hugetlb.c 75.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/io.h>
D
David Gibson 已提交
28 29

#include <linux/hugetlb.h>
30
#include <linux/node.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32 33

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 35
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
36

37 38 39 40
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

41 42
__initdata LIST_HEAD(huge_boot_pages);

43 44 45
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
46
static unsigned long __initdata default_hstate_size;
47 48 49

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50

51 52 53 54
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
59 60 61 62 63 64 65 66 67 68
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

215 216 217 218
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
219 220
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
221
{
222 223
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
224 225
}

226 227 228 229 230 231
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
247
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248

249 250 251 252 253 254 255 256 257 258 259 260 261
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

262 263 264 265 266 267 268
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
269
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270

271 272 273 274 275 276 277 278 279
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
280 281 282 283 284 285 286 287 288
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
289
 */
290 291 292 293 294 295 296 297 298 299 300
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

301 302 303 304 305
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

306
static struct resv_map *resv_map_alloc(void)
307 308 309 310 311 312 313 314 315 316 317
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

318
static void resv_map_release(struct kref *ref)
319 320 321 322 323 324 325 326 327
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 329
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330
	if (!(vma->vm_flags & VM_MAYSHARE))
331 332
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
333
	return NULL;
334 335
}

336
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 338
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340

341 342
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
343 344 345 346 347
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
348
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349 350

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 352 353 354 355
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
356 357

	return (get_vma_private_data(vma) & flag) != 0;
358 359 360
}

/* Decrement the reserved pages in the hugepage pool by one */
361 362
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
363
{
364 365 366
	if (vma->vm_flags & VM_NORESERVE)
		return;

367
	if (vma->vm_flags & VM_MAYSHARE) {
368
		/* Shared mappings always use reserves */
369
		h->resv_huge_pages--;
370
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371 372 373 374
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
375
		h->resv_huge_pages--;
376 377 378
	}
}

379
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 381 382
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
383
	if (!(vma->vm_flags & VM_MAYSHARE))
384 385 386 387
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
388
static int vma_has_reserves(struct vm_area_struct *vma)
389
{
390
	if (vma->vm_flags & VM_MAYSHARE)
391 392 393 394
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
395 396
}

397 398 399 400 401 402 403 404 405 406 407 408
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
409 410
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
411 412 413
{
	int i;

414
	if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
H
Hannes Eder 已提交
415 416 417
		clear_gigantic_page(page, addr, sz);
		return;
	}
418

419
	might_sleep();
420
	for (i = 0; i < sz/PAGE_SIZE; i++) {
421
		cond_resched();
422
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
423 424 425
	}
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
443
static void copy_huge_page(struct page *dst, struct page *src,
444
			   unsigned long addr, struct vm_area_struct *vma)
445 446
{
	int i;
447
	struct hstate *h = hstate_vma(vma);
448

H
Hannes Eder 已提交
449 450 451 452
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src, addr, vma);
		return;
	}
453

454
	might_sleep();
455
	for (i = 0; i < pages_per_huge_page(h); i++) {
456
		cond_resched();
457
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
458 459 460
	}
}

461
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
462 463
{
	int nid = page_to_nid(page);
464 465 466
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
467 468
}

469 470 471 472 473 474 475 476 477 478 479 480 481
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
	list_del(&page->lru);
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

482 483
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
484
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
485 486
{
	struct page *page = NULL;
487
	struct mempolicy *mpol;
488
	nodemask_t *nodemask;
489
	struct zonelist *zonelist;
490 491
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
492

493 494 495
	get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
496 497 498 499 500
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
501
	if (!vma_has_reserves(vma) &&
502
			h->free_huge_pages - h->resv_huge_pages == 0)
503
		goto err;
504

505
	/* If reserves cannot be used, ensure enough pages are in the pool */
506
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
507
		goto err;;
508

509 510
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
511 512 513 514 515 516 517
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
518
		}
L
Linus Torvalds 已提交
519
	}
520
err:
521
	mpol_cond_put(mpol);
522
	put_mems_allowed();
L
Linus Torvalds 已提交
523 524 525
	return page;
}

526
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
527 528
{
	int i;
529

530 531
	VM_BUG_ON(h->order >= MAX_ORDER);

532 533 534
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
535 536 537 538 539 540
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
541
	arch_release_hugepage(page);
542
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
543 544
}

545 546 547 548 549 550 551 552 553 554 555
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

556 557
static void free_huge_page(struct page *page)
{
558 559 560 561
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
562
	struct hstate *h = page_hstate(page);
563
	int nid = page_to_nid(page);
564
	struct address_space *mapping;
565

566
	mapping = (struct address_space *) page_private(page);
567
	set_page_private(page, 0);
568
	page->mapping = NULL;
569
	BUG_ON(page_count(page));
570
	BUG_ON(page_mapcount(page));
571 572 573
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
574
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
575 576 577
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
578
	} else {
579
		enqueue_huge_page(h, page);
580
	}
581
	spin_unlock(&hugetlb_lock);
582
	if (mapping)
583
		hugetlb_put_quota(mapping, 1);
584 585
}

586
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
587 588 589
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
590 591
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
592 593 594 595
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}

624 625
EXPORT_SYMBOL_GPL(PageHuge);

626
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
627 628
{
	struct page *page;
629

630 631 632
	if (h->order >= MAX_ORDER)
		return NULL;

633
	page = alloc_pages_exact_node(nid,
634 635
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
636
		huge_page_order(h));
L
Linus Torvalds 已提交
637
	if (page) {
638
		if (arch_prepare_hugepage(page)) {
639
			__free_pages(page, huge_page_order(h));
640
			return NULL;
641
		}
642
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
643
	}
644 645 646 647

	return page;
}

648
/*
649 650 651 652 653
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
654
 */
655
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
656
{
657
	nid = next_node(nid, *nodes_allowed);
658
	if (nid == MAX_NUMNODES)
659
		nid = first_node(*nodes_allowed);
660 661 662 663 664
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

665 666 667 668 669 670 671
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

672
/*
673 674 675 676
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
677
 */
678 679
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
680
{
681 682 683 684 685 686
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
687 688

	return nid;
689 690
}

691
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
692 693 694 695 696 697
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

698
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
699
	next_nid = start_nid;
700 701

	do {
702
		page = alloc_fresh_huge_page_node(h, next_nid);
703
		if (page) {
704
			ret = 1;
705 706
			break;
		}
707
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
708
	} while (next_nid != start_nid);
709

710 711 712 713 714
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

715
	return ret;
L
Linus Torvalds 已提交
716 717
}

718
/*
719 720 721 722
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
723
 */
724
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
725
{
726 727 728 729 730 731
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
732 733

	return nid;
734 735 736 737 738 739 740 741
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
742 743
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
744 745 746 747 748
{
	int start_nid;
	int next_nid;
	int ret = 0;

749
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
750 751 752
	next_nid = start_nid;

	do {
753 754 755 756 757 758
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
759 760 761 762 763 764
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
765 766 767 768
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
769 770
			update_and_free_page(h, page);
			ret = 1;
771
			break;
772
		}
773
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
774
	} while (next_nid != start_nid);
775 776 777 778

	return ret;
}

779
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
780 781
{
	struct page *page;
782
	unsigned int r_nid;
783

784 785 786
	if (h->order >= MAX_ORDER)
		return NULL;

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
811
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
812 813 814
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
815 816
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
817 818 819
	}
	spin_unlock(&hugetlb_lock);

820 821 822 823 824 825 826 827
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
828

829 830 831 832 833
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

834
	spin_lock(&hugetlb_lock);
835
	if (page) {
836 837 838 839 840 841
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
842
		r_nid = page_to_nid(page);
843
		set_compound_page_dtor(page, free_huge_page);
844 845 846
		/*
		 * We incremented the global counters already
		 */
847 848
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
849
		__count_vm_event(HTLB_BUDDY_PGALLOC);
850
	} else {
851 852
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
853
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
854
	}
855
	spin_unlock(&hugetlb_lock);
856 857 858 859

	return page;
}

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

	if (!page)
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

879 880 881 882
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
883
static int gather_surplus_pages(struct hstate *h, int delta)
884 885 886 887 888 889
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

890
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
891
	if (needed <= 0) {
892
		h->resv_huge_pages += delta;
893
		return 0;
894
	}
895 896 897 898 899 900 901 902

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
903
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
924 925
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
926 927 928 929 930 931 932
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
933 934 935
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
936 937
	 */
	needed += allocated;
938
	h->resv_huge_pages += delta;
939 940
	ret = 0;
free:
941
	/* Free the needed pages to the hugetlb pool */
942
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
943 944
		if ((--needed) < 0)
			break;
945
		list_del(&page->lru);
946
		enqueue_huge_page(h, page);
947 948 949 950 951 952 953
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
954
			/*
955 956 957
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
958 959 960
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
961
			free_huge_page(page);
962
		}
963
		spin_lock(&hugetlb_lock);
964 965 966 967 968 969 970 971 972
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
973
 * Called with hugetlb_lock held.
974
 */
975 976
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
977 978 979
{
	unsigned long nr_pages;

980
	/* Uncommit the reservation */
981
	h->resv_huge_pages -= unused_resv_pages;
982

983 984 985 986
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

987
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
988

989 990
	/*
	 * We want to release as many surplus pages as possible, spread
991 992 993 994 995
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
996 997
	 */
	while (nr_pages--) {
998
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
999
			break;
1000 1001 1002
	}
}

1003 1004 1005 1006 1007 1008 1009 1010 1011
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
1012
static long vma_needs_reservation(struct hstate *h,
1013
			struct vm_area_struct *vma, unsigned long addr)
1014 1015 1016 1017
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1018
	if (vma->vm_flags & VM_MAYSHARE) {
1019
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1020 1021 1022
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1023 1024
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1025

1026
	} else  {
1027
		long err;
1028
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1029 1030 1031 1032 1033 1034 1035
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1036
}
1037 1038
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1039 1040 1041 1042
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1043
	if (vma->vm_flags & VM_MAYSHARE) {
1044
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1045
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1046 1047

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1048
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1049 1050 1051 1052
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1053 1054 1055
	}
}

1056
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1057
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1058
{
1059
	struct hstate *h = hstate_vma(vma);
1060
	struct page *page;
1061 1062
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
1063
	long chg;
1064 1065 1066 1067 1068

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
1069 1070
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
1071
	 */
1072
	chg = vma_needs_reservation(h, vma, addr);
1073 1074 1075
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
1076 1077
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1078 1079

	spin_lock(&hugetlb_lock);
1080
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1081
	spin_unlock(&hugetlb_lock);
1082

K
Ken Chen 已提交
1083
	if (!page) {
1084
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1085
		if (!page) {
1086
			hugetlb_put_quota(inode->i_mapping, chg);
1087
			return ERR_PTR(-VM_FAULT_SIGBUS);
K
Ken Chen 已提交
1088 1089
		}
	}
1090

1091 1092
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
1093

1094
	vma_commit_reservation(h, vma, addr);
1095

1096
	return page;
1097 1098
}

1099
int __weak alloc_bootmem_huge_page(struct hstate *h)
1100 1101
{
	struct huge_bootmem_page *m;
1102
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1103 1104 1105 1106 1107

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1108
				NODE_DATA(hstate_next_node_to_alloc(h,
1109
						&node_states[N_HIGH_MEMORY])),
1110 1111 1112 1113 1114 1115 1116 1117 1118
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1119
			goto found;
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1133 1134 1135 1136 1137 1138 1139 1140
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1151
		prep_compound_huge_page(page, h->order);
1152 1153 1154 1155
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1156
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1157 1158
{
	unsigned long i;
1159

1160
	for (i = 0; i < h->max_huge_pages; ++i) {
1161 1162 1163
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1164 1165
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1166 1167
			break;
	}
1168
	h->max_huge_pages = i;
1169 1170 1171 1172 1173 1174 1175
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1176 1177 1178
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1179 1180 1181
	}
}

A
Andi Kleen 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1193 1194 1195 1196 1197
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1198 1199 1200 1201 1202
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1203 1204 1205
	}
}

L
Linus Torvalds 已提交
1206
#ifdef CONFIG_HIGHMEM
1207 1208
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1209
{
1210 1211
	int i;

1212 1213 1214
	if (h->order >= MAX_ORDER)
		return;

1215
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1216
		struct page *page, *next;
1217 1218 1219
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1220
				return;
L
Linus Torvalds 已提交
1221 1222 1223
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1224
			update_and_free_page(h, page);
1225 1226
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1227 1228 1229 1230
		}
	}
}
#else
1231 1232
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1233 1234 1235 1236
{
}
#endif

1237 1238 1239 1240 1241
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1242 1243
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1244
{
1245
	int start_nid, next_nid;
1246 1247 1248 1249
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1250
	if (delta < 0)
1251
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1252
	else
1253
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1254 1255 1256 1257 1258 1259 1260 1261
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1262
			if (!h->surplus_huge_pages_node[nid]) {
1263 1264
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1265
				continue;
1266
			}
1267 1268 1269 1270 1271 1272
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1273
						h->nr_huge_pages_node[nid]) {
1274 1275
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1276
				continue;
1277
			}
1278
		}
1279 1280 1281 1282 1283

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1284
	} while (next_nid != start_nid);
1285 1286 1287 1288

	return ret;
}

1289
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1290 1291
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1292
{
1293
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1294

1295 1296 1297
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1298 1299 1300 1301
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1302 1303 1304 1305 1306 1307
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1308
	 */
L
Linus Torvalds 已提交
1309
	spin_lock(&hugetlb_lock);
1310
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1311
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1312 1313 1314
			break;
	}

1315
	while (count > persistent_huge_pages(h)) {
1316 1317 1318 1319 1320 1321
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1322
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1323 1324 1325 1326
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1327 1328 1329
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1330 1331 1332 1333 1334 1335 1336 1337
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1338 1339 1340 1341 1342 1343 1344 1345
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1346
	 */
1347
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1348
	min_count = max(count, min_count);
1349
	try_to_free_low(h, min_count, nodes_allowed);
1350
	while (min_count < persistent_huge_pages(h)) {
1351
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1352 1353
			break;
	}
1354
	while (count < persistent_huge_pages(h)) {
1355
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1356 1357 1358
			break;
	}
out:
1359
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1360
	spin_unlock(&hugetlb_lock);
1361
	return ret;
L
Linus Torvalds 已提交
1362 1363
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1374 1375 1376
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1377 1378
{
	int i;
1379

1380
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1381 1382 1383
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1384
			return &hstates[i];
1385 1386 1387
		}

	return kobj_to_node_hstate(kobj, nidp);
1388 1389
}

1390
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1391 1392
					struct kobj_attribute *attr, char *buf)
{
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1404
}
1405 1406 1407
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1408 1409
{
	int err;
1410
	int nid;
1411
	unsigned long count;
1412
	struct hstate *h;
1413
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1414

1415
	err = strict_strtoul(buf, 10, &count);
1416 1417 1418
	if (err)
		return 0;

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1439
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1440

1441
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
		NODEMASK_FREE(nodes_allowed);

	return len;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1457 1458 1459
}
HSTATE_ATTR(nr_hugepages);

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1481 1482 1483
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1484
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1485 1486 1487 1488 1489 1490 1491
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1492
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1520 1521 1522 1523 1524 1525
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1526
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1527 1528 1529 1530 1531 1532 1533
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1545 1546 1547 1548 1549 1550 1551 1552 1553
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1554 1555 1556
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1557 1558 1559 1560 1561 1562 1563
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1564 1565 1566
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1567 1568
{
	int retval;
1569
	int hi = h - hstates;
1570

1571 1572
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1573 1574
		return -ENOMEM;

1575
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1576
	if (retval)
1577
		kobject_put(hstate_kobjs[hi]);
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1592 1593
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1594 1595 1596 1597 1598 1599
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
 * with node sysdevs in node_devices[] using a parallel array.  The array
 * index of a node sysdev or _hstate == node id.
 * This is here to avoid any static dependency of the node sysdev driver, in
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
 * A subset of global hstate attributes for node sysdevs
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
 * Unregister hstate attributes from a single node sysdev.
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];

	if (!nhs->hugepages_kobj)
1662
		return;		/* no hstate attributes */
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

	for_each_hstate(h)
		if (nhs->hstate_kobjs[h - hstates]) {
			kobject_put(nhs->hstate_kobjs[h - hstates]);
			nhs->hstate_kobjs[h - hstates] = NULL;
		}

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
 * hugetlb module exit:  unregister hstate attributes from node sysdevs
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
	 * disable node sysdev registrations.
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
 * Register hstate attributes for a single node sysdev.
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
							&node->sysdev.kobj);
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
						h->name, node->sysdev.id);
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1727 1728 1729
 * hugetlb init time:  register hstate attributes for all registered node
 * sysdevs of nodes that have memory.  All on-line nodes should have
 * registered their associated sysdev by this time.
1730 1731 1732 1733 1734
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1735
	for_each_node_state(nid, N_HIGH_MEMORY) {
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
		struct node *node = &node_devices[nid];
		if (node->sysdev.id == nid)
			hugetlb_register_node(node);
	}

	/*
	 * Let the node sysdev driver know we're here so it can
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1764 1765 1766 1767
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1768 1769
	hugetlb_unregister_all_nodes();

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1780 1781 1782 1783 1784 1785
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1786

1787 1788 1789 1790
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1791
	}
1792 1793 1794
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1795 1796 1797

	hugetlb_init_hstates();

1798 1799
	gather_bootmem_prealloc();

1800 1801 1802 1803
	report_hugepages();

	hugetlb_sysfs_init();

1804 1805
	hugetlb_register_all_nodes();

1806 1807 1808 1809 1810 1811 1812 1813
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1814 1815
	unsigned long i;

1816 1817 1818 1819 1820 1821 1822 1823 1824
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1825 1826 1827 1828
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1829 1830
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1831 1832
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1833

1834 1835 1836
	parsed_hstate = h;
}

1837
static int __init hugetlb_nrpages_setup(char *s)
1838 1839
{
	unsigned long *mhp;
1840
	static unsigned long *last_mhp;
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1851 1852 1853 1854 1855 1856
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1857 1858 1859
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1870 1871
	return 1;
}
1872 1873 1874 1875 1876 1877 1878 1879
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1880

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1893 1894 1895
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1896
{
1897 1898 1899 1900 1901 1902 1903 1904
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1905
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1906

1907
	if (write) {
1908 1909
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
1920

L
Linus Torvalds 已提交
1921 1922
	return 0;
}
1923

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

1941
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1942
			void __user *buffer,
1943 1944
			size_t *length, loff_t *ppos)
{
1945
	proc_dointvec(table, write, buffer, length, ppos);
1946 1947 1948 1949 1950 1951 1952
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1953
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1954
			void __user *buffer,
1955 1956
			size_t *length, loff_t *ppos)
{
1957
	struct hstate *h = &default_hstate;
1958 1959 1960 1961 1962 1963 1964
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1965
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1966 1967 1968 1969 1970 1971 1972

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1973 1974 1975
	return 0;
}

L
Linus Torvalds 已提交
1976 1977
#endif /* CONFIG_SYSCTL */

1978
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1979
{
1980
	struct hstate *h = &default_hstate;
1981
	seq_printf(m,
1982 1983 1984 1985 1986
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1987 1988 1989 1990 1991
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1992 1993 1994 1995
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1996
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1997 1998
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1999 2000
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2001 2002 2003
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2004 2005 2006 2007 2008
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2009 2010
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
2011 2012
}

2013
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2036
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2037 2038
			goto out;

2039 2040
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2041 2042 2043 2044 2045 2046
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2047
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2048 2049 2050 2051 2052 2053

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2070 2071
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2072
	struct hstate *h = hstate_vma(vma);
2073 2074 2075 2076 2077 2078
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2079 2080
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2081 2082 2083 2084 2085 2086

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

2087
		if (reserve) {
2088
			hugetlb_acct_memory(h, -reserve);
2089 2090
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
2091
	}
2092 2093
}

L
Linus Torvalds 已提交
2094 2095 2096 2097 2098 2099
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2100
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2101 2102
{
	BUG();
N
Nick Piggin 已提交
2103
	return 0;
L
Linus Torvalds 已提交
2104 2105
}

2106
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2107
	.fault = hugetlb_vm_op_fault,
2108
	.open = hugetlb_vm_op_open,
2109
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2110 2111
};

2112 2113
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2114 2115 2116
{
	pte_t entry;

2117
	if (writable) {
D
David Gibson 已提交
2118 2119 2120
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2121
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2122 2123 2124 2125 2126 2127 2128
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

2129 2130 2131 2132 2133
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2134 2135
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2136
		update_mmu_cache(vma, address, ptep);
2137
	}
2138 2139 2140
}


D
David Gibson 已提交
2141 2142 2143 2144 2145
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2146
	unsigned long addr;
2147
	int cow;
2148 2149
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2150 2151

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2152

2153
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2154 2155 2156
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2157
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2158 2159
		if (!dst_pte)
			goto nomem;
2160 2161 2162 2163 2164

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2165
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2166
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2167
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2168
			if (cow)
2169 2170
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2171 2172
			ptepage = pte_page(entry);
			get_page(ptepage);
2173
			page_dup_rmap(ptepage);
2174 2175 2176
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2177
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2178 2179 2180 2181 2182 2183 2184
	}
	return 0;

nomem:
	return -ENOMEM;
}

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
		return 1;
	} else
		return 0;
}

2198
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2199
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
2200 2201 2202
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2203
	pte_t *ptep;
D
David Gibson 已提交
2204 2205
	pte_t pte;
	struct page *page;
2206
	struct page *tmp;
2207 2208 2209
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

2210 2211 2212 2213 2214
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
2215
	LIST_HEAD(page_list);
D
David Gibson 已提交
2216 2217

	WARN_ON(!is_vm_hugetlb_page(vma));
2218 2219
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2220

A
Andrea Arcangeli 已提交
2221
	mmu_notifier_invalidate_range_start(mm, start, end);
2222
	spin_lock(&mm->page_table_lock);
2223
	for (address = start; address < end; address += sz) {
2224
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2225
		if (!ptep)
2226 2227
			continue;

2228 2229 2230
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2252
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2253
		if (huge_pte_none(pte))
D
David Gibson 已提交
2254
			continue;
2255

2256 2257 2258 2259 2260 2261
		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
			continue;

D
David Gibson 已提交
2262
		page = pte_page(pte);
2263 2264
		if (pte_dirty(pte))
			set_page_dirty(page);
2265
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
2266
	}
L
Linus Torvalds 已提交
2267
	spin_unlock(&mm->page_table_lock);
2268
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
2269
	mmu_notifier_invalidate_range_end(mm, start, end);
2270
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2271
		page_remove_rmap(page);
2272 2273 2274
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
2275
}
D
David Gibson 已提交
2276

2277
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2278
			  unsigned long end, struct page *ref_page)
2279
{
2280 2281 2282
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2283 2284
}

2285 2286 2287 2288 2289 2290
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2291 2292
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2293
{
2294
	struct hstate *h = hstate_vma(vma);
2295 2296 2297 2298 2299 2300 2301 2302 2303
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2304
	address = address & huge_page_mask(h);
2305 2306 2307 2308
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

2309 2310 2311 2312 2313 2314
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
	spin_lock(&mapping->i_mmap_lock);
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2328
			__unmap_hugepage_range(iter_vma,
2329
				address, address + huge_page_size(h),
2330 2331
				page);
	}
2332
	spin_unlock(&mapping->i_mmap_lock);
2333 2334 2335 2336

	return 1;
}

2337 2338 2339
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
 */
2340
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2341 2342
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2343
{
2344
	struct hstate *h = hstate_vma(vma);
2345
	struct page *old_page, *new_page;
2346
	int avoidcopy;
2347
	int outside_reserve = 0;
2348 2349 2350

	old_page = pte_page(pte);

2351
retry_avoidcopy:
2352 2353
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2354
	avoidcopy = (page_mapcount(old_page) == 1);
2355
	if (avoidcopy) {
2356 2357
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2358
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2359
		return 0;
2360 2361
	}

2362 2363 2364 2365 2366 2367 2368 2369 2370
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2371
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2372 2373 2374 2375
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2376
	page_cache_get(old_page);
2377 2378 2379

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2380
	new_page = alloc_huge_page(vma, address, outside_reserve);
2381

2382
	if (IS_ERR(new_page)) {
2383
		page_cache_release(old_page);
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
2397
				spin_lock(&mm->page_table_lock);
2398 2399 2400 2401 2402
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

2403 2404
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2405
		return -PTR_ERR(new_page);
2406 2407
	}

2408 2409 2410 2411 2412 2413 2414
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;

2415
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
2416
	__SetPageUptodate(new_page);
2417

2418 2419 2420 2421 2422
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2423
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2424
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2425
		/* Break COW */
2426 2427 2428
		mmu_notifier_invalidate_range_start(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2429
		huge_ptep_clear_flush(vma, address, ptep);
2430 2431
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2432
		page_remove_rmap(old_page);
2433
		hugepage_add_new_anon_rmap(new_page, vma, address);
2434 2435
		/* Make the old page be freed below */
		new_page = old_page;
2436 2437 2438
		mmu_notifier_invalidate_range_end(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2439 2440 2441
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2442
	return 0;
2443 2444
}

2445
/* Return the pagecache page at a given address within a VMA */
2446 2447
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2448 2449
{
	struct address_space *mapping;
2450
	pgoff_t idx;
2451 2452

	mapping = vma->vm_file->f_mapping;
2453
	idx = vma_hugecache_offset(h, vma, address);
2454 2455 2456 2457

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2458 2459 2460 2461 2462
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2478
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2479
			unsigned long address, pte_t *ptep, unsigned int flags)
2480
{
2481
	struct hstate *h = hstate_vma(vma);
2482
	int ret = VM_FAULT_SIGBUS;
2483
	pgoff_t idx;
A
Adam Litke 已提交
2484 2485 2486
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2487
	pte_t new_pte;
A
Adam Litke 已提交
2488

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2501
	mapping = vma->vm_file->f_mapping;
2502
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2503 2504 2505 2506 2507

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2508 2509 2510
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2511
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2512 2513
		if (idx >= size)
			goto out;
2514
		page = alloc_huge_page(vma, address, 0);
2515 2516
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
2517 2518
			goto out;
		}
2519
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
2520
		__SetPageUptodate(page);
2521

2522
		if (vma->vm_flags & VM_MAYSHARE) {
2523
			int err;
K
Ken Chen 已提交
2524
			struct inode *inode = mapping->host;
2525 2526 2527 2528 2529 2530 2531 2532

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2533 2534

			spin_lock(&inode->i_lock);
2535
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2536
			spin_unlock(&inode->i_lock);
2537
			page_dup_rmap(page);
2538
		} else {
2539
			lock_page(page);
2540 2541 2542 2543 2544
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
			hugepage_add_new_anon_rmap(page, vma, address);
2545
		}
2546
	} else {
2547 2548 2549 2550 2551 2552 2553 2554 2555
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
			ret = VM_FAULT_HWPOISON;
			goto backout_unlocked;
		}
2556
		page_dup_rmap(page);
2557
	}
2558

2559 2560 2561 2562 2563 2564
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2565
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2566 2567 2568 2569
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2570

2571
	spin_lock(&mm->page_table_lock);
2572
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2573 2574 2575
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2576
	ret = 0;
2577
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2578 2579
		goto backout;

2580 2581 2582 2583
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2584
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2585
		/* Optimization, do the COW without a second fault */
2586
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2587 2588
	}

2589
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2590 2591
	unlock_page(page);
out:
2592
	return ret;
A
Adam Litke 已提交
2593 2594 2595

backout:
	spin_unlock(&mm->page_table_lock);
2596
backout_unlocked:
A
Adam Litke 已提交
2597 2598 2599
	unlock_page(page);
	put_page(page);
	goto out;
2600 2601
}

2602
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2603
			unsigned long address, unsigned int flags)
2604 2605 2606
{
	pte_t *ptep;
	pte_t entry;
2607
	int ret;
2608
	struct page *page = NULL;
2609
	struct page *pagecache_page = NULL;
2610
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2611
	struct hstate *h = hstate_vma(vma);
2612

2613 2614 2615 2616 2617 2618 2619
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
			return VM_FAULT_HWPOISON;
	}

2620
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2621 2622 2623
	if (!ptep)
		return VM_FAULT_OOM;

2624 2625 2626 2627 2628 2629
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2630 2631
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2632
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2633
		goto out_mutex;
2634
	}
2635

N
Nick Piggin 已提交
2636
	ret = 0;
2637

2638 2639 2640 2641 2642 2643 2644 2645
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2646
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2647 2648
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2649
			goto out_mutex;
2650
		}
2651

2652
		if (!(vma->vm_flags & VM_MAYSHARE))
2653 2654 2655 2656
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2657 2658 2659 2660 2661 2662 2663 2664 2665
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
2666 2667
		lock_page(page);

2668 2669
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2670 2671 2672 2673
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2674
	if (flags & FAULT_FLAG_WRITE) {
2675
		if (!pte_write(entry)) {
2676 2677
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2678 2679 2680 2681 2682
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2683 2684
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2685
		update_mmu_cache(vma, address, ptep);
2686 2687

out_page_table_lock:
2688
	spin_unlock(&mm->page_table_lock);
2689 2690 2691 2692 2693

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2694
	unlock_page(page);
2695

2696
out_mutex:
2697
	mutex_unlock(&hugetlb_instantiation_mutex);
2698 2699

	return ret;
2700 2701
}

A
Andi Kleen 已提交
2702 2703 2704 2705 2706 2707 2708 2709 2710
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2711 2712
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2713
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2714
			unsigned int flags)
D
David Gibson 已提交
2715
{
2716 2717
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2718
	int remainder = *length;
2719
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2720

2721
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2722
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2723
		pte_t *pte;
H
Hugh Dickins 已提交
2724
		int absent;
A
Adam Litke 已提交
2725
		struct page *page;
D
David Gibson 已提交
2726

A
Adam Litke 已提交
2727 2728
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2729
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2730 2731
		 * first, for the page indexing below to work.
		 */
2732
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2733 2734 2735 2736
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2737 2738 2739 2740
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2741
		 */
H
Hugh Dickins 已提交
2742 2743
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2744 2745 2746
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2747

H
Hugh Dickins 已提交
2748 2749
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2750
			int ret;
D
David Gibson 已提交
2751

A
Adam Litke 已提交
2752
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2753 2754
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2755
			spin_lock(&mm->page_table_lock);
2756
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2757
				continue;
D
David Gibson 已提交
2758

A
Adam Litke 已提交
2759 2760 2761 2762
			remainder = 0;
			break;
		}

2763
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2764
		page = pte_page(huge_ptep_get(pte));
2765
same_page:
2766
		if (pages) {
H
Hugh Dickins 已提交
2767
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2768
			get_page(pages[i]);
2769
		}
D
David Gibson 已提交
2770 2771 2772 2773 2774

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2775
		++pfn_offset;
D
David Gibson 已提交
2776 2777
		--remainder;
		++i;
2778
		if (vaddr < vma->vm_end && remainder &&
2779
				pfn_offset < pages_per_huge_page(h)) {
2780 2781 2782 2783 2784 2785
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2786
	}
2787
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2788 2789 2790
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2791
	return i ? i : -EFAULT;
D
David Gibson 已提交
2792
}
2793 2794 2795 2796 2797 2798 2799 2800

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2801
	struct hstate *h = hstate_vma(vma);
2802 2803 2804 2805

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2806
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2807
	spin_lock(&mm->page_table_lock);
2808
	for (; address < end; address += huge_page_size(h)) {
2809 2810 2811
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2812 2813
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2814
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2815 2816 2817 2818 2819 2820
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2821
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2822 2823 2824 2825

	flush_tlb_range(vma, start, end);
}

2826 2827
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2828 2829
					struct vm_area_struct *vma,
					int acctflag)
2830
{
2831
	long ret, chg;
2832
	struct hstate *h = hstate_inode(inode);
2833

2834 2835 2836 2837 2838 2839 2840 2841
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
	if (acctflag & VM_NORESERVE)
		return 0;

2842 2843 2844 2845 2846 2847
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
2848
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2849
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2850 2851 2852 2853 2854
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2855
		chg = to - from;
2856

2857 2858 2859 2860
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2861 2862
	if (chg < 0)
		return chg;
2863

2864
	/* There must be enough filesystem quota for the mapping */
2865 2866
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2867 2868

	/*
2869 2870
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2871
	 */
2872
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2873 2874
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2875
		return ret;
K
Ken Chen 已提交
2876
	}
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2889
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2890
		region_add(&inode->i_mapping->private_list, from, to);
2891 2892 2893 2894 2895
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2896
	struct hstate *h = hstate_inode(inode);
2897
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2898 2899

	spin_lock(&inode->i_lock);
2900
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
2901 2902
	spin_unlock(&inode->i_lock);

2903
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2904
	hugetlb_acct_memory(h, -(chg - freed));
2905
}
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921

/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
void __isolate_hwpoisoned_huge_page(struct page *hpage)
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	spin_lock(&hugetlb_lock);
	list_del(&hpage->lru);
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	spin_unlock(&hugetlb_lock);
}