 已提交
4377 4378 4379 4380
// instructions for every form of operand when the instruction accepts
// multiple operand types with the same basic encoding and format.  The classic
// case of this is memory operands.
opclass memory( indirect, indOffset13, indIndex );
4381
opclass indIndexMemory( indIndex );
D
duke 已提交
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191

//----------PIPELINE-----------------------------------------------------------
pipeline %{

//----------ATTRIBUTES---------------------------------------------------------
attributes %{
  fixed_size_instructions;           // Fixed size instructions
  branch_has_delay_slot;             // Branch has delay slot following
  max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  instruction_unit_size = 4;         // An instruction is 4 bytes long
  instruction_fetch_unit_size = 16;  // The processor fetches one line
  instruction_fetch_units = 1;       // of 16 bytes

  // List of nop instructions
  nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
%}

//----------RESOURCES----------------------------------------------------------
// Resources are the functional units available to the machine
resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);

//----------PIPELINE DESCRIPTION-----------------------------------------------
// Pipeline Description specifies the stages in the machine's pipeline

pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);

//----------PIPELINE CLASSES---------------------------------------------------
// Pipeline Classes describe the stages in which input and output are
// referenced by the hardware pipeline.

// Integer ALU reg-reg operation
pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
    single_instruction;
    dst   : E(write);
    src1  : R(read);
    src2  : R(read);
    IALU  : R;
%}

// Integer ALU reg-reg long operation
pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
    instruction_count(2);
    dst   : E(write);
    src1  : R(read);
    src2  : R(read);
    IALU  : R;
    IALU  : R;
%}

// Integer ALU reg-reg long dependent operation
pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
    instruction_count(1); multiple_bundles;
    dst   : E(write);
    src1  : R(read);
    src2  : R(read);
    cr    : E(write);
    IALU  : R(2);
%}

// Integer ALU reg-imm operaion
pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
    single_instruction;
    dst   : E(write);
    src1  : R(read);
    IALU  : R;
%}

// Integer ALU reg-reg operation with condition code
pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
    single_instruction;
    dst   : E(write);
    cr    : E(write);
    src1  : R(read);
    src2  : R(read);
    IALU  : R;
%}

// Integer ALU reg-imm operation with condition code
pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
    single_instruction;
    dst   : E(write);
    cr    : E(write);
    src1  : R(read);
    IALU  : R;
%}

// Integer ALU zero-reg operation
pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
    single_instruction;
    dst   : E(write);
    src2  : R(read);
    IALU  : R;
%}

// Integer ALU zero-reg operation with condition code only
pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
    single_instruction;
    cr    : E(write);
    src   : R(read);
    IALU  : R;
%}

// Integer ALU reg-reg operation with condition code only
pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
    single_instruction;
    cr    : E(write);
    src1  : R(read);
    src2  : R(read);
    IALU  : R;
%}

// Integer ALU reg-imm operation with condition code only
pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
    single_instruction;
    cr    : E(write);
    src1  : R(read);
    IALU  : R;
%}

// Integer ALU reg-reg-zero operation with condition code only
pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
    single_instruction;
    cr    : E(write);
    src1  : R(read);
    src2  : R(read);
    IALU  : R;
%}

// Integer ALU reg-imm-zero operation with condition code only
pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
    single_instruction;
    cr    : E(write);
    src1  : R(read);
    IALU  : R;
%}

// Integer ALU reg-reg operation with condition code, src1 modified
pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
    single_instruction;
    cr    : E(write);
    src1  : E(write);
    src1  : R(read);
    src2  : R(read);
    IALU  : R;
%}

// Integer ALU reg-imm operation with condition code, src1 modified
pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
    single_instruction;
    cr    : E(write);
    src1  : E(write);
    src1  : R(read);
    IALU  : R;
%}

pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
    multiple_bundles;
    dst   : E(write)+4;
    cr    : E(write);
    src1  : R(read);
    src2  : R(read);
    IALU  : R(3);
    BR    : R(2);
%}

// Integer ALU operation
pipe_class ialu_none(iRegI dst) %{
    single_instruction;
    dst   : E(write);
    IALU  : R;
%}

// Integer ALU reg operation
pipe_class ialu_reg(iRegI dst, iRegI src) %{
    single_instruction; may_have_no_code;
    dst   : E(write);
    src   : R(read);
    IALU  : R;
%}

// Integer ALU reg conditional operation
// This instruction has a 1 cycle stall, and cannot execute
// in the same cycle as the instruction setting the condition
// code. We kludge this by pretending to read the condition code
// 1 cycle earlier, and by marking the functional units as busy
// for 2 cycles with the result available 1 cycle later than
// is really the case.
pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
    single_instruction;
    op2_out : C(write);
    op1     : R(read);
    cr      : R(read);       // This is really E, with a 1 cycle stall
    BR      : R(2);
    MS      : R(2);
%}

#ifdef _LP64
pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
    instruction_count(1); multiple_bundles;
    dst     : C(write)+1;
    src     : R(read)+1;
    IALU    : R(1);
    BR      : E(2);
    MS      : E(2);
%}
#endif

// Integer ALU reg operation
pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
    single_instruction; may_have_no_code;
    dst   : E(write);
    src   : R(read);
    IALU  : R;
%}
pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
    single_instruction; may_have_no_code;
    dst   : E(write);
    src   : R(read);
    IALU  : R;
%}

// Two integer ALU reg operations
pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
    instruction_count(2);
    dst   : E(write);
    src   : R(read);
    A0    : R;
    A1    : R;
%}

// Two integer ALU reg operations
pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
    instruction_count(2); may_have_no_code;
    dst   : E(write);
    src   : R(read);
    A0    : R;
    A1    : R;
%}

// Integer ALU imm operation
pipe_class ialu_imm(iRegI dst, immI13 src) %{
    single_instruction;
    dst   : E(write);
    IALU  : R;
%}

// Integer ALU reg-reg with carry operation
pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
    single_instruction;
    dst   : E(write);
    src1  : R(read);
    src2  : R(read);
    IALU  : R;
%}

// Integer ALU cc operation
pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
    single_instruction;
    dst   : E(write);
    cc    : R(read);
    IALU  : R;
%}

// Integer ALU cc / second IALU operation
pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
    instruction_count(1); multiple_bundles;
    dst   : E(write)+1;
    src   : R(read);
    IALU  : R;
%}

// Integer ALU cc / second IALU operation
pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
    instruction_count(1); multiple_bundles;
    dst   : E(write)+1;
    p     : R(read);
    q     : R(read);
    IALU  : R;
%}

// Integer ALU hi-lo-reg operation
pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
    instruction_count(1); multiple_bundles;
    dst   : E(write)+1;
    IALU  : R(2);
%}

// Float ALU hi-lo-reg operation (with temp)
pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
    instruction_count(1); multiple_bundles;
    dst   : E(write)+1;
    IALU  : R(2);
%}

// Long Constant
pipe_class loadConL( iRegL dst, immL src ) %{
    instruction_count(2); multiple_bundles;
    dst   : E(write)+1;
    IALU  : R(2);
    IALU  : R(2);
%}

// Pointer Constant
pipe_class loadConP( iRegP dst, immP src ) %{
    instruction_count(0); multiple_bundles;
    fixed_latency(6);
%}

// Polling Address
pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
#ifdef _LP64
    instruction_count(0); multiple_bundles;
    fixed_latency(6);
#else
    dst   : E(write);
    IALU  : R;
#endif
%}

// Long Constant small
pipe_class loadConLlo( iRegL dst, immL src ) %{
    instruction_count(2);
    dst   : E(write);
    IALU  : R;
    IALU  : R;
%}

// [PHH] This is wrong for 64-bit.  See LdImmF/D.
pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
    instruction_count(1); multiple_bundles;
    src   : R(read);
    dst   : M(write)+1;
    IALU  : R;
    MS    : E;
%}

// Integer ALU nop operation
pipe_class ialu_nop() %{
    single_instruction;
    IALU  : R;
%}

// Integer ALU nop operation
pipe_class ialu_nop_A0() %{
    single_instruction;
    A0    : R;
%}

// Integer ALU nop operation
pipe_class ialu_nop_A1() %{
    single_instruction;
    A1    : R;
%}

// Integer Multiply reg-reg operation
pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
    single_instruction;
    dst   : E(write);
    src1  : R(read);
    src2  : R(read);
    MS    : R(5);
%}

// Integer Multiply reg-imm operation
pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
    single_instruction;
    dst   : E(write);
    src1  : R(read);
    MS    : R(5);
%}

pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
    single_instruction;
    dst   : E(write)+4;
    src1  : R(read);
    src2  : R(read);
    MS    : R(6);
%}

pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
    single_instruction;
    dst   : E(write)+4;
    src1  : R(read);
    MS    : R(6);
%}

// Integer Divide reg-reg
pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
    instruction_count(1); multiple_bundles;
    dst   : E(write);
    temp  : E(write);
    src1  : R(read);
    src2  : R(read);
    temp  : R(read);
    MS    : R(38);
%}

// Integer Divide reg-imm
pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
    instruction_count(1); multiple_bundles;
    dst   : E(write);
    temp  : E(write);
    src1  : R(read);
    temp  : R(read);
    MS    : R(38);
%}

// Long Divide
pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
    dst  : E(write)+71;
    src1 : R(read);
    src2 : R(read)+1;
    MS   : R(70);
%}

pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
    dst  : E(write)+71;
    src1 : R(read);
    MS   : R(70);
%}

// Floating Point Add Float
pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
    single_instruction;
    dst   : X(write);
    src1  : E(read);
    src2  : E(read);
    FA    : R;
%}

// Floating Point Add Double
pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
    single_instruction;
    dst   : X(write);
    src1  : E(read);
    src2  : E(read);
    FA    : R;
%}

// Floating Point Conditional Move based on integer flags
pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
    single_instruction;
    dst   : X(write);
    src   : E(read);
    cr    : R(read);
    FA    : R(2);
    BR    : R(2);
%}

// Floating Point Conditional Move based on integer flags
pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
    single_instruction;
    dst   : X(write);
    src   : E(read);
    cr    : R(read);
    FA    : R(2);
    BR    : R(2);
%}

// Floating Point Multiply Float
pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
    single_instruction;
    dst   : X(write);
    src1  : E(read);
    src2  : E(read);
    FM    : R;
%}

// Floating Point Multiply Double
pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
    single_instruction;
    dst   : X(write);
    src1  : E(read);
    src2  : E(read);
    FM    : R;
%}

// Floating Point Divide Float
pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
    single_instruction;
    dst   : X(write);
    src1  : E(read);
    src2  : E(read);
    FM    : R;
    FDIV  : C(14);
%}

// Floating Point Divide Double
pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
    single_instruction;
    dst   : X(write);
    src1  : E(read);
    src2  : E(read);
    FM    : R;
    FDIV  : C(17);
%}

// Floating Point Move/Negate/Abs Float
pipe_class faddF_reg(regF dst, regF src) %{
    single_instruction;
    dst   : W(write);
    src   : E(read);
    FA    : R(1);
%}

// Floating Point Move/Negate/Abs Double
pipe_class faddD_reg(regD dst, regD src) %{
    single_instruction;
    dst   : W(write);
    src   : E(read);
    FA    : R;
%}

// Floating Point Convert F->D
pipe_class fcvtF2D(regD dst, regF src) %{
    single_instruction;
    dst   : X(write);
    src   : E(read);
    FA    : R;
%}

// Floating Point Convert I->D
pipe_class fcvtI2D(regD dst, regF src) %{
    single_instruction;
    dst   : X(write);
    src   : E(read);
    FA    : R;
%}

// Floating Point Convert LHi->D
pipe_class fcvtLHi2D(regD dst, regD src) %{
    single_instruction;
    dst   : X(write);
    src   : E(read);
    FA    : R;
%}

// Floating Point Convert L->D
pipe_class fcvtL2D(regD dst, regF src) %{
    single_instruction;
    dst   : X(write);
    src   : E(read);
    FA    : R;
%}

// Floating Point Convert L->F
pipe_class fcvtL2F(regD dst, regF src) %{
    single_instruction;
    dst   : X(write);
    src   : E(read);
    FA    : R;
%}

// Floating Point Convert D->F
pipe_class fcvtD2F(regD dst, regF src) %{
    single_instruction;
    dst   : X(write);
    src   : E(read);
    FA    : R;
%}

// Floating Point Convert I->L
pipe_class fcvtI2L(regD dst, regF src) %{
    single_instruction;
    dst   : X(write);
    src   : E(read);
    FA    : R;
%}

// Floating Point Convert D->F
pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
    instruction_count(1); multiple_bundles;
    dst   : X(write)+6;
    src   : E(read);
    FA    : R;
%}

// Floating Point Convert D->L
pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
    instruction_count(1); multiple_bundles;
    dst   : X(write)+6;
    src   : E(read);
    FA    : R;
%}

// Floating Point Convert F->I
pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
    instruction_count(1); multiple_bundles;
    dst   : X(write)+6;
    src   : E(read);
    FA    : R;
%}

// Floating Point Convert F->L
pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
    instruction_count(1); multiple_bundles;
    dst   : X(write)+6;
    src   : E(read);
    FA    : R;
%}

// Floating Point Convert I->F
pipe_class fcvtI2F(regF dst, regF src) %{
    single_instruction;
    dst   : X(write);
    src   : E(read);
    FA    : R;
%}

// Floating Point Compare
pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
    single_instruction;
    cr    : X(write);
    src1  : E(read);
    src2  : E(read);
    FA    : R;
%}

// Floating Point Compare
pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
    single_instruction;
    cr    : X(write);
    src1  : E(read);
    src2  : E(read);
    FA    : R;
%}

// Floating Add Nop
pipe_class fadd_nop() %{
    single_instruction;
    FA  : R;
%}

// Integer Store to Memory
pipe_class istore_mem_reg(memory mem, iRegI src) %{
    single_instruction;
    mem   : R(read);
    src   : C(read);
    MS    : R;
%}

// Integer Store to Memory
pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
    single_instruction;
    mem   : R(read);
    src   : C(read);
    MS    : R;
%}

// Integer Store Zero to Memory
pipe_class istore_mem_zero(memory mem, immI0 src) %{
    single_instruction;
    mem   : R(read);
    MS    : R;
%}

// Special Stack Slot Store
pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
    single_instruction;
    stkSlot : R(read);
    src     : C(read);
    MS      : R;
%}

// Special Stack Slot Store
pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
    instruction_count(2); multiple_bundles;
    stkSlot : R(read);
    src     : C(read);
    MS      : R(2);
%}

// Float Store
pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
    single_instruction;
    mem : R(read);
    src : C(read);
    MS  : R;
%}

// Float Store
pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
    single_instruction;
    mem : R(read);
    MS  : R;
%}

// Double Store
pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
    instruction_count(1);
    mem : R(read);
    src : C(read);
    MS  : R;
%}

// Double Store
pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
    single_instruction;
    mem : R(read);
    MS  : R;
%}

// Special Stack Slot Float Store
pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
    single_instruction;
    stkSlot : R(read);
    src     : C(read);
    MS      : R;
%}

// Special Stack Slot Double Store
pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
    single_instruction;
    stkSlot : R(read);
    src     : C(read);
    MS      : R;
%}

// Integer Load (when sign bit propagation not needed)
pipe_class iload_mem(iRegI dst, memory mem) %{
    single_instruction;
    mem : R(read);
    dst : C(write);
    MS  : R;
%}

// Integer Load from stack operand
pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
    single_instruction;
    mem : R(read);
    dst : C(write);
    MS  : R;
%}

// Integer Load (when sign bit propagation or masking is needed)
pipe_class iload_mask_mem(iRegI dst, memory mem) %{
    single_instruction;
    mem : R(read);
    dst : M(write);
    MS  : R;
%}

// Float Load
pipe_class floadF_mem(regF dst, memory mem) %{
    single_instruction;
    mem : R(read);
    dst : M(write);
    MS  : R;
%}

// Float Load
pipe_class floadD_mem(regD dst, memory mem) %{
    instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
    mem : R(read);
    dst : M(write);
    MS  : R;
%}

// Float Load
pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
    single_instruction;
    stkSlot : R(read);
    dst : M(write);
    MS  : R;
%}

// Float Load
pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
    single_instruction;
    stkSlot : R(read);
    dst : M(write);
    MS  : R;
%}

// Memory Nop
pipe_class mem_nop() %{
    single_instruction;
    MS  : R;
%}

pipe_class sethi(iRegP dst, immI src) %{
    single_instruction;
    dst  : E(write);
    IALU : R;
%}

pipe_class loadPollP(iRegP poll) %{
    single_instruction;
    poll : R(read);
    MS   : R;
%}

pipe_class br(Universe br, label labl) %{
    single_instruction_with_delay_slot;
    BR  : R;
%}

pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
    single_instruction_with_delay_slot;
    cr    : E(read);
    BR    : R;
%}

pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
    single_instruction_with_delay_slot;
    op1 : E(read);
    BR  : R;
    MS  : R;
%}

5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
// Compare and branch
pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
    instruction_count(2); has_delay_slot;
    cr    : E(write);
    src1  : R(read);
    src2  : R(read);
    IALU  : R;
    BR    : R;
%}

// Compare and branch
pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
    instruction_count(2); has_delay_slot;
    cr    : E(write);
    src1  : R(read);
    IALU  : R;
    BR    : R;
%}

// Compare and branch using cbcond
pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
    single_instruction;
    src1  : E(read);
    src2  : E(read);
    IALU  : R;
    BR    : R;
%}

// Compare and branch using cbcond
pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
    single_instruction;
    src1  : E(read);
    IALU  : R;
    BR    : R;
%}

D
duke 已提交
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
    single_instruction_with_delay_slot;
    cr    : E(read);
    BR    : R;
%}

pipe_class br_nop() %{
    single_instruction;
    BR  : R;
%}

pipe_class simple_call(method meth) %{
    instruction_count(2); multiple_bundles; force_serialization;
    fixed_latency(100);
    BR  : R(1);
    MS  : R(1);
    A0  : R(1);
%}

pipe_class compiled_call(method meth) %{
    instruction_count(1); multiple_bundles; force_serialization;
    fixed_latency(100);
    MS  : R(1);
%}

pipe_class call(method meth) %{
    instruction_count(0); multiple_bundles; force_serialization;
    fixed_latency(100);
%}

pipe_class tail_call(Universe ignore, label labl) %{
    single_instruction; has_delay_slot;
    fixed_latency(100);
    BR  : R(1);
    MS  : R(1);
%}

pipe_class ret(Universe ignore) %{
    single_instruction; has_delay_slot;
    BR  : R(1);
    MS  : R(1);
%}

pipe_class ret_poll(g3RegP poll) %{
    instruction_count(3); has_delay_slot;
    poll : E(read);
    MS   : R;
%}

// The real do-nothing guy
pipe_class empty( ) %{
    instruction_count(0);
%}

pipe_class long_memory_op() %{
    instruction_count(0); multiple_bundles; force_serialization;
    fixed_latency(25);
    MS  : R(1);
%}

// Check-cast
pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
    array : R(read);
    match  : R(read);
    IALU   : R(2);
    BR     : R(2);
    MS     : R;
%}

// Convert FPU flags into +1,0,-1
pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
    src1  : E(read);
    src2  : E(read);
    dst   : E(write);
    FA    : R;
    MS    : R(2);
    BR    : R(2);
%}

// Compare for p < q, and conditionally add y
pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
    p     : E(read);
    q     : E(read);
    y     : E(read);
    IALU  : R(3)
%}

// Perform a compare, then move conditionally in a branch delay slot.
pipe_class min_max( iRegI src2, iRegI srcdst ) %{
    src2   : E(read);
    srcdst : E(read);
    IALU   : R;
    BR     : R;
%}

// Define the class for the Nop node
define %{
   MachNop = ialu_nop;
%}

%}

//----------INSTRUCTIONS-------------------------------------------------------

//------------Special Stack Slot instructions - no match rules-----------------
instruct stkI_to_regF(regF dst, stackSlotI src) %{
  // No match rule to avoid chain rule match.
  effect(DEF dst, USE src);
  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "LDF    $src,$dst\t! stkI to regF" %}
  opcode(Assembler::ldf_op3);
5340
  ins_encode(simple_form3_mem_reg(src, dst));
D
duke 已提交
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
  ins_pipe(floadF_stk);
%}

instruct stkL_to_regD(regD dst, stackSlotL src) %{
  // No match rule to avoid chain rule match.
  effect(DEF dst, USE src);
  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  opcode(Assembler::lddf_op3);
5351
  ins_encode(simple_form3_mem_reg(src, dst));
D
duke 已提交
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
  ins_pipe(floadD_stk);
%}

instruct regF_to_stkI(stackSlotI dst, regF src) %{
  // No match rule to avoid chain rule match.
  effect(DEF dst, USE src);
  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "STF    $src,$dst\t! regF to stkI" %}
  opcode(Assembler::stf_op3);
5362
  ins_encode(simple_form3_mem_reg(dst, src));
D
duke 已提交
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
  ins_pipe(fstoreF_stk_reg);
%}

instruct regD_to_stkL(stackSlotL dst, regD src) %{
  // No match rule to avoid chain rule match.
  effect(DEF dst, USE src);
  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "STDF   $src,$dst\t! regD to stkL" %}
  opcode(Assembler::stdf_op3);
5373
  ins_encode(simple_form3_mem_reg(dst, src));
D
duke 已提交
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
  ins_pipe(fstoreD_stk_reg);
%}

instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  effect(DEF dst, USE src);
  ins_cost(MEMORY_REF_COST*2);
  size(8);
  format %{ "STW    $src,$dst.hi\t! long\n\t"
            "STW    R_G0,$dst.lo" %}
  opcode(Assembler::stw_op3);
5384
  ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
D
duke 已提交
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
  ins_pipe(lstoreI_stk_reg);
%}

instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  // No match rule to avoid chain rule match.
  effect(DEF dst, USE src);
  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "STX    $src,$dst\t! regL to stkD" %}
  opcode(Assembler::stx_op3);
5395
  ins_encode(simple_form3_mem_reg( dst, src ) );
D
duke 已提交
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
  ins_pipe(istore_stk_reg);
%}

//---------- Chain stack slots between similar types --------

// Load integer from stack slot
instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  match(Set dst src);
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDUW   $src,$dst\t!stk" %}
  opcode(Assembler::lduw_op3);
5409
  ins_encode(simple_form3_mem_reg( src, dst ) );
D
duke 已提交
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
  ins_pipe(iload_mem);
%}

// Store integer to stack slot
instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  match(Set dst src);
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STW    $src,$dst\t!stk" %}
  opcode(Assembler::stw_op3);
5421
  ins_encode(simple_form3_mem_reg( dst, src ) );
D
duke 已提交
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
  ins_pipe(istore_mem_reg);
%}

// Load long from stack slot
instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  match(Set dst src);

  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "LDX    $src,$dst\t! long" %}
  opcode(Assembler::ldx_op3);
5433
  ins_encode(simple_form3_mem_reg( src, dst ) );
D
duke 已提交
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
  ins_pipe(iload_mem);
%}

// Store long to stack slot
instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  match(Set dst src);

  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "STX    $src,$dst\t! long" %}
  opcode(Assembler::stx_op3);
5445
  ins_encode(simple_form3_mem_reg( dst, src ) );
D
duke 已提交
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
  ins_pipe(istore_mem_reg);
%}

#ifdef _LP64
// Load pointer from stack slot, 64-bit encoding
instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  match(Set dst src);
  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "LDX    $src,$dst\t!ptr" %}
  opcode(Assembler::ldx_op3);
5457
  ins_encode(simple_form3_mem_reg( src, dst ) );
D
duke 已提交
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
  ins_pipe(iload_mem);
%}

// Store pointer to stack slot
instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  match(Set dst src);
  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "STX    $src,$dst\t!ptr" %}
  opcode(Assembler::stx_op3);
5468
  ins_encode(simple_form3_mem_reg( dst, src ) );
D
duke 已提交
5469 5470 5471 5472 5473 5474 5475 5476 5477
  ins_pipe(istore_mem_reg);
%}
#else // _LP64
// Load pointer from stack slot, 32-bit encoding
instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  match(Set dst src);
  ins_cost(MEMORY_REF_COST);
  format %{ "LDUW   $src,$dst\t!ptr" %}
  opcode(Assembler::lduw_op3, Assembler::ldst_op);
5478
  ins_encode(simple_form3_mem_reg( src, dst ) );
D
duke 已提交
5479 5480 5481 5482 5483 5484 5485 5486 5487
  ins_pipe(iload_mem);
%}

// Store pointer to stack slot
instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  match(Set dst src);
  ins_cost(MEMORY_REF_COST);
  format %{ "STW    $src,$dst\t!ptr" %}
  opcode(Assembler::stw_op3, Assembler::ldst_op);
5488
  ins_encode(simple_form3_mem_reg( dst, src ) );
D
duke 已提交
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
  ins_pipe(istore_mem_reg);
%}
#endif // _LP64

//------------Special Nop instructions for bundling - no match rules-----------
// Nop using the A0 functional unit
instruct Nop_A0() %{
  ins_cost(0);

  format %{ "NOP    ! Alu Pipeline" %}
  opcode(Assembler::or_op3, Assembler::arith_op);
  ins_encode( form2_nop() );
  ins_pipe(ialu_nop_A0);
%}

// Nop using the A1 functional unit
instruct Nop_A1( ) %{
  ins_cost(0);

  format %{ "NOP    ! Alu Pipeline" %}
  opcode(Assembler::or_op3, Assembler::arith_op);
  ins_encode( form2_nop() );
  ins_pipe(ialu_nop_A1);
%}

// Nop using the memory functional unit
instruct Nop_MS( ) %{
  ins_cost(0);

  format %{ "NOP    ! Memory Pipeline" %}
  ins_encode( emit_mem_nop );
  ins_pipe(mem_nop);
%}

// Nop using the floating add functional unit
instruct Nop_FA( ) %{
  ins_cost(0);

  format %{ "NOP    ! Floating Add Pipeline" %}
  ins_encode( emit_fadd_nop );
  ins_pipe(fadd_nop);
%}

// Nop using the branch functional unit
instruct Nop_BR( ) %{
  ins_cost(0);

  format %{ "NOP    ! Branch Pipeline" %}
  ins_encode( emit_br_nop );
  ins_pipe(br_nop);
%}

//----------Load/Store/Move Instructions---------------------------------------
//----------Load Instructions--------------------------------------------------
// Load Byte (8bit signed)
instruct loadB(iRegI dst, memory mem) %{
  match(Set dst (LoadB mem));
  ins_cost(MEMORY_REF_COST);

  size(4);
5549
  format %{ "LDSB   $mem,$dst\t! byte" %}
5550 5551 5552
  ins_encode %{
    __ ldsb($mem$$Address, $dst$$Register);
  %}
D
duke 已提交
5553 5554 5555
  ins_pipe(iload_mask_mem);
%}

5556 5557 5558
// Load Byte (8bit signed) into a Long Register
instruct loadB2L(iRegL dst, memory mem) %{
  match(Set dst (ConvI2L (LoadB mem)));
D
duke 已提交
5559 5560 5561
  ins_cost(MEMORY_REF_COST);

  size(4);
5562
  format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5563 5564 5565
  ins_encode %{
    __ ldsb($mem$$Address, $dst$$Register);
  %}
5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
  ins_pipe(iload_mask_mem);
%}

// Load Unsigned Byte (8bit UNsigned) into an int reg
instruct loadUB(iRegI dst, memory mem) %{
  match(Set dst (LoadUB mem));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDUB   $mem,$dst\t! ubyte" %}
5576 5577 5578
  ins_encode %{
    __ ldub($mem$$Address, $dst$$Register);
  %}
T
twisti 已提交
5579
  ins_pipe(iload_mem);
D
duke 已提交
5580 5581
%}

5582 5583 5584
// Load Unsigned Byte (8bit UNsigned) into a Long Register
instruct loadUB2L(iRegL dst, memory mem) %{
  match(Set dst (ConvI2L (LoadUB mem)));
D
duke 已提交
5585 5586 5587
  ins_cost(MEMORY_REF_COST);

  size(4);
5588
  format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5589 5590 5591
  ins_encode %{
    __ ldub($mem$$Address, $dst$$Register);
  %}
T
twisti 已提交
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
  ins_pipe(iload_mem);
%}

// Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  ins_cost(MEMORY_REF_COST + DEFAULT_COST);

  size(2*4);
  format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
            "AND    $dst,$mask,$dst" %}
  ins_encode %{
    __ ldub($mem$$Address, $dst$$Register);
    __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  %}
  ins_pipe(iload_mem);
D
duke 已提交
5608 5609
%}

5610 5611 5612
// Load Short (16bit signed)
instruct loadS(iRegI dst, memory mem) %{
  match(Set dst (LoadS mem));
D
duke 已提交
5613 5614 5615
  ins_cost(MEMORY_REF_COST);

  size(4);
5616
  format %{ "LDSH   $mem,$dst\t! short" %}
5617 5618 5619
  ins_encode %{
    __ ldsh($mem$$Address, $dst$$Register);
  %}
5620 5621 5622
  ins_pipe(iload_mask_mem);
%}

T
twisti 已提交
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
// Load Short (16 bit signed) to Byte (8 bit signed)
instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  ins_cost(MEMORY_REF_COST);

  size(4);

  format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  ins_encode %{
    __ ldsb($mem$$Address, $dst$$Register, 1);
  %}
  ins_pipe(iload_mask_mem);
%}

5637 5638 5639 5640 5641 5642 5643
// Load Short (16bit signed) into a Long Register
instruct loadS2L(iRegL dst, memory mem) %{
  match(Set dst (ConvI2L (LoadS mem)));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDSH   $mem,$dst\t! short -> long" %}
5644 5645 5646
  ins_encode %{
    __ ldsh($mem$$Address, $dst$$Register);
  %}
D
duke 已提交
5647 5648 5649
  ins_pipe(iload_mask_mem);
%}

5650
// Load Unsigned Short/Char (16bit UNsigned)
5651 5652
instruct loadUS(iRegI dst, memory mem) %{
  match(Set dst (LoadUS mem));
D
duke 已提交
5653 5654 5655
  ins_cost(MEMORY_REF_COST);

  size(4);
5656
  format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5657 5658 5659
  ins_encode %{
    __ lduh($mem$$Address, $dst$$Register);
  %}
T
twisti 已提交
5660
  ins_pipe(iload_mem);
5661 5662
%}

T
twisti 已提交
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
// Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  ins_encode %{
    __ ldsb($mem$$Address, $dst$$Register, 1);
  %}
  ins_pipe(iload_mask_mem);
%}

5676 5677 5678 5679 5680 5681 5682
// Load Unsigned Short/Char (16bit UNsigned) into a Long Register
instruct loadUS2L(iRegL dst, memory mem) %{
  match(Set dst (ConvI2L (LoadUS mem)));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5683 5684 5685
  ins_encode %{
    __ lduh($mem$$Address, $dst$$Register);
  %}
T
twisti 已提交
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
  ins_pipe(iload_mem);
%}

// Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  ins_encode %{
    __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  %}
  ins_pipe(iload_mem);
%}

// Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  ins_cost(MEMORY_REF_COST + DEFAULT_COST);

  size(2*4);
  format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
            "AND    $dst,$mask,$dst" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    __ lduh($mem$$Address, Rdst);
    __ and3(Rdst, $mask$$constant, Rdst);
  %}
  ins_pipe(iload_mem);
%}

// Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  effect(TEMP dst, TEMP tmp);
  ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);

5724
  size((3+1)*4);  // set may use two instructions.
T
twisti 已提交
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
  format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
            "SET    $mask,$tmp\n\t"
            "AND    $dst,$tmp,$dst" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    Register Rtmp = $tmp$$Register;
    __ lduh($mem$$Address, Rdst);
    __ set($mask$$constant, Rtmp);
    __ and3(Rdst, Rtmp, Rdst);
  %}
  ins_pipe(iload_mem);
D
duke 已提交
5736 5737 5738 5739 5740 5741
%}

// Load Integer
instruct loadI(iRegI dst, memory mem) %{
  match(Set dst (LoadI mem));
  ins_cost(MEMORY_REF_COST);
5742

D
duke 已提交
5743
  size(4);
5744
  format %{ "LDUW   $mem,$dst\t! int" %}
5745 5746 5747
  ins_encode %{
    __ lduw($mem$$Address, $dst$$Register);
  %}
5748 5749 5750
  ins_pipe(iload_mem);
%}

T
twisti 已提交
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
// Load Integer to Byte (8 bit signed)
instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  ins_cost(MEMORY_REF_COST);

  size(4);

  format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  ins_encode %{
    __ ldsb($mem$$Address, $dst$$Register, 3);
  %}
  ins_pipe(iload_mask_mem);
%}

// Load Integer to Unsigned Byte (8 bit UNsigned)
instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  match(Set dst (AndI (LoadI mem) mask));
  ins_cost(MEMORY_REF_COST);

  size(4);

  format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  ins_encode %{
    __ ldub($mem$$Address, $dst$$Register, 3);
  %}
  ins_pipe(iload_mask_mem);
%}

// Load Integer to Short (16 bit signed)
instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  ins_cost(MEMORY_REF_COST);

  size(4);

  format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  ins_encode %{
    __ ldsh($mem$$Address, $dst$$Register, 2);
  %}
  ins_pipe(iload_mask_mem);
%}

// Load Integer to Unsigned Short (16 bit UNsigned)
instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  match(Set dst (AndI (LoadI mem) mask));
  ins_cost(MEMORY_REF_COST);

  size(4);

  format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  ins_encode %{
    __ lduh($mem$$Address, $dst$$Register, 2);
  %}
  ins_pipe(iload_mask_mem);
%}

5807 5808 5809 5810 5811 5812 5813
// Load Integer into a Long Register
instruct loadI2L(iRegL dst, memory mem) %{
  match(Set dst (ConvI2L (LoadI mem)));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDSW   $mem,$dst\t! int -> long" %}
5814 5815 5816
  ins_encode %{
    __ ldsw($mem$$Address, $dst$$Register);
  %}
T
twisti 已提交
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
  ins_pipe(iload_mask_mem);
%}

// Load Integer with mask 0xFF into a Long Register
instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  ins_encode %{
    __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  %}
  ins_pipe(iload_mem);
%}

// Load Integer with mask 0xFFFF into a Long Register
instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  ins_encode %{
    __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  %}
  ins_pipe(iload_mem);
%}

// Load Integer with a 13-bit mask into a Long Register
instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  ins_cost(MEMORY_REF_COST + DEFAULT_COST);

  size(2*4);
  format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
            "AND    $dst,$mask,$dst" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    __ lduw($mem$$Address, Rdst);
    __ and3(Rdst, $mask$$constant, Rdst);
  %}
  ins_pipe(iload_mem);
%}

// Load Integer with a 32-bit mask into a Long Register
instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  effect(TEMP dst, TEMP tmp);
  ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);

5868
  size((3+1)*4);  // set may use two instructions.
T
twisti 已提交
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
  format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
            "SET    $mask,$tmp\n\t"
            "AND    $dst,$tmp,$dst" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    Register Rtmp = $tmp$$Register;
    __ lduw($mem$$Address, Rdst);
    __ set($mask$$constant, Rtmp);
    __ and3(Rdst, Rtmp, Rdst);
  %}
5879 5880 5881 5882 5883 5884 5885
  ins_pipe(iload_mem);
%}

// Load Unsigned Integer into a Long Register
instruct loadUI2L(iRegL dst, memory mem) %{
  match(Set dst (LoadUI2L mem));
  ins_cost(MEMORY_REF_COST);
D
duke 已提交
5886

5887 5888
  size(4);
  format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5889 5890 5891
  ins_encode %{
    __ lduw($mem$$Address, $dst$$Register);
  %}
D
duke 已提交
5892 5893 5894 5895 5896 5897 5898
  ins_pipe(iload_mem);
%}

// Load Long - aligned
instruct loadL(iRegL dst, memory mem ) %{
  match(Set dst (LoadL mem));
  ins_cost(MEMORY_REF_COST);
5899

D
duke 已提交
5900 5901
  size(4);
  format %{ "LDX    $mem,$dst\t! long" %}
5902 5903 5904
  ins_encode %{
    __ ldx($mem$$Address, $dst$$Register);
  %}
D
duke 已提交
5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918
  ins_pipe(iload_mem);
%}

// Load Long - UNaligned
instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  match(Set dst (LoadL_unaligned mem));
  effect(KILL tmp);
  ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  size(16);
  format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
          "\tLDUW   $mem  ,$dst\n"
          "\tSLLX   #32, $dst, $dst\n"
          "\tOR     $dst, R_O7, $dst" %}
  opcode(Assembler::lduw_op3);
5919
  ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
D
duke 已提交
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
  ins_pipe(iload_mem);
%}

// Load Range
instruct loadRange(iRegI dst, memory mem) %{
  match(Set dst (LoadRange mem));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDUW   $mem,$dst\t! range" %}
  opcode(Assembler::lduw_op3);
5931
  ins_encode(simple_form3_mem_reg( mem, dst ) );
D
duke 已提交
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
  ins_pipe(iload_mem);
%}

// Load Integer into %f register (for fitos/fitod)
instruct loadI_freg(regF dst, memory mem) %{
  match(Set dst (LoadI mem));
  ins_cost(MEMORY_REF_COST);
  size(4);

  format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  opcode(Assembler::ldf_op3);
5943
  ins_encode(simple_form3_mem_reg( mem, dst ) );
D
duke 已提交
5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
  ins_pipe(floadF_mem);
%}

// Load Pointer
instruct loadP(iRegP dst, memory mem) %{
  match(Set dst (LoadP mem));
  ins_cost(MEMORY_REF_COST);
  size(4);

#ifndef _LP64
  format %{ "LDUW   $mem,$dst\t! ptr" %}
5955 5956 5957
  ins_encode %{
    __ lduw($mem$$Address, $dst$$Register);
  %}
D
duke 已提交
5958 5959
#else
  format %{ "LDX    $mem,$dst\t! ptr" %}
5960 5961 5962
  ins_encode %{
    __ ldx($mem$$Address, $dst$$Register);
  %}
D
duke 已提交
5963 5964 5965 5966
#endif
  ins_pipe(iload_mem);
%}

5967 5968
// Load Compressed Pointer
instruct loadN(iRegN dst, memory mem) %{
5969 5970 5971 5972 5973 5974 5975 5976 5977
  match(Set dst (LoadN mem));
  ins_cost(MEMORY_REF_COST);
  size(4);

  format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  ins_encode %{
    __ lduw($mem$$Address, $dst$$Register);
  %}
  ins_pipe(iload_mem);
5978 5979
%}

D
duke 已提交
5980 5981 5982 5983 5984 5985 5986 5987
// Load Klass Pointer
instruct loadKlass(iRegP dst, memory mem) %{
  match(Set dst (LoadKlass mem));
  ins_cost(MEMORY_REF_COST);
  size(4);

#ifndef _LP64
  format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5988 5989 5990
  ins_encode %{
    __ lduw($mem$$Address, $dst$$Register);
  %}
D
duke 已提交
5991 5992
#else
  format %{ "LDX    $mem,$dst\t! klass ptr" %}
5993 5994 5995
  ins_encode %{
    __ ldx($mem$$Address, $dst$$Register);
  %}
D
duke 已提交
5996 5997 5998 5999
#endif
  ins_pipe(iload_mem);
%}

6000 6001 6002
// Load narrow Klass Pointer
instruct loadNKlass(iRegN dst, memory mem) %{
  match(Set dst (LoadNKlass mem));
6003
  ins_cost(MEMORY_REF_COST);
6004
  size(4);
6005 6006 6007

  format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  ins_encode %{
6008
    __ lduw($mem$$Address, $dst$$Register);
6009 6010 6011 6012
  %}
  ins_pipe(iload_mem);
%}

D
duke 已提交
6013 6014 6015 6016 6017 6018 6019 6020
// Load Double
instruct loadD(regD dst, memory mem) %{
  match(Set dst (LoadD mem));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDDF   $mem,$dst" %}
  opcode(Assembler::lddf_op3);
6021
  ins_encode(simple_form3_mem_reg( mem, dst ) );
D
duke 已提交
6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
  ins_pipe(floadD_mem);
%}

// Load Double - UNaligned
instruct loadD_unaligned(regD_low dst, memory mem ) %{
  match(Set dst (LoadD_unaligned mem));
  ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  size(8);
  format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
          "\tLDF    $mem+4,$dst.lo\t!" %}
  opcode(Assembler::ldf_op3);
  ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  ins_pipe(iload_mem);
%}

// Load Float
instruct loadF(regF dst, memory mem) %{
  match(Set dst (LoadF mem));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDF    $mem,$dst" %}
  opcode(Assembler::ldf_op3);
6045
  ins_encode(simple_form3_mem_reg( mem, dst ) );
D
duke 已提交
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
  ins_pipe(floadF_mem);
%}

// Load Constant
instruct loadConI( iRegI dst, immI src ) %{
  match(Set dst src);
  ins_cost(DEFAULT_COST * 3/2);
  format %{ "SET    $src,$dst" %}
  ins_encode( Set32(src, dst) );
  ins_pipe(ialu_hi_lo_reg);
%}

instruct loadConI13( iRegI dst, immI13 src ) %{
  match(Set dst src);

  size(4);
  format %{ "MOV    $src,$dst" %}
  ins_encode( Set13( src, dst ) );
  ins_pipe(ialu_imm);
%}

6067 6068 6069
#ifndef _LP64
instruct loadConP(iRegP dst, immP con) %{
  match(Set dst con);
D
duke 已提交
6070
  ins_cost(DEFAULT_COST * 3/2);
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
  format %{ "SET    $con,$dst\t!ptr" %}
  ins_encode %{
    // [RGV] This next line should be generated from ADLC
    if (_opnds[1]->constant_is_oop()) {
      intptr_t val = $con$$constant;
      __ set_oop_constant((jobject) val, $dst$$Register);
    } else {          // non-oop pointers, e.g. card mark base, heap top
      __ set($con$$constant, $dst$$Register);
    }
  %}
  ins_pipe(loadConP);
%}
#else
instruct loadConP_set(iRegP dst, immP_set con) %{
  match(Set dst con);
  ins_cost(DEFAULT_COST * 3/2);
  format %{ "SET    $con,$dst\t! ptr" %}
  ins_encode %{
    // [RGV] This next line should be generated from ADLC
    if (_opnds[1]->constant_is_oop()) {
      intptr_t val = $con$$constant;
      __ set_oop_constant((jobject) val, $dst$$Register);
    } else {          // non-oop pointers, e.g. card mark base, heap top
      __ set($con$$constant, $dst$$Register);
    }
  %}
D
duke 已提交
6097
  ins_pipe(loadConP);
6098
%}
D
duke 已提交
6099

6100 6101 6102 6103 6104
instruct loadConP_load(iRegP dst, immP_load con) %{
  match(Set dst con);
  ins_cost(MEMORY_REF_COST);
  format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  ins_encode %{
6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
    __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  %}
  ins_pipe(loadConP);
%}

instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  match(Set dst con);
  ins_cost(DEFAULT_COST * 3/2);
  format %{ "SET    $con,$dst\t! non-oop ptr" %}
  ins_encode %{
    __ set($con$$constant, $dst$$Register);
6117 6118
  %}
  ins_pipe(loadConP);
D
duke 已提交
6119
%}
6120
#endif // _LP64
D
duke 已提交
6121 6122 6123 6124 6125 6126

instruct loadConP0(iRegP dst, immP0 src) %{
  match(Set dst src);

  size(4);
  format %{ "CLR    $dst\t!ptr" %}
6127 6128 6129
  ins_encode %{
    __ clr($dst$$Register);
  %}
D
duke 已提交
6130 6131 6132 6133 6134 6135 6136 6137
  ins_pipe(ialu_imm);
%}

instruct loadConP_poll(iRegP dst, immP_poll src) %{
  match(Set dst src);
  ins_cost(DEFAULT_COST);
  format %{ "SET    $src,$dst\t!ptr" %}
  ins_encode %{
6138 6139
    AddressLiteral polling_page(os::get_polling_page());
    __ sethi(polling_page, reg_to_register_object($dst$$reg));
D
duke 已提交
6140 6141 6142 6143
  %}
  ins_pipe(loadConP_poll);
%}

6144 6145 6146 6147 6148
instruct loadConN0(iRegN dst, immN0 src) %{
  match(Set dst src);

  size(4);
  format %{ "CLR    $dst\t! compressed NULL ptr" %}
6149 6150 6151
  ins_encode %{
    __ clr($dst$$Register);
  %}
6152 6153 6154
  ins_pipe(ialu_imm);
%}

6155 6156
instruct loadConN(iRegN dst, immN src) %{
  match(Set dst src);
6157 6158
  ins_cost(DEFAULT_COST * 3/2);
  format %{ "SET    $src,$dst\t! compressed ptr" %}
6159 6160
  ins_encode %{
    Register dst = $dst$$Register;
6161
    __ set_narrow_oop((jobject)$src$$constant, dst);
6162
  %}
6163
  ins_pipe(ialu_hi_lo_reg);
6164 6165
%}

6166 6167 6168
// Materialize long value (predicated by immL_cheap).
instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  match(Set dst con);
D
duke 已提交
6169
  effect(KILL tmp);
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183
  ins_cost(DEFAULT_COST * 3);
  format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  ins_encode %{
    __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  %}
  ins_pipe(loadConL);
%}

// Load long value from constant table (predicated by immL_expensive).
instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  match(Set dst con);
  ins_cost(MEMORY_REF_COST);
  format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  ins_encode %{
6184 6185
      RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
    __ ldx($constanttablebase, con_offset, $dst$$Register);
6186
  %}
D
duke 已提交
6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
  ins_pipe(loadConL);
%}

instruct loadConL0( iRegL dst, immL0 src ) %{
  match(Set dst src);
  ins_cost(DEFAULT_COST);
  size(4);
  format %{ "CLR    $dst\t! long" %}
  ins_encode( Set13( src, dst ) );
  ins_pipe(ialu_imm);
%}

instruct loadConL13( iRegL dst, immL13 src ) %{
  match(Set dst src);
  ins_cost(DEFAULT_COST * 2);

  size(4);
  format %{ "MOV    $src,$dst\t! long" %}
  ins_encode( Set13( src, dst ) );
  ins_pipe(ialu_imm);
%}

6209
instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6210
  match(Set dst con);
6211
  effect(KILL tmp);
6212
  format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6213
  ins_encode %{
6214 6215
      RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
    __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6216
  %}
D
duke 已提交
6217 6218 6219
  ins_pipe(loadConFD);
%}

6220
instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6221
  match(Set dst con);
6222
  effect(KILL tmp);
6223
  format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6224
  ins_encode %{
6225
    // XXX This is a quick fix for 6833573.
6226
    //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6227 6228
    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
    __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6229
  %}
D
duke 已提交
6230 6231 6232 6233 6234 6235 6236 6237 6238
  ins_pipe(loadConFD);
%}

// Prefetch instructions.
// Must be safe to execute with invalid address (cannot fault).

instruct prefetchr( memory mem ) %{
  match( PrefetchRead mem );
  ins_cost(MEMORY_REF_COST);
6239
  size(4);
D
duke 已提交
6240 6241 6242 6243 6244 6245 6246 6247 6248 6249

  format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  opcode(Assembler::prefetch_op3);
  ins_encode( form3_mem_prefetch_read( mem ) );
  ins_pipe(iload_mem);
%}

instruct prefetchw( memory mem ) %{
  match( PrefetchWrite mem );
  ins_cost(MEMORY_REF_COST);
6250
  size(4);
D
duke 已提交
6251 6252 6253 6254 6255 6256 6257

  format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  opcode(Assembler::prefetch_op3);
  ins_encode( form3_mem_prefetch_write( mem ) );
  ins_pipe(iload_mem);
%}

6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
// Prefetch instructions for allocation.

instruct prefetchAlloc( memory mem ) %{
  predicate(AllocatePrefetchInstr == 0);
  match( PrefetchAllocation mem );
  ins_cost(MEMORY_REF_COST);
  size(4);

  format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  opcode(Assembler::prefetch_op3);
  ins_encode( form3_mem_prefetch_write( mem ) );
  ins_pipe(iload_mem);
%}

// Use BIS instruction to prefetch for allocation.
// Could fault, need space at the end of TLAB.
instruct prefetchAlloc_bis( iRegP dst ) %{
  predicate(AllocatePrefetchInstr == 1);
  match( PrefetchAllocation dst );
6277
  ins_cost(MEMORY_REF_COST);
6278
  size(4);
6279

6280
  format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6281
  ins_encode %{
6282
    __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6283 6284 6285
  %}
  ins_pipe(istore_mem_reg);
%}
D
duke 已提交
6286

6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
// Next code is used for finding next cache line address to prefetch.
#ifndef _LP64
instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  ins_cost(DEFAULT_COST);
  size(4);

  format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  ins_encode %{
    __ and3($src$$Register, $mask$$constant, $dst$$Register);
  %}
  ins_pipe(ialu_reg_imm);
%}
#else
instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  ins_cost(DEFAULT_COST);
  size(4);

  format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  ins_encode %{
    __ and3($src$$Register, $mask$$constant, $dst$$Register);
  %}
  ins_pipe(ialu_reg_imm);
%}
#endif

D
duke 已提交
6314 6315 6316 6317 6318 6319 6320 6321 6322
//----------Store Instructions-------------------------------------------------
// Store Byte
instruct storeB(memory mem, iRegI src) %{
  match(Set mem (StoreB mem src));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STB    $src,$mem\t! byte" %}
  opcode(Assembler::stb_op3);
6323
  ins_encode(simple_form3_mem_reg( mem, src ) );
D
duke 已提交
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
  ins_pipe(istore_mem_reg);
%}

instruct storeB0(memory mem, immI0 src) %{
  match(Set mem (StoreB mem src));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STB    $src,$mem\t! byte" %}
  opcode(Assembler::stb_op3);
6334
  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
D
duke 已提交
6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
  ins_pipe(istore_mem_zero);
%}

instruct storeCM0(memory mem, immI0 src) %{
  match(Set mem (StoreCM mem src));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  opcode(Assembler::stb_op3);
6345
  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
D
duke 已提交
6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
  ins_pipe(istore_mem_zero);
%}

// Store Char/Short
instruct storeC(memory mem, iRegI src) %{
  match(Set mem (StoreC mem src));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STH    $src,$mem\t! short" %}
  opcode(Assembler::sth_op3);
6357
  ins_encode(simple_form3_mem_reg( mem, src ) );
D
duke 已提交
6358 6359 6360 6361 6362 6363 6364 6365 6366 6367
  ins_pipe(istore_mem_reg);
%}

instruct storeC0(memory mem, immI0 src) %{
  match(Set mem (StoreC mem src));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STH    $src,$mem\t! short" %}
  opcode(Assembler::sth_op3);
6368
  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
D
duke 已提交
6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379
  ins_pipe(istore_mem_zero);
%}

// Store Integer
instruct storeI(memory mem, iRegI src) %{
  match(Set mem (StoreI mem src));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STW    $src,$mem" %}
  opcode(Assembler::stw_op3);
6380
  ins_encode(simple_form3_mem_reg( mem, src ) );
D
duke 已提交
6381 6382 6383 6384 6385 6386 6387 6388 6389 6390
  ins_pipe(istore_mem_reg);
%}

// Store Long
instruct storeL(memory mem, iRegL src) %{
  match(Set mem (StoreL mem src));
  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "STX    $src,$mem\t! long" %}
  opcode(Assembler::stx_op3);
6391
  ins_encode(simple_form3_mem_reg( mem, src ) );
D
duke 已提交
6392 6393 6394 6395 6396 6397 6398 6399 6400 6401
  ins_pipe(istore_mem_reg);
%}

instruct storeI0(memory mem, immI0 src) %{
  match(Set mem (StoreI mem src));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STW    $src,$mem" %}
  opcode(Assembler::stw_op3);
6402
  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
D
duke 已提交
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412
  ins_pipe(istore_mem_zero);
%}

instruct storeL0(memory mem, immL0 src) %{
  match(Set mem (StoreL mem src));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STX    $src,$mem" %}
  opcode(Assembler::stx_op3);
6413
  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
D
duke 已提交
6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424
  ins_pipe(istore_mem_zero);
%}

// Store Integer from float register (used after fstoi)
instruct storeI_Freg(memory mem, regF src) %{
  match(Set mem (StoreI mem src));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  opcode(Assembler::stf_op3);
6425
  ins_encode(simple_form3_mem_reg( mem, src ) );
D
duke 已提交
6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461
  ins_pipe(fstoreF_mem_reg);
%}

// Store Pointer
instruct storeP(memory dst, sp_ptr_RegP src) %{
  match(Set dst (StoreP dst src));
  ins_cost(MEMORY_REF_COST);
  size(4);

#ifndef _LP64
  format %{ "STW    $src,$dst\t! ptr" %}
  opcode(Assembler::stw_op3, 0, REGP_OP);
#else
  format %{ "STX    $src,$dst\t! ptr" %}
  opcode(Assembler::stx_op3, 0, REGP_OP);
#endif
  ins_encode( form3_mem_reg( dst, src ) );
  ins_pipe(istore_mem_spORreg);
%}

instruct storeP0(memory dst, immP0 src) %{
  match(Set dst (StoreP dst src));
  ins_cost(MEMORY_REF_COST);
  size(4);

#ifndef _LP64
  format %{ "STW    $src,$dst\t! ptr" %}
  opcode(Assembler::stw_op3, 0, REGP_OP);
#else
  format %{ "STX    $src,$dst\t! ptr" %}
  opcode(Assembler::stx_op3, 0, REGP_OP);
#endif
  ins_encode( form3_mem_reg( dst, R_G0 ) );
  ins_pipe(istore_mem_zero);
%}

6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
// Store Compressed Pointer
instruct storeN(memory dst, iRegN src) %{
   match(Set dst (StoreN dst src));
   ins_cost(MEMORY_REF_COST);
   size(4);

   format %{ "STW    $src,$dst\t! compressed ptr" %}
   ins_encode %{
     Register base = as_Register($dst$$base);
     Register index = as_Register($dst$$index);
     Register src = $src$$Register;
     if (index != G0) {
       __ stw(src, base, index);
     } else {
       __ stw(src, base, $dst$$disp);
     }
   %}
   ins_pipe(istore_mem_spORreg);
%}

instruct storeN0(memory dst, immN0 src) %{
   match(Set dst (StoreN dst src));
   ins_cost(MEMORY_REF_COST);
   size(4);

   format %{ "STW    $src,$dst\t! compressed ptr" %}
   ins_encode %{
     Register base = as_Register($dst$$base);
     Register index = as_Register($dst$$index);
     if (index != G0) {
       __ stw(0, base, index);
     } else {
       __ stw(0, base, $dst$$disp);
     }
   %}
   ins_pipe(istore_mem_zero);
%}

D
duke 已提交
6500 6501 6502 6503 6504 6505 6506 6507
// Store Double
instruct storeD( memory mem, regD src) %{
  match(Set mem (StoreD mem src));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STDF   $src,$mem" %}
  opcode(Assembler::stdf_op3);
6508
  ins_encode(simple_form3_mem_reg( mem, src ) );
D
duke 已提交
6509 6510 6511 6512 6513 6514 6515 6516 6517 6518
  ins_pipe(fstoreD_mem_reg);
%}

instruct storeD0( memory mem, immD0 src) %{
  match(Set mem (StoreD mem src));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STX    $src,$mem" %}
  opcode(Assembler::stx_op3);
6519
  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
D
duke 已提交
6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530
  ins_pipe(fstoreD_mem_zero);
%}

// Store Float
instruct storeF( memory mem, regF src) %{
  match(Set mem (StoreF mem src));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STF    $src,$mem" %}
  opcode(Assembler::stf_op3);
6531
  ins_encode(simple_form3_mem_reg( mem, src ) );
D
duke 已提交
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541
  ins_pipe(fstoreF_mem_reg);
%}

instruct storeF0( memory mem, immF0 src) %{
  match(Set mem (StoreF mem src));
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STW    $src,$mem\t! storeF0" %}
  opcode(Assembler::stw_op3);
6542
  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
D
duke 已提交
6543 6544 6545
  ins_pipe(fstoreF_mem_zero);
%}

6546 6547
// Convert oop pointer into compressed form
instruct encodeHeapOop(iRegN dst, iRegP src) %{
6548
  predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6549
  match(Set dst (EncodeP src));
6550
  format %{ "encode_heap_oop $src, $dst" %}
6551 6552 6553 6554 6555 6556
  ins_encode %{
    __ encode_heap_oop($src$$Register, $dst$$Register);
  %}
  ins_pipe(ialu_reg);
%}

6557
instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6558
  predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6559 6560 6561 6562 6563 6564 6565 6566
  match(Set dst (EncodeP src));
  format %{ "encode_heap_oop_not_null $src, $dst" %}
  ins_encode %{
    __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  %}
  ins_pipe(ialu_reg);
%}

6567
instruct decodeHeapOop(iRegP dst, iRegN src) %{
6568 6569
  predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
            n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6570 6571 6572 6573 6574 6575 6576 6577
  match(Set dst (DecodeN src));
  format %{ "decode_heap_oop $src, $dst" %}
  ins_encode %{
    __ decode_heap_oop($src$$Register, $dst$$Register);
  %}
  ins_pipe(ialu_reg);
%}

6578
instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6579 6580
  predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
            n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6581 6582 6583 6584 6585 6586 6587 6588
  match(Set dst (DecodeN src));
  format %{ "decode_heap_oop_not_null $src, $dst" %}
  ins_encode %{
    __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  %}
  ins_pipe(ialu_reg);
%}

6589

D
duke 已提交
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
//----------MemBar Instructions-----------------------------------------------
// Memory barrier flavors

instruct membar_acquire() %{
  match(MemBarAcquire);
  ins_cost(4*MEMORY_REF_COST);

  size(0);
  format %{ "MEMBAR-acquire" %}
  ins_encode( enc_membar_acquire );
  ins_pipe(long_memory_op);
%}

instruct membar_acquire_lock() %{
6604
  match(MemBarAcquireLock);
D
duke 已提交
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
  ins_cost(0);

  size(0);
  format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  ins_encode( );
  ins_pipe(empty);
%}

instruct membar_release() %{
  match(MemBarRelease);
  ins_cost(4*MEMORY_REF_COST);

  size(0);
  format %{ "MEMBAR-release" %}
  ins_encode( enc_membar_release );
  ins_pipe(long_memory_op);
%}

instruct membar_release_lock() %{
6624
  match(MemBarReleaseLock);
D
duke 已提交
6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
  ins_cost(0);

  size(0);
  format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  ins_encode( );
  ins_pipe(empty);
%}

instruct membar_volatile() %{
  match(MemBarVolatile);
  ins_cost(4*MEMORY_REF_COST);

  size(4);
  format %{ "MEMBAR-volatile" %}
  ins_encode( enc_membar_volatile );
  ins_pipe(long_memory_op);
%}

instruct unnecessary_membar_volatile() %{
  match(MemBarVolatile);
  predicate(Matcher::post_store_load_barrier(n));
  ins_cost(0);

  size(0);
  format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  ins_encode( );
  ins_pipe(empty);
%}

6654 6655 6656 6657 6658 6659 6660 6661 6662 6663
instruct membar_storestore() %{
  match(MemBarStoreStore);
  ins_cost(0);

  size(0);
  format %{ "!MEMBAR-storestore (empty encoding)" %}
  ins_encode( );
  ins_pipe(empty);
%}

D
duke 已提交
6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
//----------Register Move Instructions-----------------------------------------
instruct roundDouble_nop(regD dst) %{
  match(Set dst (RoundDouble dst));
  ins_cost(0);
  // SPARC results are already "rounded" (i.e., normal-format IEEE)
  ins_encode( );
  ins_pipe(empty);
%}


instruct roundFloat_nop(regF dst) %{
  match(Set dst (RoundFloat dst));
  ins_cost(0);
  // SPARC results are already "rounded" (i.e., normal-format IEEE)
  ins_encode( );
  ins_pipe(empty);
%}


// Cast Index to Pointer for unsafe natives
instruct castX2P(iRegX src, iRegP dst) %{
  match(Set dst (CastX2P src));

  format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  ins_pipe(ialu_reg);
%}

// Cast Pointer to Index for unsafe natives
instruct castP2X(iRegP src, iRegX dst) %{
  match(Set dst (CastP2X src));

  format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  ins_pipe(ialu_reg);
%}

instruct stfSSD(stackSlotD stkSlot, regD src) %{
  // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  match(Set stkSlot src);   // chain rule
  ins_cost(MEMORY_REF_COST);
  format %{ "STDF   $src,$stkSlot\t!stk" %}
  opcode(Assembler::stdf_op3);
6707
  ins_encode(simple_form3_mem_reg(stkSlot, src));
D
duke 已提交
6708 6709 6710 6711 6712 6713 6714 6715 6716
  ins_pipe(fstoreD_stk_reg);
%}

instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  match(Set dst stkSlot);   // chain rule
  ins_cost(MEMORY_REF_COST);
  format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  opcode(Assembler::lddf_op3);
6717
  ins_encode(simple_form3_mem_reg(stkSlot, dst));
D
duke 已提交
6718 6719 6720 6721 6722 6723 6724 6725 6726
  ins_pipe(floadD_stk);
%}

instruct stfSSF(stackSlotF stkSlot, regF src) %{
  // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  match(Set stkSlot src);   // chain rule
  ins_cost(MEMORY_REF_COST);
  format %{ "STF   $src,$stkSlot\t!stk" %}
  opcode(Assembler::stf_op3);
6727
  ins_encode(simple_form3_mem_reg(stkSlot, src));
D
duke 已提交
6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
  ins_pipe(fstoreF_stk_reg);
%}

//----------Conditional Move---------------------------------------------------
// Conditional move
instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  ins_cost(150);
  format %{ "MOV$cmp $pcc,$src,$dst" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  ins_pipe(ialu_reg);
%}

instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  ins_cost(140);
  format %{ "MOV$cmp $pcc,$src,$dst" %}
  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  ins_pipe(ialu_imm);
%}

instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  ins_cost(150);
  size(4);
  format %{ "MOV$cmp  $icc,$src,$dst" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(ialu_reg);
%}

instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  ins_cost(140);
  size(4);
  format %{ "MOV$cmp  $icc,$src,$dst" %}
  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(ialu_imm);
%}

6767
instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
D
duke 已提交
6768 6769 6770 6771 6772 6773 6774 6775
  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  ins_cost(150);
  size(4);
  format %{ "MOV$cmp  $icc,$src,$dst" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(ialu_reg);
%}

6776
instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
D
duke 已提交
6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802
  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  ins_cost(140);
  size(4);
  format %{ "MOV$cmp  $icc,$src,$dst" %}
  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(ialu_imm);
%}

instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  ins_cost(150);
  size(4);
  format %{ "MOV$cmp $fcc,$src,$dst" %}
  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  ins_pipe(ialu_reg);
%}

instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  ins_cost(140);
  size(4);
  format %{ "MOV$cmp $fcc,$src,$dst" %}
  ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  ins_pipe(ialu_imm);
%}

6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821
// Conditional move for RegN. Only cmov(reg,reg).
instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  ins_cost(150);
  format %{ "MOV$cmp $pcc,$src,$dst" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  ins_pipe(ialu_reg);
%}

// This instruction also works with CmpN so we don't need cmovNN_reg.
instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  ins_cost(150);
  size(4);
  format %{ "MOV$cmp  $icc,$src,$dst" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(ialu_reg);
%}

6822 6823 6824 6825 6826 6827 6828 6829 6830 6831
// This instruction also works with CmpN so we don't need cmovNN_reg.
instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  ins_cost(150);
  size(4);
  format %{ "MOV$cmp  $icc,$src,$dst" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(ialu_reg);
%}

6832 6833 6834 6835 6836 6837 6838 6839 6840
instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  ins_cost(150);
  size(4);
  format %{ "MOV$cmp $fcc,$src,$dst" %}
  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  ins_pipe(ialu_reg);
%}

D
duke 已提交
6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857
// Conditional move
instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  ins_cost(150);
  format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  ins_pipe(ialu_reg);
%}

instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  ins_cost(140);
  format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  ins_pipe(ialu_imm);
%}

6858
// This instruction also works with CmpN so we don't need cmovPN_reg.
D
duke 已提交
6859 6860 6861 6862 6863 6864 6865 6866 6867 6868
instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  ins_cost(150);

  size(4);
  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(ialu_reg);
%}

6869 6870 6871 6872 6873 6874 6875 6876 6877 6878
instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  ins_cost(150);

  size(4);
  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(ialu_reg);
%}

D
duke 已提交
6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  ins_cost(140);

  size(4);
  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(ialu_imm);
%}

6889 6890 6891 6892 6893 6894 6895 6896 6897 6898
instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  ins_cost(140);

  size(4);
  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(ialu_imm);
%}

D
duke 已提交
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  ins_cost(150);
  size(4);
  format %{ "MOV$cmp $fcc,$src,$dst" %}
  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  ins_pipe(ialu_imm);
%}

instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  ins_cost(140);
  size(4);
  format %{ "MOV$cmp $fcc,$src,$dst" %}
  ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  ins_pipe(ialu_imm);
%}

// Conditional move
instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  ins_cost(150);
  opcode(0x101);
  format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  ins_pipe(int_conditional_float_move);
%}

instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  ins_cost(150);

  size(4);
  format %{ "FMOVS$cmp $icc,$src,$dst" %}
  opcode(0x101);
  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(int_conditional_float_move);
%}

6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948
instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  ins_cost(150);

  size(4);
  format %{ "FMOVS$cmp $icc,$src,$dst" %}
  opcode(0x101);
  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(int_conditional_float_move);
%}

D
duke 已提交
6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
// Conditional move,
instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  ins_cost(150);
  size(4);
  format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  opcode(0x1);
  ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  ins_pipe(int_conditional_double_move);
%}

// Conditional move
instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  ins_cost(150);
  size(4);
  opcode(0x102);
  format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  ins_pipe(int_conditional_double_move);
%}

instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  ins_cost(150);

  size(4);
  format %{ "FMOVD$cmp $icc,$src,$dst" %}
  opcode(0x102);
  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(int_conditional_double_move);
%}

6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  ins_cost(150);

  size(4);
  format %{ "FMOVD$cmp $icc,$src,$dst" %}
  opcode(0x102);
  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(int_conditional_double_move);
%}

D
duke 已提交
6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031
// Conditional move,
instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  ins_cost(150);
  size(4);
  format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  opcode(0x2);
  ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  ins_pipe(int_conditional_double_move);
%}

// Conditional move
instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  ins_cost(150);
  format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  ins_pipe(ialu_reg);
%}

instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  ins_cost(140);
  format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  ins_pipe(ialu_imm);
%}

instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  ins_cost(150);

  size(4);
  format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(ialu_reg);
%}


7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  ins_cost(150);

  size(4);
  format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  ins_pipe(ialu_reg);
%}


D
duke 已提交
7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  ins_cost(150);

  size(4);
  format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  ins_pipe(ialu_reg);
%}



//----------OS and Locking Instructions----------------------------------------

// This name is KNOWN by the ADLC and cannot be changed.
// The ADLC forces a 'TypeRawPtr::BOTTOM' output type
// for this guy.
instruct tlsLoadP(g2RegP dst) %{
  match(Set dst (ThreadLocal));

  size(0);
  ins_cost(0);
  format %{ "# TLS is in G2" %}
  ins_encode( /*empty encoding*/ );
  ins_pipe(ialu_none);
%}

instruct checkCastPP( iRegP dst ) %{
  match(Set dst (CheckCastPP dst));

  size(0);
  format %{ "# checkcastPP of $dst" %}
  ins_encode( /*empty encoding*/ );
  ins_pipe(empty);
%}


instruct castPP( iRegP dst ) %{
  match(Set dst (CastPP dst));
  format %{ "# castPP of $dst" %}
  ins_encode( /*empty encoding*/ );
  ins_pipe(empty);
%}

instruct castII( iRegI dst ) %{
  match(Set dst (CastII dst));
  format %{ "# castII of $dst" %}
  ins_encode( /*empty encoding*/ );
  ins_cost(0);
  ins_pipe(empty);
%}

//----------Arithmetic Instructions--------------------------------------------
// Addition Instructions
// Register Addition
instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  match(Set dst (AddI src1 src2));

  size(4);
  format %{ "ADD    $src1,$src2,$dst" %}
  ins_encode %{
    __ add($src1$$Register, $src2$$Register, $dst$$Register);
  %}
  ins_pipe(ialu_reg_reg);
%}

// Immediate Addition
instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  match(Set dst (AddI src1 src2));

  size(4);
  format %{ "ADD    $src1,$src2,$dst" %}
  opcode(Assembler::add_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_imm);
%}

// Pointer Register Addition
instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  match(Set dst (AddP src1 src2));

  size(4);
  format %{ "ADD    $src1,$src2,$dst" %}
  opcode(Assembler::add_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

// Pointer Immediate Addition
instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  match(Set dst (AddP src1 src2));

  size(4);
  format %{ "ADD    $src1,$src2,$dst" %}
  opcode(Assembler::add_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_imm);
%}

// Long Addition
instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  match(Set dst (AddL src1 src2));

  size(4);
  format %{ "ADD    $src1,$src2,$dst\t! long" %}
  opcode(Assembler::add_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  match(Set dst (AddL src1 con));

  size(4);
  format %{ "ADD    $src1,$con,$dst" %}
  opcode(Assembler::add_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  ins_pipe(ialu_reg_imm);
%}

//----------Conditional_store--------------------------------------------------
// Conditional-store of the updated heap-top.
// Used during allocation of the shared heap.
// Sets flags (EQ) on success.  Implemented with a CASA on Sparc.

// LoadP-locked.  Same as a regular pointer load when used with a compare-swap
instruct loadPLocked(iRegP dst, memory mem) %{
  match(Set dst (LoadPLocked mem));
  ins_cost(MEMORY_REF_COST);

#ifndef _LP64
  size(4);
  format %{ "LDUW   $mem,$dst\t! ptr" %}
  opcode(Assembler::lduw_op3, 0, REGP_OP);
#else
  format %{ "LDX    $mem,$dst\t! ptr" %}
  opcode(Assembler::ldx_op3, 0, REGP_OP);
#endif
  ins_encode( form3_mem_reg( mem, dst ) );
  ins_pipe(iload_mem);
%}

instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  effect( KILL newval );
  format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
            "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  ins_pipe( long_memory_op );
%}

7194 7195 7196 7197 7198 7199 7200
// Conditional-store of an int value.
instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  effect( KILL newval );
  format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
            "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  ins_encode( enc_cas(mem_ptr,oldval,newval) );
D
duke 已提交
7201 7202 7203
  ins_pipe( long_memory_op );
%}

7204 7205 7206 7207 7208 7209 7210
// Conditional-store of a long value.
instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  effect( KILL newval );
  format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
            "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  ins_encode( enc_cas(mem_ptr,oldval,newval) );
D
duke 已提交
7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251
  ins_pipe( long_memory_op );
%}

// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them

instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  effect( USE mem_ptr, KILL ccr, KILL tmp1);
  format %{
            "MOV    $newval,O7\n\t"
            "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
            "MOV    1,$res\n\t"
            "MOVne  xcc,R_G0,$res"
  %}
  ins_encode( enc_casx(mem_ptr, oldval, newval),
              enc_lflags_ne_to_boolean(res) );
  ins_pipe( long_memory_op );
%}


instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  effect( USE mem_ptr, KILL ccr, KILL tmp1);
  format %{
            "MOV    $newval,O7\n\t"
            "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
            "MOV    1,$res\n\t"
            "MOVne  icc,R_G0,$res"
  %}
  ins_encode( enc_casi(mem_ptr, oldval, newval),
              enc_iflags_ne_to_boolean(res) );
  ins_pipe( long_memory_op );
%}

instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  effect( USE mem_ptr, KILL ccr, KILL tmp1);
  format %{
            "MOV    $newval,O7\n\t"
7252
            "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
D
duke 已提交
7253 7254 7255 7256
            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
            "MOV    1,$res\n\t"
            "MOVne  xcc,R_G0,$res"
  %}
7257
#ifdef _LP64
D
duke 已提交
7258 7259 7260
  ins_encode( enc_casx(mem_ptr, oldval, newval),
              enc_lflags_ne_to_boolean(res) );
#else
7261 7262 7263 7264 7265 7266
  ins_encode( enc_casi(mem_ptr, oldval, newval),
              enc_iflags_ne_to_boolean(res) );
#endif
  ins_pipe( long_memory_op );
%}

7267
instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7268
  match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7269
  effect( USE mem_ptr, KILL ccr, KILL tmp1);
D
duke 已提交
7270 7271 7272 7273 7274 7275 7276
  format %{
            "MOV    $newval,O7\n\t"
            "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
            "MOV    1,$res\n\t"
            "MOVne  icc,R_G0,$res"
  %}
7277 7278
  ins_encode( enc_casi(mem_ptr, oldval, newval),
              enc_iflags_ne_to_boolean(res) );
D
duke 已提交
7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428
  ins_pipe( long_memory_op );
%}

//---------------------
// Subtraction Instructions
// Register Subtraction
instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  match(Set dst (SubI src1 src2));

  size(4);
  format %{ "SUB    $src1,$src2,$dst" %}
  opcode(Assembler::sub_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

// Immediate Subtraction
instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  match(Set dst (SubI src1 src2));

  size(4);
  format %{ "SUB    $src1,$src2,$dst" %}
  opcode(Assembler::sub_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_imm);
%}

instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  match(Set dst (SubI zero src2));

  size(4);
  format %{ "NEG    $src2,$dst" %}
  opcode(Assembler::sub_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  ins_pipe(ialu_zero_reg);
%}

// Long subtraction
instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  match(Set dst (SubL src1 src2));

  size(4);
  format %{ "SUB    $src1,$src2,$dst\t! long" %}
  opcode(Assembler::sub_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

// Immediate Subtraction
instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  match(Set dst (SubL src1 con));

  size(4);
  format %{ "SUB    $src1,$con,$dst\t! long" %}
  opcode(Assembler::sub_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  ins_pipe(ialu_reg_imm);
%}

// Long negation
instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  match(Set dst (SubL zero src2));

  size(4);
  format %{ "NEG    $src2,$dst\t! long" %}
  opcode(Assembler::sub_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  ins_pipe(ialu_zero_reg);
%}

// Multiplication Instructions
// Integer Multiplication
// Register Multiplication
instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  match(Set dst (MulI src1 src2));

  size(4);
  format %{ "MULX   $src1,$src2,$dst" %}
  opcode(Assembler::mulx_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(imul_reg_reg);
%}

// Immediate Multiplication
instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  match(Set dst (MulI src1 src2));

  size(4);
  format %{ "MULX   $src1,$src2,$dst" %}
  opcode(Assembler::mulx_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  ins_pipe(imul_reg_imm);
%}

instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  match(Set dst (MulL src1 src2));
  ins_cost(DEFAULT_COST * 5);
  size(4);
  format %{ "MULX   $src1,$src2,$dst\t! long" %}
  opcode(Assembler::mulx_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(mulL_reg_reg);
%}

// Immediate Multiplication
instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  match(Set dst (MulL src1 src2));
  ins_cost(DEFAULT_COST * 5);
  size(4);
  format %{ "MULX   $src1,$src2,$dst" %}
  opcode(Assembler::mulx_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  ins_pipe(mulL_reg_imm);
%}

// Integer Division
// Register Division
instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  match(Set dst (DivI src1 src2));
  ins_cost((2+71)*DEFAULT_COST);

  format %{ "SRA     $src2,0,$src2\n\t"
            "SRA     $src1,0,$src1\n\t"
            "SDIVX   $src1,$src2,$dst" %}
  ins_encode( idiv_reg( src1, src2, dst ) );
  ins_pipe(sdiv_reg_reg);
%}

// Immediate Division
instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  match(Set dst (DivI src1 src2));
  ins_cost((2+71)*DEFAULT_COST);

  format %{ "SRA     $src1,0,$src1\n\t"
            "SDIVX   $src1,$src2,$dst" %}
  ins_encode( idiv_imm( src1, src2, dst ) );
  ins_pipe(sdiv_reg_imm);
%}

//----------Div-By-10-Expansion------------------------------------------------
// Extract hi bits of a 32x32->64 bit multiply.
// Expand rule only, not matched
instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  effect( DEF dst, USE src1, USE src2 );
  format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
            "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  ins_encode( enc_mul_hi(dst,src1,src2));
  ins_pipe(sdiv_reg_reg);
%}

T
twisti 已提交
7429
// Magic constant, reciprocal of 10
D
duke 已提交
7430 7431 7432 7433 7434 7435 7436 7437 7438
instruct loadConI_x66666667(iRegIsafe dst) %{
  effect( DEF dst );

  size(8);
  format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  ins_encode( Set32(0x66666667, dst) );
  ins_pipe(ialu_hi_lo_reg);
%}

T
twisti 已提交
7439
// Register Shift Right Arithmetic Long by 32-63
D
duke 已提交
7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992
instruct sra_31( iRegI dst, iRegI src ) %{
  effect( DEF dst, USE src );
  format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  ins_pipe(ialu_reg_reg);
%}

// Arithmetic Shift Right by 8-bit immediate
instruct sra_reg_2( iRegI dst, iRegI src ) %{
  effect( DEF dst, USE src );
  format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  opcode(Assembler::sra_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  ins_pipe(ialu_reg_imm);
%}

// Integer DIV with 10
instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  match(Set dst (DivI src div));
  ins_cost((6+6)*DEFAULT_COST);
  expand %{
    iRegIsafe tmp1;               // Killed temps;
    iRegIsafe tmp2;               // Killed temps;
    iRegI tmp3;                   // Killed temps;
    iRegI tmp4;                   // Killed temps;
    loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
    mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
    sra_31( tmp3, src );          // SRA  src,31 -> tmp3
    sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
    subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  %}
%}

// Register Long Division
instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  match(Set dst (DivL src1 src2));
  ins_cost(DEFAULT_COST*71);
  size(4);
  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  opcode(Assembler::sdivx_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(divL_reg_reg);
%}

// Register Long Division
instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  match(Set dst (DivL src1 src2));
  ins_cost(DEFAULT_COST*71);
  size(4);
  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  opcode(Assembler::sdivx_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  ins_pipe(divL_reg_imm);
%}

// Integer Remainder
// Register Remainder
instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  match(Set dst (ModI src1 src2));
  effect( KILL ccr, KILL temp);

  format %{ "SREM   $src1,$src2,$dst" %}
  ins_encode( irem_reg(src1, src2, dst, temp) );
  ins_pipe(sdiv_reg_reg);
%}

// Immediate Remainder
instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  match(Set dst (ModI src1 src2));
  effect( KILL ccr, KILL temp);

  format %{ "SREM   $src1,$src2,$dst" %}
  ins_encode( irem_imm(src1, src2, dst, temp) );
  ins_pipe(sdiv_reg_imm);
%}

// Register Long Remainder
instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  effect(DEF dst, USE src1, USE src2);
  size(4);
  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  opcode(Assembler::sdivx_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(divL_reg_reg);
%}

// Register Long Division
instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  effect(DEF dst, USE src1, USE src2);
  size(4);
  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  opcode(Assembler::sdivx_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  ins_pipe(divL_reg_imm);
%}

instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  effect(DEF dst, USE src1, USE src2);
  size(4);
  format %{ "MULX   $src1,$src2,$dst\t! long" %}
  opcode(Assembler::mulx_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(mulL_reg_reg);
%}

// Immediate Multiplication
instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  effect(DEF dst, USE src1, USE src2);
  size(4);
  format %{ "MULX   $src1,$src2,$dst" %}
  opcode(Assembler::mulx_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  ins_pipe(mulL_reg_imm);
%}

instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  effect(DEF dst, USE src1, USE src2);
  size(4);
  format %{ "SUB    $src1,$src2,$dst\t! long" %}
  opcode(Assembler::sub_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  effect(DEF dst, USE src1, USE src2);
  size(4);
  format %{ "SUB    $src1,$src2,$dst\t! long" %}
  opcode(Assembler::sub_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

// Register Long Remainder
instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  match(Set dst (ModL src1 src2));
  ins_cost(DEFAULT_COST*(71 + 6 + 1));
  expand %{
    iRegL tmp1;
    iRegL tmp2;
    divL_reg_reg_1(tmp1, src1, src2);
    mulL_reg_reg_1(tmp2, tmp1, src2);
    subL_reg_reg_1(dst,  src1, tmp2);
  %}
%}

// Register Long Remainder
instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  match(Set dst (ModL src1 src2));
  ins_cost(DEFAULT_COST*(71 + 6 + 1));
  expand %{
    iRegL tmp1;
    iRegL tmp2;
    divL_reg_imm13_1(tmp1, src1, src2);
    mulL_reg_imm13_1(tmp2, tmp1, src2);
    subL_reg_reg_2  (dst,  src1, tmp2);
  %}
%}

// Integer Shift Instructions
// Register Shift Left
instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  match(Set dst (LShiftI src1 src2));

  size(4);
  format %{ "SLL    $src1,$src2,$dst" %}
  opcode(Assembler::sll_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

// Register Shift Left Immediate
instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  match(Set dst (LShiftI src1 src2));

  size(4);
  format %{ "SLL    $src1,$src2,$dst" %}
  opcode(Assembler::sll_op3, Assembler::arith_op);
  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_imm);
%}

// Register Shift Left
instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  match(Set dst (LShiftL src1 src2));

  size(4);
  format %{ "SLLX   $src1,$src2,$dst" %}
  opcode(Assembler::sllx_op3, Assembler::arith_op);
  ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

// Register Shift Left Immediate
instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  match(Set dst (LShiftL src1 src2));

  size(4);
  format %{ "SLLX   $src1,$src2,$dst" %}
  opcode(Assembler::sllx_op3, Assembler::arith_op);
  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_imm);
%}

// Register Arithmetic Shift Right
instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  match(Set dst (RShiftI src1 src2));
  size(4);
  format %{ "SRA    $src1,$src2,$dst" %}
  opcode(Assembler::sra_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

// Register Arithmetic Shift Right Immediate
instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  match(Set dst (RShiftI src1 src2));

  size(4);
  format %{ "SRA    $src1,$src2,$dst" %}
  opcode(Assembler::sra_op3, Assembler::arith_op);
  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_imm);
%}

// Register Shift Right Arithmatic Long
instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  match(Set dst (RShiftL src1 src2));

  size(4);
  format %{ "SRAX   $src1,$src2,$dst" %}
  opcode(Assembler::srax_op3, Assembler::arith_op);
  ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

// Register Shift Left Immediate
instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  match(Set dst (RShiftL src1 src2));

  size(4);
  format %{ "SRAX   $src1,$src2,$dst" %}
  opcode(Assembler::srax_op3, Assembler::arith_op);
  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_imm);
%}

// Register Shift Right
instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  match(Set dst (URShiftI src1 src2));

  size(4);
  format %{ "SRL    $src1,$src2,$dst" %}
  opcode(Assembler::srl_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

// Register Shift Right Immediate
instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  match(Set dst (URShiftI src1 src2));

  size(4);
  format %{ "SRL    $src1,$src2,$dst" %}
  opcode(Assembler::srl_op3, Assembler::arith_op);
  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_imm);
%}

// Register Shift Right
instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  match(Set dst (URShiftL src1 src2));

  size(4);
  format %{ "SRLX   $src1,$src2,$dst" %}
  opcode(Assembler::srlx_op3, Assembler::arith_op);
  ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

// Register Shift Right Immediate
instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  match(Set dst (URShiftL src1 src2));

  size(4);
  format %{ "SRLX   $src1,$src2,$dst" %}
  opcode(Assembler::srlx_op3, Assembler::arith_op);
  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_imm);
%}

// Register Shift Right Immediate with a CastP2X
#ifdef _LP64
instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  match(Set dst (URShiftL (CastP2X src1) src2));
  size(4);
  format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  opcode(Assembler::srlx_op3, Assembler::arith_op);
  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_imm);
%}
#else
instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  match(Set dst (URShiftI (CastP2X src1) src2));
  size(4);
  format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  opcode(Assembler::srl_op3, Assembler::arith_op);
  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_imm);
%}
#endif


//----------Floating Point Arithmetic Instructions-----------------------------

//  Add float single precision
instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  match(Set dst (AddF src1 src2));

  size(4);
  format %{ "FADDS  $src1,$src2,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  ins_pipe(faddF_reg_reg);
%}

//  Add float double precision
instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  match(Set dst (AddD src1 src2));

  size(4);
  format %{ "FADDD  $src1,$src2,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  ins_pipe(faddD_reg_reg);
%}

//  Sub float single precision
instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  match(Set dst (SubF src1 src2));

  size(4);
  format %{ "FSUBS  $src1,$src2,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  ins_pipe(faddF_reg_reg);
%}

//  Sub float double precision
instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  match(Set dst (SubD src1 src2));

  size(4);
  format %{ "FSUBD  $src1,$src2,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  ins_pipe(faddD_reg_reg);
%}

//  Mul float single precision
instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  match(Set dst (MulF src1 src2));

  size(4);
  format %{ "FMULS  $src1,$src2,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  ins_pipe(fmulF_reg_reg);
%}

//  Mul float double precision
instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  match(Set dst (MulD src1 src2));

  size(4);
  format %{ "FMULD  $src1,$src2,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  ins_pipe(fmulD_reg_reg);
%}

//  Div float single precision
instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  match(Set dst (DivF src1 src2));

  size(4);
  format %{ "FDIVS  $src1,$src2,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  ins_pipe(fdivF_reg_reg);
%}

//  Div float double precision
instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  match(Set dst (DivD src1 src2));

  size(4);
  format %{ "FDIVD  $src1,$src2,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  ins_pipe(fdivD_reg_reg);
%}

//  Absolute float double precision
instruct absD_reg(regD dst, regD src) %{
  match(Set dst (AbsD src));

  format %{ "FABSd  $src,$dst" %}
  ins_encode(fabsd(dst, src));
  ins_pipe(faddD_reg);
%}

//  Absolute float single precision
instruct absF_reg(regF dst, regF src) %{
  match(Set dst (AbsF src));

  format %{ "FABSs  $src,$dst" %}
  ins_encode(fabss(dst, src));
  ins_pipe(faddF_reg);
%}

instruct negF_reg(regF dst, regF src) %{
  match(Set dst (NegF src));

  size(4);
  format %{ "FNEGs  $src,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  ins_encode(form3_opf_rs2F_rdF(src, dst));
  ins_pipe(faddF_reg);
%}

instruct negD_reg(regD dst, regD src) %{
  match(Set dst (NegD src));

  format %{ "FNEGd  $src,$dst" %}
  ins_encode(fnegd(dst, src));
  ins_pipe(faddD_reg);
%}

//  Sqrt float double precision
instruct sqrtF_reg_reg(regF dst, regF src) %{
  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));

  size(4);
  format %{ "FSQRTS $src,$dst" %}
  ins_encode(fsqrts(dst, src));
  ins_pipe(fdivF_reg_reg);
%}

//  Sqrt float double precision
instruct sqrtD_reg_reg(regD dst, regD src) %{
  match(Set dst (SqrtD src));

  size(4);
  format %{ "FSQRTD $src,$dst" %}
  ins_encode(fsqrtd(dst, src));
  ins_pipe(fdivD_reg_reg);
%}

//----------Logical Instructions-----------------------------------------------
// And Instructions
// Register And
instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  match(Set dst (AndI src1 src2));

  size(4);
  format %{ "AND    $src1,$src2,$dst" %}
  opcode(Assembler::and_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

// Immediate And
instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  match(Set dst (AndI src1 src2));

  size(4);
  format %{ "AND    $src1,$src2,$dst" %}
  opcode(Assembler::and_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_imm);
%}

// Register And Long
instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  match(Set dst (AndL src1 src2));

  ins_cost(DEFAULT_COST);
  size(4);
  format %{ "AND    $src1,$src2,$dst\t! long" %}
  opcode(Assembler::and_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  match(Set dst (AndL src1 con));

  ins_cost(DEFAULT_COST);
  size(4);
  format %{ "AND    $src1,$con,$dst\t! long" %}
  opcode(Assembler::and_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  ins_pipe(ialu_reg_imm);
%}

// Or Instructions
// Register Or
instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  match(Set dst (OrI src1 src2));

  size(4);
  format %{ "OR     $src1,$src2,$dst" %}
  opcode(Assembler::or_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

// Immediate Or
instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  match(Set dst (OrI src1 src2));

  size(4);
  format %{ "OR     $src1,$src2,$dst" %}
  opcode(Assembler::or_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_imm);
%}

// Register Or Long
instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  match(Set dst (OrL src1 src2));

  ins_cost(DEFAULT_COST);
  size(4);
  format %{ "OR     $src1,$src2,$dst\t! long" %}
  opcode(Assembler::or_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  match(Set dst (OrL src1 con));
  ins_cost(DEFAULT_COST*2);

  ins_cost(DEFAULT_COST);
  size(4);
  format %{ "OR     $src1,$con,$dst\t! long" %}
  opcode(Assembler::or_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  ins_pipe(ialu_reg_imm);
%}

7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020
#ifndef _LP64

// Use sp_ptr_RegP to match G2 (TLS register) without spilling.
instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  match(Set dst (OrI src1 (CastP2X src2)));

  size(4);
  format %{ "OR     $src1,$src2,$dst" %}
  opcode(Assembler::or_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

#else

instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  match(Set dst (OrL src1 (CastP2X src2)));

  ins_cost(DEFAULT_COST);
  size(4);
  format %{ "OR     $src1,$src2,$dst\t! long" %}
  opcode(Assembler::or_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

#endif

D
duke 已提交
8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100
// Xor Instructions
// Register Xor
instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  match(Set dst (XorI src1 src2));

  size(4);
  format %{ "XOR    $src1,$src2,$dst" %}
  opcode(Assembler::xor_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

// Immediate Xor
instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  match(Set dst (XorI src1 src2));

  size(4);
  format %{ "XOR    $src1,$src2,$dst" %}
  opcode(Assembler::xor_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_imm);
%}

// Register Xor Long
instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  match(Set dst (XorL src1 src2));

  ins_cost(DEFAULT_COST);
  size(4);
  format %{ "XOR    $src1,$src2,$dst\t! long" %}
  opcode(Assembler::xor_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  ins_pipe(ialu_reg_reg);
%}

instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  match(Set dst (XorL src1 con));

  ins_cost(DEFAULT_COST);
  size(4);
  format %{ "XOR    $src1,$con,$dst\t! long" %}
  opcode(Assembler::xor_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  ins_pipe(ialu_reg_imm);
%}

//----------Convert to Boolean-------------------------------------------------
// Nice hack for 32-bit tests but doesn't work for
// 64-bit pointers.
instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  match(Set dst (Conv2B src));
  effect( KILL ccr );
  ins_cost(DEFAULT_COST*2);
  format %{ "CMP    R_G0,$src\n\t"
            "ADDX   R_G0,0,$dst" %}
  ins_encode( enc_to_bool( src, dst ) );
  ins_pipe(ialu_reg_ialu);
%}

#ifndef _LP64
instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  match(Set dst (Conv2B src));
  effect( KILL ccr );
  ins_cost(DEFAULT_COST*2);
  format %{ "CMP    R_G0,$src\n\t"
            "ADDX   R_G0,0,$dst" %}
  ins_encode( enc_to_bool( src, dst ) );
  ins_pipe(ialu_reg_ialu);
%}
#else
instruct convP2B( iRegI dst, iRegP src ) %{
  match(Set dst (Conv2B src));
  ins_cost(DEFAULT_COST*2);
  format %{ "MOV    $src,$dst\n\t"
            "MOVRNZ $src,1,$dst" %}
  ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  ins_pipe(ialu_clr_and_mover);
%}
#endif

8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111
instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  match(Set dst (CmpLTMask src zero));
  effect(KILL ccr);
  size(4);
  format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  ins_encode %{
    __ sra($src$$Register, 31, $dst$$Register);
  %}
  ins_pipe(ialu_reg_imm);
%}

D
duke 已提交
8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130
instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  match(Set dst (CmpLTMask p q));
  effect( KILL ccr );
  ins_cost(DEFAULT_COST*4);
  format %{ "CMP    $p,$q\n\t"
            "MOV    #0,$dst\n\t"
            "BLT,a  .+8\n\t"
            "MOV    #-1,$dst" %}
  ins_encode( enc_ltmask(p,q,dst) );
  ins_pipe(ialu_reg_reg_ialu);
%}

instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  effect(KILL ccr, TEMP tmp);
  ins_cost(DEFAULT_COST*3);

  format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
            "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8131
            "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
D
duke 已提交
8132 8133 8134 8135
  ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  ins_pipe( cadd_cmpltmask );
%}

K
kvn 已提交
8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284

//-----------------------------------------------------------------
// Direct raw moves between float and general registers using VIS3.

//  ins_pipe(faddF_reg);
instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  predicate(UseVIS >= 3);
  match(Set dst (MoveF2I src));

  format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  ins_encode %{
    __ movstouw($src$$FloatRegister, $dst$$Register);
  %}
  ins_pipe(ialu_reg_reg);
%}

instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  predicate(UseVIS >= 3);
  match(Set dst (MoveI2F src));

  format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  ins_encode %{
    __ movwtos($src$$Register, $dst$$FloatRegister);
  %}
  ins_pipe(ialu_reg_reg);
%}

instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  predicate(UseVIS >= 3);
  match(Set dst (MoveD2L src));

  format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  ins_encode %{
    __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  %}
  ins_pipe(ialu_reg_reg);
%}

instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  predicate(UseVIS >= 3);
  match(Set dst (MoveL2D src));

  format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  ins_encode %{
    __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  %}
  ins_pipe(ialu_reg_reg);
%}


// Raw moves between float and general registers using stack.

instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  match(Set dst (MoveF2I src));
  effect(DEF dst, USE src);
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  opcode(Assembler::lduw_op3);
  ins_encode(simple_form3_mem_reg( src, dst ) );
  ins_pipe(iload_mem);
%}

instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  match(Set dst (MoveI2F src));
  effect(DEF dst, USE src);
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDF    $src,$dst\t! MoveI2F" %}
  opcode(Assembler::ldf_op3);
  ins_encode(simple_form3_mem_reg(src, dst));
  ins_pipe(floadF_stk);
%}

instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  match(Set dst (MoveD2L src));
  effect(DEF dst, USE src);
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDX    $src,$dst\t! MoveD2L" %}
  opcode(Assembler::ldx_op3);
  ins_encode(simple_form3_mem_reg( src, dst ) );
  ins_pipe(iload_mem);
%}

instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  match(Set dst (MoveL2D src));
  effect(DEF dst, USE src);
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  opcode(Assembler::lddf_op3);
  ins_encode(simple_form3_mem_reg(src, dst));
  ins_pipe(floadD_stk);
%}

instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  match(Set dst (MoveF2I src));
  effect(DEF dst, USE src);
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STF   $src,$dst\t! MoveF2I" %}
  opcode(Assembler::stf_op3);
  ins_encode(simple_form3_mem_reg(dst, src));
  ins_pipe(fstoreF_stk_reg);
%}

instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  match(Set dst (MoveI2F src));
  effect(DEF dst, USE src);
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STW    $src,$dst\t! MoveI2F" %}
  opcode(Assembler::stw_op3);
  ins_encode(simple_form3_mem_reg( dst, src ) );
  ins_pipe(istore_mem_reg);
%}

instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  match(Set dst (MoveD2L src));
  effect(DEF dst, USE src);
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STDF   $src,$dst\t! MoveD2L" %}
  opcode(Assembler::stdf_op3);
  ins_encode(simple_form3_mem_reg(dst, src));
  ins_pipe(fstoreD_stk_reg);
%}

instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  match(Set dst (MoveL2D src));
  effect(DEF dst, USE src);
  ins_cost(MEMORY_REF_COST);

  size(4);
  format %{ "STX    $src,$dst\t! MoveL2D" %}
  opcode(Assembler::stx_op3);
  ins_encode(simple_form3_mem_reg( dst, src ) );
  ins_pipe(istore_mem_reg);
%}


D
duke 已提交
8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311
//----------Arithmetic Conversion Instructions---------------------------------
// The conversions operations are all Alpha sorted.  Please keep it that way!

instruct convD2F_reg(regF dst, regD src) %{
  match(Set dst (ConvD2F src));
  size(4);
  format %{ "FDTOS  $src,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  ins_encode(form3_opf_rs2D_rdF(src, dst));
  ins_pipe(fcvtD2F);
%}


// Convert a double to an int in a float register.
// If the double is a NAN, stuff a zero in instead.
instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  effect(DEF dst, USE src, KILL fcc0);
  format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
            "FDTOI  $src,$dst\t! convert in delay slot\n\t"
            "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
            "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
      "skip:" %}
  ins_encode(form_d2i_helper(src,dst));
  ins_pipe(fcvtD2I);
%}

K
kvn 已提交
8312
instruct convD2I_stk(stackSlotI dst, regD src) %{
D
duke 已提交
8313 8314 8315 8316 8317 8318 8319 8320 8321
  match(Set dst (ConvD2I src));
  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  expand %{
    regF tmp;
    convD2I_helper(tmp, src);
    regF_to_stkI(dst, tmp);
  %}
%}

K
kvn 已提交
8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333
instruct convD2I_reg(iRegI dst, regD src) %{
  predicate(UseVIS >= 3);
  match(Set dst (ConvD2I src));
  ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  expand %{
    regF tmp;
    convD2I_helper(tmp, src);
    MoveF2I_reg_reg(dst, tmp);
  %}
%}


D
duke 已提交
8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347
// Convert a double to a long in a double register.
// If the double is a NAN, stuff a zero in instead.
instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  effect(DEF dst, USE src, KILL fcc0);
  format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
            "FDTOX  $src,$dst\t! convert in delay slot\n\t"
            "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
            "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
      "skip:" %}
  ins_encode(form_d2l_helper(src,dst));
  ins_pipe(fcvtD2L);
%}

K
kvn 已提交
8348
instruct convD2L_stk(stackSlotL dst, regD src) %{
D
duke 已提交
8349 8350 8351 8352 8353 8354 8355 8356 8357
  match(Set dst (ConvD2L src));
  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  expand %{
    regD tmp;
    convD2L_helper(tmp, src);
    regD_to_stkL(dst, tmp);
  %}
%}

K
kvn 已提交
8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368
instruct convD2L_reg(iRegL dst, regD src) %{
  predicate(UseVIS >= 3);
  match(Set dst (ConvD2L src));
  ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  expand %{
    regD tmp;
    convD2L_helper(tmp, src);
    MoveD2L_reg_reg(dst, tmp);
  %}
%}

D
duke 已提交
8369 8370 8371 8372 8373 8374 8375 8376 8377 8378

instruct convF2D_reg(regD dst, regF src) %{
  match(Set dst (ConvF2D src));
  format %{ "FSTOD  $src,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  ins_encode(form3_opf_rs2F_rdD(src, dst));
  ins_pipe(fcvtF2D);
%}


K
kvn 已提交
8379 8380
// Convert a float to an int in a float register.
// If the float is a NAN, stuff a zero in instead.
D
duke 已提交
8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392
instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  effect(DEF dst, USE src, KILL fcc0);
  format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
            "FSTOI  $src,$dst\t! convert in delay slot\n\t"
            "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
            "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
      "skip:" %}
  ins_encode(form_f2i_helper(src,dst));
  ins_pipe(fcvtF2I);
%}

K
kvn 已提交
8393
instruct convF2I_stk(stackSlotI dst, regF src) %{
D
duke 已提交
8394 8395 8396 8397 8398 8399 8400 8401 8402
  match(Set dst (ConvF2I src));
  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  expand %{
    regF tmp;
    convF2I_helper(tmp, src);
    regF_to_stkI(dst, tmp);
  %}
%}

K
kvn 已提交
8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413
instruct convF2I_reg(iRegI dst, regF src) %{
  predicate(UseVIS >= 3);
  match(Set dst (ConvF2I src));
  ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  expand %{
    regF tmp;
    convF2I_helper(tmp, src);
    MoveF2I_reg_reg(dst, tmp);
  %}
%}

D
duke 已提交
8414

K
kvn 已提交
8415 8416
// Convert a float to a long in a float register.
// If the float is a NAN, stuff a zero in instead.
D
duke 已提交
8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428
instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  effect(DEF dst, USE src, KILL fcc0);
  format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
            "FSTOX  $src,$dst\t! convert in delay slot\n\t"
            "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
            "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
      "skip:" %}
  ins_encode(form_f2l_helper(src,dst));
  ins_pipe(fcvtF2L);
%}

K
kvn 已提交
8429
instruct convF2L_stk(stackSlotL dst, regF src) %{
D
duke 已提交
8430 8431 8432 8433 8434 8435 8436 8437 8438
  match(Set dst (ConvF2L src));
  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  expand %{
    regD tmp;
    convF2L_helper(tmp, src);
    regD_to_stkL(dst, tmp);
  %}
%}

K
kvn 已提交
8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449
instruct convF2L_reg(iRegL dst, regF src) %{
  predicate(UseVIS >= 3);
  match(Set dst (ConvF2L src));
  ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  expand %{
    regD tmp;
    convF2L_helper(tmp, src);
    MoveD2L_reg_reg(dst, tmp);
  %}
%}

D
duke 已提交
8450 8451 8452 8453 8454 8455 8456 8457 8458

instruct convI2D_helper(regD dst, regF tmp) %{
  effect(USE tmp, DEF dst);
  format %{ "FITOD  $tmp,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  ins_pipe(fcvtI2D);
%}

K
kvn 已提交
8459
instruct convI2D_stk(stackSlotI src, regD dst) %{
D
duke 已提交
8460 8461 8462 8463
  match(Set dst (ConvI2D src));
  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  expand %{
    regF tmp;
K
kvn 已提交
8464 8465
    stkI_to_regF(tmp, src);
    convI2D_helper(dst, tmp);
D
duke 已提交
8466 8467 8468
  %}
%}

K
kvn 已提交
8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479
instruct convI2D_reg(regD_low dst, iRegI src) %{
  predicate(UseVIS >= 3);
  match(Set dst (ConvI2D src));
  expand %{
    regF tmp;
    MoveI2F_reg_reg(tmp, src);
    convI2D_helper(dst, tmp);
  %}
%}

instruct convI2D_mem(regD_low dst, memory mem) %{
D
duke 已提交
8480 8481 8482 8483 8484 8485
  match(Set dst (ConvI2D (LoadI mem)));
  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  size(8);
  format %{ "LDF    $mem,$dst\n\t"
            "FITOD  $dst,$dst" %}
  opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8486
  ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
D
duke 已提交
8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498
  ins_pipe(floadF_mem);
%}


instruct convI2F_helper(regF dst, regF tmp) %{
  effect(DEF dst, USE tmp);
  format %{ "FITOS  $tmp,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  ins_pipe(fcvtI2F);
%}

K
kvn 已提交
8499
instruct convI2F_stk(regF dst, stackSlotI src) %{
D
duke 已提交
8500 8501 8502 8503 8504 8505 8506 8507 8508
  match(Set dst (ConvI2F src));
  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  expand %{
    regF tmp;
    stkI_to_regF(tmp,src);
    convI2F_helper(dst, tmp);
  %}
%}

K
kvn 已提交
8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519
instruct convI2F_reg(regF dst, iRegI src) %{
  predicate(UseVIS >= 3);
  match(Set dst (ConvI2F src));
  ins_cost(DEFAULT_COST);
  expand %{
    regF tmp;
    MoveI2F_reg_reg(tmp, src);
    convI2F_helper(dst, tmp);
  %}
%}

D
duke 已提交
8520 8521 8522 8523 8524 8525 8526
instruct convI2F_mem( regF dst, memory mem ) %{
  match(Set dst (ConvI2F (LoadI mem)));
  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  size(8);
  format %{ "LDF    $mem,$dst\n\t"
            "FITOS  $dst,$dst" %}
  opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8527
  ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
D
duke 已提交
8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680
  ins_pipe(floadF_mem);
%}


instruct convI2L_reg(iRegL dst, iRegI src) %{
  match(Set dst (ConvI2L src));
  size(4);
  format %{ "SRA    $src,0,$dst\t! int->long" %}
  opcode(Assembler::sra_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  ins_pipe(ialu_reg_reg);
%}

// Zero-extend convert int to long
instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  match(Set dst (AndL (ConvI2L src) mask) );
  size(4);
  format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  opcode(Assembler::srl_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  ins_pipe(ialu_reg_reg);
%}

// Zero-extend long
instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  match(Set dst (AndL src mask) );
  size(4);
  format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  opcode(Assembler::srl_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  ins_pipe(ialu_reg_reg);
%}


//-----------
// Long to Double conversion using V8 opcodes.
// Still useful because cheetah traps and becomes
// amazingly slow for some common numbers.

// Magic constant, 0x43300000
instruct loadConI_x43300000(iRegI dst) %{
  effect(DEF dst);
  size(4);
  format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  ins_encode(SetHi22(0x43300000, dst));
  ins_pipe(ialu_none);
%}

// Magic constant, 0x41f00000
instruct loadConI_x41f00000(iRegI dst) %{
  effect(DEF dst);
  size(4);
  format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  ins_encode(SetHi22(0x41f00000, dst));
  ins_pipe(ialu_none);
%}

// Construct a double from two float halves
instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  effect(DEF dst, USE src1, USE src2);
  size(8);
  format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
            "FMOVS  $src2.lo,$dst.lo" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  ins_pipe(faddD_reg_reg);
%}

// Convert integer in high half of a double register (in the lower half of
// the double register file) to double
instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  effect(DEF dst, USE src);
  size(4);
  format %{ "FITOD  $src,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  ins_encode(form3_opf_rs2D_rdD(src, dst));
  ins_pipe(fcvtLHi2D);
%}

// Add float double precision
instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  effect(DEF dst, USE src1, USE src2);
  size(4);
  format %{ "FADDD  $src1,$src2,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  ins_pipe(faddD_reg_reg);
%}

// Sub float double precision
instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  effect(DEF dst, USE src1, USE src2);
  size(4);
  format %{ "FSUBD  $src1,$src2,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  ins_pipe(faddD_reg_reg);
%}

// Mul float double precision
instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  effect(DEF dst, USE src1, USE src2);
  size(4);
  format %{ "FMULD  $src1,$src2,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  ins_pipe(fmulD_reg_reg);
%}

instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  match(Set dst (ConvL2D src));
  ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);

  expand %{
    regD_low   tmpsrc;
    iRegI      ix43300000;
    iRegI      ix41f00000;
    stackSlotL lx43300000;
    stackSlotL lx41f00000;
    regD_low   dx43300000;
    regD       dx41f00000;
    regD       tmp1;
    regD_low   tmp2;
    regD       tmp3;
    regD       tmp4;

    stkL_to_regD(tmpsrc, src);

    loadConI_x43300000(ix43300000);
    loadConI_x41f00000(ix41f00000);
    regI_to_stkLHi(lx43300000, ix43300000);
    regI_to_stkLHi(lx41f00000, ix41f00000);
    stkL_to_regD(dx43300000, lx43300000);
    stkL_to_regD(dx41f00000, lx41f00000);

    convI2D_regDHi_regD(tmp1, tmpsrc);
    regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
    subD_regD_regD(tmp3, tmp2, dx43300000);
    mulD_regD_regD(tmp4, tmp1, dx41f00000);
    addD_regD_regD(dst, tmp3, tmp4);
  %}
%}

// Long to Double conversion using fast fxtof
instruct convL2D_helper(regD dst, regD tmp) %{
  effect(DEF dst, USE tmp);
  size(4);
  format %{ "FXTOD  $tmp,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  ins_pipe(fcvtL2D);
%}

K
kvn 已提交
8681
instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
D
duke 已提交
8682 8683 8684 8685 8686 8687 8688 8689 8690 8691
  predicate(VM_Version::has_fast_fxtof());
  match(Set dst (ConvL2D src));
  ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  expand %{
    regD tmp;
    stkL_to_regD(tmp, src);
    convL2D_helper(dst, tmp);
  %}
%}

K
kvn 已提交
8692 8693 8694 8695 8696 8697 8698 8699 8700
instruct convL2D_reg(regD dst, iRegL src) %{
  predicate(UseVIS >= 3);
  match(Set dst (ConvL2D src));
  expand %{
    regD tmp;
    MoveL2D_reg_reg(tmp, src);
    convL2D_helper(dst, tmp);
  %}
%}
D
duke 已提交
8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711

// Long to Float conversion using fast fxtof
instruct convL2F_helper(regF dst, regD tmp) %{
  effect(DEF dst, USE tmp);
  size(4);
  format %{ "FXTOS  $tmp,$dst" %}
  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  ins_pipe(fcvtL2F);
%}

K
kvn 已提交
8712
instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
D
duke 已提交
8713 8714 8715 8716 8717 8718 8719 8720
  match(Set dst (ConvL2F src));
  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  expand %{
    regD tmp;
    stkL_to_regD(tmp, src);
    convL2F_helper(dst, tmp);
  %}
%}
K
kvn 已提交
8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732

instruct convL2F_reg(regF dst, iRegL src) %{
  predicate(UseVIS >= 3);
  match(Set dst (ConvL2F src));
  ins_cost(DEFAULT_COST);
  expand %{
    regD tmp;
    MoveL2D_reg_reg(tmp, src);
    convL2F_helper(dst, tmp);
  %}
%}

D
duke 已提交
8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890
//-----------

instruct convL2I_reg(iRegI dst, iRegL src) %{
  match(Set dst (ConvL2I src));
#ifndef _LP64
  format %{ "MOV    $src.lo,$dst\t! long->int" %}
  ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  ins_pipe(ialu_move_reg_I_to_L);
#else
  size(4);
  format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  ins_pipe(ialu_reg);
#endif
%}

// Register Shift Right Immediate
instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  match(Set dst (ConvL2I (RShiftL src cnt)));

  size(4);
  format %{ "SRAX   $src,$cnt,$dst" %}
  opcode(Assembler::srax_op3, Assembler::arith_op);
  ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  ins_pipe(ialu_reg_imm);
%}

//----------Control Flow Instructions------------------------------------------
// Compare Instructions
// Compare Integers
instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  match(Set icc (CmpI op1 op2));
  effect( DEF icc, USE op1, USE op2 );

  size(4);
  format %{ "CMP    $op1,$op2" %}
  opcode(Assembler::subcc_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  ins_pipe(ialu_cconly_reg_reg);
%}

instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  match(Set icc (CmpU op1 op2));

  size(4);
  format %{ "CMP    $op1,$op2\t! unsigned" %}
  opcode(Assembler::subcc_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  ins_pipe(ialu_cconly_reg_reg);
%}

instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  match(Set icc (CmpI op1 op2));
  effect( DEF icc, USE op1 );

  size(4);
  format %{ "CMP    $op1,$op2" %}
  opcode(Assembler::subcc_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  ins_pipe(ialu_cconly_reg_imm);
%}

instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  match(Set icc (CmpI (AndI op1 op2) zero));

  size(4);
  format %{ "BTST   $op2,$op1" %}
  opcode(Assembler::andcc_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  ins_pipe(ialu_cconly_reg_reg_zero);
%}

instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  match(Set icc (CmpI (AndI op1 op2) zero));

  size(4);
  format %{ "BTST   $op2,$op1" %}
  opcode(Assembler::andcc_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  ins_pipe(ialu_cconly_reg_imm_zero);
%}

instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  match(Set xcc (CmpL op1 op2));
  effect( DEF xcc, USE op1, USE op2 );

  size(4);
  format %{ "CMP    $op1,$op2\t\t! long" %}
  opcode(Assembler::subcc_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  ins_pipe(ialu_cconly_reg_reg);
%}

instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  match(Set xcc (CmpL op1 con));
  effect( DEF xcc, USE op1, USE con );

  size(4);
  format %{ "CMP    $op1,$con\t\t! long" %}
  opcode(Assembler::subcc_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  ins_pipe(ialu_cconly_reg_reg);
%}

instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  match(Set xcc (CmpL (AndL op1 op2) zero));
  effect( DEF xcc, USE op1, USE op2 );

  size(4);
  format %{ "BTST   $op1,$op2\t\t! long" %}
  opcode(Assembler::andcc_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  ins_pipe(ialu_cconly_reg_reg);
%}

// useful for checking the alignment of a pointer:
instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  match(Set xcc (CmpL (AndL op1 con) zero));
  effect( DEF xcc, USE op1, USE con );

  size(4);
  format %{ "BTST   $op1,$con\t\t! long" %}
  opcode(Assembler::andcc_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  ins_pipe(ialu_cconly_reg_reg);
%}

instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  match(Set icc (CmpU op1 op2));

  size(4);
  format %{ "CMP    $op1,$op2\t! unsigned" %}
  opcode(Assembler::subcc_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  ins_pipe(ialu_cconly_reg_imm);
%}

// Compare Pointers
instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  match(Set pcc (CmpP op1 op2));

  size(4);
  format %{ "CMP    $op1,$op2\t! ptr" %}
  opcode(Assembler::subcc_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  ins_pipe(ialu_cconly_reg_reg);
%}

instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  match(Set pcc (CmpP op1 op2));

  size(4);
  format %{ "CMP    $op1,$op2\t! ptr" %}
  opcode(Assembler::subcc_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  ins_pipe(ialu_cconly_reg_imm);
%}

8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911
// Compare Narrow oops
instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  match(Set icc (CmpN op1 op2));

  size(4);
  format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  opcode(Assembler::subcc_op3, Assembler::arith_op);
  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  ins_pipe(ialu_cconly_reg_reg);
%}

instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  match(Set icc (CmpN op1 op2));

  size(4);
  format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  opcode(Assembler::subcc_op3, Assembler::arith_op);
  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  ins_pipe(ialu_cconly_reg_imm);
%}

D
duke 已提交
8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008
//----------Max and Min--------------------------------------------------------
// Min Instructions
// Conditional move for min
instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  effect( USE_DEF op2, USE op1, USE icc );

  size(4);
  format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  opcode(Assembler::less);
  ins_encode( enc_cmov_reg_minmax(op2,op1) );
  ins_pipe(ialu_reg_flags);
%}

// Min Register with Register.
instruct minI_eReg(iRegI op1, iRegI op2) %{
  match(Set op2 (MinI op1 op2));
  ins_cost(DEFAULT_COST*2);
  expand %{
    flagsReg icc;
    compI_iReg(icc,op1,op2);
    cmovI_reg_lt(op2,op1,icc);
  %}
%}

// Max Instructions
// Conditional move for max
instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  effect( USE_DEF op2, USE op1, USE icc );
  format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  opcode(Assembler::greater);
  ins_encode( enc_cmov_reg_minmax(op2,op1) );
  ins_pipe(ialu_reg_flags);
%}

// Max Register with Register
instruct maxI_eReg(iRegI op1, iRegI op2) %{
  match(Set op2 (MaxI op1 op2));
  ins_cost(DEFAULT_COST*2);
  expand %{
    flagsReg icc;
    compI_iReg(icc,op1,op2);
    cmovI_reg_gt(op2,op1,icc);
  %}
%}


//----------Float Compares----------------------------------------------------
// Compare floating, generate condition code
instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  match(Set fcc (CmpF src1 src2));

  size(4);
  format %{ "FCMPs  $fcc,$src1,$src2" %}
  opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  ins_pipe(faddF_fcc_reg_reg_zero);
%}

instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  match(Set fcc (CmpD src1 src2));

  size(4);
  format %{ "FCMPd  $fcc,$src1,$src2" %}
  opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  ins_pipe(faddD_fcc_reg_reg_zero);
%}


// Compare floating, generate -1,0,1
instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  match(Set dst (CmpF3 src1 src2));
  effect(KILL fcc0);
  ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  format %{ "fcmpl  $dst,$src1,$src2" %}
  // Primary = float
  opcode( true );
  ins_encode( floating_cmp( dst, src1, src2 ) );
  ins_pipe( floating_cmp );
%}

instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  match(Set dst (CmpD3 src1 src2));
  effect(KILL fcc0);
  ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  format %{ "dcmpl  $dst,$src1,$src2" %}
  // Primary = double (not float)
  opcode( false );
  ins_encode( floating_cmp( dst, src1, src2 ) );
  ins_pipe( floating_cmp );
%}

//----------Branches---------------------------------------------------------
// Jump
// (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  match(Jump switch_val);
9009
  effect(TEMP table);
D
duke 已提交
9010 9011 9012

  ins_cost(350);

9013 9014
  format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
             "LD     [O7 + $switch_val], O7\n\t"
9015
             "JUMP   O7" %}
9016 9017 9018 9019
  ins_encode %{
    // Calculate table address into a register.
    Register table_reg;
    Register label_reg = O7;
9020 9021 9022 9023 9024
    // If we are calculating the size of this instruction don't trust
    // zero offsets because they might change when
    // MachConstantBaseNode decides to optimize the constant table
    // base.
    if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9025 9026 9027
      table_reg = $constanttablebase;
    } else {
      table_reg = O7;
9028 9029
      RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
      __ add($constanttablebase, con_offset, table_reg);
9030 9031 9032 9033 9034 9035 9036
    }

    // Jump to base address + switch value
    __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
    __ jmp(label_reg, G0);
    __ delayed()->nop();
  %}
D
duke 已提交
9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047
  ins_pipe(ialu_reg_reg);
%}

// Direct Branch.  Use V8 version with longer range.
instruct branch(label labl) %{
  match(Goto);
  effect(USE labl);

  size(8);
  ins_cost(BRANCH_COST);
  format %{ "BA     $labl" %}
K
kvn 已提交
9048 9049 9050 9051 9052
  ins_encode %{
    Label* L = $labl$$label;
    __ ba(*L);
    __ delayed()->nop();
  %}
D
duke 已提交
9053 9054 9055
  ins_pipe(br);
%}

9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074
// Direct Branch, short with no delay slot
instruct branch_short(label labl) %{
  match(Goto);
  predicate(UseCBCond);
  effect(USE labl);

  size(4);
  ins_cost(BRANCH_COST);
  format %{ "BA     $labl\t! short branch" %}
  ins_encode %{ 
    Label* L = $labl$$label;
    assert(__ use_cbcond(*L), "back to back cbcond");
    __ ba_short(*L);
  %}
  ins_short_branch(1);
  ins_avoid_back_to_back(1);
  ins_pipe(cbcond_reg_imm);
%}

D
duke 已提交
9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091
// Conditional Direct Branch
instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  match(If cmp icc);
  effect(USE labl);

  size(8);
  ins_cost(BRANCH_COST);
  format %{ "BP$cmp   $icc,$labl" %}
  // Prim = bits 24-22, Secnd = bits 31-30
  ins_encode( enc_bp( labl, cmp, icc ) );
  ins_pipe(br_cc);
%}

instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  match(If cmp icc);
  effect(USE labl);

9092
  ins_cost(BRANCH_COST);
D
duke 已提交
9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105
  format %{ "BP$cmp  $icc,$labl" %}
  // Prim = bits 24-22, Secnd = bits 31-30
  ins_encode( enc_bp( labl, cmp, icc ) );
  ins_pipe(br_cc);
%}

instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  match(If cmp pcc);
  effect(USE labl);

  size(8);
  ins_cost(BRANCH_COST);
  format %{ "BP$cmp  $pcc,$labl" %}
K
kvn 已提交
9106 9107 9108 9109 9110 9111 9112 9113
  ins_encode %{
    Label* L = $labl$$label;
    Assembler::Predict predict_taken =
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;

    __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
    __ delayed()->nop();
  %}
D
duke 已提交
9114 9115 9116 9117 9118 9119 9120 9121 9122 9123
  ins_pipe(br_cc);
%}

instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  match(If cmp fcc);
  effect(USE labl);

  size(8);
  ins_cost(BRANCH_COST);
  format %{ "FBP$cmp $fcc,$labl" %}
K
kvn 已提交
9124 9125 9126 9127 9128 9129 9130 9131
  ins_encode %{
    Label* L = $labl$$label;
    Assembler::Predict predict_taken =
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;

    __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
    __ delayed()->nop();
  %}
D
duke 已提交
9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158
  ins_pipe(br_fcc);
%}

instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  match(CountedLoopEnd cmp icc);
  effect(USE labl);

  size(8);
  ins_cost(BRANCH_COST);
  format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  // Prim = bits 24-22, Secnd = bits 31-30
  ins_encode( enc_bp( labl, cmp, icc ) );
  ins_pipe(br_cc);
%}

instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  match(CountedLoopEnd cmp icc);
  effect(USE labl);

  size(8);
  ins_cost(BRANCH_COST);
  format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  // Prim = bits 24-22, Secnd = bits 31-30
  ins_encode( enc_bp( labl, cmp, icc ) );
  ins_pipe(br_cc);
%}

9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658
// Compare and branch instructions
instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  match(If cmp (CmpI op1 op2));
  effect(USE labl, KILL icc);

  size(12);
  ins_cost(BRANCH_COST);
  format %{ "CMP    $op1,$op2\t! int\n\t"
            "BP$cmp   $labl" %}
  ins_encode %{
    Label* L = $labl$$label;
    Assembler::Predict predict_taken =
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
    __ cmp($op1$$Register, $op2$$Register);
    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
    __ delayed()->nop();
  %}
  ins_pipe(cmp_br_reg_reg);
%}

instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  match(If cmp (CmpI op1 op2));
  effect(USE labl, KILL icc);

  size(12);
  ins_cost(BRANCH_COST);
  format %{ "CMP    $op1,$op2\t! int\n\t"
            "BP$cmp   $labl" %}
  ins_encode %{
    Label* L = $labl$$label;
    Assembler::Predict predict_taken =
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
    __ cmp($op1$$Register, $op2$$constant);
    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
    __ delayed()->nop();
  %}
  ins_pipe(cmp_br_reg_imm);
%}

instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  match(If cmp (CmpU op1 op2));
  effect(USE labl, KILL icc);

  size(12);
  ins_cost(BRANCH_COST);
  format %{ "CMP    $op1,$op2\t! unsigned\n\t"
            "BP$cmp  $labl" %}
  ins_encode %{
    Label* L = $labl$$label;
    Assembler::Predict predict_taken =
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
    __ cmp($op1$$Register, $op2$$Register);
    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
    __ delayed()->nop();
  %}
  ins_pipe(cmp_br_reg_reg);
%}

instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  match(If cmp (CmpU op1 op2));
  effect(USE labl, KILL icc);

  size(12);
  ins_cost(BRANCH_COST);
  format %{ "CMP    $op1,$op2\t! unsigned\n\t"
            "BP$cmp  $labl" %}
  ins_encode %{
    Label* L = $labl$$label;
    Assembler::Predict predict_taken =
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
    __ cmp($op1$$Register, $op2$$constant);
    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
    __ delayed()->nop();
  %}
  ins_pipe(cmp_br_reg_imm);
%}

instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  match(If cmp (CmpL op1 op2));
  effect(USE labl, KILL xcc);

  size(12);
  ins_cost(BRANCH_COST);
  format %{ "CMP    $op1,$op2\t! long\n\t"
            "BP$cmp   $labl" %}
  ins_encode %{
    Label* L = $labl$$label;
    Assembler::Predict predict_taken =
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
    __ cmp($op1$$Register, $op2$$Register);
    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
    __ delayed()->nop();
  %}
  ins_pipe(cmp_br_reg_reg);
%}

instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  match(If cmp (CmpL op1 op2));
  effect(USE labl, KILL xcc);

  size(12);
  ins_cost(BRANCH_COST);
  format %{ "CMP    $op1,$op2\t! long\n\t"
            "BP$cmp   $labl" %}
  ins_encode %{
    Label* L = $labl$$label;
    Assembler::Predict predict_taken =
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
    __ cmp($op1$$Register, $op2$$constant);
    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
    __ delayed()->nop();
  %}
  ins_pipe(cmp_br_reg_imm);
%}

// Compare Pointers and branch
instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  match(If cmp (CmpP op1 op2));
  effect(USE labl, KILL pcc);

  size(12);
  ins_cost(BRANCH_COST);
  format %{ "CMP    $op1,$op2\t! ptr\n\t"
            "B$cmp   $labl" %}
  ins_encode %{
    Label* L = $labl$$label;
    Assembler::Predict predict_taken =
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
    __ cmp($op1$$Register, $op2$$Register);
    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
    __ delayed()->nop();
  %}
  ins_pipe(cmp_br_reg_reg);
%}

instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  match(If cmp (CmpP op1 null));
  effect(USE labl, KILL pcc);

  size(12);
  ins_cost(BRANCH_COST);
  format %{ "CMP    $op1,0\t! ptr\n\t"
            "B$cmp   $labl" %}
  ins_encode %{
    Label* L = $labl$$label;
    Assembler::Predict predict_taken =
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
    __ cmp($op1$$Register, G0);
    // bpr() is not used here since it has shorter distance.
    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
    __ delayed()->nop();
  %}
  ins_pipe(cmp_br_reg_reg);
%}

instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  match(If cmp (CmpN op1 op2));
  effect(USE labl, KILL icc);

  size(12);
  ins_cost(BRANCH_COST);
  format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
            "BP$cmp   $labl" %}
  ins_encode %{
    Label* L = $labl$$label;
    Assembler::Predict predict_taken =
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
    __ cmp($op1$$Register, $op2$$Register);
    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
    __ delayed()->nop();
  %}
  ins_pipe(cmp_br_reg_reg);
%}

instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  match(If cmp (CmpN op1 null));
  effect(USE labl, KILL icc);

  size(12);
  ins_cost(BRANCH_COST);
  format %{ "CMP    $op1,0\t! compressed ptr\n\t"
            "BP$cmp   $labl" %}
  ins_encode %{
    Label* L = $labl$$label;
    Assembler::Predict predict_taken =
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
    __ cmp($op1$$Register, G0);
    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
    __ delayed()->nop();
  %}
  ins_pipe(cmp_br_reg_reg);
%}

// Loop back branch
instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  match(CountedLoopEnd cmp (CmpI op1 op2));
  effect(USE labl, KILL icc);

  size(12);
  ins_cost(BRANCH_COST);
  format %{ "CMP    $op1,$op2\t! int\n\t"
            "BP$cmp   $labl\t! Loop end" %}
  ins_encode %{
    Label* L = $labl$$label;
    Assembler::Predict predict_taken =
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
    __ cmp($op1$$Register, $op2$$Register);
    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
    __ delayed()->nop();
  %}
  ins_pipe(cmp_br_reg_reg);
%}

instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  match(CountedLoopEnd cmp (CmpI op1 op2));
  effect(USE labl, KILL icc);

  size(12);
  ins_cost(BRANCH_COST);
  format %{ "CMP    $op1,$op2\t! int\n\t"
            "BP$cmp   $labl\t! Loop end" %}
  ins_encode %{
    Label* L = $labl$$label;
    Assembler::Predict predict_taken =
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
    __ cmp($op1$$Register, $op2$$constant);
    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
    __ delayed()->nop();
  %}
  ins_pipe(cmp_br_reg_imm);
%}

// Short compare and branch instructions
instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  match(If cmp (CmpI op1 op2));
  predicate(UseCBCond);
  effect(USE labl, KILL icc);

  size(4);
  ins_cost(BRANCH_COST);
  format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  ins_encode %{
    Label* L = $labl$$label;
    assert(__ use_cbcond(*L), "back to back cbcond");
    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  %}
  ins_short_branch(1);
  ins_avoid_back_to_back(1);
  ins_pipe(cbcond_reg_reg);
%}

instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  match(If cmp (CmpI op1 op2));
  predicate(UseCBCond);
  effect(USE labl, KILL icc);

  size(4);
  ins_cost(BRANCH_COST);
  format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  ins_encode %{
    Label* L = $labl$$label;
    assert(__ use_cbcond(*L), "back to back cbcond");
    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  %}
  ins_short_branch(1);
  ins_avoid_back_to_back(1);
  ins_pipe(cbcond_reg_imm);
%}

instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  match(If cmp (CmpU op1 op2));
  predicate(UseCBCond);
  effect(USE labl, KILL icc);

  size(4);
  ins_cost(BRANCH_COST);
  format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  ins_encode %{
    Label* L = $labl$$label;
    assert(__ use_cbcond(*L), "back to back cbcond");
    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  %}
  ins_short_branch(1);
  ins_avoid_back_to_back(1);
  ins_pipe(cbcond_reg_reg);
%}

instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  match(If cmp (CmpU op1 op2));
  predicate(UseCBCond);
  effect(USE labl, KILL icc);

  size(4);
  ins_cost(BRANCH_COST);
  format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  ins_encode %{
    Label* L = $labl$$label;
    assert(__ use_cbcond(*L), "back to back cbcond");
    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  %}
  ins_short_branch(1);
  ins_avoid_back_to_back(1);
  ins_pipe(cbcond_reg_imm);
%}

instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  match(If cmp (CmpL op1 op2));
  predicate(UseCBCond);
  effect(USE labl, KILL xcc);

  size(4);
  ins_cost(BRANCH_COST);
  format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  ins_encode %{
    Label* L = $labl$$label;
    assert(__ use_cbcond(*L), "back to back cbcond");
    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  %}
  ins_short_branch(1);
  ins_avoid_back_to_back(1);
  ins_pipe(cbcond_reg_reg);
%}

instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  match(If cmp (CmpL op1 op2));
  predicate(UseCBCond);
  effect(USE labl, KILL xcc);

  size(4);
  ins_cost(BRANCH_COST);
  format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  ins_encode %{
    Label* L = $labl$$label;
    assert(__ use_cbcond(*L), "back to back cbcond");
    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  %}
  ins_short_branch(1);
  ins_avoid_back_to_back(1);
  ins_pipe(cbcond_reg_imm);
%}

// Compare Pointers and branch
instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  match(If cmp (CmpP op1 op2));
  predicate(UseCBCond);
  effect(USE labl, KILL pcc);

  size(4);
  ins_cost(BRANCH_COST);
#ifdef _LP64
  format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
#else
  format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
#endif
  ins_encode %{
    Label* L = $labl$$label;
    assert(__ use_cbcond(*L), "back to back cbcond");
    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  %}
  ins_short_branch(1);
  ins_avoid_back_to_back(1);
  ins_pipe(cbcond_reg_reg);
%}

instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  match(If cmp (CmpP op1 null));
  predicate(UseCBCond);
  effect(USE labl, KILL pcc);

  size(4);
  ins_cost(BRANCH_COST);
#ifdef _LP64
  format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
#else
  format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
#endif
  ins_encode %{
    Label* L = $labl$$label;
    assert(__ use_cbcond(*L), "back to back cbcond");
    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  %}
  ins_short_branch(1);
  ins_avoid_back_to_back(1);
  ins_pipe(cbcond_reg_reg);
%}

instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  match(If cmp (CmpN op1 op2));
  predicate(UseCBCond);
  effect(USE labl, KILL icc);

  size(4);
  ins_cost(BRANCH_COST);
  format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  ins_encode %{
    Label* L = $labl$$label;
    assert(__ use_cbcond(*L), "back to back cbcond");
    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  %}
  ins_short_branch(1);
  ins_avoid_back_to_back(1);
  ins_pipe(cbcond_reg_reg);
%}

instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  match(If cmp (CmpN op1 null));
  predicate(UseCBCond);
  effect(USE labl, KILL icc);

  size(4);
  ins_cost(BRANCH_COST);
  format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  ins_encode %{
    Label* L = $labl$$label;
    assert(__ use_cbcond(*L), "back to back cbcond");
    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  %}
  ins_short_branch(1);
  ins_avoid_back_to_back(1);
  ins_pipe(cbcond_reg_reg);
%}

// Loop back branch
instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  match(CountedLoopEnd cmp (CmpI op1 op2));
  predicate(UseCBCond);
  effect(USE labl, KILL icc);

  size(4);
  ins_cost(BRANCH_COST);
  format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  ins_encode %{
    Label* L = $labl$$label;
    assert(__ use_cbcond(*L), "back to back cbcond");
    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  %}
  ins_short_branch(1);
  ins_avoid_back_to_back(1);
  ins_pipe(cbcond_reg_reg);
%}

instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  match(CountedLoopEnd cmp (CmpI op1 op2));
  predicate(UseCBCond);
  effect(USE labl, KILL icc);

  size(4);
  ins_cost(BRANCH_COST);
  format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  ins_encode %{
    Label* L = $labl$$label;
    assert(__ use_cbcond(*L), "back to back cbcond");
    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  %}
  ins_short_branch(1);
  ins_avoid_back_to_back(1);
  ins_pipe(cbcond_reg_imm);
%}

// Branch-on-register tests all 64 bits.  We assume that values
// in 64-bit registers always remains zero or sign extended
// unless our code munges the high bits.  Interrupts can chop
// the high order bits to zero or sign at any time.
instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  match(If cmp (CmpI op1 zero));
  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  effect(USE labl);

  size(8);
  ins_cost(BRANCH_COST);
  format %{ "BR$cmp   $op1,$labl" %}
  ins_encode( enc_bpr( labl, cmp, op1 ) );
  ins_pipe(br_reg);
%}

instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  match(If cmp (CmpP op1 null));
  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  effect(USE labl);

  size(8);
  ins_cost(BRANCH_COST);
  format %{ "BR$cmp   $op1,$labl" %}
  ins_encode( enc_bpr( labl, cmp, op1 ) );
  ins_pipe(br_reg);
%}

instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  match(If cmp (CmpL op1 zero));
  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  effect(USE labl);

  size(8);
  ins_cost(BRANCH_COST);
  format %{ "BR$cmp   $op1,$labl" %}
  ins_encode( enc_bpr( labl, cmp, op1 ) );
  ins_pipe(br_reg);
%}


D
duke 已提交
9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686
// ============================================================================
// Long Compare
//
// Currently we hold longs in 2 registers.  Comparing such values efficiently
// is tricky.  The flavor of compare used depends on whether we are testing
// for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
// The GE test is the negated LT test.  The LE test can be had by commuting
// the operands (yielding a GE test) and then negating; negate again for the
// GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
// NE test is negated from that.

// Due to a shortcoming in the ADLC, it mixes up expressions like:
// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
// difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
// are collapsed internally in the ADLC's dfa-gen code.  The match for
// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
// foo match ends up with the wrong leaf.  One fix is to not match both
// reg-reg and reg-zero forms of long-compare.  This is unfortunate because
// both forms beat the trinary form of long-compare and both are very useful
// on Intel which has so few registers.

instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  match(If cmp xcc);
  effect(USE labl);

  size(8);
  ins_cost(BRANCH_COST);
  format %{ "BP$cmp   $xcc,$labl" %}
K
kvn 已提交
9687 9688 9689 9690 9691 9692 9693 9694
  ins_encode %{
    Label* L = $labl$$label;
    Assembler::Predict predict_taken =
      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;

    __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
    __ delayed()->nop();
  %}
D
duke 已提交
9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748
  ins_pipe(br_cc);
%}

// Manifest a CmpL3 result in an integer register.  Very painful.
// This is the test to avoid.
instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  match(Set dst (CmpL3 src1 src2) );
  effect( KILL ccr );
  ins_cost(6*DEFAULT_COST);
  size(24);
  format %{ "CMP    $src1,$src2\t\t! long\n"
          "\tBLT,a,pn done\n"
          "\tMOV    -1,$dst\t! delay slot\n"
          "\tBGT,a,pn done\n"
          "\tMOV    1,$dst\t! delay slot\n"
          "\tCLR    $dst\n"
    "done:"     %}
  ins_encode( cmpl_flag(src1,src2,dst) );
  ins_pipe(cmpL_reg);
%}

// Conditional move
instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  ins_cost(150);
  format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  ins_pipe(ialu_reg);
%}

instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  ins_cost(140);
  format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  ins_pipe(ialu_imm);
%}

instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  ins_cost(150);
  format %{ "MOV$cmp  $xcc,$src,$dst" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  ins_pipe(ialu_reg);
%}

instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  ins_cost(140);
  format %{ "MOV$cmp  $xcc,$src,$dst" %}
  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  ins_pipe(ialu_imm);
%}

9749 9750 9751 9752 9753 9754 9755 9756
instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  ins_cost(150);
  format %{ "MOV$cmp  $xcc,$src,$dst" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  ins_pipe(ialu_reg);
%}

D
duke 已提交
9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814
instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  ins_cost(150);
  format %{ "MOV$cmp  $xcc,$src,$dst" %}
  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  ins_pipe(ialu_reg);
%}

instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  ins_cost(140);
  format %{ "MOV$cmp  $xcc,$src,$dst" %}
  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  ins_pipe(ialu_imm);
%}

instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  ins_cost(150);
  opcode(0x101);
  format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  ins_pipe(int_conditional_float_move);
%}

instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  ins_cost(150);
  opcode(0x102);
  format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  ins_pipe(int_conditional_float_move);
%}

// ============================================================================
// Safepoint Instruction
instruct safePoint_poll(iRegP poll) %{
  match(SafePoint poll);
  effect(USE poll);

  size(4);
#ifdef _LP64
  format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
#else
  format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
#endif
  ins_encode %{
    __ relocate(relocInfo::poll_type);
    __ ld_ptr($poll$$Register, 0, G0);
  %}
  ins_pipe(loadPollP);
%}

// ============================================================================
// Call Instructions
// Call Java Static Instruction
instruct CallStaticJavaDirect( method meth ) %{
  match(CallStaticJava);
9815
  predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
D
duke 已提交
9816 9817 9818 9819 9820 9821 9822 9823 9824
  effect(USE meth);

  size(8);
  ins_cost(CALL_COST);
  format %{ "CALL,static  ; NOP ==> " %}
  ins_encode( Java_Static_Call( meth ), call_epilog );
  ins_pipe(simple_call);
%}

9825 9826 9827 9828 9829 9830
// Call Java Static Instruction (method handle version)
instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  match(CallStaticJava);
  predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  effect(USE meth, KILL l7_mh_SP_save);

9831
  size(16);
9832 9833 9834 9835 9836 9837
  ins_cost(CALL_COST);
  format %{ "CALL,static/MethodHandle" %}
  ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  ins_pipe(simple_call);
%}

D
duke 已提交
9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995
// Call Java Dynamic Instruction
instruct CallDynamicJavaDirect( method meth ) %{
  match(CallDynamicJava);
  effect(USE meth);

  ins_cost(CALL_COST);
  format %{ "SET    (empty),R_G5\n\t"
            "CALL,dynamic  ; NOP ==> " %}
  ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  ins_pipe(call);
%}

// Call Runtime Instruction
instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  match(CallRuntime);
  effect(USE meth, KILL l7);
  ins_cost(CALL_COST);
  format %{ "CALL,runtime" %}
  ins_encode( Java_To_Runtime( meth ),
              call_epilog, adjust_long_from_native_call );
  ins_pipe(simple_call);
%}

// Call runtime without safepoint - same as CallRuntime
instruct CallLeafDirect(method meth, l7RegP l7) %{
  match(CallLeaf);
  effect(USE meth, KILL l7);
  ins_cost(CALL_COST);
  format %{ "CALL,runtime leaf" %}
  ins_encode( Java_To_Runtime( meth ),
              call_epilog,
              adjust_long_from_native_call );
  ins_pipe(simple_call);
%}

// Call runtime without safepoint - same as CallLeaf
instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  match(CallLeafNoFP);
  effect(USE meth, KILL l7);
  ins_cost(CALL_COST);
  format %{ "CALL,runtime leaf nofp" %}
  ins_encode( Java_To_Runtime( meth ),
              call_epilog,
              adjust_long_from_native_call );
  ins_pipe(simple_call);
%}

// Tail Call; Jump from runtime stub to Java code.
// Also known as an 'interprocedural jump'.
// Target of jump will eventually return to caller.
// TailJump below removes the return address.
instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  match(TailCall jump_target method_oop );

  ins_cost(CALL_COST);
  format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  ins_encode(form_jmpl(jump_target));
  ins_pipe(tail_call);
%}


// Return Instruction
instruct Ret() %{
  match(Return);

  // The epilogue node did the ret already.
  size(0);
  format %{ "! return" %}
  ins_encode();
  ins_pipe(empty);
%}


// Tail Jump; remove the return address; jump to target.
// TailCall above leaves the return address around.
// TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
// ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
// "restore" before this instruction (in Epilogue), we need to materialize it
// in %i0.
instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  match( TailJump jump_target ex_oop );
  ins_cost(CALL_COST);
  format %{ "! discard R_O7\n\t"
            "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  ins_encode(form_jmpl_set_exception_pc(jump_target));
  // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  ins_pipe(tail_call);
%}

// Create exception oop: created by stack-crawling runtime code.
// Created exception is now available to this handler, and is setup
// just prior to jumping to this handler.  No code emitted.
instruct CreateException( o0RegP ex_oop )
%{
  match(Set ex_oop (CreateEx));
  ins_cost(0);

  size(0);
  // use the following format syntax
  format %{ "! exception oop is in R_O0; no code emitted" %}
  ins_encode();
  ins_pipe(empty);
%}


// Rethrow exception:
// The exception oop will come in the first argument position.
// Then JUMP (not call) to the rethrow stub code.
instruct RethrowException()
%{
  match(Rethrow);
  ins_cost(CALL_COST);

  // use the following format syntax
  format %{ "Jmp    rethrow_stub" %}
  ins_encode(enc_rethrow);
  ins_pipe(tail_call);
%}


// Die now
instruct ShouldNotReachHere( )
%{
  match(Halt);
  ins_cost(CALL_COST);

  size(4);
  // Use the following format syntax
  format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  ins_encode( form2_illtrap() );
  ins_pipe(tail_call);
%}

// ============================================================================
// The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
// array for an instance of the superklass.  Set a hidden internal cache on a
// hit (cache is checked with exposed code in gen_subtype_check()).  Return
// not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  match(Set index (PartialSubtypeCheck sub super));
  effect( KILL pcc, KILL o7 );
  ins_cost(DEFAULT_COST*10);
  format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  ins_encode( enc_PartialSubtypeCheck() );
  ins_pipe(partial_subtype_check_pipe);
%}

instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  effect( KILL idx, KILL o7 );
  ins_cost(DEFAULT_COST*10);
  format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  ins_encode( enc_PartialSubtypeCheck() );
  ins_pipe(partial_subtype_check_pipe);
%}

9996

D
duke 已提交
9997 9998 9999
// ============================================================================
// inlined locking and unlocking

K
kvn 已提交
10000
instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
D
duke 已提交
10001 10002
  match(Set pcc (FastLock object box));

K
kvn 已提交
10003
  effect(TEMP scratch2, USE_KILL box, KILL scratch);
D
duke 已提交
10004 10005
  ins_cost(100);

K
kvn 已提交
10006
  format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
D
duke 已提交
10007 10008 10009 10010 10011
  ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  ins_pipe(long_memory_op);
%}


K
kvn 已提交
10012
instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
D
duke 已提交
10013
  match(Set pcc (FastUnlock object box));
K
kvn 已提交
10014
  effect(TEMP scratch2, USE_KILL box, KILL scratch);
D
duke 已提交
10015 10016
  ins_cost(100);

K
kvn 已提交
10017
  format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
D
duke 已提交
10018 10019 10020 10021
  ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  ins_pipe(long_memory_op);
%}

K
kvn 已提交
10022
// The encodings are generic.
D
duke 已提交
10023
instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
K
kvn 已提交
10024
  predicate(!use_block_zeroing(n->in(2)) );
D
duke 已提交
10025 10026 10027 10028 10029 10030 10031
  match(Set dummy (ClearArray cnt base));
  effect(TEMP temp, KILL ccr);
  ins_cost(300);
  format %{ "MOV    $cnt,$temp\n"
    "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
    "        BRge   loop\t\t! Clearing loop\n"
    "        STX    G0,[$base+$temp]\t! delay slot" %}
K
kvn 已提交
10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096

  ins_encode %{
    // Compiler ensures base is doubleword aligned and cnt is count of doublewords
    Register nof_bytes_arg    = $cnt$$Register;
    Register nof_bytes_tmp    = $temp$$Register;
    Register base_pointer_arg = $base$$Register;

    Label loop;
    __ mov(nof_bytes_arg, nof_bytes_tmp);

    // Loop and clear, walking backwards through the array.
    // nof_bytes_tmp (if >0) is always the number of bytes to zero
    __ bind(loop);
    __ deccc(nof_bytes_tmp, 8);
    __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
    __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
    // %%%% this mini-loop must not cross a cache boundary!
  %}
  ins_pipe(long_memory_op);
%}

instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
  predicate(use_block_zeroing(n->in(2)));
  match(Set dummy (ClearArray cnt base));
  effect(USE_KILL cnt, USE_KILL base, KILL ccr);
  ins_cost(300);
  format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}

  ins_encode %{

    assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
    Register to    = $base$$Register;
    Register count = $cnt$$Register;

    Label Ldone;
    __ nop(); // Separate short branches
    // Use BIS for zeroing (temp is not used).
    __ bis_zeroing(to, count, G0, Ldone);
    __ bind(Ldone);

  %}
  ins_pipe(long_memory_op);
%}

instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
  predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
  match(Set dummy (ClearArray cnt base));
  effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
  ins_cost(300);
  format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}

  ins_encode %{

    assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
    Register to    = $base$$Register;
    Register count = $cnt$$Register;
    Register temp  = $tmp$$Register;

    Label Ldone;
    __ nop(); // Separate short branches
    // Use BIS for zeroing
    __ bis_zeroing(to, count, temp, Ldone);
    __ bind(Ldone);

  %}
D
duke 已提交
10097 10098 10099
  ins_pipe(long_memory_op);
%}

10100 10101 10102 10103
instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
                        o7RegI tmp, flagsReg ccr) %{
  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
D
duke 已提交
10104
  ins_cost(300);
10105 10106
  format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
  ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
D
duke 已提交
10107 10108 10109
  ins_pipe(long_memory_op);
%}

10110 10111 10112 10113
instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
                       o7RegI tmp, flagsReg ccr) %{
  match(Set result (StrEquals (Binary str1 str2) cnt));
  effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
C
cfang 已提交
10114
  ins_cost(300);
10115 10116
  format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
  ins_encode( enc_String_Equals(str1, str2, cnt, result) );
C
cfang 已提交
10117 10118 10119
  ins_pipe(long_memory_op);
%}

10120 10121
instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
                      o7RegI tmp2, flagsReg ccr) %{
C
cfang 已提交
10122 10123 10124
  match(Set result (AryEq ary1 ary2));
  effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
  ins_cost(300);
10125 10126
  format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
  ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
C
cfang 已提交
10127 10128
  ins_pipe(long_memory_op);
%}
10129

10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143

//---------- Zeros Count Instructions ------------------------------------------

instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
  predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  match(Set dst (CountLeadingZerosI src));
  effect(TEMP dst, TEMP tmp, KILL cr);

  // x |= (x >> 1);
  // x |= (x >> 2);
  // x |= (x >> 4);
  // x |= (x >> 8);
  // x |= (x >> 16);
  // return (WORDBITS - popc(x));
10144 10145 10146
  format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
            "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
            "OR      $dst,$tmp,$dst\n\t"
10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161
            "SRL     $dst,2,$tmp\n\t"
            "OR      $dst,$tmp,$dst\n\t"
            "SRL     $dst,4,$tmp\n\t"
            "OR      $dst,$tmp,$dst\n\t"
            "SRL     $dst,8,$tmp\n\t"
            "OR      $dst,$tmp,$dst\n\t"
            "SRL     $dst,16,$tmp\n\t"
            "OR      $dst,$tmp,$dst\n\t"
            "POPC    $dst,$dst\n\t"
            "MOV     32,$tmp\n\t"
            "SUB     $tmp,$dst,$dst" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    Register Rsrc = $src$$Register;
    Register Rtmp = $tmp$$Register;
10162 10163
    __ srl(Rsrc, 1,    Rtmp);
    __ srl(Rsrc, 0,    Rdst);
10164
    __ or3(Rdst, Rtmp, Rdst);
10165
    __ srl(Rdst, 2,    Rtmp);
10166
    __ or3(Rdst, Rtmp, Rdst);
10167
    __ srl(Rdst, 4,    Rtmp);
10168
    __ or3(Rdst, Rtmp, Rdst);
10169
    __ srl(Rdst, 8,    Rtmp);
10170
    __ or3(Rdst, Rtmp, Rdst);
10171
    __ srl(Rdst, 16,   Rtmp);
10172 10173 10174 10175 10176 10177 10178 10179
    __ or3(Rdst, Rtmp, Rdst);
    __ popc(Rdst, Rdst);
    __ mov(BitsPerInt, Rtmp);
    __ sub(Rtmp, Rdst, Rdst);
  %}
  ins_pipe(ialu_reg);
%}

10180
instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191
  predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  match(Set dst (CountLeadingZerosL src));
  effect(TEMP dst, TEMP tmp, KILL cr);

  // x |= (x >> 1);
  // x |= (x >> 2);
  // x |= (x >> 4);
  // x |= (x >> 8);
  // x |= (x >> 16);
  // x |= (x >> 32);
  // return (WORDBITS - popc(x));
10192
  format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210
            "OR      $src,$tmp,$dst\n\t"
            "SRLX    $dst,2,$tmp\n\t"
            "OR      $dst,$tmp,$dst\n\t"
            "SRLX    $dst,4,$tmp\n\t"
            "OR      $dst,$tmp,$dst\n\t"
            "SRLX    $dst,8,$tmp\n\t"
            "OR      $dst,$tmp,$dst\n\t"
            "SRLX    $dst,16,$tmp\n\t"
            "OR      $dst,$tmp,$dst\n\t"
            "SRLX    $dst,32,$tmp\n\t"
            "OR      $dst,$tmp,$dst\n\t"
            "POPC    $dst,$dst\n\t"
            "MOV     64,$tmp\n\t"
            "SUB     $tmp,$dst,$dst" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    Register Rsrc = $src$$Register;
    Register Rtmp = $tmp$$Register;
10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222
    __ srlx(Rsrc, 1,    Rtmp);
    __ or3( Rsrc, Rtmp, Rdst);
    __ srlx(Rdst, 2,    Rtmp);
    __ or3( Rdst, Rtmp, Rdst);
    __ srlx(Rdst, 4,    Rtmp);
    __ or3( Rdst, Rtmp, Rdst);
    __ srlx(Rdst, 8,    Rtmp);
    __ or3( Rdst, Rtmp, Rdst);
    __ srlx(Rdst, 16,   Rtmp);
    __ or3( Rdst, Rtmp, Rdst);
    __ srlx(Rdst, 32,   Rtmp);
    __ or3( Rdst, Rtmp, Rdst);
10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250
    __ popc(Rdst, Rdst);
    __ mov(BitsPerLong, Rtmp);
    __ sub(Rtmp, Rdst, Rdst);
  %}
  ins_pipe(ialu_reg);
%}

instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
  predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  match(Set dst (CountTrailingZerosI src));
  effect(TEMP dst, KILL cr);

  // return popc(~x & (x - 1));
  format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
            "ANDN    $dst,$src,$dst\n\t"
            "SRL     $dst,R_G0,$dst\n\t"
            "POPC    $dst,$dst" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    Register Rsrc = $src$$Register;
    __ sub(Rsrc, 1, Rdst);
    __ andn(Rdst, Rsrc, Rdst);
    __ srl(Rdst, G0, Rdst);
    __ popc(Rdst, Rdst);
  %}
  ins_pipe(ialu_reg);
%}

10251
instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270
  predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  match(Set dst (CountTrailingZerosL src));
  effect(TEMP dst, KILL cr);

  // return popc(~x & (x - 1));
  format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
            "ANDN    $dst,$src,$dst\n\t"
            "POPC    $dst,$dst" %}
  ins_encode %{
    Register Rdst = $dst$$Register;
    Register Rsrc = $src$$Register;
    __ sub(Rsrc, 1, Rdst);
    __ andn(Rdst, Rsrc, Rdst);
    __ popc(Rdst, Rdst);
  %}
  ins_pipe(ialu_reg);
%}


10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296
//---------- Population Count Instructions -------------------------------------

instruct popCountI(iRegI dst, iRegI src) %{
  predicate(UsePopCountInstruction);
  match(Set dst (PopCountI src));

  format %{ "POPC   $src, $dst" %}
  ins_encode %{
    __ popc($src$$Register, $dst$$Register);
  %}
  ins_pipe(ialu_reg);
%}

// Note: Long.bitCount(long) returns an int.
instruct popCountL(iRegI dst, iRegL src) %{
  predicate(UsePopCountInstruction);
  match(Set dst (PopCountL src));

  format %{ "POPC   $src, $dst" %}
  ins_encode %{
    __ popc($src$$Register, $dst$$Register);
  %}
  ins_pipe(ialu_reg);
%}


D
duke 已提交
10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307
// ============================================================================
//------------Bytes reverse--------------------------------------------------

instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  match(Set dst (ReverseBytesI src));

  // Op cost is artificially doubled to make sure that load or store
  // instructions are preferred over this one which requires a spill
  // onto a stack slot.
  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10308 10309 10310 10311 10312

  ins_encode %{
    __ set($src$$disp + STACK_BIAS, O7);
    __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  %}
D
duke 已提交
10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324
  ins_pipe( iload_mem );
%}

instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  match(Set dst (ReverseBytesL src));

  // Op cost is artificially doubled to make sure that load or store
  // instructions are preferred over this one which requires a spill
  // onto a stack slot.
  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  format %{ "LDXA   $src, $dst\t!asi=primary_little" %}

10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362
  ins_encode %{
    __ set($src$$disp + STACK_BIAS, O7);
    __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  %}
  ins_pipe( iload_mem );
%}

instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
  match(Set dst (ReverseBytesUS src));

  // Op cost is artificially doubled to make sure that load or store
  // instructions are preferred over this one which requires a spill
  // onto a stack slot.
  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}

  ins_encode %{
    // the value was spilled as an int so bias the load
    __ set($src$$disp + STACK_BIAS + 2, O7);
    __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  %}
  ins_pipe( iload_mem );
%}

instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
  match(Set dst (ReverseBytesS src));

  // Op cost is artificially doubled to make sure that load or store
  // instructions are preferred over this one which requires a spill
  // onto a stack slot.
  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}

  ins_encode %{
    // the value was spilled as an int so bias the load
    __ set($src$$disp + STACK_BIAS + 2, O7);
    __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  %}
D
duke 已提交
10363 10364 10365 10366
  ins_pipe( iload_mem );
%}

// Load Integer reversed byte order
10367
instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
D
duke 已提交
10368 10369 10370
  match(Set dst (ReverseBytesI (LoadI src)));

  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10371
  size(4);
D
duke 已提交
10372 10373
  format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}

10374 10375 10376
  ins_encode %{
    __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  %}
D
duke 已提交
10377 10378 10379 10380
  ins_pipe(iload_mem);
%}

// Load Long - aligned and reversed
10381
instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
D
duke 已提交
10382 10383
  match(Set dst (ReverseBytesL (LoadL src)));

10384 10385
  ins_cost(MEMORY_REF_COST);
  size(4);
D
duke 已提交
10386 10387
  format %{ "LDXA   $src, $dst\t!asi=primary_little" %}

10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418
  ins_encode %{
    __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  %}
  ins_pipe(iload_mem);
%}

// Load unsigned short / char reversed byte order
instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
  match(Set dst (ReverseBytesUS (LoadUS src)));

  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}

  ins_encode %{
    __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  %}
  ins_pipe(iload_mem);
%}

// Load short reversed byte order
instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
  match(Set dst (ReverseBytesS (LoadS src)));

  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}

  ins_encode %{
    __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  %}
D
duke 已提交
10419 10420 10421 10422
  ins_pipe(iload_mem);
%}

// Store Integer reversed byte order
10423
instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
D
duke 已提交
10424 10425 10426
  match(Set dst (StoreI dst (ReverseBytesI src)));

  ins_cost(MEMORY_REF_COST);
10427
  size(4);
D
duke 已提交
10428 10429
  format %{ "STWA   $src, $dst\t!asi=primary_little" %}

10430 10431 10432
  ins_encode %{
    __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  %}
D
duke 已提交
10433 10434 10435 10436
  ins_pipe(istore_mem_reg);
%}

// Store Long reversed byte order
10437
instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
D
duke 已提交
10438 10439 10440
  match(Set dst (StoreL dst (ReverseBytesL src)));

  ins_cost(MEMORY_REF_COST);
10441
  size(4);
D
duke 已提交
10442 10443
  format %{ "STXA   $src, $dst\t!asi=primary_little" %}

10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474
  ins_encode %{
    __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  %}
  ins_pipe(istore_mem_reg);
%}

// Store unsighed short/char reversed byte order
instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
  match(Set dst (StoreC dst (ReverseBytesUS src)));

  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "STHA   $src, $dst\t!asi=primary_little" %}

  ins_encode %{
    __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  %}
  ins_pipe(istore_mem_reg);
%}

// Store short reversed byte order
instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
  match(Set dst (StoreC dst (ReverseBytesS src)));

  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "STHA   $src, $dst\t!asi=primary_little" %}

  ins_encode %{
    __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  %}
D
duke 已提交
10475 10476 10477
  ins_pipe(istore_mem_reg);
%}

10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779
// ====================VECTOR INSTRUCTIONS=====================================

// Load Aligned Packed values into a Double Register
instruct loadV8(regD dst, memory mem) %{
  predicate(n->as_LoadVector()->memory_size() == 8);
  match(Set dst (LoadVector mem));
  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
  ins_encode %{
    __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
  %}
  ins_pipe(floadD_mem);
%}

// Store Vector in Double register to memory
instruct storeV8(memory mem, regD src) %{
  predicate(n->as_StoreVector()->memory_size() == 8);
  match(Set mem (StoreVector mem src));
  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
  ins_encode %{
    __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
  %}
  ins_pipe(fstoreD_mem_reg);
%}

// Store Zero into vector in memory
instruct storeV8B_zero(memory mem, immI0 zero) %{
  predicate(n->as_StoreVector()->memory_size() == 8);
  match(Set mem (StoreVector mem (ReplicateB zero)));
  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
  ins_encode %{
    __ stx(G0, $mem$$Address);
  %}
  ins_pipe(fstoreD_mem_zero);
%}

instruct storeV4S_zero(memory mem, immI0 zero) %{
  predicate(n->as_StoreVector()->memory_size() == 8);
  match(Set mem (StoreVector mem (ReplicateS zero)));
  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
  ins_encode %{
    __ stx(G0, $mem$$Address);
  %}
  ins_pipe(fstoreD_mem_zero);
%}

instruct storeV2I_zero(memory mem, immI0 zero) %{
  predicate(n->as_StoreVector()->memory_size() == 8);
  match(Set mem (StoreVector mem (ReplicateI zero)));
  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
  ins_encode %{
    __ stx(G0, $mem$$Address);
  %}
  ins_pipe(fstoreD_mem_zero);
%}

instruct storeV2F_zero(memory mem, immF0 zero) %{
  predicate(n->as_StoreVector()->memory_size() == 8);
  match(Set mem (StoreVector mem (ReplicateF zero)));
  ins_cost(MEMORY_REF_COST);
  size(4);
  format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
  ins_encode %{
    __ stx(G0, $mem$$Address);
  %}
  ins_pipe(fstoreD_mem_zero);
%}

// Replicate scalar to packed byte values into Double register
instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
  predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
  match(Set dst (ReplicateB src));
  effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
  format %{ "SLLX  $src,56,$tmp\n\t"
            "SRLX  $tmp, 8,$tmp2\n\t"
            "OR    $tmp,$tmp2,$tmp\n\t"
            "SRLX  $tmp,16,$tmp2\n\t"
            "OR    $tmp,$tmp2,$tmp\n\t"
            "SRLX  $tmp,32,$tmp2\n\t"
            "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
            "MOVXTOD $tmp,$dst\t! MoveL2D" %}
  ins_encode %{
    Register Rsrc = $src$$Register;
    Register Rtmp = $tmp$$Register;
    Register Rtmp2 = $tmp2$$Register;
    __ sllx(Rsrc,    56, Rtmp);
    __ srlx(Rtmp,     8, Rtmp2);
    __ or3 (Rtmp, Rtmp2, Rtmp);
    __ srlx(Rtmp,    16, Rtmp2);
    __ or3 (Rtmp, Rtmp2, Rtmp);
    __ srlx(Rtmp,    32, Rtmp2);
    __ or3 (Rtmp, Rtmp2, Rtmp);
    __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
  %}
  ins_pipe(ialu_reg);
%}

// Replicate scalar to packed byte values into Double stack
instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
  predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
  match(Set dst (ReplicateB src));
  effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
  format %{ "SLLX  $src,56,$tmp\n\t"
            "SRLX  $tmp, 8,$tmp2\n\t"
            "OR    $tmp,$tmp2,$tmp\n\t"
            "SRLX  $tmp,16,$tmp2\n\t"
            "OR    $tmp,$tmp2,$tmp\n\t"
            "SRLX  $tmp,32,$tmp2\n\t"
            "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
            "STX   $tmp,$dst\t! regL to stkD" %}
  ins_encode %{
    Register Rsrc = $src$$Register;
    Register Rtmp = $tmp$$Register;
    Register Rtmp2 = $tmp2$$Register;
    __ sllx(Rsrc,    56, Rtmp);
    __ srlx(Rtmp,     8, Rtmp2);
    __ or3 (Rtmp, Rtmp2, Rtmp);
    __ srlx(Rtmp,    16, Rtmp2);
    __ or3 (Rtmp, Rtmp2, Rtmp);
    __ srlx(Rtmp,    32, Rtmp2);
    __ or3 (Rtmp, Rtmp2, Rtmp);
    __ set ($dst$$disp + STACK_BIAS, Rtmp2);
    __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
  %}
  ins_pipe(ialu_reg);
%}

// Replicate scalar constant to packed byte values in Double register
instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
  predicate(n->as_Vector()->length() == 8);
  match(Set dst (ReplicateB con));
  effect(KILL tmp);
  format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
  ins_encode %{
    // XXX This is a quick fix for 6833573.
    //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
    __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  %}
  ins_pipe(loadConFD);
%}

// Replicate scalar to packed char/short values into Double register
instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
  predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
  match(Set dst (ReplicateS src));
  effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
  format %{ "SLLX  $src,48,$tmp\n\t"
            "SRLX  $tmp,16,$tmp2\n\t"
            "OR    $tmp,$tmp2,$tmp\n\t"
            "SRLX  $tmp,32,$tmp2\n\t"
            "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
            "MOVXTOD $tmp,$dst\t! MoveL2D" %}
  ins_encode %{
    Register Rsrc = $src$$Register;
    Register Rtmp = $tmp$$Register;
    Register Rtmp2 = $tmp2$$Register;
    __ sllx(Rsrc,    48, Rtmp);
    __ srlx(Rtmp,    16, Rtmp2);
    __ or3 (Rtmp, Rtmp2, Rtmp);
    __ srlx(Rtmp,    32, Rtmp2);
    __ or3 (Rtmp, Rtmp2, Rtmp);
    __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
  %}
  ins_pipe(ialu_reg);
%}

// Replicate scalar to packed char/short values into Double stack
instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
  predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
  match(Set dst (ReplicateS src));
  effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
  format %{ "SLLX  $src,48,$tmp\n\t"
            "SRLX  $tmp,16,$tmp2\n\t"
            "OR    $tmp,$tmp2,$tmp\n\t"
            "SRLX  $tmp,32,$tmp2\n\t"
            "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
            "STX   $tmp,$dst\t! regL to stkD" %}
  ins_encode %{
    Register Rsrc = $src$$Register;
    Register Rtmp = $tmp$$Register;
    Register Rtmp2 = $tmp2$$Register;
    __ sllx(Rsrc,    48, Rtmp);
    __ srlx(Rtmp,    16, Rtmp2);
    __ or3 (Rtmp, Rtmp2, Rtmp);
    __ srlx(Rtmp,    32, Rtmp2);
    __ or3 (Rtmp, Rtmp2, Rtmp);
    __ set ($dst$$disp + STACK_BIAS, Rtmp2);
    __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
  %}
  ins_pipe(ialu_reg);
%}

// Replicate scalar constant to packed char/short values in Double register
instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
  predicate(n->as_Vector()->length() == 4);
  match(Set dst (ReplicateS con));
  effect(KILL tmp);
  format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
  ins_encode %{
    // XXX This is a quick fix for 6833573.
    //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
    __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  %}
  ins_pipe(loadConFD);
%}

// Replicate scalar to packed int values into Double register
instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
  predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
  match(Set dst (ReplicateI src));
  effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
  format %{ "SLLX  $src,32,$tmp\n\t"
            "SRLX  $tmp,32,$tmp2\n\t"
            "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
            "MOVXTOD $tmp,$dst\t! MoveL2D" %}
  ins_encode %{
    Register Rsrc = $src$$Register;
    Register Rtmp = $tmp$$Register;
    Register Rtmp2 = $tmp2$$Register;
    __ sllx(Rsrc,    32, Rtmp);
    __ srlx(Rtmp,    32, Rtmp2);
    __ or3 (Rtmp, Rtmp2, Rtmp);
    __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
  %}
  ins_pipe(ialu_reg);
%}

// Replicate scalar to packed int values into Double stack
instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
  predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
  match(Set dst (ReplicateI src));
  effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
  format %{ "SLLX  $src,32,$tmp\n\t"
            "SRLX  $tmp,32,$tmp2\n\t"
            "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
            "STX   $tmp,$dst\t! regL to stkD" %}
  ins_encode %{
    Register Rsrc = $src$$Register;
    Register Rtmp = $tmp$$Register;
    Register Rtmp2 = $tmp2$$Register;
    __ sllx(Rsrc,    32, Rtmp);
    __ srlx(Rtmp,    32, Rtmp2);
    __ or3 (Rtmp, Rtmp2, Rtmp);
    __ set ($dst$$disp + STACK_BIAS, Rtmp2);
    __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
  %}
  ins_pipe(ialu_reg);
%}

// Replicate scalar zero constant to packed int values in Double register
instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
  predicate(n->as_Vector()->length() == 2);
  match(Set dst (ReplicateI con));
  effect(KILL tmp);
  format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
  ins_encode %{
    // XXX This is a quick fix for 6833573.
    //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
    __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  %}
  ins_pipe(loadConFD);
%}

// Replicate scalar to packed float values into Double stack
instruct Repl2F_stk(stackSlotD dst, regF src) %{
  predicate(n->as_Vector()->length() == 2);
  match(Set dst (ReplicateF src));
  ins_cost(MEMORY_REF_COST*2);
  format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
            "STF    $src,$dst.lo" %}
  opcode(Assembler::stf_op3);
  ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
  ins_pipe(fstoreF_stk_reg);
%}

// Replicate scalar zero constant to packed float values in Double register
instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
  predicate(n->as_Vector()->length() == 2);
  match(Set dst (ReplicateF con));
  effect(KILL tmp);
  format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
  ins_encode %{
    // XXX This is a quick fix for 6833573.
    //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
    __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  %}
  ins_pipe(loadConFD);
%}

D
duke 已提交
10780 10781 10782 10783
//----------PEEPHOLE RULES-----------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.
//
T
twisti 已提交
10784
// peepmatch ( root_instr_name [preceding_instruction]* );
D
duke 已提交
10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858
//
// peepconstraint %{
// (instruction_number.operand_name relational_op instruction_number.operand_name
//  [, ...] );
// // instruction numbers are zero-based using left to right order in peepmatch
//
// peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
// // provide an instruction_number.operand_name for each operand that appears
// // in the replacement instruction's match rule
//
// ---------VM FLAGS---------------------------------------------------------
//
// All peephole optimizations can be turned off using -XX:-OptoPeephole
//
// Each peephole rule is given an identifying number starting with zero and
// increasing by one in the order seen by the parser.  An individual peephole
// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
// on the command-line.
//
// ---------CURRENT LIMITATIONS----------------------------------------------
//
// Only match adjacent instructions in same basic block
// Only equality constraints
// Only constraints between operands, not (0.dest_reg == EAX_enc)
// Only one replacement instruction
//
// ---------EXAMPLE----------------------------------------------------------
//
// // pertinent parts of existing instructions in architecture description
// instruct movI(eRegI dst, eRegI src) %{
//   match(Set dst (CopyI src));
// %}
//
// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
//   match(Set dst (AddI dst src));
//   effect(KILL cr);
// %}
//
// // Change (inc mov) to lea
// peephole %{
//   // increment preceeded by register-register move
//   peepmatch ( incI_eReg movI );
//   // require that the destination register of the increment
//   // match the destination register of the move
//   peepconstraint ( 0.dst == 1.dst );
//   // construct a replacement instruction that sets
//   // the destination to ( move's source register + one )
//   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
// %}
//

// // Change load of spilled value to only a spill
// instruct storeI(memory mem, eRegI src) %{
//   match(Set mem (StoreI mem src));
// %}
//
// instruct loadI(eRegI dst, memory mem) %{
//   match(Set dst (LoadI mem));
// %}
//
// peephole %{
//   peepmatch ( loadI storeI );
//   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
//   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
// %}

//----------SMARTSPILL RULES---------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.
//
// SPARC will probably not have any of these rules due to RISC instruction set.

//----------PIPELINE-----------------------------------------------------------
// Rules which define the behavior of the target architectures pipeline.