concurrentMark.cpp 166.5 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
27
#include "gc_implementation/g1/concurrentMark.inline.hpp"
28 29 30
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
33 34 35
#include "gc_implementation/g1/g1RemSet.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
36
#include "gc_implementation/shared/vmGCOperations.hpp"
37 38 39 40 41 42
#include "memory/genOopClosures.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
43 44 45 46

//
// CMS Bit Map Wrapper

47
CMBitMapRO::CMBitMapRO(ReservedSpace rs, int shifter) :
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  _bm((uintptr_t*)NULL,0),
  _shifter(shifter) {
  _bmStartWord = (HeapWord*)(rs.base());
  _bmWordSize  = rs.size()/HeapWordSize;    // rs.size() is in bytes
  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));

  guarantee(brs.is_reserved(), "couldn't allocate CMS bit map");
  // For now we'll just commit all of the bit map up fromt.
  // Later on we'll try to be more parsimonious with swap.
  guarantee(_virtual_space.initialize(brs, brs.size()),
            "couldn't reseve backing store for CMS bit map");
  assert(_virtual_space.committed_size() == brs.size(),
         "didn't reserve backing store for all of CMS bit map?");
  _bm.set_map((uintptr_t*)_virtual_space.low());
  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
         _bmWordSize, "inconsistency in bit map sizing");
  _bm.set_size(_bmWordSize >> _shifter);
}

HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
                                               HeapWord* limit) const {
  // First we must round addr *up* to a possible object boundary.
  addr = (HeapWord*)align_size_up((intptr_t)addr,
                                  HeapWordSize << _shifter);
  size_t addrOffset = heapWordToOffset(addr);
74 75 76
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
77 78 79 80 81 82 83 84 85 86 87 88
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
                                                 HeapWord* limit) const {
  size_t addrOffset = heapWordToOffset(addr);
89 90 91
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || !isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return (int) (diff >> _shifter);
}

bool CMBitMapRO::iterate(BitMapClosure* cl, MemRegion mr) {
  HeapWord* left  = MAX2(_bmStartWord, mr.start());
  HeapWord* right = MIN2(_bmStartWord + _bmWordSize, mr.end());
  if (right > left) {
    // Right-open interval [leftOffset, rightOffset).
    return _bm.iterate(cl, heapWordToOffset(left), heapWordToOffset(right));
  } else {
    return true;
  }
}

void CMBitMapRO::mostly_disjoint_range_union(BitMap*   from_bitmap,
                                             size_t    from_start_index,
                                             HeapWord* to_start_word,
                                             size_t    word_num) {
  _bm.mostly_disjoint_range_union(from_bitmap,
                                  from_start_index,
                                  heapWordToOffset(to_start_word),
                                  word_num);
}

#ifndef PRODUCT
bool CMBitMapRO::covers(ReservedSpace rs) const {
  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
130
  assert(((size_t)_bm.size() * (size_t)(1 << _shifter)) == _bmWordSize,
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
         "size inconsistency");
  return _bmStartWord == (HeapWord*)(rs.base()) &&
         _bmWordSize  == rs.size()>>LogHeapWordSize;
}
#endif

void CMBitMap::clearAll() {
  _bm.clear();
  return;
}

void CMBitMap::markRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
          ((HeapWord *) mr.end())),
         "markRange memory region end is not card aligned");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), true);
}

void CMBitMap::clearRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), false);
}

MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
                                            HeapWord* end_addr) {
  HeapWord* start = getNextMarkedWordAddress(addr);
  start = MIN2(start, end_addr);
  HeapWord* end   = getNextUnmarkedWordAddress(start);
  end = MIN2(end, end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clearRange(mr);
  }
  return mr;
}

CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
  _base(NULL), _cm(cm)
#ifdef ASSERT
  , _drain_in_progress(false)
  , _drain_in_progress_yields(false)
#endif
{}

void CMMarkStack::allocate(size_t size) {
  _base = NEW_C_HEAP_ARRAY(oop, size);
185
  if (_base == NULL) {
186 187
    vm_exit_during_initialization("Failed to allocate "
                                  "CM region mark stack");
188
  }
189 190 191 192 193 194 195
  _index = 0;
  _capacity = (jint) size;
  _oops_do_bound = -1;
  NOT_PRODUCT(_max_depth = 0);
}

CMMarkStack::~CMMarkStack() {
196 197 198
  if (_base != NULL) {
    FREE_C_HEAP_ARRAY(oop, _base);
  }
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
}

void CMMarkStack::par_push(oop ptr) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = ptr;
      // Note that we don't maintain this atomically.  We could, but it
      // doesn't seem necessary.
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index + n;
    if (next_index > _capacity) {
      _overflow = true;
      return;
    }
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      for (int i = 0; i < n; i++) {
        int ind = index + i;
        assert(ind < _capacity, "By overflow test above.");
        _base[ind] = ptr_arr[i];
      }
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}


void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint start = _index;
  jint next_index = start + n;
  if (next_index > _capacity) {
    _overflow = true;
    return;
  }
  // Otherwise.
  _index = next_index;
  for (int i = 0; i < n; i++) {
    int ind = start + i;
262
    assert(ind < _capacity, "By overflow test above.");
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    _base[ind] = ptr_arr[i];
  }
}


bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint index = _index;
  if (index == 0) {
    *n = 0;
    return false;
  } else {
    int k = MIN2(max, index);
    jint new_ind = index - k;
    for (int j = 0; j < k; j++) {
      ptr_arr[j] = _base[new_ind + j];
    }
    _index = new_ind;
    *n = k;
    return true;
  }
}


CMRegionStack::CMRegionStack() : _base(NULL) {}

void CMRegionStack::allocate(size_t size) {
  _base = NEW_C_HEAP_ARRAY(MemRegion, size);
291 292 293
  if (_base == NULL) {
    vm_exit_during_initialization("Failed to allocate CM region mark stack");
  }
294 295 296 297 298
  _index = 0;
  _capacity = (jint) size;
}

CMRegionStack::~CMRegionStack() {
299 300 301
  if (_base != NULL) {
    FREE_C_HEAP_ARRAY(oop, _base);
  }
302 303
}

304
void CMRegionStack::push_lock_free(MemRegion mr) {
305 306
  assert(mr.word_size() > 0, "Precondition");
  while (true) {
307 308 309
    jint index = _index;

    if (index >= _capacity) {
310 311 312 313 314 315 316 317 318 319 320 321 322 323
      _overflow = true;
      return;
    }
    // Otherwise...
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = mr;
      return;
    }
    // Otherwise, we need to try again.
  }
}

324 325 326 327
// Lock-free pop of the region stack. Called during the concurrent
// marking / remark phases. Should only be called in tandem with
// other lock-free pops.
MemRegion CMRegionStack::pop_lock_free() {
328 329 330 331 332 333
  while (true) {
    jint index = _index;

    if (index == 0) {
      return MemRegion();
    }
334
    // Otherwise...
335 336 337 338 339
    jint next_index = index-1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      MemRegion mr = _base[next_index];
      if (mr.start() != NULL) {
340 341
        assert(mr.end() != NULL, "invariant");
        assert(mr.word_size() > 0, "invariant");
342 343 344
        return mr;
      } else {
        // that entry was invalidated... let's skip it
345
        assert(mr.end() == NULL, "invariant");
346 347 348 349 350
      }
    }
    // Otherwise, we need to try again.
  }
}
351 352 353 354 355

#if 0
// The routines that manipulate the region stack with a lock are
// not currently used. They should be retained, however, as a
// diagnostic aid.
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

void CMRegionStack::push_with_lock(MemRegion mr) {
  assert(mr.word_size() > 0, "Precondition");
  MutexLockerEx x(CMRegionStack_lock, Mutex::_no_safepoint_check_flag);

  if (isFull()) {
    _overflow = true;
    return;
  }

  _base[_index] = mr;
  _index += 1;
}

MemRegion CMRegionStack::pop_with_lock() {
  MutexLockerEx x(CMRegionStack_lock, Mutex::_no_safepoint_check_flag);

  while (true) {
    if (_index == 0) {
      return MemRegion();
    }
    _index -= 1;

    MemRegion mr = _base[_index];
    if (mr.start() != NULL) {
      assert(mr.end() != NULL, "invariant");
      assert(mr.word_size() > 0, "invariant");
      return mr;
    } else {
      // that entry was invalidated... let's skip it
      assert(mr.end() == NULL, "invariant");
    }
  }
}
390
#endif
391 392 393 394 395 396 397

bool CMRegionStack::invalidate_entries_into_cset() {
  bool result = false;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  for (int i = 0; i < _oops_do_bound; ++i) {
    MemRegion mr = _base[i];
    if (mr.start() != NULL) {
398 399
      assert(mr.end() != NULL, "invariant");
      assert(mr.word_size() > 0, "invariant");
400
      HeapRegion* hr = g1h->heap_region_containing(mr.start());
401
      assert(hr != NULL, "invariant");
402 403 404 405 406 407 408
      if (hr->in_collection_set()) {
        // The region points into the collection set
        _base[i] = MemRegion();
        result = true;
      }
    } else {
      // that entry was invalidated... let's skip it
409
      assert(mr.end() == NULL, "invariant");
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    }
  }
  return result;
}

template<class OopClosureClass>
bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
  assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
         || SafepointSynchronize::is_at_safepoint(),
         "Drain recursion must be yield-safe.");
  bool res = true;
  debug_only(_drain_in_progress = true);
  debug_only(_drain_in_progress_yields = yield_after);
  while (!isEmpty()) {
    oop newOop = pop();
    assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
    assert(newOop->is_oop(), "Expected an oop");
    assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
           "only grey objects on this stack");
    // iterate over the oops in this oop, marking and pushing
    // the ones in CMS generation.
    newOop->oop_iterate(cl);
    if (yield_after && _cm->do_yield_check()) {
433 434
      res = false;
      break;
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    }
  }
  debug_only(_drain_in_progress = false);
  return res;
}

void CMMarkStack::oops_do(OopClosure* f) {
  if (_index == 0) return;
  assert(_oops_do_bound != -1 && _oops_do_bound <= _index,
         "Bound must be set.");
  for (int i = 0; i < _oops_do_bound; i++) {
    f->do_oop(&_base[i]);
  }
  _oops_do_bound = -1;
}

bool ConcurrentMark::not_yet_marked(oop obj) const {
  return (_g1h->is_obj_ill(obj)
          || (_g1h->is_in_permanent(obj)
              && !nextMarkBitMap()->isMarked((HeapWord*)obj)));
}

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

461 462 463 464
size_t ConcurrentMark::scale_parallel_threads(size_t n_par_threads) {
  return MAX2((n_par_threads + 2) / 4, (size_t)1);
}

465 466 467 468 469 470
ConcurrentMark::ConcurrentMark(ReservedSpace rs,
                               int max_regions) :
  _markBitMap1(rs, MinObjAlignment - 1),
  _markBitMap2(rs, MinObjAlignment - 1),

  _parallel_marking_threads(0),
471
  _max_parallel_marking_threads(0),
472 473 474 475
  _sleep_factor(0.0),
  _marking_task_overhead(1.0),
  _cleanup_sleep_factor(0.0),
  _cleanup_task_overhead(1.0),
476
  _cleanup_list("Cleanup List"),
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
  _region_bm(max_regions, false /* in_resource_area*/),
  _card_bm((rs.size() + CardTableModRefBS::card_size - 1) >>
           CardTableModRefBS::card_shift,
           false /* in_resource_area*/),
  _prevMarkBitMap(&_markBitMap1),
  _nextMarkBitMap(&_markBitMap2),
  _at_least_one_mark_complete(false),

  _markStack(this),
  _regionStack(),
  // _finger set in set_non_marking_state

  _max_task_num(MAX2(ParallelGCThreads, (size_t)1)),
  // _active_tasks set in set_non_marking_state
  // _tasks set inside the constructor
  _task_queues(new CMTaskQueueSet((int) _max_task_num)),
  _terminator(ParallelTaskTerminator((int) _max_task_num, _task_queues)),

  _has_overflown(false),
  _concurrent(false),
497 498 499 500
  _has_aborted(false),
  _restart_for_overflow(false),
  _concurrent_marking_in_progress(false),
  _should_gray_objects(false),
501 502 503 504 505 506 507 508 509

  // _verbose_level set below

  _init_times(),
  _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
  _cleanup_times(),
  _total_counting_time(0.0),
  _total_rs_scrub_time(0.0),

510 511 512
  _parallel_workers(NULL) {
  CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
  if (verbose_level < no_verbose) {
513
    verbose_level = no_verbose;
514 515
  }
  if (verbose_level > high_verbose) {
516
    verbose_level = high_verbose;
517
  }
518 519
  _verbose_level = verbose_level;

520
  if (verbose_low()) {
521 522
    gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
                           "heap end = "PTR_FORMAT, _heap_start, _heap_end);
523
  }
524

525
  _markStack.allocate(MarkStackSize);
J
johnc 已提交
526
  _regionStack.allocate(G1MarkRegionStackSize);
527 528

  // Create & start a ConcurrentMark thread.
529 530 531 532
  _cmThread = new ConcurrentMarkThread(this);
  assert(cmThread() != NULL, "CM Thread should have been created");
  assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");

533 534 535 536 537 538
  _g1h = G1CollectedHeap::heap();
  assert(CGC_lock != NULL, "Where's the CGC_lock?");
  assert(_markBitMap1.covers(rs), "_markBitMap1 inconsistency");
  assert(_markBitMap2.covers(rs), "_markBitMap2 inconsistency");

  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
539
  satb_qs.set_buffer_size(G1SATBBufferSize);
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554

  _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_task_num);
  _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_task_num);

  // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
  _active_tasks = _max_task_num;
  for (int i = 0; i < (int) _max_task_num; ++i) {
    CMTaskQueue* task_queue = new CMTaskQueue();
    task_queue->initialize();
    _task_queues->register_queue(i, task_queue);

    _tasks[i] = new CMTask(i, this, task_queue, _task_queues);
    _accum_task_vtime[i] = 0.0;
  }

555 556
  if (ConcGCThreads > ParallelGCThreads) {
    vm_exit_during_initialization("Can't have more ConcGCThreads "
557 558 559 560 561
                                  "than ParallelGCThreads.");
  }
  if (ParallelGCThreads == 0) {
    // if we are not running with any parallel GC threads we will not
    // spawn any marking threads either
562 563 564 565
    _parallel_marking_threads =       0;
    _max_parallel_marking_threads =   0;
    _sleep_factor             =     0.0;
    _marking_task_overhead    =     1.0;
566
  } else {
567 568
    if (ConcGCThreads > 0) {
      // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
569 570
      // if both are set

571
      _parallel_marking_threads = ConcGCThreads;
572
      _max_parallel_marking_threads = _parallel_marking_threads;
573 574
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
J
johnc 已提交
575
    } else if (G1MarkingOverheadPercent > 0) {
576 577 578 579
      // we will calculate the number of parallel marking threads
      // based on a target overhead with respect to the soft real-time
      // goal

J
johnc 已提交
580
      double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
581
      double overall_cm_overhead =
J
johnc 已提交
582 583
        (double) MaxGCPauseMillis * marking_overhead /
        (double) GCPauseIntervalMillis;
584 585 586 587 588 589 590 591 592
      double cpu_ratio = 1.0 / (double) os::processor_count();
      double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
      double marking_task_overhead =
        overall_cm_overhead / marking_thread_num *
                                                (double) os::processor_count();
      double sleep_factor =
                         (1.0 - marking_task_overhead) / marking_task_overhead;

      _parallel_marking_threads = (size_t) marking_thread_num;
593
      _max_parallel_marking_threads = _parallel_marking_threads;
594 595 596
      _sleep_factor             = sleep_factor;
      _marking_task_overhead    = marking_task_overhead;
    } else {
597 598
      _parallel_marking_threads = scale_parallel_threads(ParallelGCThreads);
      _max_parallel_marking_threads = _parallel_marking_threads;
599 600 601 602
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
    }

603
    if (parallel_marking_threads() > 1) {
604
      _cleanup_task_overhead = 1.0;
605
    } else {
606
      _cleanup_task_overhead = marking_task_overhead();
607
    }
608 609 610 611 612 613 614 615 616 617 618
    _cleanup_sleep_factor =
                     (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();

#if 0
    gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
    gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
    gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
    gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
    gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
#endif

619
    guarantee(parallel_marking_threads() > 0, "peace of mind");
620
    _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
621
         (int) _max_parallel_marking_threads, false, true);
622
    if (_parallel_workers == NULL) {
623
      vm_exit_during_initialization("Failed necessary allocation.");
624 625 626
    } else {
      _parallel_workers->initialize_workers();
    }
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
  }

  // so that the call below can read a sensible value
  _heap_start = (HeapWord*) rs.base();
  set_non_marking_state();
}

void ConcurrentMark::update_g1_committed(bool force) {
  // If concurrent marking is not in progress, then we do not need to
  // update _heap_end. This has a subtle and important
  // side-effect. Imagine that two evacuation pauses happen between
  // marking completion and remark. The first one can grow the
  // heap (hence now the finger is below the heap end). Then, the
  // second one could unnecessarily push regions on the region
  // stack. This causes the invariant that the region stack is empty
  // at the beginning of remark to be false. By ensuring that we do
  // not observe heap expansions after marking is complete, then we do
  // not have this problem.
645
  if (!concurrent_marking_in_progress() && !force) return;
646 647

  MemRegion committed = _g1h->g1_committed();
648
  assert(committed.start() == _heap_start, "start shouldn't change");
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
  HeapWord* new_end = committed.end();
  if (new_end > _heap_end) {
    // The heap has been expanded.

    _heap_end = new_end;
  }
  // Notice that the heap can also shrink. However, this only happens
  // during a Full GC (at least currently) and the entire marking
  // phase will bail out and the task will not be restarted. So, let's
  // do nothing.
}

void ConcurrentMark::reset() {
  // Starting values for these two. This should be called in a STW
  // phase. CM will be notified of any future g1_committed expansions
  // will be at the end of evacuation pauses, when tasks are
  // inactive.
  MemRegion committed = _g1h->g1_committed();
  _heap_start = committed.start();
  _heap_end   = committed.end();

670 671 672 673
  // Separated the asserts so that we know which one fires.
  assert(_heap_start != NULL, "heap bounds should look ok");
  assert(_heap_end != NULL, "heap bounds should look ok");
  assert(_heap_start < _heap_end, "heap bounds should look ok");
674 675 676 677

  // reset all the marking data structures and any necessary flags
  clear_marking_state();

678
  if (verbose_low()) {
679
    gclog_or_tty->print_cr("[global] resetting");
680
  }
681 682 683 684

  // We do reset all of them, since different phases will use
  // different number of active threads. So, it's easiest to have all
  // of them ready.
685
  for (int i = 0; i < (int) _max_task_num; ++i) {
686
    _tasks[i]->reset(_nextMarkBitMap);
687
  }
688 689 690 691 692 693 694

  // we need this to make sure that the flag is on during the evac
  // pause with initial mark piggy-backed
  set_concurrent_marking_in_progress();
}

void ConcurrentMark::set_phase(size_t active_tasks, bool concurrent) {
695
  assert(active_tasks <= _max_task_num, "we should not have more");
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

  _active_tasks = active_tasks;
  // Need to update the three data structures below according to the
  // number of active threads for this phase.
  _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
  _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
  _second_overflow_barrier_sync.set_n_workers((int) active_tasks);

  _concurrent = concurrent;
  // We propagate this to all tasks, not just the active ones.
  for (int i = 0; i < (int) _max_task_num; ++i)
    _tasks[i]->set_concurrent(concurrent);

  if (concurrent) {
    set_concurrent_marking_in_progress();
  } else {
    // We currently assume that the concurrent flag has been set to
    // false before we start remark. At this point we should also be
    // in a STW phase.
715 716
    assert(!concurrent_marking_in_progress(), "invariant");
    assert(_finger == _heap_end, "only way to get here");
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
    update_g1_committed(true);
  }
}

void ConcurrentMark::set_non_marking_state() {
  // We set the global marking state to some default values when we're
  // not doing marking.
  clear_marking_state();
  _active_tasks = 0;
  clear_concurrent_marking_in_progress();
}

ConcurrentMark::~ConcurrentMark() {
  for (int i = 0; i < (int) _max_task_num; ++i) {
    delete _task_queues->queue(i);
    delete _tasks[i];
  }
  delete _task_queues;
  FREE_C_HEAP_ARRAY(CMTask*, _max_task_num);
}

// This closure is used to mark refs into the g1 generation
// from external roots in the CMS bit map.
// Called at the first checkpoint.
//

void ConcurrentMark::clearNextBitmap() {
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  // Make sure that the concurrent mark thread looks to still be in
  // the current cycle.
  guarantee(cmThread()->during_cycle(), "invariant");

  // We are finishing up the current cycle by clearing the next
  // marking bitmap and getting it ready for the next cycle. During
  // this time no other cycle can start. So, let's make sure that this
  // is the case.
  guarantee(!g1h->mark_in_progress(), "invariant");

  // clear the mark bitmap (no grey objects to start with).
  // We need to do this in chunks and offer to yield in between
  // each chunk.
  HeapWord* start  = _nextMarkBitMap->startWord();
  HeapWord* end    = _nextMarkBitMap->endWord();
  HeapWord* cur    = start;
  size_t chunkSize = M;
  while (cur < end) {
    HeapWord* next = cur + chunkSize;
766
    if (next > end) {
767
      next = end;
768
    }
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    MemRegion mr(cur,next);
    _nextMarkBitMap->clearRange(mr);
    cur = next;
    do_yield_check();

    // Repeat the asserts from above. We'll do them as asserts here to
    // minimize their overhead on the product. However, we'll have
    // them as guarantees at the beginning / end of the bitmap
    // clearing to get some checking in the product.
    assert(cmThread()->during_cycle(), "invariant");
    assert(!g1h->mark_in_progress(), "invariant");
  }

  // Repeat the asserts from above.
  guarantee(cmThread()->during_cycle(), "invariant");
  guarantee(!g1h->mark_in_progress(), "invariant");
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
}

class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      r->note_start_of_marking(true);
    }
    return false;
  }
};

void ConcurrentMark::checkpointRootsInitialPre() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  _has_aborted = false;

803
#ifndef PRODUCT
804
  if (G1PrintReachableAtInitialMark) {
805
    print_reachable("at-cycle-start",
806
                    VerifyOption_G1UsePrevMarking, true /* all */);
807
  }
808
#endif
809 810 811 812 813 814 815 816 817

  // Initialise marking structures. This has to be done in a STW phase.
  reset();
}


void ConcurrentMark::checkpointRootsInitialPost() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();

818 819 820 821 822 823 824 825
  // If we force an overflow during remark, the remark operation will
  // actually abort and we'll restart concurrent marking. If we always
  // force an oveflow during remark we'll never actually complete the
  // marking phase. So, we initilize this here, at the start of the
  // cycle, so that at the remaining overflow number will decrease at
  // every remark and we'll eventually not need to cause one.
  force_overflow_stw()->init();

826 827 828 829
  // For each region note start of marking.
  NoteStartOfMarkHRClosure startcl;
  g1h->heap_region_iterate(&startcl);

830 831 832 833
  // Start Concurrent Marking weak-reference discovery.
  ReferenceProcessor* rp = g1h->ref_processor_cm();
  // enable ("weak") refs discovery
  rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
834
  rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
835 836

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
837 838 839 840
  // This is the start of  the marking cycle, we're expected all
  // threads to have SATB queues with active set to false.
  satb_mq_set.set_active_all_threads(true, /* new active value */
                                     false /* expected_active */);
841 842 843 844 845 846 847 848

  // update_g1_committed() will be called at the end of an evac pause
  // when marking is on. So, it's also called at the end of the
  // initial-mark pause to update the heap end, if the heap expands
  // during it. No need to call it here.
}

/*
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
 * Notice that in the next two methods, we actually leave the STS
 * during the barrier sync and join it immediately afterwards. If we
 * do not do this, the following deadlock can occur: one thread could
 * be in the barrier sync code, waiting for the other thread to also
 * sync up, whereas another one could be trying to yield, while also
 * waiting for the other threads to sync up too.
 *
 * Note, however, that this code is also used during remark and in
 * this case we should not attempt to leave / enter the STS, otherwise
 * we'll either hit an asseert (debug / fastdebug) or deadlock
 * (product). So we should only leave / enter the STS if we are
 * operating concurrently.
 *
 * Because the thread that does the sync barrier has left the STS, it
 * is possible to be suspended for a Full GC or an evacuation pause
 * could occur. This is actually safe, since the entering the sync
 * barrier is one of the last things do_marking_step() does, and it
 * doesn't manipulate any data structures afterwards.
 */
868 869

void ConcurrentMark::enter_first_sync_barrier(int task_num) {
870
  if (verbose_low()) {
871
    gclog_or_tty->print_cr("[%d] entering first barrier", task_num);
872
  }
873

874 875 876
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
877
  _first_overflow_barrier_sync.enter();
878 879 880
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
881 882 883
  // at this point everyone should have synced up and not be doing any
  // more work

884
  if (verbose_low()) {
885
    gclog_or_tty->print_cr("[%d] leaving first barrier", task_num);
886
  }
887 888 889 890

  // let task 0 do this
  if (task_num == 0) {
    // task 0 is responsible for clearing the global data structures
891 892 893 894 895 896
    // We should be here because of an overflow. During STW we should
    // not clear the overflow flag since we rely on it being true when
    // we exit this method to abort the pause and restart concurent
    // marking.
    clear_marking_state(concurrent() /* clear_overflow */);
    force_overflow()->update();
897 898 899 900 901 902 903 904 905 906 907 908 909

    if (PrintGC) {
      gclog_or_tty->date_stamp(PrintGCDateStamps);
      gclog_or_tty->stamp(PrintGCTimeStamps);
      gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
    }
  }

  // after this, each task should reset its own data structures then
  // then go into the second barrier
}

void ConcurrentMark::enter_second_sync_barrier(int task_num) {
910
  if (verbose_low()) {
911
    gclog_or_tty->print_cr("[%d] entering second barrier", task_num);
912
  }
913

914 915 916
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
917
  _second_overflow_barrier_sync.enter();
918 919 920
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
921 922
  // at this point everything should be re-initialised and ready to go

923
  if (verbose_low()) {
924
    gclog_or_tty->print_cr("[%d] leaving second barrier", task_num);
925
  }
926 927
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
#ifndef PRODUCT
void ForceOverflowSettings::init() {
  _num_remaining = G1ConcMarkForceOverflow;
  _force = false;
  update();
}

void ForceOverflowSettings::update() {
  if (_num_remaining > 0) {
    _num_remaining -= 1;
    _force = true;
  } else {
    _force = false;
  }
}

bool ForceOverflowSettings::should_force() {
  if (_force) {
    _force = false;
    return true;
  } else {
    return false;
  }
}
#endif // !PRODUCT

954 955 956 957 958 959 960
void ConcurrentMark::grayRoot(oop p) {
  HeapWord* addr = (HeapWord*) p;
  // We can't really check against _heap_start and _heap_end, since it
  // is possible during an evacuation pause with piggy-backed
  // initial-mark that the committed space is expanded during the
  // pause without CM observing this change. So the assertions below
  // is a bit conservative; but better than nothing.
961 962
  assert(_g1h->g1_committed().contains(addr),
         "address should be within the heap bounds");
963

964
  if (!_nextMarkBitMap->isMarked(addr)) {
965
    _nextMarkBitMap->parMark(addr);
966
  }
967 968 969 970 971 972 973
}

void ConcurrentMark::grayRegionIfNecessary(MemRegion mr) {
  // The objects on the region have already been marked "in bulk" by
  // the caller. We only need to decide whether to push the region on
  // the region stack or not.

974
  if (!concurrent_marking_in_progress() || !_should_gray_objects) {
975 976 977
    // We're done with marking and waiting for remark. We do not need to
    // push anything else on the region stack.
    return;
978
  }
979 980 981

  HeapWord* finger = _finger;

982
  if (verbose_low()) {
983 984 985
    gclog_or_tty->print_cr("[global] attempting to push "
                           "region ["PTR_FORMAT", "PTR_FORMAT"), finger is at "
                           PTR_FORMAT, mr.start(), mr.end(), finger);
986
  }
987 988 989 990

  if (mr.start() < finger) {
    // The finger is always heap region aligned and it is not possible
    // for mr to span heap regions.
991 992 993 994 995 996 997 998 999
    assert(mr.end() <= finger, "invariant");

    // Separated the asserts so that we know which one fires.
    assert(mr.start() <= mr.end(),
           "region boundaries should fall within the committed space");
    assert(_heap_start <= mr.start(),
           "region boundaries should fall within the committed space");
    assert(mr.end() <= _heap_end,
           "region boundaries should fall within the committed space");
1000
    if (verbose_low()) {
1001 1002 1003
      gclog_or_tty->print_cr("[global] region ["PTR_FORMAT", "PTR_FORMAT") "
                             "below the finger, pushing it",
                             mr.start(), mr.end());
1004
    }
1005

1006
    if (!region_stack_push_lock_free(mr)) {
1007
      if (verbose_low()) {
1008
        gclog_or_tty->print_cr("[global] region stack has overflown.");
1009
      }
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    }
  }
}

void ConcurrentMark::markAndGrayObjectIfNecessary(oop p) {
  // The object is not marked by the caller. We need to at least mark
  // it and maybe push in on the stack.

  HeapWord* addr = (HeapWord*)p;
  if (!_nextMarkBitMap->isMarked(addr)) {
    // We definitely need to mark it, irrespective whether we bail out
    // because we're done with marking.
    if (_nextMarkBitMap->parMark(addr)) {
1023
      if (!concurrent_marking_in_progress() || !_should_gray_objects) {
1024 1025 1026
        // If we're done with concurrent marking and we're waiting for
        // remark, then we're not pushing anything on the stack.
        return;
1027
      }
1028 1029 1030 1031 1032 1033 1034

      // No OrderAccess:store_load() is needed. It is implicit in the
      // CAS done in parMark(addr) above
      HeapWord* finger = _finger;

      if (addr < finger) {
        if (!mark_stack_push(oop(addr))) {
1035
          if (verbose_low()) {
1036 1037
            gclog_or_tty->print_cr("[global] global stack overflow "
                                   "during parMark");
1038
          }
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
        }
      }
    }
  }
}

class CMConcurrentMarkingTask: public AbstractGangTask {
private:
  ConcurrentMark*       _cm;
  ConcurrentMarkThread* _cmt;

public:
  void work(int worker_i) {
1052 1053
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");
1054
    ResourceMark rm;
1055 1056 1057 1058 1059

    double start_vtime = os::elapsedVTime();

    ConcurrentGCThread::stsJoin();

1060
    assert((size_t) worker_i < _cm->active_tasks(), "invariant");
1061 1062 1063 1064 1065 1066
    CMTask* the_task = _cm->task(worker_i);
    the_task->record_start_time();
    if (!_cm->has_aborted()) {
      do {
        double start_vtime_sec = os::elapsedVTime();
        double start_time_sec = os::elapsedTime();
1067 1068 1069 1070 1071 1072
        double mark_step_duration_ms = G1ConcMarkStepDurationMillis;

        the_task->do_marking_step(mark_step_duration_ms,
                                  true /* do_stealing    */,
                                  true /* do_termination */);

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        double end_time_sec = os::elapsedTime();
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        double elapsed_time_sec = end_time_sec - start_time_sec;
        _cm->clear_has_overflown();

        bool ret = _cm->do_yield_check(worker_i);

        jlong sleep_time_ms;
        if (!_cm->has_aborted() && the_task->has_aborted()) {
          sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
          ConcurrentGCThread::stsLeave();
          os::sleep(Thread::current(), sleep_time_ms, false);
          ConcurrentGCThread::stsJoin();
        }
        double end_time2_sec = os::elapsedTime();
        double elapsed_time2_sec = end_time2_sec - start_time_sec;

#if 0
          gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
                                 "overhead %1.4lf",
                                 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
                                 the_task->conc_overhead(os::elapsedTime()) * 8.0);
          gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
                                 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
#endif
      } while (!_cm->has_aborted() && the_task->has_aborted());
    }
    the_task->record_end_time();
1103
    guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

    ConcurrentGCThread::stsLeave();

    double end_vtime = os::elapsedVTime();
    _cm->update_accum_task_vtime(worker_i, end_vtime - start_vtime);
  }

  CMConcurrentMarkingTask(ConcurrentMark* cm,
                          ConcurrentMarkThread* cmt) :
      AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }

  ~CMConcurrentMarkingTask() { }
};

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
// Calculates the number of active workers for a concurrent
// phase.
int ConcurrentMark::calc_parallel_marking_threads() {

  size_t n_conc_workers;
  if (!G1CollectedHeap::use_parallel_gc_threads()) {
    n_conc_workers = 1;
  } else {
    if (!UseDynamicNumberOfGCThreads ||
        (!FLAG_IS_DEFAULT(ConcGCThreads) &&
         !ForceDynamicNumberOfGCThreads)) {
      n_conc_workers = max_parallel_marking_threads();
    } else {
      n_conc_workers =
        AdaptiveSizePolicy::calc_default_active_workers(
                                     max_parallel_marking_threads(),
                                     1, /* Minimum workers */
                                     parallel_marking_threads(),
                                     Threads::number_of_non_daemon_threads());
      // Don't scale down "n_conc_workers" by scale_parallel_threads() because
      // that scaling has already gone into "_max_parallel_marking_threads".
    }
  }
  assert(n_conc_workers > 0, "Always need at least 1");
  return (int) MAX2(n_conc_workers, (size_t) 1);
}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
void ConcurrentMark::markFromRoots() {
  // we might be tempted to assert that:
  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  //        "inconsistent argument?");
  // However that wouldn't be right, because it's possible that
  // a safepoint is indeed in progress as a younger generation
  // stop-the-world GC happens even as we mark in this generation.

  _restart_for_overflow = false;

1155
  // Parallel task terminator is set in "set_phase()".
1156
  force_overflow_conc()->init();
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

  // _g1h has _n_par_threads

  _parallel_marking_threads = calc_parallel_marking_threads();
  assert(parallel_marking_threads() <= max_parallel_marking_threads(),
    "Maximum number of marking threads exceeded");
  _parallel_workers->set_active_workers((int)_parallel_marking_threads);
  // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
  // and the decisions on that MT processing is made elsewhere.

  assert( _parallel_workers->active_workers() > 0, "Should have been set");
  set_phase(_parallel_workers->active_workers(), true /* concurrent */);
1169 1170

  CMConcurrentMarkingTask markingTask(this, cmThread());
1171
  if (parallel_marking_threads() > 0) {
1172
    _parallel_workers->run_task(&markingTask);
1173
  } else {
1174
    markingTask.work(0);
1175
  }
1176 1177 1178 1179 1180 1181 1182
  print_stats();
}

void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
1183

1184 1185 1186 1187 1188 1189 1190 1191
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1192 1193
  SvcGCMarker sgcm(SvcGCMarker::OTHER);

1194 1195 1196 1197
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1198 1199 1200
    Universe::verify(/* allow dirty */ true,
                     /* silent      */ false,
                     /* option      */ VerifyOption_G1UsePrevMarking);
1201 1202
  }

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
  G1CollectorPolicy* g1p = g1h->g1_policy();
  g1p->record_concurrent_mark_remark_start();

  double start = os::elapsedTime();

  checkpointRootsFinalWork();

  double mark_work_end = os::elapsedTime();

  weakRefsWork(clear_all_soft_refs);

  if (has_overflown()) {
    // Oops.  We overflowed.  Restart concurrent marking.
    _restart_for_overflow = true;
    // Clear the flag. We do not need it any more.
    clear_has_overflown();
1219
    if (G1TraceMarkStackOverflow) {
1220
      gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1221
    }
1222
  } else {
1223
    SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1224
    // We're done with marking.
1225 1226
    // This is the end of  the marking cycle, we're expected all
    // threads to have SATB queues with active set to true.
1227 1228
    satb_mq_set.set_active_all_threads(false, /* new active value */
                                       true /* expected_active */);
1229 1230

    if (VerifyDuringGC) {
1231

1232 1233 1234
      HandleMark hm;  // handle scope
      gclog_or_tty->print(" VerifyDuringGC:(after)");
      Universe::heap()->prepare_for_verify();
1235 1236 1237
      Universe::verify(/* allow dirty */ true,
                       /* silent      */ false,
                       /* option      */ VerifyOption_G1UseNextMarking);
1238
    }
1239 1240 1241 1242 1243 1244
    assert(!restart_for_overflow(), "sanity");
  }

  // Reset the marking state if marking completed
  if (!restart_for_overflow()) {
    set_non_marking_state();
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
  }

#if VERIFY_OBJS_PROCESSED
  _scan_obj_cl.objs_processed = 0;
  ThreadLocalObjQueue::objs_enqueued = 0;
#endif

  // Statistics
  double now = os::elapsedTime();
  _remark_mark_times.add((mark_work_end - start) * 1000.0);
  _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  _remark_times.add((now - start) * 1000.0);

  g1p->record_concurrent_mark_remark_end();
}

#define CARD_BM_TEST_MODE 0

class CalcLiveObjectsClosure: public HeapRegionClosure {

  CMBitMapRO* _bm;
  ConcurrentMark* _cm;
  bool _changed;
  bool _yield;
  size_t _words_done;
  size_t _tot_live;
  size_t _tot_used;
  size_t _regions_done;
  double _start_vtime_sec;

  BitMap* _region_bm;
  BitMap* _card_bm;
  intptr_t _bottom_card_num;
  bool _final;

  void mark_card_num_range(intptr_t start_card_num, intptr_t last_card_num) {
    for (intptr_t i = start_card_num; i <= last_card_num; i++) {
#if CARD_BM_TEST_MODE
1283
      guarantee(_card_bm->at(i - _bottom_card_num), "Should already be set.");
1284 1285 1286 1287 1288 1289 1290 1291 1292
#else
      _card_bm->par_at_put(i - _bottom_card_num, 1);
#endif
    }
  }

public:
  CalcLiveObjectsClosure(bool final,
                         CMBitMapRO *bm, ConcurrentMark *cm,
1293
                         BitMap* region_bm, BitMap* card_bm) :
1294 1295
    _bm(bm), _cm(cm), _changed(false), _yield(true),
    _words_done(0), _tot_live(0), _tot_used(0),
1296
    _region_bm(region_bm), _card_bm(card_bm),_final(final),
1297 1298 1299 1300 1301 1302 1303
    _regions_done(0), _start_vtime_sec(0.0)
  {
    _bottom_card_num =
      intptr_t(uintptr_t(G1CollectedHeap::heap()->reserved_region().start()) >>
               CardTableModRefBS::card_shift);
  }

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
  // It takes a region that's not empty (i.e., it has at least one
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

    size_t index = hr->hrs_index();
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
      _region_bm->par_at_put((BitMap::idx_t) index, true);
    } else {
      // Starts humongous case: calculate how many regions are part of
      // this humongous region and then set the bit range. It might
      // have been a bit more efficient to look at the object that
      // spans these humongous regions to calculate their number from
      // the object's size. However, it's a good idea to calculate
      // this based on the metadata itself, and not the region
      // contents, so that this code is not aware of what goes into
      // the humongous regions (in case this changes in the future).
      G1CollectedHeap* g1h = G1CollectedHeap::heap();
      size_t end_index = index + 1;
1327 1328
      while (end_index < g1h->n_regions()) {
        HeapRegion* chr = g1h->region_at(end_index);
1329
        if (!chr->continuesHumongous()) break;
1330 1331 1332 1333 1334 1335 1336
        end_index += 1;
      }
      _region_bm->par_at_put_range((BitMap::idx_t) index,
                                   (BitMap::idx_t) end_index, true);
    }
  }

1337
  bool doHeapRegion(HeapRegion* hr) {
1338
    if (!_final && _regions_done == 0) {
1339
      _start_vtime_sec = os::elapsedVTime();
1340
    }
1341

I
iveresov 已提交
1342
    if (hr->continuesHumongous()) {
1343 1344 1345 1346 1347 1348 1349
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
I
iveresov 已提交
1350 1351
      return false;
    }
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

    HeapWord* nextTop = hr->next_top_at_mark_start();
    HeapWord* start   = hr->top_at_conc_mark_count();
    assert(hr->bottom() <= start && start <= hr->end() &&
           hr->bottom() <= nextTop && nextTop <= hr->end() &&
           start <= nextTop,
           "Preconditions.");
    // Otherwise, record the number of word's we'll examine.
    size_t words_done = (nextTop - start);
    // Find the first marked object at or after "start".
    start = _bm->getNextMarkedWordAddress(start, nextTop);
    size_t marked_bytes = 0;

    // Below, the term "card num" means the result of shifting an address
    // by the card shift -- address 0 corresponds to card number 0.  One
    // must subtract the card num of the bottom of the heap to obtain a
    // card table index.
    // The first card num of the sequence of live cards currently being
    // constructed.  -1 ==> no sequence.
    intptr_t start_card_num = -1;
    // The last card num of the sequence of live cards currently being
    // constructed.  -1 ==> no sequence.
    intptr_t last_card_num = -1;

    while (start < nextTop) {
      if (_yield && _cm->do_yield_check()) {
        // We yielded.  It might be for a full collection, in which case
        // all bets are off; terminate the traversal.
        if (_cm->has_aborted()) {
          _changed = false;
          return true;
        } else {
          // Otherwise, it might be a collection pause, and the region
          // we're looking at might be in the collection set.  We'll
          // abandon this region.
          return false;
        }
      }
      oop obj = oop(start);
      int obj_sz = obj->size();
      // The card num of the start of the current object.
      intptr_t obj_card_num =
        intptr_t(uintptr_t(start) >> CardTableModRefBS::card_shift);

      HeapWord* obj_last = start + obj_sz - 1;
      intptr_t obj_last_card_num =
        intptr_t(uintptr_t(obj_last) >> CardTableModRefBS::card_shift);

      if (obj_card_num != last_card_num) {
        if (start_card_num == -1) {
          assert(last_card_num == -1, "Both or neither.");
          start_card_num = obj_card_num;
        } else {
          assert(last_card_num != -1, "Both or neither.");
          assert(obj_card_num >= last_card_num, "Inv");
          if ((obj_card_num - last_card_num) > 1) {
            // Mark the last run, and start a new one.
            mark_card_num_range(start_card_num, last_card_num);
            start_card_num = obj_card_num;
          }
        }
#if CARD_BM_TEST_MODE
        /*
        gclog_or_tty->print_cr("Setting bits from %d/%d.",
                               obj_card_num - _bottom_card_num,
                               obj_last_card_num - _bottom_card_num);
        */
        for (intptr_t j = obj_card_num; j <= obj_last_card_num; j++) {
          _card_bm->par_at_put(j - _bottom_card_num, 1);
        }
#endif
      }
      // In any case, we set the last card num.
      last_card_num = obj_last_card_num;

1427
      marked_bytes += (size_t)obj_sz * HeapWordSize;
1428 1429 1430 1431 1432
      // Find the next marked object after this one.
      start = _bm->getNextMarkedWordAddress(start + 1, nextTop);
      _changed = true;
    }
    // Handle the last range, if any.
1433
    if (start_card_num != -1) {
1434
      mark_card_num_range(start_card_num, last_card_num);
1435
    }
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
    if (_final) {
      // Mark the allocated-since-marking portion...
      HeapWord* tp = hr->top();
      if (nextTop < tp) {
        start_card_num =
          intptr_t(uintptr_t(nextTop) >> CardTableModRefBS::card_shift);
        last_card_num =
          intptr_t(uintptr_t(tp) >> CardTableModRefBS::card_shift);
        mark_card_num_range(start_card_num, last_card_num);
        // This definitely means the region has live objects.
1446
        set_bit_for_region(hr);
1447 1448 1449 1450 1451 1452
      }
    }

    hr->add_to_marked_bytes(marked_bytes);
    // Update the live region bitmap.
    if (marked_bytes > 0) {
1453
      set_bit_for_region(hr);
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
    }
    hr->set_top_at_conc_mark_count(nextTop);
    _tot_live += hr->next_live_bytes();
    _tot_used += hr->used();
    _words_done = words_done;

    if (!_final) {
      ++_regions_done;
      if (_regions_done % 10 == 0) {
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - _start_vtime_sec;
        if (elapsed_vtime_sec > (10.0 / 1000.0)) {
          jlong sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->cleanup_sleep_factor() * 1000.0);
          os::sleep(Thread::current(), sleep_time_ms, false);
          _start_vtime_sec = end_vtime_sec;
        }
      }
    }

    return false;
  }

  bool changed() { return _changed;  }
  void reset()   { _changed = false; _words_done = 0; }
  void no_yield() { _yield = false; }
  size_t words_done() { return _words_done; }
  size_t tot_live() { return _tot_live; }
  size_t tot_used() { return _tot_used; }
};


void ConcurrentMark::calcDesiredRegions() {
  _region_bm.clear();
  _card_bm.clear();
  CalcLiveObjectsClosure calccl(false /*final*/,
                                nextMarkBitMap(), this,
1491
                                &_region_bm, &_card_bm);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
  G1CollectedHeap *g1h = G1CollectedHeap::heap();
  g1h->heap_region_iterate(&calccl);

  do {
    calccl.reset();
    g1h->heap_region_iterate(&calccl);
  } while (calccl.changed());
}

class G1ParFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  CMBitMap* _bm;
  size_t _n_workers;
  size_t *_live_bytes;
  size_t *_used_bytes;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParFinalCountTask(G1CollectedHeap* g1h, CMBitMap* bm,
1512 1513
                      BitMap* region_bm, BitMap* card_bm)
    : AbstractGangTask("G1 final counting"), _g1h(g1h),
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
    _bm(bm), _region_bm(region_bm), _card_bm(card_bm),
    _n_workers(0)
  {
    // Use the value already set as the number of active threads
    // in the call to run_task().  Needed for the allocation of
    // _live_bytes and _used_bytes.
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
1524
    } else {
1525
      _n_workers = 1;
1526
    }
1527

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
    _live_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
    _used_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
  }

  ~G1ParFinalCountTask() {
    FREE_C_HEAP_ARRAY(size_t, _live_bytes);
    FREE_C_HEAP_ARRAY(size_t, _used_bytes);
  }

  void work(int i) {
    CalcLiveObjectsClosure calccl(true /*final*/,
                                  _bm, _g1h->concurrent_mark(),
1540
                                  _region_bm, _card_bm);
1541
    calccl.no_yield();
1542
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1543
      _g1h->heap_region_par_iterate_chunked(&calccl, i,
1544
                                            (int) _n_workers,
1545
                                            HeapRegion::FinalCountClaimValue);
1546 1547 1548 1549 1550
    } else {
      _g1h->heap_region_iterate(&calccl);
    }
    assert(calccl.complete(), "Shouldn't have yielded!");

1551
    assert((size_t) i < _n_workers, "invariant");
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
    _live_bytes[i] = calccl.tot_live();
    _used_bytes[i] = calccl.tot_used();
  }
  size_t live_bytes()  {
    size_t live_bytes = 0;
    for (size_t i = 0; i < _n_workers; ++i)
      live_bytes += _live_bytes[i];
    return live_bytes;
  }
  size_t used_bytes()  {
    size_t used_bytes = 0;
    for (size_t i = 0; i < _n_workers; ++i)
      used_bytes += _used_bytes[i];
    return used_bytes;
  }
};

class G1ParNoteEndTask;

class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  G1CollectedHeap* _g1;
  int _worker_num;
  size_t _max_live_bytes;
  size_t _regions_claimed;
  size_t _freed_bytes;
T
tonyp 已提交
1577
  FreeRegionList* _local_cleanup_list;
T
tonyp 已提交
1578
  OldRegionSet* _old_proxy_set;
T
tonyp 已提交
1579 1580
  HumongousRegionSet* _humongous_proxy_set;
  HRRSCleanupTask* _hrrs_cleanup_task;
1581 1582 1583 1584 1585
  double _claimed_region_time;
  double _max_region_time;

public:
  G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
T
tonyp 已提交
1586 1587
                             int worker_num,
                             FreeRegionList* local_cleanup_list,
T
tonyp 已提交
1588
                             OldRegionSet* old_proxy_set,
T
tonyp 已提交
1589
                             HumongousRegionSet* humongous_proxy_set,
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
                             HRRSCleanupTask* hrrs_cleanup_task) :
    _g1(g1), _worker_num(worker_num),
    _max_live_bytes(0), _regions_claimed(0),
    _freed_bytes(0),
    _claimed_region_time(0.0), _max_region_time(0.0),
    _local_cleanup_list(local_cleanup_list),
    _old_proxy_set(old_proxy_set),
    _humongous_proxy_set(humongous_proxy_set),
    _hrrs_cleanup_task(hrrs_cleanup_task) { }

1600 1601
  size_t freed_bytes() { return _freed_bytes; }

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
  bool doHeapRegion(HeapRegion *hr) {
    // We use a claim value of zero here because all regions
    // were claimed with value 1 in the FinalCount task.
    hr->reset_gc_time_stamp();
    if (!hr->continuesHumongous()) {
      double start = os::elapsedTime();
      _regions_claimed++;
      hr->note_end_of_marking();
      _max_live_bytes += hr->max_live_bytes();
      _g1->free_region_if_empty(hr,
                                &_freed_bytes,
                                _local_cleanup_list,
                                _old_proxy_set,
                                _humongous_proxy_set,
                                _hrrs_cleanup_task,
                                true /* par */);
      double region_time = (os::elapsedTime() - start);
      _claimed_region_time += region_time;
      if (region_time > _max_region_time) {
        _max_region_time = region_time;
      }
    }
    return false;
  }
1626 1627 1628 1629 1630 1631 1632 1633 1634

  size_t max_live_bytes() { return _max_live_bytes; }
  size_t regions_claimed() { return _regions_claimed; }
  double claimed_region_time_sec() { return _claimed_region_time; }
  double max_region_time_sec() { return _max_region_time; }
};

class G1ParNoteEndTask: public AbstractGangTask {
  friend class G1NoteEndOfConcMarkClosure;
1635

1636 1637 1638 1639
protected:
  G1CollectedHeap* _g1h;
  size_t _max_live_bytes;
  size_t _freed_bytes;
1640 1641
  FreeRegionList* _cleanup_list;

1642 1643
public:
  G1ParNoteEndTask(G1CollectedHeap* g1h,
1644
                   FreeRegionList* cleanup_list) :
1645
    AbstractGangTask("G1 note end"), _g1h(g1h),
1646
    _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1647 1648 1649

  void work(int i) {
    double start = os::elapsedTime();
T
tonyp 已提交
1650
    FreeRegionList local_cleanup_list("Local Cleanup List");
T
tonyp 已提交
1651
    OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
T
tonyp 已提交
1652 1653 1654
    HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
    HRRSCleanupTask hrrs_cleanup_task;
    G1NoteEndOfConcMarkClosure g1_note_end(_g1h, i, &local_cleanup_list,
T
tonyp 已提交
1655
                                           &old_proxy_set,
T
tonyp 已提交
1656 1657
                                           &humongous_proxy_set,
                                           &hrrs_cleanup_task);
1658
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1659
      _g1h->heap_region_par_iterate_chunked(&g1_note_end, i,
1660
                                            _g1h->workers()->active_workers(),
1661
                                            HeapRegion::NoteEndClaimValue);
1662 1663 1664 1665 1666
    } else {
      _g1h->heap_region_iterate(&g1_note_end);
    }
    assert(g1_note_end.complete(), "Shouldn't have yielded!");

1667 1668 1669
    // Now update the lists
    _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
                                            NULL /* free_list */,
T
tonyp 已提交
1670
                                            &old_proxy_set,
T
tonyp 已提交
1671
                                            &humongous_proxy_set,
1672
                                            true /* par */);
1673 1674 1675 1676
    {
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      _max_live_bytes += g1_note_end.max_live_bytes();
      _freed_bytes += g1_note_end.freed_bytes();
1677

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
      // If we iterate over the global cleanup list at the end of
      // cleanup to do this printing we will not guarantee to only
      // generate output for the newly-reclaimed regions (the list
      // might not be empty at the beginning of cleanup; we might
      // still be working on its previous contents). So we do the
      // printing here, before we append the new regions to the global
      // cleanup list.

      G1HRPrinter* hr_printer = _g1h->hr_printer();
      if (hr_printer->is_active()) {
        HeapRegionLinkedListIterator iter(&local_cleanup_list);
        while (iter.more_available()) {
          HeapRegion* hr = iter.get_next();
          hr_printer->cleanup(hr);
        }
      }

T
tonyp 已提交
1695 1696 1697 1698
      _cleanup_list->add_as_tail(&local_cleanup_list);
      assert(local_cleanup_list.is_empty(), "post-condition");

      HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
    }
    double end = os::elapsedTime();
    if (G1PrintParCleanupStats) {
      gclog_or_tty->print("     Worker thread %d [%8.3f..%8.3f = %8.3f ms] "
                          "claimed %d regions (tot = %8.3f ms, max = %8.3f ms).\n",
                          i, start, end, (end-start)*1000.0,
                          g1_note_end.regions_claimed(),
                          g1_note_end.claimed_region_time_sec()*1000.0,
                          g1_note_end.max_region_time_sec()*1000.0);
    }
  }
  size_t max_live_bytes() { return _max_live_bytes; }
  size_t freed_bytes() { return _freed_bytes; }
};

class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
  G1RemSet* _g1rs;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParScrubRemSetTask(G1CollectedHeap* g1h,
                       BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
    _region_bm(region_bm), _card_bm(card_bm)
  {}

  void work(int i) {
1727
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1728 1729
      _g1rs->scrub_par(_region_bm, _card_bm, i,
                       HeapRegion::ScrubRemSetClaimValue);
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
    } else {
      _g1rs->scrub(_region_bm, _card_bm);
    }
  }

};

void ConcurrentMark::cleanup() {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

T
tonyp 已提交
1749
  HRSPhaseSetter x(HRSPhaseCleanup);
1750 1751
  g1h->verify_region_sets_optional();

1752 1753 1754 1755
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1756 1757 1758
    Universe::verify(/* allow dirty */ true,
                     /* silent      */ false,
                     /* option      */ VerifyOption_G1UsePrevMarking);
1759 1760
  }

1761 1762 1763 1764 1765
  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_cleanup_start();

  double start = os::elapsedTime();

T
tonyp 已提交
1766 1767
  HeapRegionRemSet::reset_for_cleanup_tasks();

1768 1769 1770
  g1h->set_par_threads();
  size_t n_workers = g1h->n_par_threads();

1771 1772 1773
  // Do counting once more with the world stopped for good measure.
  G1ParFinalCountTask g1_par_count_task(g1h, nextMarkBitMap(),
                                        &_region_bm, &_card_bm);
1774
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1775 1776 1777 1778
    assert(g1h->check_heap_region_claim_values(
                                               HeapRegion::InitialClaimValue),
           "sanity check");

1779 1780
    assert(g1h->n_par_threads() == (int) n_workers,
      "Should not have been reset");
1781
    g1h->workers()->run_task(&g1_par_count_task);
1782
    // Done with the parallel phase so reset to 0.
1783
    g1h->set_par_threads(0);
1784 1785 1786 1787

    assert(g1h->check_heap_region_claim_values(
                                             HeapRegion::FinalCountClaimValue),
           "sanity check");
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
  } else {
    g1_par_count_task.work(0);
  }

  size_t known_garbage_bytes =
    g1_par_count_task.used_bytes() - g1_par_count_task.live_bytes();
  g1p->set_known_garbage_bytes(known_garbage_bytes);

  size_t start_used_bytes = g1h->used();
  _at_least_one_mark_complete = true;
  g1h->set_marking_complete();

1800 1801 1802 1803 1804 1805 1806 1807 1808
  ergo_verbose4(ErgoConcCycles,
           "finish cleanup",
           ergo_format_byte("occupancy")
           ergo_format_byte("capacity")
           ergo_format_byte_perc("known garbage"),
           start_used_bytes, g1h->capacity(),
           known_garbage_bytes,
           ((double) known_garbage_bytes / (double) g1h->capacity()) * 100.0);

1809 1810 1811 1812 1813 1814 1815 1816 1817
  double count_end = os::elapsedTime();
  double this_final_counting_time = (count_end - start);
  if (G1PrintParCleanupStats) {
    gclog_or_tty->print_cr("Cleanup:");
    gclog_or_tty->print_cr("  Finalize counting: %8.3f ms",
                           this_final_counting_time*1000.0);
  }
  _total_counting_time += this_final_counting_time;

1818 1819 1820 1821 1822
  if (G1PrintRegionLivenessInfo) {
    G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
    _g1h->heap_region_iterate(&cl);
  }

1823 1824 1825 1826 1827 1828 1829
  // Install newly created mark bitMap as "prev".
  swapMarkBitMaps();

  g1h->reset_gc_time_stamp();

  // Note end of marking in all heap regions.
  double note_end_start = os::elapsedTime();
1830
  G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
1831
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1832
    g1h->set_par_threads((int)n_workers);
1833 1834
    g1h->workers()->run_task(&g1_par_note_end_task);
    g1h->set_par_threads(0);
1835 1836 1837

    assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
           "sanity check");
1838 1839 1840
  } else {
    g1_par_note_end_task.work(0);
  }
1841 1842 1843 1844 1845 1846 1847

  if (!cleanup_list_is_empty()) {
    // The cleanup list is not empty, so we'll have to process it
    // concurrently. Notify anyone else that might be wanting free
    // regions that there will be more free regions coming soon.
    g1h->set_free_regions_coming();
  }
1848 1849 1850 1851 1852 1853
  double note_end_end = os::elapsedTime();
  if (G1PrintParCleanupStats) {
    gclog_or_tty->print_cr("  note end of marking: %8.3f ms.",
                           (note_end_end - note_end_start)*1000.0);
  }

1854

1855 1856 1857 1858 1859
  // call below, since it affects the metric by which we sort the heap
  // regions.
  if (G1ScrubRemSets) {
    double rs_scrub_start = os::elapsedTime();
    G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
1860
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1861
      g1h->set_par_threads((int)n_workers);
1862 1863
      g1h->workers()->run_task(&g1_par_scrub_rs_task);
      g1h->set_par_threads(0);
1864 1865 1866 1867

      assert(g1h->check_heap_region_claim_values(
                                            HeapRegion::ScrubRemSetClaimValue),
             "sanity check");
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
    } else {
      g1_par_scrub_rs_task.work(0);
    }

    double rs_scrub_end = os::elapsedTime();
    double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
    _total_rs_scrub_time += this_rs_scrub_time;
  }

  // this will also free any regions totally full of garbage objects,
  // and sort the regions.
1879
  g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

  // Statistics.
  double end = os::elapsedTime();
  _cleanup_times.add((end - start) * 1000.0);

  // G1CollectedHeap::heap()->print();
  // gclog_or_tty->print_cr("HEAP GC TIME STAMP : %d",
  // G1CollectedHeap::heap()->get_gc_time_stamp());

  if (PrintGC || PrintGCDetails) {
    g1h->print_size_transition(gclog_or_tty,
                               start_used_bytes,
                               g1h->used(),
                               g1h->capacity());
  }

  size_t cleaned_up_bytes = start_used_bytes - g1h->used();
  g1p->decrease_known_garbage_bytes(cleaned_up_bytes);

1899 1900 1901 1902
  // Clean up will have freed any regions completely full of garbage.
  // Update the soft reference policy with the new heap occupancy.
  Universe::update_heap_info_at_gc();

1903 1904 1905 1906
  // We need to make this be a "collection" so any collection pause that
  // races with it goes around and waits for completeCleanup to finish.
  g1h->increment_total_collections();

J
johnc 已提交
1907
  if (VerifyDuringGC) {
1908 1909 1910
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(after)");
    Universe::heap()->prepare_for_verify();
1911 1912 1913
    Universe::verify(/* allow dirty */ true,
                     /* silent      */ false,
                     /* option      */ VerifyOption_G1UsePrevMarking);
1914
  }
1915 1916

  g1h->verify_region_sets_optional();
1917 1918 1919 1920 1921
}

void ConcurrentMark::completeCleanup() {
  if (has_aborted()) return;

1922 1923 1924
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  _cleanup_list.verify_optional();
T
tonyp 已提交
1925
  FreeRegionList tmp_free_list("Tmp Free List");
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
                           "cleanup list has "SIZE_FORMAT" entries",
                           _cleanup_list.length());
  }

  // Noone else should be accessing the _cleanup_list at this point,
  // so it's not necessary to take any locks
  while (!_cleanup_list.is_empty()) {
    HeapRegion* hr = _cleanup_list.remove_head();
    assert(hr != NULL, "the list was not empty");
1938
    hr->par_clear();
T
tonyp 已提交
1939
    tmp_free_list.add_as_tail(hr);
1940 1941 1942 1943 1944 1945 1946

    // Instead of adding one region at a time to the secondary_free_list,
    // we accumulate them in the local list and move them a few at a
    // time. This also cuts down on the number of notify_all() calls
    // we do during this process. We'll also append the local list when
    // _cleanup_list is empty (which means we just removed the last
    // region from the _cleanup_list).
T
tonyp 已提交
1947
    if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1948 1949 1950 1951 1952 1953
        _cleanup_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
                               "appending "SIZE_FORMAT" entries to the "
                               "secondary_free_list, clean list still has "
                               SIZE_FORMAT" entries",
T
tonyp 已提交
1954
                               tmp_free_list.length(),
1955 1956 1957 1958 1959
                               _cleanup_list.length());
      }

      {
        MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
T
tonyp 已提交
1960
        g1h->secondary_free_list_add_as_tail(&tmp_free_list);
1961 1962 1963 1964 1965 1966 1967
        SecondaryFreeList_lock->notify_all();
      }

      if (G1StressConcRegionFreeing) {
        for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
          os::sleep(Thread::current(), (jlong) 1, false);
        }
1968 1969 1970
      }
    }
  }
T
tonyp 已提交
1971
  assert(tmp_free_list.is_empty(), "post-condition");
1972 1973
}

1974 1975
// Support closures for reference procssing in G1

1976 1977 1978 1979 1980
bool G1CMIsAliveClosure::do_object_b(oop obj) {
  HeapWord* addr = (HeapWord*)obj;
  return addr != NULL &&
         (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
}
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

class G1CMKeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
  ConcurrentMark*  _cm;
  CMBitMap*        _bitMap;
 public:
  G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm,
                       CMBitMap* bitMap) :
    _g1(g1), _cm(cm),
    _bitMap(bitMap) {}

1992 1993
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
1994

1995
  template <class T> void do_oop_work(T* p) {
1996 1997 1998
    oop obj = oopDesc::load_decode_heap_oop(p);
    HeapWord* addr = (HeapWord*)obj;

1999
    if (_cm->verbose_high()) {
2000
      gclog_or_tty->print_cr("\t[0] we're looking at location "
2001 2002 2003
                             "*"PTR_FORMAT" = "PTR_FORMAT,
                             p, (void*) obj);
    }
2004 2005

    if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
2006
      _bitMap->mark(addr);
2007
      _cm->mark_stack_push(obj);
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
    }
  }
};

class G1CMDrainMarkingStackClosure: public VoidClosure {
  CMMarkStack*                  _markStack;
  CMBitMap*                     _bitMap;
  G1CMKeepAliveClosure*         _oopClosure;
 public:
  G1CMDrainMarkingStackClosure(CMBitMap* bitMap, CMMarkStack* markStack,
                               G1CMKeepAliveClosure* oopClosure) :
    _bitMap(bitMap),
    _markStack(markStack),
    _oopClosure(oopClosure)
  {}

  void do_void() {
    _markStack->drain((OopClosure*)_oopClosure, _bitMap, false);
  }
};

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
// 'Keep Alive' closure used by parallel reference processing.
// An instance of this closure is used in the parallel reference processing
// code rather than an instance of G1CMKeepAliveClosure. We could have used
// the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
// placed on to discovered ref lists once so we can mark and push with no
// need to check whether the object has already been marked. Using the
// G1CMKeepAliveClosure would mean, however, having all the worker threads
// operating on the global mark stack. This means that an individual
// worker would be doing lock-free pushes while it processes its own
// discovered ref list followed by drain call. If the discovered ref lists
// are unbalanced then this could cause interference with the other
// workers. Using a CMTask (and its embedded local data structures)
// avoids that potential interference.
class G1CMParKeepAliveAndDrainClosure: public OopClosure {
  ConcurrentMark*  _cm;
  CMTask*          _task;
  int              _ref_counter_limit;
  int              _ref_counter;
 public:
2048 2049 2050
  G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
    _cm(cm), _task(task),
    _ref_counter_limit(G1RefProcDrainInterval) {
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
    assert(_ref_counter_limit > 0, "sanity");
    _ref_counter = _ref_counter_limit;
  }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    if (!_cm->has_overflown()) {
      oop obj = oopDesc::load_decode_heap_oop(p);
2061
      if (_cm->verbose_high()) {
2062 2063 2064
        gclog_or_tty->print_cr("\t[%d] we're looking at location "
                               "*"PTR_FORMAT" = "PTR_FORMAT,
                               _task->task_id(), p, (void*) obj);
2065
      }
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

      _task->deal_with_reference(obj);
      _ref_counter--;

      if (_ref_counter == 0) {
        // We have dealt with _ref_counter_limit references, pushing them and objects
        // reachable from them on to the local stack (and possibly the global stack).
        // Call do_marking_step() to process these entries. We call the routine in a
        // loop, which we'll exit if there's nothing more to do (i.e. we're done
        // with the entries that we've pushed as a result of the deal_with_reference
        // calls above) or we overflow.
        // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
        // while there may still be some work to do. (See the comment at the
        // beginning of CMTask::do_marking_step() for those conditions - one of which
        // is reaching the specified time target.) It is only when
        // CMTask::do_marking_step() returns without setting the has_aborted() flag
        // that the marking has completed.
        do {
          double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
          _task->do_marking_step(mark_step_duration_ms,
                                 false /* do_stealing    */,
                                 false /* do_termination */);
        } while (_task->has_aborted() && !_cm->has_overflown());
        _ref_counter = _ref_counter_limit;
      }
    } else {
2092
      if (_cm->verbose_high()) {
2093
         gclog_or_tty->print_cr("\t[%d] CM Overflow", _task->task_id());
2094
      }
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
    }
  }
};

class G1CMParDrainMarkingStackClosure: public VoidClosure {
  ConcurrentMark* _cm;
  CMTask* _task;
 public:
  G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
    _cm(cm), _task(task)
  {}

  void do_void() {
    do {
2109 2110 2111 2112
      if (_cm->verbose_high()) {
        gclog_or_tty->print_cr("\t[%d] Drain: Calling do marking_step",
                               _task->task_id());
      }
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133

      // We call CMTask::do_marking_step() to completely drain the local and
      // global marking stacks. The routine is called in a loop, which we'll
      // exit if there's nothing more to do (i.e. we'completely drained the
      // entries that were pushed as a result of applying the
      // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
      // lists above) or we overflow the global marking stack.
      // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
      // while there may still be some work to do. (See the comment at the
      // beginning of CMTask::do_marking_step() for those conditions - one of which
      // is reaching the specified time target.) It is only when
      // CMTask::do_marking_step() returns without setting the has_aborted() flag
      // that the marking has completed.

      _task->do_marking_step(1000000000.0 /* something very large */,
                             true /* do_stealing    */,
                             true /* do_termination */);
    } while (_task->has_aborted() && !_cm->has_overflown());
  }
};

2134 2135 2136 2137
// Implementation of AbstractRefProcTaskExecutor for parallel
// reference processing at the end of G1 concurrent marking

class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2138 2139 2140 2141 2142 2143 2144
private:
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;
  WorkGang*        _workers;
  int              _active_workers;

public:
2145
  G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2146 2147 2148
                        ConcurrentMark* cm,
                        WorkGang* workers,
                        int n_workers) :
2149 2150
    _g1h(g1h), _cm(cm),
    _workers(workers), _active_workers(n_workers) { }
2151 2152 2153 2154 2155 2156

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

2157
class G1CMRefProcTaskProxy: public AbstractGangTask {
2158 2159 2160 2161 2162 2163
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;

public:
2164
  G1CMRefProcTaskProxy(ProcessTask& proc_task,
2165
                     G1CollectedHeap* g1h,
2166
                     ConcurrentMark* cm) :
2167
    AbstractGangTask("Process reference objects in parallel"),
2168
    _proc_task(proc_task), _g1h(g1h), _cm(cm) { }
2169 2170 2171 2172

  virtual void work(int i) {
    CMTask* marking_task = _cm->task(i);
    G1CMIsAliveClosure g1_is_alive(_g1h);
2173
    G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
2174 2175 2176 2177 2178 2179
    G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);

    _proc_task.work(i, g1_is_alive, g1_par_keep_alive, g1_par_drain);
  }
};

2180
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2181 2182
  assert(_workers != NULL, "Need parallel worker threads.");

2183
  G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2184 2185 2186 2187 2188 2189 2190 2191 2192

  // We need to reset the phase for each task execution so that
  // the termination protocol of CMTask::do_marking_step works.
  _cm->set_phase(_active_workers, false /* concurrent */);
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

2193
class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2194 2195 2196 2197
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
2198
  G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2199
    AbstractGangTask("Enqueue reference objects in parallel"),
2200
    _enq_task(enq_task) { }
2201 2202 2203 2204 2205 2206

  virtual void work(int i) {
    _enq_task.work(i);
  }
};

2207
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2208 2209
  assert(_workers != NULL, "Need parallel worker threads.");

2210
  G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2211 2212 2213 2214 2215 2216

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

2217 2218 2219 2220
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  ResourceMark rm;
  HandleMark   hm;

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Is alive closure.
  G1CMIsAliveClosure g1_is_alive(g1h);

  // Inner scope to exclude the cleaning of the string and symbol
  // tables from the displayed time.
  {
    bool verbose = PrintGC && PrintGCDetails;
    if (verbose) {
      gclog_or_tty->put(' ');
    }
    TraceTime t("GC ref-proc", verbose, false, gclog_or_tty);
2234

2235
    ReferenceProcessor* rp = g1h->ref_processor_cm();
2236

2237 2238
    // See the comment in G1CollectedHeap::ref_processing_init()
    // about how reference processing currently works in G1.
2239

2240 2241 2242
    // Process weak references.
    rp->setup_policy(clear_all_soft_refs);
    assert(_markStack.isEmpty(), "mark stack should be empty");
2243

2244 2245 2246
    G1CMKeepAliveClosure g1_keep_alive(g1h, this, nextMarkBitMap());
    G1CMDrainMarkingStackClosure
      g1_drain_mark_stack(nextMarkBitMap(), &_markStack, &g1_keep_alive);
2247

2248 2249
    // We use the work gang from the G1CollectedHeap and we utilize all
    // the worker threads.
2250
    int active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1;
2251
    active_workers = MAX2(MIN2(active_workers, (int)_max_task_num), 1);
2252

2253
    G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2254
                                              g1h->workers(), active_workers);
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

    if (rp->processing_is_mt()) {
      // Set the degree of MT here.  If the discovery is done MT, there
      // may have been a different number of threads doing the discovery
      // and a different number of discovered lists may have Ref objects.
      // That is OK as long as the Reference lists are balanced (see
      // balance_all_queues() and balance_queues()).
      rp->set_active_mt_degree(active_workers);

      rp->process_discovered_references(&g1_is_alive,
2265 2266 2267 2268
                                      &g1_keep_alive,
                                      &g1_drain_mark_stack,
                                      &par_task_executor);

2269 2270 2271 2272 2273 2274 2275 2276 2277
      // The work routines of the parallel keep_alive and drain_marking_stack
      // will set the has_overflown flag if we overflow the global marking
      // stack.
    } else {
      rp->process_discovered_references(&g1_is_alive,
                                        &g1_keep_alive,
                                        &g1_drain_mark_stack,
                                        NULL);
    }
2278

2279 2280 2281 2282 2283 2284 2285
    assert(_markStack.overflow() || _markStack.isEmpty(),
            "mark stack should be empty (unless it overflowed)");
    if (_markStack.overflow()) {
      // Should have been done already when we tried to push an
      // entry on to the global mark stack. But let's do it again.
      set_has_overflown();
    }
2286

2287 2288 2289 2290 2291 2292
    if (rp->processing_is_mt()) {
      assert(rp->num_q() == active_workers, "why not");
      rp->enqueue_discovered_references(&par_task_executor);
    } else {
      rp->enqueue_discovered_references();
    }
2293

2294
    rp->verify_no_references_recorded();
2295
    assert(!rp->discovery_enabled(), "Post condition");
2296 2297
  }

2298
  // Now clean up stale oops in StringTable
2299
  StringTable::unlink(&g1_is_alive);
2300 2301
  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
}

void ConcurrentMark::swapMarkBitMaps() {
  CMBitMapRO* temp = _prevMarkBitMap;
  _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  _nextMarkBitMap  = (CMBitMap*)  temp;
}

class CMRemarkTask: public AbstractGangTask {
private:
  ConcurrentMark *_cm;

public:
  void work(int worker_i) {
    // Since all available tasks are actually started, we should
    // only proceed if we're supposed to be actived.
    if ((size_t)worker_i < _cm->active_tasks()) {
      CMTask* task = _cm->task(worker_i);
      task->record_start_time();
      do {
2322 2323 2324
        task->do_marking_step(1000000000.0 /* something very large */,
                              true /* do_stealing    */,
                              true /* do_termination */);
2325 2326 2327 2328 2329 2330 2331 2332
      } while (task->has_aborted() && !_cm->has_overflown());
      // If we overflow, then we do not want to restart. We instead
      // want to abort remark and do concurrent marking again.
      task->record_end_time();
    }
  }

  CMRemarkTask(ConcurrentMark* cm) :
2333 2334 2335
    AbstractGangTask("Par Remark"), _cm(cm) {
    _cm->terminator()->reset_for_reuse(cm->_g1h->workers()->active_workers());
  }
2336 2337 2338 2339 2340 2341 2342 2343 2344
};

void ConcurrentMark::checkpointRootsFinalWork() {
  ResourceMark rm;
  HandleMark   hm;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  g1h->ensure_parsability(false);

2345
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2346
    G1CollectedHeap::StrongRootsScope srs(g1h);
2347 2348 2349 2350 2351 2352 2353
    // this is remark, so we'll use up all active threads
    int active_workers = g1h->workers()->active_workers();
    if (active_workers == 0) {
      assert(active_workers > 0, "Should have been set earlier");
      active_workers = ParallelGCThreads;
      g1h->workers()->set_active_workers(active_workers);
    }
2354
    set_phase(active_workers, false /* concurrent */);
2355 2356 2357 2358
    // Leave _parallel_marking_threads at it's
    // value originally calculated in the ConcurrentMark
    // constructor and pass values of the active workers
    // through the gang in the task.
2359 2360

    CMRemarkTask remarkTask(this);
2361
    g1h->set_par_threads(active_workers);
2362 2363 2364
    g1h->workers()->run_task(&remarkTask);
    g1h->set_par_threads(0);
  } else {
2365
    G1CollectedHeap::StrongRootsScope srs(g1h);
2366 2367
    // this is remark, so we'll use up all available threads
    int active_workers = 1;
2368
    set_phase(active_workers, false /* concurrent */);
2369 2370 2371 2372 2373 2374 2375

    CMRemarkTask remarkTask(this);
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
    remarkTask.work(0);
  }
2376 2377
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

  print_stats();

#if VERIFY_OBJS_PROCESSED
  if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
    gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
                           _scan_obj_cl.objs_processed,
                           ThreadLocalObjQueue::objs_enqueued);
    guarantee(_scan_obj_cl.objs_processed ==
              ThreadLocalObjQueue::objs_enqueued,
              "Different number of objs processed and enqueued.");
  }
#endif
}

2393 2394
#ifndef PRODUCT

2395
class PrintReachableOopClosure: public OopClosure {
2396 2397 2398
private:
  G1CollectedHeap* _g1h;
  outputStream*    _out;
2399
  VerifyOption     _vo;
2400
  bool             _all;
2401 2402

public:
2403 2404
  PrintReachableOopClosure(outputStream* out,
                           VerifyOption  vo,
2405
                           bool          all) :
2406
    _g1h(G1CollectedHeap::heap()),
2407
    _out(out), _vo(vo), _all(all) { }
2408

2409 2410
  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(      oop* p) { do_oop_work(p); }
2411

2412 2413
  template <class T> void do_oop_work(T* p) {
    oop         obj = oopDesc::load_decode_heap_oop(p);
2414 2415 2416
    const char* str = NULL;
    const char* str2 = "";

2417 2418 2419 2420 2421
    if (obj == NULL) {
      str = "";
    } else if (!_g1h->is_in_g1_reserved(obj)) {
      str = " O";
    } else {
2422
      HeapRegion* hr  = _g1h->heap_region_containing(obj);
2423
      guarantee(hr != NULL, "invariant");
2424
      bool over_tams = false;
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
      bool marked = false;

      switch (_vo) {
        case VerifyOption_G1UsePrevMarking:
          over_tams = hr->obj_allocated_since_prev_marking(obj);
          marked = _g1h->isMarkedPrev(obj);
          break;
        case VerifyOption_G1UseNextMarking:
          over_tams = hr->obj_allocated_since_next_marking(obj);
          marked = _g1h->isMarkedNext(obj);
          break;
        case VerifyOption_G1UseMarkWord:
          marked = obj->is_gc_marked();
          break;
        default:
          ShouldNotReachHere();
2441 2442 2443
      }

      if (over_tams) {
2444 2445
        str = " >";
        if (marked) {
2446
          str2 = " AND MARKED";
2447
        }
2448 2449
      } else if (marked) {
        str = " M";
2450
      } else {
2451
        str = " NOT";
2452
      }
2453 2454
    }

2455
    _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2456 2457 2458 2459
                   p, (void*) obj, str, str2);
  }
};

2460
class PrintReachableObjectClosure : public ObjectClosure {
2461
private:
2462 2463 2464 2465 2466
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
  HeapRegion*      _hr;
2467 2468

public:
2469 2470
  PrintReachableObjectClosure(outputStream* out,
                              VerifyOption  vo,
2471 2472
                              bool          all,
                              HeapRegion*   hr) :
2473 2474
    _g1h(G1CollectedHeap::heap()),
    _out(out), _vo(vo), _all(all), _hr(hr) { }
2475

2476
  void do_object(oop o) {
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
    bool over_tams = false;
    bool marked = false;

    switch (_vo) {
      case VerifyOption_G1UsePrevMarking:
        over_tams = _hr->obj_allocated_since_prev_marking(o);
        marked = _g1h->isMarkedPrev(o);
        break;
      case VerifyOption_G1UseNextMarking:
        over_tams = _hr->obj_allocated_since_next_marking(o);
        marked = _g1h->isMarkedNext(o);
        break;
      case VerifyOption_G1UseMarkWord:
        marked = o->is_gc_marked();
        break;
      default:
        ShouldNotReachHere();
2494 2495 2496 2497 2498 2499
    }
    bool print_it = _all || over_tams || marked;

    if (print_it) {
      _out->print_cr(" "PTR_FORMAT"%s",
                     o, (over_tams) ? " >" : (marked) ? " M" : "");
2500
      PrintReachableOopClosure oopCl(_out, _vo, _all);
2501 2502
      o->oop_iterate(&oopCl);
    }
2503 2504 2505
  }
};

2506
class PrintReachableRegionClosure : public HeapRegionClosure {
2507 2508
private:
  outputStream* _out;
2509
  VerifyOption  _vo;
2510
  bool          _all;
2511 2512 2513 2514 2515 2516

public:
  bool doHeapRegion(HeapRegion* hr) {
    HeapWord* b = hr->bottom();
    HeapWord* e = hr->end();
    HeapWord* t = hr->top();
2517
    HeapWord* p = NULL;
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532

    switch (_vo) {
      case VerifyOption_G1UsePrevMarking:
        p = hr->prev_top_at_mark_start();
        break;
      case VerifyOption_G1UseNextMarking:
        p = hr->next_top_at_mark_start();
        break;
      case VerifyOption_G1UseMarkWord:
        // When we are verifying marking using the mark word
        // TAMS has no relevance.
        assert(p == NULL, "post-condition");
        break;
      default:
        ShouldNotReachHere();
2533
    }
2534
    _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2535
                   "TAMS: "PTR_FORMAT, b, e, t, p);
2536 2537 2538 2539 2540 2541 2542 2543
    _out->cr();

    HeapWord* from = b;
    HeapWord* to   = t;

    if (to > from) {
      _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
      _out->cr();
2544
      PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2545 2546 2547
      hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
      _out->cr();
    }
2548 2549 2550 2551

    return false;
  }

2552 2553
  PrintReachableRegionClosure(outputStream* out,
                              VerifyOption  vo,
2554
                              bool          all) :
2555
    _out(out), _vo(vo), _all(all) { }
2556 2557
};

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
static const char* verify_option_to_tams(VerifyOption vo) {
  switch (vo) {
    case VerifyOption_G1UsePrevMarking:
      return "PTAMS";
    case VerifyOption_G1UseNextMarking:
      return "NTAMS";
    default:
      return "NONE";
  }
}

2569
void ConcurrentMark::print_reachable(const char* str,
2570
                                     VerifyOption vo,
2571 2572 2573
                                     bool all) {
  gclog_or_tty->cr();
  gclog_or_tty->print_cr("== Doing heap dump... ");
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596

  if (G1PrintReachableBaseFile == NULL) {
    gclog_or_tty->print_cr("  #### error: no base file defined");
    return;
  }

  if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
      (JVM_MAXPATHLEN - 1)) {
    gclog_or_tty->print_cr("  #### error: file name too long");
    return;
  }

  char file_name[JVM_MAXPATHLEN];
  sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  gclog_or_tty->print_cr("  dumping to file %s", file_name);

  fileStream fout(file_name);
  if (!fout.is_open()) {
    gclog_or_tty->print_cr("  #### error: could not open file");
    return;
  }

  outputStream* out = &fout;
2597
  out->print_cr("-- USING %s", verify_option_to_tams(vo));
2598 2599
  out->cr();

2600
  out->print_cr("--- ITERATING OVER REGIONS");
2601
  out->cr();
2602
  PrintReachableRegionClosure rcl(out, vo, all);
2603
  _g1h->heap_region_iterate(&rcl);
2604
  out->cr();
2605

2606
  gclog_or_tty->print_cr("  done");
2607
  gclog_or_tty->flush();
2608 2609
}

2610 2611
#endif // PRODUCT

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
// This note is for drainAllSATBBuffers and the code in between.
// In the future we could reuse a task to do this work during an
// evacuation pause (since now tasks are not active and can be claimed
// during an evacuation pause). This was a late change to the code and
// is currently not being taken advantage of.

class CMGlobalObjectClosure : public ObjectClosure {
private:
  ConcurrentMark* _cm;

public:
  void do_object(oop obj) {
    _cm->deal_with_reference(obj);
  }

  CMGlobalObjectClosure(ConcurrentMark* cm) : _cm(cm) { }
};

void ConcurrentMark::deal_with_reference(oop obj) {
2631
  if (verbose_high()) {
2632 2633
    gclog_or_tty->print_cr("[global] we're dealing with reference "PTR_FORMAT,
                           (void*) obj);
2634
  }
2635 2636

  HeapWord* objAddr = (HeapWord*) obj;
2637
  assert(obj->is_oop_or_null(true /* ignore mark word */), "Error");
2638
  if (_g1h->is_in_g1_reserved(objAddr)) {
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
    assert(obj != NULL, "null check is implicit");
    if (!_nextMarkBitMap->isMarked(objAddr)) {
      // Only get the containing region if the object is not marked on the
      // bitmap (otherwise, it's a waste of time since we won't do
      // anything with it).
      HeapRegion* hr = _g1h->heap_region_containing_raw(obj);
      if (!hr->obj_allocated_since_next_marking(obj)) {
        if (verbose_high()) {
          gclog_or_tty->print_cr("[global] "PTR_FORMAT" is not considered "
                                 "marked", (void*) obj);
        }

        // we need to mark it first
        if (_nextMarkBitMap->parMark(objAddr)) {
          // No OrderAccess:store_load() is needed. It is implicit in the
          // CAS done in parMark(objAddr) above
          HeapWord* finger = _finger;
          if (objAddr < finger) {
            if (verbose_high()) {
              gclog_or_tty->print_cr("[global] below the global finger "
                                     "("PTR_FORMAT"), pushing it", finger);
            }
            if (!mark_stack_push(obj)) {
              if (verbose_low()) {
                gclog_or_tty->print_cr("[global] global stack overflow during "
                                       "deal_with_reference");
              }
            }
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
          }
        }
      }
    }
  }
}

void ConcurrentMark::drainAllSATBBuffers() {
  CMGlobalObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.set_closure(&oc);

  while (satb_mq_set.apply_closure_to_completed_buffer()) {
2680
    if (verbose_medium()) {
2681
      gclog_or_tty->print_cr("[global] processed an SATB buffer");
2682
    }
2683 2684 2685 2686 2687 2688 2689
  }

  // no need to check whether we should do this, as this is only
  // called during an evacuation pause
  satb_mq_set.iterate_closure_all_threads();

  satb_mq_set.set_closure(NULL);
2690
  assert(satb_mq_set.completed_buffers_num() == 0, "invariant");
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
}

void ConcurrentMark::markPrev(oop p) {
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->mark((HeapWord*)p);
}

void ConcurrentMark::clear(oop p) {
  assert(p != NULL && p->is_oop(), "expected an oop");
  HeapWord* addr = (HeapWord*)p;
  assert(addr >= _nextMarkBitMap->startWord() ||
         addr < _nextMarkBitMap->endWord(), "in a region");

  _nextMarkBitMap->clear(addr);
}

void ConcurrentMark::clearRangeBothMaps(MemRegion mr) {
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
  _nextMarkBitMap->clearRange(mr);
}

HeapRegion*
ConcurrentMark::claim_region(int task_num) {
  // "checkpoint" the finger
  HeapWord* finger = _finger;

  // _heap_end will not change underneath our feet; it only changes at
  // yield points.
  while (finger < _heap_end) {
2723
    assert(_g1h->is_in_g1_reserved(finger), "invariant");
2724

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
    // Note on how this code handles humongous regions. In the
    // normal case the finger will reach the start of a "starts
    // humongous" (SH) region. Its end will either be the end of the
    // last "continues humongous" (CH) region in the sequence, or the
    // standard end of the SH region (if the SH is the only region in
    // the sequence). That way claim_region() will skip over the CH
    // regions. However, there is a subtle race between a CM thread
    // executing this method and a mutator thread doing a humongous
    // object allocation. The two are not mutually exclusive as the CM
    // thread does not need to hold the Heap_lock when it gets
    // here. So there is a chance that claim_region() will come across
    // a free region that's in the progress of becoming a SH or a CH
    // region. In the former case, it will either
    //   a) Miss the update to the region's end, in which case it will
    //      visit every subsequent CH region, will find their bitmaps
    //      empty, and do nothing, or
    //   b) Will observe the update of the region's end (in which case
    //      it will skip the subsequent CH regions).
    // If it comes across a region that suddenly becomes CH, the
    // scenario will be similar to b). So, the race between
    // claim_region() and a humongous object allocation might force us
    // to do a bit of unnecessary work (due to some unnecessary bitmap
    // iterations) but it should not introduce and correctness issues.
    HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2749 2750 2751 2752
    HeapWord*   bottom        = curr_region->bottom();
    HeapWord*   end           = curr_region->end();
    HeapWord*   limit         = curr_region->next_top_at_mark_start();

2753
    if (verbose_low()) {
2754 2755 2756 2757
      gclog_or_tty->print_cr("[%d] curr_region = "PTR_FORMAT" "
                             "["PTR_FORMAT", "PTR_FORMAT"), "
                             "limit = "PTR_FORMAT,
                             task_num, curr_region, bottom, end, limit);
2758
    }
2759

2760 2761
    // Is the gap between reading the finger and doing the CAS too long?
    HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2762 2763 2764 2765 2766
    if (res == finger) {
      // we succeeded

      // notice that _finger == end cannot be guaranteed here since,
      // someone else might have moved the finger even further
2767
      assert(_finger >= end, "the finger should have moved forward");
2768

2769
      if (verbose_low()) {
2770 2771
        gclog_or_tty->print_cr("[%d] we were successful with region = "
                               PTR_FORMAT, task_num, curr_region);
2772
      }
2773 2774

      if (limit > bottom) {
2775
        if (verbose_low()) {
2776 2777
          gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is not empty, "
                                 "returning it ", task_num, curr_region);
2778
        }
2779 2780
        return curr_region;
      } else {
2781 2782
        assert(limit == bottom,
               "the region limit should be at bottom");
2783
        if (verbose_low()) {
2784 2785
          gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is empty, "
                                 "returning NULL", task_num, curr_region);
2786
        }
2787 2788 2789 2790 2791
        // we return NULL and the caller should try calling
        // claim_region() again.
        return NULL;
      }
    } else {
2792
      assert(_finger > finger, "the finger should have moved forward");
2793
      if (verbose_low()) {
2794 2795 2796 2797
        gclog_or_tty->print_cr("[%d] somebody else moved the finger, "
                               "global finger = "PTR_FORMAT", "
                               "our finger = "PTR_FORMAT,
                               task_num, _finger, finger);
2798
      }
2799 2800 2801 2802 2803 2804 2805 2806 2807

      // read it again
      finger = _finger;
    }
  }

  return NULL;
}

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
bool ConcurrentMark::invalidate_aborted_regions_in_cset() {
  bool result = false;
  for (int i = 0; i < (int)_max_task_num; ++i) {
    CMTask* the_task = _tasks[i];
    MemRegion mr = the_task->aborted_region();
    if (mr.start() != NULL) {
      assert(mr.end() != NULL, "invariant");
      assert(mr.word_size() > 0, "invariant");
      HeapRegion* hr = _g1h->heap_region_containing(mr.start());
      assert(hr != NULL, "invariant");
      if (hr->in_collection_set()) {
        // The region points into the collection set
        the_task->set_aborted_region(MemRegion());
        result = true;
      }
    }
  }
  return result;
}

bool ConcurrentMark::has_aborted_regions() {
  for (int i = 0; i < (int)_max_task_num; ++i) {
    CMTask* the_task = _tasks[i];
    MemRegion mr = the_task->aborted_region();
    if (mr.start() != NULL) {
      assert(mr.end() != NULL, "invariant");
      assert(mr.word_size() > 0, "invariant");
      return true;
    }
  }
  return false;
}

2841
void ConcurrentMark::oops_do(OopClosure* cl) {
2842
  if (_markStack.size() > 0 && verbose_low()) {
2843 2844
    gclog_or_tty->print_cr("[global] scanning the global marking stack, "
                           "size = %d", _markStack.size());
2845
  }
2846 2847 2848 2849 2850 2851
  // we first iterate over the contents of the mark stack...
  _markStack.oops_do(cl);

  for (int i = 0; i < (int)_max_task_num; ++i) {
    OopTaskQueue* queue = _task_queues->queue((int)i);

2852
    if (queue->size() > 0 && verbose_low()) {
2853 2854
      gclog_or_tty->print_cr("[global] scanning task queue of task %d, "
                             "size = %d", i, queue->size());
2855
    }
2856 2857 2858 2859 2860

    // ...then over the contents of the all the task queues.
    queue->oops_do(cl);
  }

2861
  // Invalidate any entries, that are in the region stack, that
2862 2863 2864 2865
  // point into the collection set
  if (_regionStack.invalidate_entries_into_cset()) {
    // otherwise, any gray objects copied during the evacuation pause
    // might not be visited.
2866
    assert(_should_gray_objects, "invariant");
2867
  }
2868 2869 2870 2871 2872 2873 2874 2875 2876

  // Invalidate any aborted regions, recorded in the individual CM
  // tasks, that point into the collection set.
  if (invalidate_aborted_regions_in_cset()) {
    // otherwise, any gray objects copied during the evacuation pause
    // might not be visited.
    assert(_should_gray_objects, "invariant");
  }

2877 2878
}

2879
void ConcurrentMark::clear_marking_state(bool clear_overflow) {
2880 2881 2882 2883
  _markStack.setEmpty();
  _markStack.clear_overflow();
  _regionStack.setEmpty();
  _regionStack.clear_overflow();
2884 2885 2886 2887 2888
  if (clear_overflow) {
    clear_has_overflown();
  } else {
    assert(has_overflown(), "pre-condition");
  }
2889 2890 2891 2892 2893
  _finger = _heap_start;

  for (int i = 0; i < (int)_max_task_num; ++i) {
    OopTaskQueue* queue = _task_queues->queue(i);
    queue->set_empty();
2894 2895
    // Clear any partial regions from the CMTasks
    _tasks[i]->clear_aborted_region();
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
  }
}

void ConcurrentMark::print_stats() {
  if (verbose_stats()) {
    gclog_or_tty->print_cr("---------------------------------------------------------------------");
    for (size_t i = 0; i < _active_tasks; ++i) {
      _tasks[i]->print_stats();
      gclog_or_tty->print_cr("---------------------------------------------------------------------");
    }
  }
}

class CSMarkOopClosure: public OopClosure {
  friend class CSMarkBitMapClosure;

  G1CollectedHeap* _g1h;
  CMBitMap*        _bm;
  ConcurrentMark*  _cm;
  oop*             _ms;
  jint*            _array_ind_stack;
  int              _ms_size;
  int              _ms_ind;
  int              _array_increment;

  bool push(oop obj, int arr_ind = 0) {
    if (_ms_ind == _ms_size) {
      gclog_or_tty->print_cr("Mark stack is full.");
      return false;
    }
    _ms[_ms_ind] = obj;
2927 2928 2929
    if (obj->is_objArray()) {
      _array_ind_stack[_ms_ind] = arr_ind;
    }
2930 2931 2932 2933 2934
    _ms_ind++;
    return true;
  }

  oop pop() {
2935 2936 2937
    if (_ms_ind == 0) {
      return NULL;
    } else {
2938 2939 2940 2941 2942
      _ms_ind--;
      return _ms[_ms_ind];
    }
  }

2943
  template <class T> bool drain() {
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
    while (_ms_ind > 0) {
      oop obj = pop();
      assert(obj != NULL, "Since index was non-zero.");
      if (obj->is_objArray()) {
        jint arr_ind = _array_ind_stack[_ms_ind];
        objArrayOop aobj = objArrayOop(obj);
        jint len = aobj->length();
        jint next_arr_ind = arr_ind + _array_increment;
        if (next_arr_ind < len) {
          push(obj, next_arr_ind);
        }
        // Now process this portion of this one.
        int lim = MIN2(next_arr_ind, len);
        for (int j = arr_ind; j < lim; j++) {
2958
          do_oop(aobj->objArrayOopDesc::obj_at_addr<T>(j));
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
        }

      } else {
        obj->oop_iterate(this);
      }
      if (abort()) return false;
    }
    return true;
  }

public:
  CSMarkOopClosure(ConcurrentMark* cm, int ms_size) :
    _g1h(G1CollectedHeap::heap()),
    _cm(cm),
    _bm(cm->nextMarkBitMap()),
    _ms_size(ms_size), _ms_ind(0),
    _ms(NEW_C_HEAP_ARRAY(oop, ms_size)),
    _array_ind_stack(NEW_C_HEAP_ARRAY(jint, ms_size)),
    _array_increment(MAX2(ms_size/8, 16))
  {}

  ~CSMarkOopClosure() {
    FREE_C_HEAP_ARRAY(oop, _ms);
    FREE_C_HEAP_ARRAY(jint, _array_ind_stack);
  }

2985 2986
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
2987

2988 2989 2990 2991
  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (oopDesc::is_null(heap_oop)) return;
    oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
    if (obj->is_forwarded()) {
      // If the object has already been forwarded, we have to make sure
      // that it's marked.  So follow the forwarding pointer.  Note that
      // this does the right thing for self-forwarding pointers in the
      // evacuation failure case.
      obj = obj->forwardee();
    }
    HeapRegion* hr = _g1h->heap_region_containing(obj);
    if (hr != NULL) {
      if (hr->in_collection_set()) {
        if (_g1h->is_obj_ill(obj)) {
          _bm->mark((HeapWord*)obj);
          if (!push(obj)) {
            gclog_or_tty->print_cr("Setting abort in CSMarkOopClosure because push failed.");
            set_abort();
          }
        }
      } else {
        // Outside the collection set; we need to gray it
        _cm->deal_with_reference(obj);
      }
    }
  }
};

class CSMarkBitMapClosure: public BitMapClosure {
  G1CollectedHeap* _g1h;
  CMBitMap*        _bitMap;
  ConcurrentMark*  _cm;
  CSMarkOopClosure _oop_cl;
public:
  CSMarkBitMapClosure(ConcurrentMark* cm, int ms_size) :
    _g1h(G1CollectedHeap::heap()),
    _bitMap(cm->nextMarkBitMap()),
    _oop_cl(cm, ms_size)
  {}

  ~CSMarkBitMapClosure() {}

  bool do_bit(size_t offset) {
    // convert offset into a HeapWord*
    HeapWord* addr = _bitMap->offsetToHeapWord(offset);
    assert(_bitMap->endWord() && addr < _bitMap->endWord(),
           "address out of range");
    assert(_bitMap->isMarked(addr), "tautology");
    oop obj = oop(addr);
    if (!obj->is_forwarded()) {
      if (!_oop_cl.push(obj)) return false;
3040 3041 3042 3043 3044
      if (UseCompressedOops) {
        if (!_oop_cl.drain<narrowOop>()) return false;
      } else {
        if (!_oop_cl.drain<oop>()) return false;
      }
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
    }
    // Otherwise...
    return true;
  }
};


class CompleteMarkingInCSHRClosure: public HeapRegionClosure {
  CMBitMap* _bm;
  CSMarkBitMapClosure _bit_cl;
  enum SomePrivateConstants {
    MSSize = 1000
  };
  bool _completed;
public:
  CompleteMarkingInCSHRClosure(ConcurrentMark* cm) :
    _bm(cm->nextMarkBitMap()),
    _bit_cl(cm, MSSize),
    _completed(true)
  {}

  ~CompleteMarkingInCSHRClosure() {}

  bool doHeapRegion(HeapRegion* r) {
    if (!r->evacuation_failed()) {
      MemRegion mr = MemRegion(r->bottom(), r->next_top_at_mark_start());
      if (!mr.is_empty()) {
        if (!_bm->iterate(&_bit_cl, mr)) {
          _completed = false;
          return true;
        }
      }
    }
    return false;
  }

  bool completed() { return _completed; }
};

class ClearMarksInHRClosure: public HeapRegionClosure {
  CMBitMap* _bm;
public:
  ClearMarksInHRClosure(CMBitMap* bm): _bm(bm) { }

  bool doHeapRegion(HeapRegion* r) {
    if (!r->used_region().is_empty() && !r->evacuation_failed()) {
      MemRegion usedMR = r->used_region();
      _bm->clearRange(r->used_region());
    }
    return false;
  }
};

void ConcurrentMark::complete_marking_in_collection_set() {
  G1CollectedHeap* g1h =  G1CollectedHeap::heap();

  if (!g1h->mark_in_progress()) {
    g1h->g1_policy()->record_mark_closure_time(0.0);
    return;
  }

  int i = 1;
  double start = os::elapsedTime();
  while (true) {
    i++;
    CompleteMarkingInCSHRClosure cmplt(this);
    g1h->collection_set_iterate(&cmplt);
    if (cmplt.completed()) break;
  }

  ClearMarksInHRClosure clr(nextMarkBitMap());
  g1h->collection_set_iterate(&clr);
3117 3118 3119 3120

  double end_time = os::elapsedTime();
  double elapsed_time_ms = (end_time - start) * 1000.0;
  g1h->g1_policy()->record_mark_closure_time(elapsed_time_ms);
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
}

// The next two methods deal with the following optimisation. Some
// objects are gray by being marked and located above the finger. If
// they are copied, during an evacuation pause, below the finger then
// the need to be pushed on the stack. The observation is that, if
// there are no regions in the collection set located above the
// finger, then the above cannot happen, hence we do not need to
// explicitly gray any objects when copying them to below the
// finger. The global stack will be scanned to ensure that, if it
// points to objects being copied, it will update their
// location. There is a tricky situation with the gray objects in
// region stack that are being coped, however. See the comment in
// newCSet().

void ConcurrentMark::newCSet() {
3137
  if (!concurrent_marking_in_progress()) {
3138 3139
    // nothing to do if marking is not in progress
    return;
3140
  }
3141 3142 3143 3144 3145 3146

  // find what the lowest finger is among the global and local fingers
  _min_finger = _finger;
  for (int i = 0; i < (int)_max_task_num; ++i) {
    CMTask* task = _tasks[i];
    HeapWord* task_finger = task->finger();
3147
    if (task_finger != NULL && task_finger < _min_finger) {
3148
      _min_finger = task_finger;
3149
    }
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
  }

  _should_gray_objects = false;

  // This fixes a very subtle and fustrating bug. It might be the case
  // that, during en evacuation pause, heap regions that contain
  // objects that are gray (by being in regions contained in the
  // region stack) are included in the collection set. Since such gray
  // objects will be moved, and because it's not easy to redirect
  // region stack entries to point to a new location (because objects
  // in one region might be scattered to multiple regions after they
  // are copied), one option is to ensure that all marked objects
  // copied during a pause are pushed on the stack. Notice, however,
  // that this problem can only happen when the region stack is not
  // empty during an evacuation pause. So, we make the fix a bit less
  // conservative and ensure that regions are pushed on the stack,
  // irrespective whether all collection set regions are below the
  // finger, if the region stack is not empty. This is expected to be
  // a rare case, so I don't think it's necessary to be smarted about it.
3169
  if (!region_stack_empty() || has_aborted_regions()) {
3170
    _should_gray_objects = true;
3171
  }
3172 3173 3174
}

void ConcurrentMark::registerCSetRegion(HeapRegion* hr) {
3175
  if (!concurrent_marking_in_progress()) return;
3176 3177

  HeapWord* region_end = hr->end();
3178
  if (region_end > _min_finger) {
3179
    _should_gray_objects = true;
3180
  }
3181 3182
}

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
// Resets the region fields of active CMTasks whose values point
// into the collection set.
void ConcurrentMark::reset_active_task_region_fields_in_cset() {
  assert(SafepointSynchronize::is_at_safepoint(), "should be in STW");
  assert(parallel_marking_threads() <= _max_task_num, "sanity");

  for (int i = 0; i < (int)parallel_marking_threads(); i += 1) {
    CMTask* task = _tasks[i];
    HeapWord* task_finger = task->finger();
    if (task_finger != NULL) {
      assert(_g1h->is_in_g1_reserved(task_finger), "not in heap");
      HeapRegion* finger_region = _g1h->heap_region_containing(task_finger);
      if (finger_region->in_collection_set()) {
        // The task's current region is in the collection set.
        // This region will be evacuated in the current GC and
        // the region fields in the task will be stale.
        task->giveup_current_region();
      }
    }
  }
}

3205 3206 3207 3208 3209 3210
// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
  // Clear all marks to force marking thread to do nothing
  _nextMarkBitMap->clearAll();
  // Empty mark stack
  clear_marking_state();
3211
  for (int i = 0; i < (int)_max_task_num; ++i) {
3212
    _tasks[i]->clear_region_fields();
3213
  }
3214 3215 3216 3217
  _has_aborted = true;

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.abandon_partial_marking();
3218 3219 3220 3221 3222
  // This can be called either during or outside marking, we'll read
  // the expected_active value from the SATB queue set.
  satb_mq_set.set_active_all_threads(
                                 false, /* new active value */
                                 satb_mq_set.is_active() /* expected_active */);
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
}

static void print_ms_time_info(const char* prefix, const char* name,
                               NumberSeq& ns) {
  gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
                         prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  if (ns.num() > 0) {
    gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
                           prefix, ns.sd(), ns.maximum());
  }
}

void ConcurrentMark::print_summary_info() {
  gclog_or_tty->print_cr(" Concurrent marking:");
  print_ms_time_info("  ", "init marks", _init_times);
  print_ms_time_info("  ", "remarks", _remark_times);
  {
    print_ms_time_info("     ", "final marks", _remark_mark_times);
    print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);

  }
  print_ms_time_info("  ", "cleanups", _cleanup_times);
  gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
                         _total_counting_time,
                         (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
                          (double)_cleanup_times.num()
                         : 0.0));
  if (G1ScrubRemSets) {
    gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
                           _total_rs_scrub_time,
                           (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
                            (double)_cleanup_times.num()
                           : 0.0));
  }
  gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
                         (_init_times.sum() + _remark_times.sum() +
                          _cleanup_times.sum())/1000.0);
  gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
                "(%8.2f s marking, %8.2f s counting).",
                cmThread()->vtime_accum(),
                cmThread()->vtime_mark_accum(),
                cmThread()->vtime_count_accum());
}

T
tonyp 已提交
3267 3268 3269 3270
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  _parallel_workers->print_worker_threads_on(st);
}

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
// Closures
// XXX: there seems to be a lot of code  duplication here;
// should refactor and consolidate the shared code.

// This closure is used to mark refs into the CMS generation in
// the CMS bit map. Called at the first checkpoint.

// We take a break if someone is trying to stop the world.
bool ConcurrentMark::do_yield_check(int worker_i) {
  if (should_yield()) {
3281
    if (worker_i == 0) {
3282
      _g1h->g1_policy()->record_concurrent_pause();
3283
    }
3284
    cmThread()->yield();
3285
    if (worker_i == 0) {
3286
      _g1h->g1_policy()->record_concurrent_pause_end();
3287
    }
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
    return true;
  } else {
    return false;
  }
}

bool ConcurrentMark::should_yield() {
  return cmThread()->should_yield();
}

bool ConcurrentMark::containing_card_is_marked(void* p) {
  size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  return _card_bm.at(offset >> CardTableModRefBS::card_shift);
}

bool ConcurrentMark::containing_cards_are_marked(void* start,
                                                 void* last) {
3305 3306
  return containing_card_is_marked(start) &&
         containing_card_is_marked(last);
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
}

#ifndef PRODUCT
// for debugging purposes
void ConcurrentMark::print_finger() {
  gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
                         _heap_start, _heap_end, _finger);
  for (int i = 0; i < (int) _max_task_num; ++i) {
    gclog_or_tty->print("   %d: "PTR_FORMAT, i, _tasks[i]->finger());
  }
  gclog_or_tty->print_cr("");
}
#endif

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
void CMTask::scan_object(oop obj) {
  assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");

  if (_cm->verbose_high()) {
    gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
                           _task_id, (void*) obj);
  }

  size_t obj_size = obj->size();
  _words_scanned += obj_size;

  obj->oop_iterate(_cm_oop_closure);
  statsOnly( ++_objs_scanned );
  check_limits();
}

3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
// Closure for iteration over bitmaps
class CMBitMapClosure : public BitMapClosure {
private:
  // the bitmap that is being iterated over
  CMBitMap*                   _nextMarkBitMap;
  ConcurrentMark*             _cm;
  CMTask*                     _task;
  // true if we're scanning a heap region claimed by the task (so that
  // we move the finger along), false if we're not, i.e. currently when
  // scanning a heap region popped from the region stack (so that we
  // do not move the task finger along; it'd be a mistake if we did so).
  bool                        _scanning_heap_region;

public:
  CMBitMapClosure(CMTask *task,
                  ConcurrentMark* cm,
                  CMBitMap* nextMarkBitMap)
    :  _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }

  void set_scanning_heap_region(bool scanning_heap_region) {
    _scanning_heap_region = scanning_heap_region;
  }

  bool do_bit(size_t offset) {
    HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3362 3363
    assert(_nextMarkBitMap->isMarked(addr), "invariant");
    assert( addr < _cm->finger(), "invariant");
3364 3365 3366

    if (_scanning_heap_region) {
      statsOnly( _task->increase_objs_found_on_bitmap() );
3367
      assert(addr >= _task->finger(), "invariant");
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
      // We move that task's local finger along.
      _task->move_finger_to(addr);
    } else {
      // We move the task's region finger along.
      _task->move_region_finger_to(addr);
    }

    _task->scan_object(oop(addr));
    // we only partially drain the local queue and global stack
    _task->drain_local_queue(true);
    _task->drain_global_stack(true);

    // if the has_aborted flag has been raised, we need to bail out of
    // the iteration
    return !_task->has_aborted();
  }
};

// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
  CMTask* _task;

public:
  void do_object(oop obj) {
    _task->deal_with_reference(obj);
  }

  CMObjectClosure(CMTask* task) : _task(task) { }
};

3400 3401 3402 3403 3404
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
                               ConcurrentMark* cm,
                               CMTask* task)
  : _g1h(g1h), _cm(cm), _task(task) {
  assert(_ref_processor == NULL, "should be initialized to NULL");
3405

3406
  if (G1UseConcMarkReferenceProcessing) {
3407
    _ref_processor = g1h->ref_processor_cm();
3408
    assert(_ref_processor != NULL, "should not be NULL");
3409
  }
3410
}
3411 3412

void CMTask::setup_for_region(HeapRegion* hr) {
3413 3414 3415 3416 3417
  // Separated the asserts so that we know which one fires.
  assert(hr != NULL,
        "claim_region() should have filtered out continues humongous regions");
  assert(!hr->continuesHumongous(),
        "claim_region() should have filtered out continues humongous regions");
3418

3419
  if (_cm->verbose_low()) {
3420 3421
    gclog_or_tty->print_cr("[%d] setting up for region "PTR_FORMAT,
                           _task_id, hr);
3422
  }
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434

  _curr_region  = hr;
  _finger       = hr->bottom();
  update_region_limit();
}

void CMTask::update_region_limit() {
  HeapRegion* hr            = _curr_region;
  HeapWord* bottom          = hr->bottom();
  HeapWord* limit           = hr->next_top_at_mark_start();

  if (limit == bottom) {
3435
    if (_cm->verbose_low()) {
3436 3437 3438
      gclog_or_tty->print_cr("[%d] found an empty region "
                             "["PTR_FORMAT", "PTR_FORMAT")",
                             _task_id, bottom, limit);
3439
    }
3440 3441 3442 3443 3444 3445 3446
    // The region was collected underneath our feet.
    // We set the finger to bottom to ensure that the bitmap
    // iteration that will follow this will not do anything.
    // (this is not a condition that holds when we set the region up,
    // as the region is not supposed to be empty in the first place)
    _finger = bottom;
  } else if (limit >= _region_limit) {
3447
    assert(limit >= _finger, "peace of mind");
3448
  } else {
3449
    assert(limit < _region_limit, "only way to get here");
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
    // This can happen under some pretty unusual circumstances.  An
    // evacuation pause empties the region underneath our feet (NTAMS
    // at bottom). We then do some allocation in the region (NTAMS
    // stays at bottom), followed by the region being used as a GC
    // alloc region (NTAMS will move to top() and the objects
    // originally below it will be grayed). All objects now marked in
    // the region are explicitly grayed, if below the global finger,
    // and we do not need in fact to scan anything else. So, we simply
    // set _finger to be limit to ensure that the bitmap iteration
    // doesn't do anything.
    _finger = limit;
  }

  _region_limit = limit;
}

void CMTask::giveup_current_region() {
3467
  assert(_curr_region != NULL, "invariant");
3468
  if (_cm->verbose_low()) {
3469 3470
    gclog_or_tty->print_cr("[%d] giving up region "PTR_FORMAT,
                           _task_id, _curr_region);
3471
  }
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
  clear_region_fields();
}

void CMTask::clear_region_fields() {
  // Values for these three fields that indicate that we're not
  // holding on to a region.
  _curr_region   = NULL;
  _finger        = NULL;
  _region_limit  = NULL;

  _region_finger = NULL;
}

3485 3486 3487 3488 3489 3490 3491 3492 3493
void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  if (cm_oop_closure == NULL) {
    assert(_cm_oop_closure != NULL, "invariant");
  } else {
    assert(_cm_oop_closure == NULL, "invariant");
  }
  _cm_oop_closure = cm_oop_closure;
}

3494
void CMTask::reset(CMBitMap* nextMarkBitMap) {
3495
  guarantee(nextMarkBitMap != NULL, "invariant");
3496

3497
  if (_cm->verbose_low()) {
3498
    gclog_or_tty->print_cr("[%d] resetting", _task_id);
3499
  }
3500 3501 3502

  _nextMarkBitMap                = nextMarkBitMap;
  clear_region_fields();
3503
  assert(_aborted_region.is_empty(), "should have been cleared");
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544

  _calls                         = 0;
  _elapsed_time_ms               = 0.0;
  _termination_time_ms           = 0.0;
  _termination_start_time_ms     = 0.0;

#if _MARKING_STATS_
  _local_pushes                  = 0;
  _local_pops                    = 0;
  _local_max_size                = 0;
  _objs_scanned                  = 0;
  _global_pushes                 = 0;
  _global_pops                   = 0;
  _global_max_size               = 0;
  _global_transfers_to           = 0;
  _global_transfers_from         = 0;
  _region_stack_pops             = 0;
  _regions_claimed               = 0;
  _objs_found_on_bitmap          = 0;
  _satb_buffers_processed        = 0;
  _steal_attempts                = 0;
  _steals                        = 0;
  _aborted                       = 0;
  _aborted_overflow              = 0;
  _aborted_cm_aborted            = 0;
  _aborted_yield                 = 0;
  _aborted_timed_out             = 0;
  _aborted_satb                  = 0;
  _aborted_termination           = 0;
#endif // _MARKING_STATS_
}

bool CMTask::should_exit_termination() {
  regular_clock_call();
  // This is called when we are in the termination protocol. We should
  // quit if, for some reason, this task wants to abort or the global
  // stack is not empty (this means that we can get work from it).
  return !_cm->mark_stack_empty() || has_aborted();
}

void CMTask::reached_limit() {
3545 3546 3547
  assert(_words_scanned >= _words_scanned_limit ||
         _refs_reached >= _refs_reached_limit ,
         "shouldn't have been called otherwise");
3548 3549 3550 3551
  regular_clock_call();
}

void CMTask::regular_clock_call() {
3552
  if (has_aborted()) return;
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568

  // First, we need to recalculate the words scanned and refs reached
  // limits for the next clock call.
  recalculate_limits();

  // During the regular clock call we do the following

  // (1) If an overflow has been flagged, then we abort.
  if (_cm->has_overflown()) {
    set_has_aborted();
    return;
  }

  // If we are not concurrent (i.e. we're doing remark) we don't need
  // to check anything else. The other steps are only needed during
  // the concurrent marking phase.
3569
  if (!concurrent()) return;
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581

  // (2) If marking has been aborted for Full GC, then we also abort.
  if (_cm->has_aborted()) {
    set_has_aborted();
    statsOnly( ++_aborted_cm_aborted );
    return;
  }

  double curr_time_ms = os::elapsedVTime() * 1000.0;

  // (3) If marking stats are enabled, then we update the step history.
#if _MARKING_STATS_
3582
  if (_words_scanned >= _words_scanned_limit) {
3583
    ++_clock_due_to_scanning;
3584 3585
  }
  if (_refs_reached >= _refs_reached_limit) {
3586
    ++_clock_due_to_marking;
3587
  }
3588 3589 3590 3591 3592 3593

  double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  _interval_start_time_ms = curr_time_ms;
  _all_clock_intervals_ms.add(last_interval_ms);

  if (_cm->verbose_medium()) {
3594 3595 3596 3597 3598 3599 3600
      gclog_or_tty->print_cr("[%d] regular clock, interval = %1.2lfms, "
                        "scanned = %d%s, refs reached = %d%s",
                        _task_id, last_interval_ms,
                        _words_scanned,
                        (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
                        _refs_reached,
                        (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
  }
#endif // _MARKING_STATS_

  // (4) We check whether we should yield. If we have to, then we abort.
  if (_cm->should_yield()) {
    // We should yield. To do this we abort the task. The caller is
    // responsible for yielding.
    set_has_aborted();
    statsOnly( ++_aborted_yield );
    return;
  }

  // (5) We check whether we've reached our time quota. If we have,
  // then we abort.
  double elapsed_time_ms = curr_time_ms - _start_time_ms;
  if (elapsed_time_ms > _time_target_ms) {
    set_has_aborted();
3618
    _has_timed_out = true;
3619 3620 3621 3622 3623 3624 3625 3626
    statsOnly( ++_aborted_timed_out );
    return;
  }

  // (6) Finally, we check whether there are enough completed STAB
  // buffers available for processing. If there are, we abort.
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3627
    if (_cm->verbose_low()) {
3628 3629
      gclog_or_tty->print_cr("[%d] aborting to deal with pending SATB buffers",
                             _task_id);
3630
    }
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
    // we do need to process SATB buffers, we'll abort and restart
    // the marking task to do so
    set_has_aborted();
    statsOnly( ++_aborted_satb );
    return;
  }
}

void CMTask::recalculate_limits() {
  _real_words_scanned_limit = _words_scanned + words_scanned_period;
  _words_scanned_limit      = _real_words_scanned_limit;

  _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  _refs_reached_limit       = _real_refs_reached_limit;
}

void CMTask::decrease_limits() {
  // This is called when we believe that we're going to do an infrequent
  // operation which will increase the per byte scanned cost (i.e. move
  // entries to/from the global stack). It basically tries to decrease the
  // scanning limit so that the clock is called earlier.

3653
  if (_cm->verbose_medium()) {
3654
    gclog_or_tty->print_cr("[%d] decreasing limits", _task_id);
3655
  }
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680

  _words_scanned_limit = _real_words_scanned_limit -
    3 * words_scanned_period / 4;
  _refs_reached_limit  = _real_refs_reached_limit -
    3 * refs_reached_period / 4;
}

void CMTask::move_entries_to_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the local queue
  oop buffer[global_stack_transfer_size];

  int n = 0;
  oop obj;
  while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
    buffer[n] = obj;
    ++n;
  }

  if (n > 0) {
    // we popped at least one entry from the local queue

    statsOnly( ++_global_transfers_to; _local_pops += n );

    if (!_cm->mark_stack_push(buffer, n)) {
3681 3682 3683 3684
      if (_cm->verbose_low()) {
        gclog_or_tty->print_cr("[%d] aborting due to global stack overflow",
                               _task_id);
      }
3685 3686 3687 3688
      set_has_aborted();
    } else {
      // the transfer was successful

3689
      if (_cm->verbose_medium()) {
3690 3691
        gclog_or_tty->print_cr("[%d] pushed %d entries to the global stack",
                               _task_id, n);
3692
      }
3693
      statsOnly( int tmp_size = _cm->mark_stack_size();
3694
                 if (tmp_size > _global_max_size) {
3695
                   _global_max_size = tmp_size;
3696
                 }
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
                 _global_pushes += n );
    }
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::get_entries_from_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the global stack.
  oop buffer[global_stack_transfer_size];
  int n;
  _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3711 3712
  assert(n <= global_stack_transfer_size,
         "we should not pop more than the given limit");
3713 3714 3715 3716
  if (n > 0) {
    // yes, we did actually pop at least one entry

    statsOnly( ++_global_transfers_from; _global_pops += n );
3717
    if (_cm->verbose_medium()) {
3718 3719
      gclog_or_tty->print_cr("[%d] popped %d entries from the global stack",
                             _task_id, n);
3720
    }
3721 3722 3723 3724
    for (int i = 0; i < n; ++i) {
      bool success = _task_queue->push(buffer[i]);
      // We only call this when the local queue is empty or under a
      // given target limit. So, we do not expect this push to fail.
3725
      assert(success, "invariant");
3726 3727 3728
    }

    statsOnly( int tmp_size = _task_queue->size();
3729
               if (tmp_size > _local_max_size) {
3730
                 _local_max_size = tmp_size;
3731
               }
3732 3733 3734 3735 3736 3737 3738 3739
               _local_pushes += n );
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::drain_local_queue(bool partially) {
3740
  if (has_aborted()) return;
3741 3742 3743 3744 3745

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).
  size_t target_size;
3746
  if (partially) {
3747
    target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3748
  } else {
3749
    target_size = 0;
3750
  }
3751 3752

  if (_task_queue->size() > target_size) {
3753
    if (_cm->verbose_high()) {
3754 3755
      gclog_or_tty->print_cr("[%d] draining local queue, target size = %d",
                             _task_id, target_size);
3756
    }
3757 3758 3759 3760 3761 3762

    oop obj;
    bool ret = _task_queue->pop_local(obj);
    while (ret) {
      statsOnly( ++_local_pops );

3763
      if (_cm->verbose_high()) {
3764 3765
        gclog_or_tty->print_cr("[%d] popped "PTR_FORMAT, _task_id,
                               (void*) obj);
3766
      }
3767

3768
      assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
T
tonyp 已提交
3769
      assert(!_g1h->is_on_master_free_list(
3770
                  _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3771 3772 3773

      scan_object(obj);

3774
      if (_task_queue->size() <= target_size || has_aborted()) {
3775
        ret = false;
3776
      } else {
3777
        ret = _task_queue->pop_local(obj);
3778
      }
3779 3780
    }

3781
    if (_cm->verbose_high()) {
3782 3783
      gclog_or_tty->print_cr("[%d] drained local queue, size = %d",
                             _task_id, _task_queue->size());
3784
    }
3785 3786 3787 3788
  }
}

void CMTask::drain_global_stack(bool partially) {
3789
  if (has_aborted()) return;
3790 3791 3792

  // We have a policy to drain the local queue before we attempt to
  // drain the global stack.
3793
  assert(partially || _task_queue->size() == 0, "invariant");
3794 3795 3796 3797 3798 3799 3800 3801

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).  Notice that,
  // because we move entries from the global stack in chunks or
  // because another task might be doing the same, we might in fact
  // drop below the target. But, this is not a problem.
  size_t target_size;
3802
  if (partially) {
3803
    target_size = _cm->partial_mark_stack_size_target();
3804
  } else {
3805
    target_size = 0;
3806
  }
3807 3808

  if (_cm->mark_stack_size() > target_size) {
3809
    if (_cm->verbose_low()) {
3810 3811
      gclog_or_tty->print_cr("[%d] draining global_stack, target size %d",
                             _task_id, target_size);
3812
    }
3813 3814 3815 3816 3817 3818

    while (!has_aborted() && _cm->mark_stack_size() > target_size) {
      get_entries_from_global_stack();
      drain_local_queue(partially);
    }

3819
    if (_cm->verbose_low()) {
3820 3821
      gclog_or_tty->print_cr("[%d] drained global stack, size = %d",
                             _task_id, _cm->mark_stack_size());
3822
    }
3823 3824 3825 3826 3827 3828 3829 3830
  }
}

// SATB Queue has several assumptions on whether to call the par or
// non-par versions of the methods. this is why some of the code is
// replicated. We should really get rid of the single-threaded version
// of the code to simplify things.
void CMTask::drain_satb_buffers() {
3831
  if (has_aborted()) return;
3832 3833 3834 3835 3836 3837 3838 3839 3840

  // We set this so that the regular clock knows that we're in the
  // middle of draining buffers and doesn't set the abort flag when it
  // notices that SATB buffers are available for draining. It'd be
  // very counter productive if it did that. :-)
  _draining_satb_buffers = true;

  CMObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3841
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3842
    satb_mq_set.set_par_closure(_task_id, &oc);
3843
  } else {
3844
    satb_mq_set.set_closure(&oc);
3845
  }
3846 3847 3848

  // This keeps claiming and applying the closure to completed buffers
  // until we run out of buffers or we need to abort.
3849
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3850 3851
    while (!has_aborted() &&
           satb_mq_set.par_apply_closure_to_completed_buffer(_task_id)) {
3852
      if (_cm->verbose_medium()) {
3853
        gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
3854
      }
3855 3856 3857 3858 3859 3860
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  } else {
    while (!has_aborted() &&
           satb_mq_set.apply_closure_to_completed_buffer()) {
3861
      if (_cm->verbose_medium()) {
3862
        gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
3863
      }
3864 3865 3866 3867 3868 3869 3870
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  }

  if (!concurrent() && !has_aborted()) {
    // We should only do this during remark.
3871
    if (G1CollectedHeap::use_parallel_gc_threads()) {
3872
      satb_mq_set.par_iterate_closure_all_threads(_task_id);
3873
    } else {
3874
      satb_mq_set.iterate_closure_all_threads();
3875
    }
3876 3877 3878 3879
  }

  _draining_satb_buffers = false;

3880 3881 3882
  assert(has_aborted() ||
         concurrent() ||
         satb_mq_set.completed_buffers_num() == 0, "invariant");
3883

3884
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3885
    satb_mq_set.set_par_closure(_task_id, NULL);
3886
  } else {
3887
    satb_mq_set.set_closure(NULL);
3888
  }
3889 3890 3891 3892 3893 3894 3895

  // again, this was a potentially expensive operation, decrease the
  // limits to get the regular clock call early
  decrease_limits();
}

void CMTask::drain_region_stack(BitMapClosure* bc) {
3896
  if (has_aborted()) return;
3897

3898 3899
  assert(_region_finger == NULL,
         "it should be NULL when we're not scanning a region");
3900

3901
  if (!_cm->region_stack_empty() || !_aborted_region.is_empty()) {
3902
    if (_cm->verbose_low()) {
3903 3904
      gclog_or_tty->print_cr("[%d] draining region stack, size = %d",
                             _task_id, _cm->region_stack_size());
3905
    }
3906

3907 3908 3909 3910 3911 3912
    MemRegion mr;

    if (!_aborted_region.is_empty()) {
      mr = _aborted_region;
      _aborted_region = MemRegion();

3913 3914 3915 3916 3917
      if (_cm->verbose_low()) {
        gclog_or_tty->print_cr("[%d] scanning aborted region "
                               "[ " PTR_FORMAT ", " PTR_FORMAT " )",
                               _task_id, mr.start(), mr.end());
      }
3918 3919 3920 3921 3922
    } else {
      mr = _cm->region_stack_pop_lock_free();
      // it returns MemRegion() if the pop fails
      statsOnly(if (mr.start() != NULL) ++_region_stack_pops );
    }
3923 3924

    while (mr.start() != NULL) {
3925
      if (_cm->verbose_medium()) {
3926 3927 3928
        gclog_or_tty->print_cr("[%d] we are scanning region "
                               "["PTR_FORMAT", "PTR_FORMAT")",
                               _task_id, mr.start(), mr.end());
3929
      }
3930

3931 3932
      assert(mr.end() <= _cm->finger(),
             "otherwise the region shouldn't be on the stack");
3933 3934
      assert(!mr.is_empty(), "Only non-empty regions live on the region stack");
      if (_nextMarkBitMap->iterate(bc, mr)) {
3935 3936
        assert(!has_aborted(),
               "cannot abort the task without aborting the bitmap iteration");
3937 3938 3939

        // We finished iterating over the region without aborting.
        regular_clock_call();
3940
        if (has_aborted()) {
3941
          mr = MemRegion();
3942
        } else {
3943
          mr = _cm->region_stack_pop_lock_free();
3944 3945 3946 3947
          // it returns MemRegion() if the pop fails
          statsOnly(if (mr.start() != NULL) ++_region_stack_pops );
        }
      } else {
3948
        assert(has_aborted(), "currently the only way to do so");
3949 3950 3951 3952 3953 3954

        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _region_finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _region_finger to something non-null.
3955
        assert(_region_finger != NULL, "invariant");
3956

3957 3958 3959 3960
        // Make sure that any previously aborted region has been
        // cleared.
        assert(_aborted_region.is_empty(), "aborted region not cleared");

3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
        // The iteration was actually aborted. So now _region_finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
        MemRegion newRegion =
          MemRegion(_nextMarkBitMap->nextWord(_region_finger), mr.end());

        if (!newRegion.is_empty()) {
          if (_cm->verbose_low()) {
3973 3974
            gclog_or_tty->print_cr("[%d] recording unscanned region"
                                   "[" PTR_FORMAT "," PTR_FORMAT ") in CMTask",
3975 3976 3977
                                   _task_id,
                                   newRegion.start(), newRegion.end());
          }
3978 3979 3980
          // Now record the part of the region we didn't scan to
          // make sure this task scans it later.
          _aborted_region = newRegion;
3981 3982 3983 3984 3985 3986 3987
        }
        // break from while
        mr = MemRegion();
      }
      _region_finger = NULL;
    }

3988
    if (_cm->verbose_low()) {
3989 3990
      gclog_or_tty->print_cr("[%d] drained region stack, size = %d",
                             _task_id, _cm->region_stack_size());
3991
    }
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
  }
}

void CMTask::print_stats() {
  gclog_or_tty->print_cr("Marking Stats, task = %d, calls = %d",
                         _task_id, _calls);
  gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
                         _elapsed_time_ms, _termination_time_ms);
  gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _step_times_ms.num(), _step_times_ms.avg(),
                         _step_times_ms.sd());
  gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
                         _step_times_ms.maximum(), _step_times_ms.sum());

#if _MARKING_STATS_
  gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
                         _all_clock_intervals_ms.sd());
  gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
                         _all_clock_intervals_ms.maximum(),
                         _all_clock_intervals_ms.sum());
  gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
                         _clock_due_to_scanning, _clock_due_to_marking);
  gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
                         _objs_scanned, _objs_found_on_bitmap);
  gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
                         _local_pushes, _local_pops, _local_max_size);
  gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
                         _global_pushes, _global_pops, _global_max_size);
  gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
                         _global_transfers_to,_global_transfers_from);
  gclog_or_tty->print_cr("  Regions: claimed = %d, Region Stack: pops = %d",
                         _regions_claimed, _region_stack_pops);
  gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
                         _steal_attempts, _steals);
  gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
                         _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
                         _aborted_timed_out, _aborted_satb, _aborted_termination);
#endif // _MARKING_STATS_
}

/*****************************************************************************

    The do_marking_step(time_target_ms) method is the building block
    of the parallel marking framework. It can be called in parallel
    with other invocations of do_marking_step() on different tasks
    (but only one per task, obviously) and concurrently with the
    mutator threads, or during remark, hence it eliminates the need
    for two versions of the code. When called during remark, it will
    pick up from where the task left off during the concurrent marking
    phase. Interestingly, tasks are also claimable during evacuation
    pauses too, since do_marking_step() ensures that it aborts before
    it needs to yield.

    The data structures that is uses to do marking work are the
    following:

      (1) Marking Bitmap. If there are gray objects that appear only
      on the bitmap (this happens either when dealing with an overflow
      or when the initial marking phase has simply marked the roots
      and didn't push them on the stack), then tasks claim heap
      regions whose bitmap they then scan to find gray objects. A
      global finger indicates where the end of the last claimed region
      is. A local finger indicates how far into the region a task has
      scanned. The two fingers are used to determine how to gray an
      object (i.e. whether simply marking it is OK, as it will be
      visited by a task in the future, or whether it needs to be also
      pushed on a stack).

      (2) Local Queue. The local queue of the task which is accessed
      reasonably efficiently by the task. Other tasks can steal from
      it when they run out of work. Throughout the marking phase, a
      task attempts to keep its local queue short but not totally
      empty, so that entries are available for stealing by other
      tasks. Only when there is no more work, a task will totally
      drain its local queue.

      (3) Global Mark Stack. This handles local queue overflow. During
      marking only sets of entries are moved between it and the local
      queues, as access to it requires a mutex and more fine-grain
      interaction with it which might cause contention. If it
      overflows, then the marking phase should restart and iterate
      over the bitmap to identify gray objects. Throughout the marking
      phase, tasks attempt to keep the global mark stack at a small
      length but not totally empty, so that entries are available for
      popping by other tasks. Only when there is no more work, tasks
      will totally drain the global mark stack.

      (4) Global Region Stack. Entries on it correspond to areas of
      the bitmap that need to be scanned since they contain gray
      objects. Pushes on the region stack only happen during
      evacuation pauses and typically correspond to areas covered by
      GC LABS. If it overflows, then the marking phase should restart
      and iterate over the bitmap to identify gray objects. Tasks will
      try to totally drain the region stack as soon as possible.

      (5) SATB Buffer Queue. This is where completed SATB buffers are
      made available. Buffers are regularly removed from this queue
      and scanned for roots, so that the queue doesn't get too
      long. During remark, all completed buffers are processed, as
      well as the filled in parts of any uncompleted buffers.

    The do_marking_step() method tries to abort when the time target
    has been reached. There are a few other cases when the
    do_marking_step() method also aborts:

      (1) When the marking phase has been aborted (after a Full GC).

      (2) When a global overflow (either on the global stack or the
      region stack) has been triggered. Before the task aborts, it
      will actually sync up with the other tasks to ensure that all
      the marking data structures (local queues, stacks, fingers etc.)
      are re-initialised so that when do_marking_step() completes,
      the marking phase can immediately restart.

      (3) When enough completed SATB buffers are available. The
      do_marking_step() method only tries to drain SATB buffers right
      at the beginning. So, if enough buffers are available, the
      marking step aborts and the SATB buffers are processed at
      the beginning of the next invocation.

      (4) To yield. when we have to yield then we abort and yield
      right at the end of do_marking_step(). This saves us from a lot
      of hassle as, by yielding we might allow a Full GC. If this
      happens then objects will be compacted underneath our feet, the
      heap might shrink, etc. We save checking for this by just
      aborting and doing the yield right at the end.

    From the above it follows that the do_marking_step() method should
    be called in a loop (or, otherwise, regularly) until it completes.

    If a marking step completes without its has_aborted() flag being
    true, it means it has completed the current marking phase (and
    also all other marking tasks have done so and have all synced up).

    A method called regular_clock_call() is invoked "regularly" (in
    sub ms intervals) throughout marking. It is this clock method that
    checks all the abort conditions which were mentioned above and
    decides when the task should abort. A work-based scheme is used to
    trigger this clock method: when the number of object words the
    marking phase has scanned or the number of references the marking
    phase has visited reach a given limit. Additional invocations to
    the method clock have been planted in a few other strategic places
    too. The initial reason for the clock method was to avoid calling
    vtime too regularly, as it is quite expensive. So, once it was in
    place, it was natural to piggy-back all the other conditions on it
    too and not constantly check them throughout the code.

 *****************************************************************************/

4145 4146 4147
void CMTask::do_marking_step(double time_target_ms,
                             bool do_stealing,
                             bool do_termination) {
4148 4149
  assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  assert(concurrent() == _cm->concurrent(), "they should be the same");
4150

4151 4152
  assert(concurrent() || _cm->region_stack_empty(),
         "the region stack should have been cleared before remark");
4153 4154
  assert(concurrent() || !_cm->has_aborted_regions(),
         "aborted regions should have been cleared before remark");
4155 4156
  assert(_region_finger == NULL,
         "this should be non-null only when a region is being scanned");
4157 4158

  G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4159 4160 4161
  assert(_task_queues != NULL, "invariant");
  assert(_task_queue != NULL, "invariant");
  assert(_task_queues->queue(_task_id) == _task_queue, "invariant");
4162

4163 4164
  assert(!_claimed,
         "only one thread should claim this task at any one time");
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186

  // OK, this doesn't safeguard again all possible scenarios, as it is
  // possible for two threads to set the _claimed flag at the same
  // time. But it is only for debugging purposes anyway and it will
  // catch most problems.
  _claimed = true;

  _start_time_ms = os::elapsedVTime() * 1000.0;
  statsOnly( _interval_start_time_ms = _start_time_ms );

  double diff_prediction_ms =
    g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  _time_target_ms = time_target_ms - diff_prediction_ms;

  // set up the variables that are used in the work-based scheme to
  // call the regular clock method
  _words_scanned = 0;
  _refs_reached  = 0;
  recalculate_limits();

  // clear all flags
  clear_has_aborted();
4187
  _has_timed_out = false;
4188 4189 4190 4191
  _draining_satb_buffers = false;

  ++_calls;

4192
  if (_cm->verbose_low()) {
4193 4194 4195
    gclog_or_tty->print_cr("[%d] >>>>>>>>>> START, call = %d, "
                           "target = %1.2lfms >>>>>>>>>>",
                           _task_id, _calls, _time_target_ms);
4196
  }
4197 4198 4199 4200 4201

  // Set up the bitmap and oop closures. Anything that uses them is
  // eventually called from this method, so it is OK to allocate these
  // statically.
  CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4202 4203
  G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  set_cm_oop_closure(&cm_oop_closure);
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235

  if (_cm->has_overflown()) {
    // This can happen if the region stack or the mark stack overflows
    // during a GC pause and this task, after a yield point,
    // restarts. We have to abort as we need to get into the overflow
    // protocol which happens right at the end of this task.
    set_has_aborted();
  }

  // First drain any available SATB buffers. After this, we will not
  // look at SATB buffers before the next invocation of this method.
  // If enough completed SATB buffers are queued up, the regular clock
  // will abort this task so that it restarts.
  drain_satb_buffers();
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  // Then totally drain the region stack.  We will not look at
  // it again before the next invocation of this method. Entries on
  // the region stack are only added during evacuation pauses, for
  // which we have to yield. When we do, we abort the task anyway so
  // it will look at the region stack again when it restarts.
  bitmap_closure.set_scanning_heap_region(false);
  drain_region_stack(&bitmap_closure);
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  do {
    if (!has_aborted() && _curr_region != NULL) {
      // This means that we're already holding on to a region.
4236 4237
      assert(_finger != NULL, "if region is not NULL, then the finger "
             "should not be NULL either");
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252

      // We might have restarted this task after an evacuation pause
      // which might have evacuated the region we're holding on to
      // underneath our feet. Let's read its limit again to make sure
      // that we do not iterate over a region of the heap that
      // contains garbage (update_region_limit() will also move
      // _finger to the start of the region if it is found empty).
      update_region_limit();
      // We will start from _finger not from the start of the region,
      // as we might be restarting this task after aborting half-way
      // through scanning this region. In this case, _finger points to
      // the address where we last found a marked object. If this is a
      // fresh region, _finger points to start().
      MemRegion mr = MemRegion(_finger, _region_limit);

4253
      if (_cm->verbose_low()) {
4254 4255 4256 4257
        gclog_or_tty->print_cr("[%d] we're scanning part "
                               "["PTR_FORMAT", "PTR_FORMAT") "
                               "of region "PTR_FORMAT,
                               _task_id, _finger, _region_limit, _curr_region);
4258
      }
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269

      // Let's iterate over the bitmap of the part of the
      // region that is left.
      bitmap_closure.set_scanning_heap_region(true);
      if (mr.is_empty() ||
          _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
        // We successfully completed iterating over the region. Now,
        // let's give up the region.
        giveup_current_region();
        regular_clock_call();
      } else {
4270
        assert(has_aborted(), "currently the only way to do so");
4271 4272 4273 4274 4275
        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _finger to something non-null.
4276
        assert(_finger != NULL, "invariant");
4277 4278 4279 4280 4281 4282 4283 4284

        // Region iteration was actually aborted. So now _finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
4285 4286 4287 4288 4289 4290 4291 4292
        assert(_finger < _region_limit, "invariant");
        HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
        // Check if bitmap iteration was aborted while scanning the last object
        if (new_finger >= _region_limit) {
            giveup_current_region();
        } else {
            move_finger_to(new_finger);
        }
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
      }
    }
    // At this point we have either completed iterating over the
    // region we were holding on to, or we have aborted.

    // We then partially drain the local queue and the global stack.
    // (Do we really need this?)
    drain_local_queue(true);
    drain_global_stack(true);

    // Read the note on the claim_region() method on why it might
    // return NULL with potentially more regions available for
    // claiming and why we have to check out_of_regions() to determine
    // whether we're done or not.
    while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
      // We are going to try to claim a new region. We should have
      // given up on the previous one.
4310 4311 4312 4313
      // Separated the asserts so that we know which one fires.
      assert(_curr_region  == NULL, "invariant");
      assert(_finger       == NULL, "invariant");
      assert(_region_limit == NULL, "invariant");
4314
      if (_cm->verbose_low()) {
4315
        gclog_or_tty->print_cr("[%d] trying to claim a new region", _task_id);
4316
      }
4317 4318 4319 4320 4321
      HeapRegion* claimed_region = _cm->claim_region(_task_id);
      if (claimed_region != NULL) {
        // Yes, we managed to claim one
        statsOnly( ++_regions_claimed );

4322
        if (_cm->verbose_low()) {
4323 4324 4325
          gclog_or_tty->print_cr("[%d] we successfully claimed "
                                 "region "PTR_FORMAT,
                                 _task_id, claimed_region);
4326
        }
4327 4328

        setup_for_region(claimed_region);
4329
        assert(_curr_region == claimed_region, "invariant");
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
      }
      // It is important to call the regular clock here. It might take
      // a while to claim a region if, for example, we hit a large
      // block of empty regions. So we need to call the regular clock
      // method once round the loop to make sure it's called
      // frequently enough.
      regular_clock_call();
    }

    if (!has_aborted() && _curr_region == NULL) {
4340 4341
      assert(_cm->out_of_regions(),
             "at this point we should be out of regions");
4342 4343 4344 4345 4346
    }
  } while ( _curr_region != NULL && !has_aborted());

  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
4347 4348 4349
    // tasks might be pushing objects to it concurrently. We also cannot
    // check if the region stack is empty because if a thread is aborting
    // it can push a partially done region back.
4350 4351
    assert(_cm->out_of_regions(),
           "at this point we should be out of regions");
4352

4353
    if (_cm->verbose_low()) {
4354
      gclog_or_tty->print_cr("[%d] all regions claimed", _task_id);
4355
    }
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367

    // Try to reduce the number of available SATB buffers so that
    // remark has less work to do.
    drain_satb_buffers();
  }

  // Since we've done everything else, we can now totally drain the
  // local queue and global stack.
  drain_local_queue(false);
  drain_global_stack(false);

  // Attempt at work stealing from other task's queues.
4368
  if (do_stealing && !has_aborted()) {
4369 4370 4371 4372
    // We have not aborted. This means that we have finished all that
    // we could. Let's try to do some stealing...

    // We cannot check whether the global stack is empty, since other
4373 4374 4375
    // tasks might be pushing objects to it concurrently. We also cannot
    // check if the region stack is empty because if a thread is aborting
    // it can push a partially done region back.
4376 4377
    assert(_cm->out_of_regions() && _task_queue->size() == 0,
           "only way to reach here");
4378

4379
    if (_cm->verbose_low()) {
4380
      gclog_or_tty->print_cr("[%d] starting to steal", _task_id);
4381
    }
4382 4383 4384 4385 4386 4387

    while (!has_aborted()) {
      oop obj;
      statsOnly( ++_steal_attempts );

      if (_cm->try_stealing(_task_id, &_hash_seed, obj)) {
4388
        if (_cm->verbose_medium()) {
4389 4390
          gclog_or_tty->print_cr("[%d] stolen "PTR_FORMAT" successfully",
                                 _task_id, (void*) obj);
4391
        }
4392 4393 4394

        statsOnly( ++_steals );

4395 4396
        assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
               "any stolen object should be marked");
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
        scan_object(obj);

        // And since we're towards the end, let's totally drain the
        // local queue and global stack.
        drain_local_queue(false);
        drain_global_stack(false);
      } else {
        break;
      }
    }
  }

4409 4410 4411 4412 4413 4414 4415 4416 4417
  // If we are about to wrap up and go into termination, check if we
  // should raise the overflow flag.
  if (do_termination && !has_aborted()) {
    if (_cm->force_overflow()->should_force()) {
      _cm->set_has_overflown();
      regular_clock_call();
    }
  }

4418 4419
  // We still haven't aborted. Now, let's try to get into the
  // termination protocol.
4420
  if (do_termination && !has_aborted()) {
4421
    // We cannot check whether the global stack is empty, since other
4422 4423 4424
    // tasks might be concurrently pushing objects on it. We also cannot
    // check if the region stack is empty because if a thread is aborting
    // it can push a partially done region back.
4425 4426 4427
    // Separated the asserts so that we know which one fires.
    assert(_cm->out_of_regions(), "only way to reach here");
    assert(_task_queue->size() == 0, "only way to reach here");
4428

4429
    if (_cm->verbose_low()) {
4430
      gclog_or_tty->print_cr("[%d] starting termination protocol", _task_id);
4431
    }
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447

    _termination_start_time_ms = os::elapsedVTime() * 1000.0;
    // The CMTask class also extends the TerminatorTerminator class,
    // hence its should_exit_termination() method will also decide
    // whether to exit the termination protocol or not.
    bool finished = _cm->terminator()->offer_termination(this);
    double termination_end_time_ms = os::elapsedVTime() * 1000.0;
    _termination_time_ms +=
      termination_end_time_ms - _termination_start_time_ms;

    if (finished) {
      // We're all done.

      if (_task_id == 0) {
        // let's allow task 0 to do this
        if (concurrent()) {
4448
          assert(_cm->concurrent_marking_in_progress(), "invariant");
4449 4450 4451 4452 4453 4454 4455 4456
          // we need to set this to false before the next
          // safepoint. This way we ensure that the marking phase
          // doesn't observe any more heap expansions.
          _cm->clear_concurrent_marking_in_progress();
        }
      }

      // We can now guarantee that the global stack is empty, since
4457 4458 4459 4460
      // all other tasks have finished. We separated the guarantees so
      // that, if a condition is false, we can immediately find out
      // which one.
      guarantee(_cm->out_of_regions(), "only way to reach here");
4461
      guarantee(_aborted_region.is_empty(), "only way to reach here");
4462 4463 4464 4465 4466 4467
      guarantee(_cm->region_stack_empty(), "only way to reach here");
      guarantee(_cm->mark_stack_empty(), "only way to reach here");
      guarantee(_task_queue->size() == 0, "only way to reach here");
      guarantee(!_cm->has_overflown(), "only way to reach here");
      guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
      guarantee(!_cm->region_stack_overflow(), "only way to reach here");
4468

4469
      if (_cm->verbose_low()) {
4470
        gclog_or_tty->print_cr("[%d] all tasks terminated", _task_id);
4471
      }
4472 4473 4474 4475
    } else {
      // Apparently there's more work to do. Let's abort this task. It
      // will restart it and we can hopefully find more things to do.

4476 4477 4478 4479
      if (_cm->verbose_low()) {
        gclog_or_tty->print_cr("[%d] apparently there is more work to do",
                               _task_id);
      }
4480 4481 4482 4483 4484 4485 4486 4487 4488

      set_has_aborted();
      statsOnly( ++_aborted_termination );
    }
  }

  // Mainly for debugging purposes to make sure that a pointer to the
  // closure which was statically allocated in this frame doesn't
  // escape it by accident.
4489
  set_cm_oop_closure(NULL);
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
  double end_time_ms = os::elapsedVTime() * 1000.0;
  double elapsed_time_ms = end_time_ms - _start_time_ms;
  // Update the step history.
  _step_times_ms.add(elapsed_time_ms);

  if (has_aborted()) {
    // The task was aborted for some reason.

    statsOnly( ++_aborted );

4500
    if (_has_timed_out) {
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
      double diff_ms = elapsed_time_ms - _time_target_ms;
      // Keep statistics of how well we did with respect to hitting
      // our target only if we actually timed out (if we aborted for
      // other reasons, then the results might get skewed).
      _marking_step_diffs_ms.add(diff_ms);
    }

    if (_cm->has_overflown()) {
      // This is the interesting one. We aborted because a global
      // overflow was raised. This means we have to restart the
      // marking phase and start iterating over regions. However, in
      // order to do this we have to make sure that all tasks stop
      // what they are doing and re-initialise in a safe manner. We
      // will achieve this with the use of two barrier sync points.

4516
      if (_cm->verbose_low()) {
4517
        gclog_or_tty->print_cr("[%d] detected overflow", _task_id);
4518
      }
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540

      _cm->enter_first_sync_barrier(_task_id);
      // When we exit this sync barrier we know that all tasks have
      // stopped doing marking work. So, it's now safe to
      // re-initialise our data structures. At the end of this method,
      // task 0 will clear the global data structures.

      statsOnly( ++_aborted_overflow );

      // We clear the local state of this task...
      clear_region_fields();

      // ...and enter the second barrier.
      _cm->enter_second_sync_barrier(_task_id);
      // At this point everything has bee re-initialised and we're
      // ready to restart.
    }

    if (_cm->verbose_low()) {
      gclog_or_tty->print_cr("[%d] <<<<<<<<<< ABORTING, target = %1.2lfms, "
                             "elapsed = %1.2lfms <<<<<<<<<<",
                             _task_id, _time_target_ms, elapsed_time_ms);
4541
      if (_cm->has_aborted()) {
4542 4543
        gclog_or_tty->print_cr("[%d] ========== MARKING ABORTED ==========",
                               _task_id);
4544
      }
4545 4546
    }
  } else {
4547
    if (_cm->verbose_low()) {
4548 4549 4550
      gclog_or_tty->print_cr("[%d] <<<<<<<<<< FINISHED, target = %1.2lfms, "
                             "elapsed = %1.2lfms <<<<<<<<<<",
                             _task_id, _time_target_ms, elapsed_time_ms);
4551
    }
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
  }

  _claimed = false;
}

CMTask::CMTask(int task_id,
               ConcurrentMark* cm,
               CMTaskQueue* task_queue,
               CMTaskQueueSet* task_queues)
  : _g1h(G1CollectedHeap::heap()),
    _task_id(task_id), _cm(cm),
    _claimed(false),
    _nextMarkBitMap(NULL), _hash_seed(17),
    _task_queue(task_queue),
    _task_queues(task_queues),
4567
    _cm_oop_closure(NULL),
4568
    _aborted_region(MemRegion()) {
4569 4570
  guarantee(task_queue != NULL, "invariant");
  guarantee(task_queues != NULL, "invariant");
4571 4572 4573 4574 4575 4576

  statsOnly( _clock_due_to_scanning = 0;
             _clock_due_to_marking  = 0 );

  _marking_step_diffs_ms.add(0.5);
}
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630

// These are formatting macros that are used below to ensure
// consistent formatting. The *_H_* versions are used to format the
// header for a particular value and they should be kept consistent
// with the corresponding macro. Also note that most of the macros add
// the necessary white space (as a prefix) which makes them a bit
// easier to compose.

// All the output lines are prefixed with this string to be able to
// identify them easily in a large log file.
#define G1PPRL_LINE_PREFIX            "###"

#define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
#ifdef _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
#else // _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
#endif // _LP64

// For per-region info
#define G1PPRL_TYPE_FORMAT            "   %-4s"
#define G1PPRL_TYPE_H_FORMAT          "   %4s"
#define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
#define G1PPRL_BYTE_H_FORMAT          "  %9s"
#define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
#define G1PPRL_DOUBLE_H_FORMAT        "  %14s"

// For summary info
#define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
#define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
#define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
#define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"

G1PrintRegionLivenessInfoClosure::
G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  : _out(out),
    _total_used_bytes(0), _total_capacity_bytes(0),
    _total_prev_live_bytes(0), _total_next_live_bytes(0),
    _hum_used_bytes(0), _hum_capacity_bytes(0),
    _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  MemRegion g1_committed = g1h->g1_committed();
  MemRegion g1_reserved = g1h->g1_reserved();
  double now = os::elapsedTime();

  // Print the header of the output.
  _out->cr();
  _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
                 G1PPRL_SUM_ADDR_FORMAT("committed")
                 G1PPRL_SUM_ADDR_FORMAT("reserved")
                 G1PPRL_SUM_BYTE_FORMAT("region-size"),
                 g1_committed.start(), g1_committed.end(),
                 g1_reserved.start(), g1_reserved.end(),
4631
                 HeapRegion::GrainBytes);
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "type", "address-range",
                 "used", "prev-live", "next-live", "gc-eff");
4642 4643 4644 4645 4646 4647 4648 4649 4650
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "", "",
                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
}

// It takes as a parameter a reference to one of the _hum_* fields, it
// deduces the corresponding value for a region in a humongous region
// series (either the region size, or what's left if the _hum_* field
// is < the region size), and updates the _hum_* field accordingly.
size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  size_t bytes = 0;
  // The > 0 check is to deal with the prev and next live bytes which
  // could be 0.
  if (*hum_bytes > 0) {
4662
    bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
    *hum_bytes -= bytes;
  }
  return bytes;
}

// It deduces the values for a region in a humongous region series
// from the _hum_* fields and updates those accordingly. It assumes
// that that _hum_* fields have already been set up from the "starts
// humongous" region and we visit the regions in address order.
void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
                                                     size_t* capacity_bytes,
                                                     size_t* prev_live_bytes,
                                                     size_t* next_live_bytes) {
  assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
}

bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  const char* type = "";
  HeapWord* bottom       = r->bottom();
  HeapWord* end          = r->end();
  size_t capacity_bytes  = r->capacity();
  size_t used_bytes      = r->used();
  size_t prev_live_bytes = r->live_bytes();
  size_t next_live_bytes = r->next_live_bytes();
  double gc_eff          = r->gc_efficiency();
  if (r->used() == 0) {
    type = "FREE";
  } else if (r->is_survivor()) {
    type = "SURV";
  } else if (r->is_young()) {
    type = "EDEN";
  } else if (r->startsHumongous()) {
    type = "HUMS";

    assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
           _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
           "they should have been zeroed after the last time we used them");
    // Set up the _hum_* fields.
    _hum_capacity_bytes  = capacity_bytes;
    _hum_used_bytes      = used_bytes;
    _hum_prev_live_bytes = prev_live_bytes;
    _hum_next_live_bytes = next_live_bytes;
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    end = bottom + HeapRegion::GrainWords;
  } else if (r->continuesHumongous()) {
    type = "HUMC";
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    assert(end == bottom + HeapRegion::GrainWords, "invariant");
  } else {
    type = "OLD";
  }

  _total_used_bytes      += used_bytes;
  _total_capacity_bytes  += capacity_bytes;
  _total_prev_live_bytes += prev_live_bytes;
  _total_next_live_bytes += next_live_bytes;

  // Print a line for this particular region.
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_FORMAT
                 G1PPRL_ADDR_BASE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_DOUBLE_FORMAT,
                 type, bottom, end,
                 used_bytes, prev_live_bytes, next_live_bytes, gc_eff);

  return false;
}

G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  // Print the footer of the output.
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 " SUMMARY"
                 G1PPRL_SUM_MB_FORMAT("capacity")
                 G1PPRL_SUM_MB_PERC_FORMAT("used")
                 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
                 G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
                 bytes_to_mb(_total_capacity_bytes),
                 bytes_to_mb(_total_used_bytes),
                 perc(_total_used_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_prev_live_bytes),
                 perc(_total_prev_live_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_next_live_bytes),
                 perc(_total_next_live_bytes, _total_capacity_bytes));
  _out->cr();
}