i915_gem.c 104.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37

38
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 40
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 42 43 44 45
static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
							  bool write);
static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
								  uint64_t offset,
								  uint64_t size);
46
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 48 49
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
50 51
static void i915_gem_clear_fence_reg(struct drm_device *dev,
				     struct drm_i915_fence_reg *reg);
52 53
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
54
				struct drm_i915_gem_pwrite *args,
55 56
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
57

58 59 60 61
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
				    int nr_to_scan,
				    gfp_t gfp_mask);

62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

108
int i915_mutex_lock_interruptible(struct drm_device *dev)
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

126
	WARN_ON(i915_verify_lists(dev));
127 128
	return 0;
}
129

130
static inline bool
131
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
132
{
133
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
134 135
}

136 137 138 139
void i915_gem_do_init(struct drm_device *dev,
		      unsigned long start,
		      unsigned long mappable_end,
		      unsigned long end)
140 141 142
{
	drm_i915_private_t *dev_priv = dev->dev_private;

143
	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
144

145 146 147
	dev_priv->mm.gtt_start = start;
	dev_priv->mm.gtt_mappable_end = mappable_end;
	dev_priv->mm.gtt_end = end;
148
	dev_priv->mm.gtt_total = end - start;
149
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
150 151 152

	/* Take over this portion of the GTT */
	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
J
Jesse Barnes 已提交
153
}
154

J
Jesse Barnes 已提交
155 156
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
157
		    struct drm_file *file)
J
Jesse Barnes 已提交
158 159
{
	struct drm_i915_gem_init *args = data;
160 161 162 163

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
164 165

	mutex_lock(&dev->struct_mutex);
166
	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
167 168
	mutex_unlock(&dev->struct_mutex);

169
	return 0;
170 171
}

172 173
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
174
			    struct drm_file *file)
175
{
176
	struct drm_i915_private *dev_priv = dev->dev_private;
177
	struct drm_i915_gem_get_aperture *args = data;
178 179
	struct drm_i915_gem_object *obj;
	size_t pinned;
180 181 182 183

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

184
	pinned = 0;
185
	mutex_lock(&dev->struct_mutex);
186 187
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
188
	mutex_unlock(&dev->struct_mutex);
189

190 191 192
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size -pinned;

193 194 195
	return 0;
}

196 197 198 199 200
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
201
{
202
	struct drm_i915_gem_object *obj;
203 204
	int ret;
	u32 handle;
205

206
	size = roundup(size, PAGE_SIZE);
207 208

	/* Allocate the new object */
209
	obj = i915_gem_alloc_object(dev, size);
210 211 212
	if (obj == NULL)
		return -ENOMEM;

213
	ret = drm_gem_handle_create(file, &obj->base, &handle);
214
	if (ret) {
215 216
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
217
		kfree(obj);
218
		return ret;
219
	}
220

221
	/* drop reference from allocate - handle holds it now */
222
	drm_gem_object_unreference(&obj->base);
223 224
	trace_i915_gem_object_create(obj);

225
	*handle_p = handle;
226 227 228
	return 0;
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
	args->pitch = ALIGN(args->width & ((args->bpp + 1) / 8), 64);
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

260
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
261
{
262
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
263 264

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
265
		obj->tiling_mode != I915_TILING_NONE;
266 267
}

268
static inline void
269 270 271 272 273 274 275 276
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

277 278
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
279 280 281

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

282 283
	kunmap(src_page);
	kunmap(dst_page);
284 285
}

286
static inline void
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

306 307
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

331 332
	kunmap(cpu_page);
	kunmap(gpu_page);
333 334
}

335 336 337 338 339 340
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
341 342
i915_gem_shmem_pread_fast(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
343
			  struct drm_i915_gem_pread *args,
344
			  struct drm_file *file)
345
{
346
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
347
	ssize_t remain;
348
	loff_t offset;
349 350 351 352 353 354 355 356 357
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	offset = args->offset;

	while (remain > 0) {
358 359 360 361
		struct page *page;
		char *vaddr;
		int ret;

362 363 364 365 366 367 368 369 370 371
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

372 373 374 375 376 377 378 379 380 381 382 383 384 385
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
386
			return -EFAULT;
387 388 389 390 391 392

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

393
	return 0;
394 395 396 397 398 399 400 401 402
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
403 404
i915_gem_shmem_pread_slow(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
405
			  struct drm_i915_gem_pread *args,
406
			  struct drm_file *file)
407
{
408
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
409 410 411 412 413
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
414 415
	int shmem_page_offset;
	int data_page_index, data_page_offset;
416 417 418
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
419
	int do_bit17_swizzling;
420 421 422 423 424 425 426 427 428 429 430

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

431
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
432 433 434
	if (user_pages == NULL)
		return -ENOMEM;

435
	mutex_unlock(&dev->struct_mutex);
436 437
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
438
				      num_pages, 1, 0, user_pages, NULL);
439
	up_read(&mm->mmap_sem);
440
	mutex_lock(&dev->struct_mutex);
441 442
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
443
		goto out;
444 445
	}

446 447 448
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
449
	if (ret)
450
		goto out;
451

452
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
453 454 455 456

	offset = args->offset;

	while (remain > 0) {
457 458
		struct page *page;

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

476 477 478 479 480
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

481
		if (do_bit17_swizzling) {
482
			slow_shmem_bit17_copy(page,
483
					      shmem_page_offset,
484 485 486 487 488 489 490
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
491
					page,
492 493
					shmem_page_offset,
					page_length);
494
		}
495

496 497 498
		mark_page_accessed(page);
		page_cache_release(page);

499 500 501 502 503
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

504
out:
505 506
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
507
		mark_page_accessed(user_pages[i]);
508 509
		page_cache_release(user_pages[i]);
	}
510
	drm_free_large(user_pages);
511 512 513 514

	return ret;
}

515 516 517 518 519 520 521
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
522
		     struct drm_file *file)
523 524
{
	struct drm_i915_gem_pread *args = data;
525
	struct drm_i915_gem_object *obj;
526
	int ret = 0;
527

528 529 530 531 532 533 534 535 536 537 538 539 540
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret)
		return -EFAULT;

541
	ret = i915_mutex_lock_interruptible(dev);
542
	if (ret)
543
		return ret;
544

545
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
546 547 548
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
549
	}
550

551
	/* Bounds check source.  */
552 553
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
554
		ret = -EINVAL;
555
		goto out;
C
Chris Wilson 已提交
556 557
	}

558 559 560 561
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
562
		goto out;
563 564 565

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
566
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
567
	if (ret == -EFAULT)
568
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
569

570
out:
571
	drm_gem_object_unreference(&obj->base);
572
unlock:
573
	mutex_unlock(&dev->struct_mutex);
574
	return ret;
575 576
}

577 578
/* This is the fast write path which cannot handle
 * page faults in the source data
579
 */
580 581 582 583 584 585

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
586 587
{
	char *vaddr_atomic;
588
	unsigned long unwritten;
589

P
Peter Zijlstra 已提交
590
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
591 592
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
593
	io_mapping_unmap_atomic(vaddr_atomic);
594
	return unwritten;
595 596 597 598 599 600
}

/* Here's the write path which can sleep for
 * page faults
 */

601
static inline void
602 603 604 605
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
606
{
607 608
	char __iomem *dst_vaddr;
	char *src_vaddr;
609

610 611 612 613 614 615 616 617 618
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
619 620
}

621 622 623 624
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
625
static int
626 627
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
628
			 struct drm_i915_gem_pwrite *args,
629
			 struct drm_file *file)
630
{
631
	drm_i915_private_t *dev_priv = dev->dev_private;
632
	ssize_t remain;
633
	loff_t offset, page_base;
634
	char __user *user_data;
635
	int page_offset, page_length;
636 637 638 639

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

640
	offset = obj->gtt_offset + args->offset;
641 642 643 644

	while (remain > 0) {
		/* Operation in this page
		 *
645 646 647
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
648
		 */
649 650 651 652 653 654 655
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
656 657
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
658
		 */
659 660 661 662
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))

			return -EFAULT;
663

664 665 666
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
667 668
	}

669
	return 0;
670 671
}

672 673 674 675 676 677 678
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
679
static int
680 681
i915_gem_gtt_pwrite_slow(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
682
			 struct drm_i915_gem_pwrite *args,
683
			 struct drm_file *file)
684
{
685 686 687 688 689 690 691 692
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
693
	int ret;
694 695 696 697 698 699 700 701 702 703 704 705
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

706
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
707 708 709
	if (user_pages == NULL)
		return -ENOMEM;

710
	mutex_unlock(&dev->struct_mutex);
711 712 713 714
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
715
	mutex_lock(&dev->struct_mutex);
716 717 718 719
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
720

721 722 723 724 725
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin_pages;

	ret = i915_gem_object_put_fence(obj);
726
	if (ret)
727
		goto out_unpin_pages;
728

729
	offset = obj->gtt_offset + args->offset;
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

751 752 753 754 755
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
756 757 758 759 760 761 762 763 764

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
765
	drm_free_large(user_pages);
766 767 768 769

	return ret;
}

770 771 772 773
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
774
static int
775 776
i915_gem_shmem_pwrite_fast(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
777
			   struct drm_i915_gem_pwrite *args,
778
			   struct drm_file *file)
779
{
780
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
781
	ssize_t remain;
782
	loff_t offset;
783 784 785 786 787
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
788

789
	offset = args->offset;
790
	obj->dirty = 1;
791 792

	while (remain > 0) {
793 794 795 796
		struct page *page;
		char *vaddr;
		int ret;

797 798 799 800 801 802 803 804 805 806
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page, KM_USER0);
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
		kunmap_atomic(vaddr, KM_USER0);

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
827
			return -EFAULT;
828 829 830 831 832 833

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

834
	return 0;
835 836 837 838 839 840 841 842 843 844
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
845 846
i915_gem_shmem_pwrite_slow(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
847
			   struct drm_i915_gem_pwrite *args,
848
			   struct drm_file *file)
849
{
850
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
851 852 853 854 855
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
856
	int shmem_page_offset;
857 858 859 860
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
861
	int do_bit17_swizzling;
862 863 864 865 866 867 868 869 870 871 872

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

873
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
874 875 876
	if (user_pages == NULL)
		return -ENOMEM;

877
	mutex_unlock(&dev->struct_mutex);
878 879 880 881
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
882
	mutex_lock(&dev->struct_mutex);
883 884
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
885
		goto out;
886 887
	}

888
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
889
	if (ret)
890
		goto out;
891

892
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
893

894
	offset = args->offset;
895
	obj->dirty = 1;
896

897
	while (remain > 0) {
898 899
		struct page *page;

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

917 918 919 920 921 922 923
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

924
		if (do_bit17_swizzling) {
925
			slow_shmem_bit17_copy(page,
926 927 928
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
929 930 931
					      page_length,
					      0);
		} else {
932
			slow_shmem_copy(page,
933 934 935 936
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
937
		}
938

939 940 941 942
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

943 944 945
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
946 947
	}

948
out:
949 950
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
951
	drm_free_large(user_pages);
952

953
	return ret;
954 955 956 957 958 959 960 961 962
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
963
		      struct drm_file *file)
964 965
{
	struct drm_i915_gem_pwrite *args = data;
966
	struct drm_i915_gem_object *obj;
967 968 969 970 971 972 973 974 975 976 977 978 979 980
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret)
		return -EFAULT;
981

982
	ret = i915_mutex_lock_interruptible(dev);
983
	if (ret)
984
		return ret;
985

986
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
987 988 989
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
990
	}
991

992
	/* Bounds check destination. */
993 994
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
995
		ret = -EINVAL;
996
		goto out;
C
Chris Wilson 已提交
997 998
	}

999 1000 1001 1002 1003 1004
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1005
	if (obj->phys_obj)
1006
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1007
	else if (obj->gtt_space &&
1008
		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1009
		ret = i915_gem_object_pin(obj, 0, true);
1010 1011 1012
		if (ret)
			goto out;

1013 1014 1015 1016 1017
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			goto out_unpin;

		ret = i915_gem_object_put_fence(obj);
1018 1019 1020 1021 1022 1023 1024 1025 1026
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1027
	} else {
1028 1029
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
1030
			goto out;
1031

1032 1033 1034 1035 1036 1037
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
1038

1039
out:
1040
	drm_gem_object_unreference(&obj->base);
1041
unlock:
1042
	mutex_unlock(&dev->struct_mutex);
1043 1044 1045 1046
	return ret;
}

/**
1047 1048
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1049 1050 1051
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1052
			  struct drm_file *file)
1053 1054
{
	struct drm_i915_gem_set_domain *args = data;
1055
	struct drm_i915_gem_object *obj;
1056 1057
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1058 1059 1060 1061 1062
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1063
	/* Only handle setting domains to types used by the CPU. */
1064
	if (write_domain & I915_GEM_GPU_DOMAINS)
1065 1066
		return -EINVAL;

1067
	if (read_domains & I915_GEM_GPU_DOMAINS)
1068 1069 1070 1071 1072 1073 1074 1075
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1076
	ret = i915_mutex_lock_interruptible(dev);
1077
	if (ret)
1078
		return ret;
1079

1080
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1081 1082 1083
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1084
	}
1085

1086 1087
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1088 1089 1090 1091 1092 1093 1094

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1095
	} else {
1096
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1097 1098
	}

1099
	drm_gem_object_unreference(&obj->base);
1100
unlock:
1101 1102 1103 1104 1105 1106 1107 1108 1109
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1110
			 struct drm_file *file)
1111 1112
{
	struct drm_i915_gem_sw_finish *args = data;
1113
	struct drm_i915_gem_object *obj;
1114 1115 1116 1117 1118
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1119
	ret = i915_mutex_lock_interruptible(dev);
1120
	if (ret)
1121
		return ret;
1122

1123
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1124
	if (obj == NULL) {
1125 1126
		ret = -ENOENT;
		goto unlock;
1127 1128 1129
	}

	/* Pinned buffers may be scanout, so flush the cache */
1130
	if (obj->pin_count)
1131 1132
		i915_gem_object_flush_cpu_write_domain(obj);

1133
	drm_gem_object_unreference(&obj->base);
1134
unlock:
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1148
		    struct drm_file *file)
1149
{
1150
	struct drm_i915_private *dev_priv = dev->dev_private;
1151 1152 1153 1154 1155 1156 1157 1158
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1159
	obj = drm_gem_object_lookup(dev, file, args->handle);
1160
	if (obj == NULL)
1161
		return -ENOENT;
1162

1163 1164 1165 1166 1167
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1168 1169 1170 1171 1172 1173 1174
	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1175
	drm_gem_object_unreference_unlocked(obj);
1176 1177 1178 1179 1180 1181 1182 1183
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1202 1203
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1204
	drm_i915_private_t *dev_priv = dev->dev_private;
1205 1206 1207
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1208
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1209 1210 1211 1212 1213 1214 1215

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
1216

1217 1218 1219 1220
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1221
	}
1222
	if (!obj->gtt_space) {
1223
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1224 1225
		if (ret)
			goto unlock;
1226 1227
	}

1228 1229 1230 1231
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unlock;

1232 1233 1234 1235 1236 1237
	if (obj->tiling_mode == I915_TILING_NONE)
		ret = i915_gem_object_put_fence(obj);
	else
		ret = i915_gem_object_get_fence(obj, NULL, true);
	if (ret)
		goto unlock;
1238

1239 1240
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1241

1242 1243
	obj->fault_mappable = true;

1244
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1245 1246 1247 1248
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1249
unlock:
1250 1251 1252
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1253 1254
	case -EAGAIN:
		set_need_resched();
1255 1256 1257
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1258 1259 1260
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1261
		return VM_FAULT_SIGBUS;
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
1277
i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1278
{
1279
	struct drm_device *dev = obj->base.dev;
1280 1281
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;
1282
	struct drm_local_map *map;
1283 1284 1285
	int ret = 0;

	/* Set the object up for mmap'ing */
1286
	list = &obj->base.map_list;
1287
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1288 1289 1290 1291 1292
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
1293
	map->size = obj->base.size;
1294 1295 1296 1297
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1298 1299
						    obj->base.size / PAGE_SIZE,
						    0, 0);
1300
	if (!list->file_offset_node) {
1301 1302
		DRM_ERROR("failed to allocate offset for bo %d\n",
			  obj->base.name);
1303
		ret = -ENOSPC;
1304 1305 1306 1307
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1308 1309
						  obj->base.size / PAGE_SIZE,
						  0);
1310 1311 1312 1313 1314 1315
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1316 1317
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1318 1319 1320 1321 1322 1323 1324 1325 1326
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1327
	kfree(list->map);
C
Chris Wilson 已提交
1328
	list->map = NULL;
1329 1330 1331 1332

	return ret;
}

1333 1334 1335 1336
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1337
 * Preserve the reservation of the mmapping with the DRM core code, but
1338 1339 1340 1341 1342 1343 1344 1345 1346
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1347
void
1348
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1349
{
1350 1351
	if (!obj->fault_mappable)
		return;
1352

1353 1354 1355
	unmap_mapping_range(obj->base.dev->dev_mapping,
			    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
			    obj->base.size, 1);
1356

1357
	obj->fault_mappable = false;
1358 1359
}

1360
static void
1361
i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1362
{
1363
	struct drm_device *dev = obj->base.dev;
1364
	struct drm_gem_mm *mm = dev->mm_private;
1365
	struct drm_map_list *list = &obj->base.map_list;
1366 1367

	drm_ht_remove_item(&mm->offset_hash, &list->hash);
C
Chris Wilson 已提交
1368 1369 1370
	drm_mm_put_block(list->file_offset_node);
	kfree(list->map);
	list->map = NULL;
1371 1372
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
static uint32_t
i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	uint32_t size;

	if (INTEL_INFO(dev)->gen >= 4 ||
	    obj->tiling_mode == I915_TILING_NONE)
		return obj->base.size;

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
		size = 1024*1024;
	else
		size = 512*1024;

	while (size < obj->base.size)
		size <<= 1;

	return size;
}

1395 1396 1397 1398 1399
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1400
 * potential fence register mapping.
1401 1402
 */
static uint32_t
1403
i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1404
{
1405
	struct drm_device *dev = obj->base.dev;
1406 1407 1408 1409 1410

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1411
	if (INTEL_INFO(dev)->gen >= 4 ||
1412
	    obj->tiling_mode == I915_TILING_NONE)
1413 1414
		return 4096;

1415 1416 1417 1418
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1419
	return i915_gem_get_gtt_size(obj);
1420 1421
}

1422 1423 1424 1425 1426 1427 1428 1429 1430
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
static uint32_t
1431
i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1432
{
1433
	struct drm_device *dev = obj->base.dev;
1434 1435 1436 1437 1438 1439
	int tile_height;

	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1440
	    obj->tiling_mode == I915_TILING_NONE)
1441 1442 1443 1444 1445 1446 1447 1448
		return 4096;

	/*
	 * Older chips need unfenced tiled buffers to be aligned to the left
	 * edge of an even tile row (where tile rows are counted as if the bo is
	 * placed in a fenced gtt region).
	 */
	if (IS_GEN2(dev) ||
1449
	    (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1450 1451 1452 1453
		tile_height = 32;
	else
		tile_height = 8;

1454
	return tile_height * obj->stride * 2;
1455 1456
}

1457
int
1458 1459 1460 1461
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1462
{
1463
	struct drm_i915_private *dev_priv = dev->dev_private;
1464
	struct drm_i915_gem_object *obj;
1465 1466 1467 1468 1469
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1470
	ret = i915_mutex_lock_interruptible(dev);
1471
	if (ret)
1472
		return ret;
1473

1474
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1475 1476 1477 1478
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
	}
1479

1480
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1481 1482 1483 1484
		ret = -E2BIG;
		goto unlock;
	}

1485
	if (obj->madv != I915_MADV_WILLNEED) {
1486
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1487 1488
		ret = -EINVAL;
		goto out;
1489 1490
	}

1491
	if (!obj->base.map_list.map) {
1492
		ret = i915_gem_create_mmap_offset(obj);
1493 1494
		if (ret)
			goto out;
1495 1496
	}

1497
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1498

1499
out:
1500
	drm_gem_object_unreference(&obj->base);
1501
unlock:
1502
	mutex_unlock(&dev->struct_mutex);
1503
	return ret;
1504 1505
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}


1534
static int
1535
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1546 1547 1548 1549
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1550 1551
		return -ENOMEM;

1552
	inode = obj->base.filp->f_path.dentry->d_inode;
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER |
					   __GFP_COLD |
					   __GFP_RECLAIMABLE |
					   gfpmask);
		if (IS_ERR(page))
			goto err_pages;

1563
		obj->pages[i] = page;
1564 1565
	}

1566
	if (obj->tiling_mode != I915_TILING_NONE)
1567 1568 1569 1570 1571 1572
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1573
		page_cache_release(obj->pages[i]);
1574

1575 1576
	drm_free_large(obj->pages);
	obj->pages = NULL;
1577 1578 1579
	return PTR_ERR(page);
}

1580
static void
1581
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1582
{
1583
	int page_count = obj->base.size / PAGE_SIZE;
1584 1585
	int i;

1586
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1587

1588
	if (obj->tiling_mode != I915_TILING_NONE)
1589 1590
		i915_gem_object_save_bit_17_swizzle(obj);

1591 1592
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1593 1594

	for (i = 0; i < page_count; i++) {
1595 1596
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1597

1598 1599
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1600

1601
		page_cache_release(obj->pages[i]);
1602
	}
1603
	obj->dirty = 0;
1604

1605 1606
	drm_free_large(obj->pages);
	obj->pages = NULL;
1607 1608
}

1609
void
1610
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1611 1612
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1613
{
1614
	struct drm_device *dev = obj->base.dev;
1615
	struct drm_i915_private *dev_priv = dev->dev_private;
1616

1617
	BUG_ON(ring == NULL);
1618
	obj->ring = ring;
1619 1620

	/* Add a reference if we're newly entering the active list. */
1621 1622 1623
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1624
	}
1625

1626
	/* Move from whatever list we were on to the tail of execution. */
1627 1628
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1629

1630
	obj->last_rendering_seqno = seqno;
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	if (obj->fenced_gpu_access) {
		struct drm_i915_fence_reg *reg;

		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);

		obj->last_fenced_seqno = seqno;
		obj->last_fenced_ring = ring;

		reg = &dev_priv->fence_regs[obj->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1649 1650
}

1651
static void
1652
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1653
{
1654
	struct drm_device *dev = obj->base.dev;
1655 1656
	drm_i915_private_t *dev_priv = dev->dev_private;

1657 1658
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1682
	obj->pending_gpu_write = false;
1683 1684 1685
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1686
}
1687

1688 1689
/* Immediately discard the backing storage */
static void
1690
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1691
{
C
Chris Wilson 已提交
1692
	struct inode *inode;
1693

1694 1695 1696 1697 1698 1699
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
1700
	inode = obj->base.filp->f_path.dentry->d_inode;
1701 1702 1703
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1704

1705
	obj->madv = __I915_MADV_PURGED;
1706 1707 1708
}

static inline int
1709
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1710
{
1711
	return obj->madv == I915_MADV_DONTNEED;
1712 1713
}

1714 1715
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1716
			       uint32_t flush_domains,
1717
			       struct intel_ring_buffer *ring)
1718
{
1719
	struct drm_i915_gem_object *obj, *next;
1720

1721
	list_for_each_entry_safe(obj, next,
1722
				 &ring->gpu_write_list,
1723
				 gpu_write_list) {
1724 1725
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1726

1727 1728
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1729 1730
			i915_gem_object_move_to_active(obj, ring,
						       i915_gem_next_request_seqno(dev, ring));
1731 1732

			trace_i915_gem_object_change_domain(obj,
1733
							    obj->base.read_domains,
1734 1735 1736 1737
							    old_write_domain);
		}
	}
}
1738

1739
int
1740
i915_add_request(struct drm_device *dev,
1741
		 struct drm_file *file,
C
Chris Wilson 已提交
1742
		 struct drm_i915_gem_request *request,
1743
		 struct intel_ring_buffer *ring)
1744 1745
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1746
	struct drm_i915_file_private *file_priv = NULL;
1747 1748
	uint32_t seqno;
	int was_empty;
1749 1750 1751
	int ret;

	BUG_ON(request == NULL);
1752

1753 1754
	if (file != NULL)
		file_priv = file->driver_priv;
1755

1756 1757 1758
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1759

1760
	ring->outstanding_lazy_request = false;
1761 1762

	request->seqno = seqno;
1763
	request->ring = ring;
1764
	request->emitted_jiffies = jiffies;
1765 1766 1767
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1768
	if (file_priv) {
1769
		spin_lock(&file_priv->mm.lock);
1770
		request->file_priv = file_priv;
1771
		list_add_tail(&request->client_list,
1772
			      &file_priv->mm.request_list);
1773
		spin_unlock(&file_priv->mm.lock);
1774
	}
1775

B
Ben Gamari 已提交
1776
	if (!dev_priv->mm.suspended) {
1777 1778
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1779
		if (was_empty)
1780 1781
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1782
	}
1783
	return 0;
1784 1785
}

1786 1787
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1788
{
1789
	struct drm_i915_file_private *file_priv = request->file_priv;
1790

1791 1792
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1793

1794 1795 1796 1797
	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1798 1799
}

1800 1801
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1802
{
1803 1804
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1805

1806 1807 1808
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1809

1810
		list_del(&request->list);
1811
		i915_gem_request_remove_from_client(request);
1812 1813
		kfree(request);
	}
1814

1815
	while (!list_empty(&ring->active_list)) {
1816
		struct drm_i915_gem_object *obj;
1817

1818 1819 1820
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1821

1822 1823 1824
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1825 1826 1827
	}
}

1828 1829 1830 1831 1832 1833 1834
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1835 1836 1837 1838 1839 1840 1841 1842
		struct drm_i915_gem_object *obj = reg->obj;

		if (!obj)
			continue;

		if (obj->tiling_mode)
			i915_gem_release_mmap(obj);

1843 1844 1845 1846 1847
		reg->obj->fence_reg = I915_FENCE_REG_NONE;
		reg->obj->fenced_gpu_access = false;
		reg->obj->last_fenced_seqno = 0;
		reg->obj->last_fenced_ring = NULL;
		i915_gem_clear_fence_reg(dev, reg);
1848 1849 1850
	}
}

1851
void i915_gem_reset(struct drm_device *dev)
1852
{
1853
	struct drm_i915_private *dev_priv = dev->dev_private;
1854
	struct drm_i915_gem_object *obj;
1855
	int i;
1856

1857 1858
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1859 1860 1861 1862 1863 1864

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1865 1866 1867
		obj= list_first_entry(&dev_priv->mm.flushing_list,
				      struct drm_i915_gem_object,
				      mm_list);
1868

1869 1870 1871
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1872 1873 1874 1875 1876
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1877
	list_for_each_entry(obj,
1878
			    &dev_priv->mm.inactive_list,
1879
			    mm_list)
1880
	{
1881
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1882
	}
1883 1884

	/* The fence registers are invalidated so clear them out */
1885
	i915_gem_reset_fences(dev);
1886 1887 1888 1889 1890
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1891 1892 1893
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1894 1895 1896
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;
1897
	int i;
1898

1899 1900
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1901 1902
		return;

1903
	WARN_ON(i915_verify_lists(dev));
1904

1905
	seqno = ring->get_seqno(ring);
1906

1907
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1908 1909 1910
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1911
	while (!list_empty(&ring->request_list)) {
1912 1913
		struct drm_i915_gem_request *request;

1914
		request = list_first_entry(&ring->request_list,
1915 1916 1917
					   struct drm_i915_gem_request,
					   list);

1918
		if (!i915_seqno_passed(seqno, request->seqno))
1919 1920 1921 1922 1923
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1924
		i915_gem_request_remove_from_client(request);
1925 1926
		kfree(request);
	}
1927

1928 1929 1930 1931
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1932
		struct drm_i915_gem_object *obj;
1933

1934 1935 1936
		obj= list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);
1937

1938
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1939
			break;
1940

1941
		if (obj->base.write_domain != 0)
1942 1943 1944
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1945
	}
1946 1947 1948

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1949
		ring->irq_put(ring);
1950 1951
		dev_priv->trace_irq_seqno = 0;
	}
1952 1953

	WARN_ON(i915_verify_lists(dev));
1954 1955
}

1956 1957 1958 1959
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1960
	int i;
1961

1962
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1963
	    struct drm_i915_gem_object *obj, *next;
1964 1965 1966 1967 1968 1969

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1970
	    list_for_each_entry_safe(obj, next,
1971
				     &dev_priv->mm.deferred_free_list,
1972
				     mm_list)
1973
		    i915_gem_free_object_tail(obj);
1974 1975
	}

1976 1977
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_retire_requests_ring(dev, &dev_priv->ring[i]);
1978 1979
}

1980
static void
1981 1982 1983 1984
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1985 1986
	bool idle;
	int i;
1987 1988 1989 1990 1991

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1992 1993 1994 1995 1996 1997
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1998
	i915_gem_retire_requests(dev);
1999

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

			ret = i915_gem_flush_ring(dev, ring, 0,
						  I915_GEM_GPU_DOMAINS);
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
			    i915_add_request(dev, NULL, request, ring))
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
2023
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2024

2025 2026 2027
	mutex_unlock(&dev->struct_mutex);
}

2028
int
2029
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2030
		     bool interruptible, struct intel_ring_buffer *ring)
2031 2032
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2033
	u32 ier;
2034 2035 2036 2037
	int ret = 0;

	BUG_ON(seqno == 0);

2038
	if (atomic_read(&dev_priv->mm.wedged))
2039 2040
		return -EAGAIN;

2041
	if (seqno == ring->outstanding_lazy_request) {
2042 2043 2044 2045
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
2046
			return -ENOMEM;
2047 2048 2049 2050 2051 2052 2053 2054

		ret = i915_add_request(dev, NULL, request, ring);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
2055
	}
2056

2057
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2058
		if (HAS_PCH_SPLIT(dev))
2059 2060 2061
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2062 2063 2064 2065 2066 2067 2068
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
2069 2070
		trace_i915_gem_request_wait_begin(dev, seqno);

2071
		ring->waiting_seqno = seqno;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
		if (ring->irq_get(ring)) {
			if (interruptible)
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
2083 2084 2085 2086
		} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
						      seqno) ||
				    atomic_read(&dev_priv->mm.wedged), 3000))
			ret = -EBUSY;
2087
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2088 2089

		trace_i915_gem_request_wait_end(dev, seqno);
2090
	}
2091
	if (atomic_read(&dev_priv->mm.wedged))
2092
		ret = -EAGAIN;
2093 2094

	if (ret && ret != -ERESTARTSYS)
2095
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2096
			  __func__, ret, seqno, ring->get_seqno(ring),
2097
			  dev_priv->next_seqno);
2098 2099 2100 2101 2102 2103 2104

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2105
		i915_gem_retire_requests_ring(dev, ring);
2106 2107 2108 2109

	return ret;
}

2110 2111 2112 2113 2114
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2115
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2116
		  struct intel_ring_buffer *ring)
2117
{
2118
	return i915_do_wait_request(dev, seqno, 1, ring);
2119 2120
}

2121 2122 2123 2124
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2125
int
2126
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2127
			       bool interruptible)
2128
{
2129
	struct drm_device *dev = obj->base.dev;
2130 2131
	int ret;

2132 2133
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2134
	 */
2135
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2136 2137 2138 2139

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2140
	if (obj->active) {
2141
		ret = i915_do_wait_request(dev,
2142
					   obj->last_rendering_seqno,
2143
					   interruptible,
2144
					   obj->ring);
2145
		if (ret)
2146 2147 2148 2149 2150 2151 2152 2153 2154
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2155
int
2156
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2157 2158 2159
{
	int ret = 0;

2160
	if (obj->gtt_space == NULL)
2161 2162
		return 0;

2163
	if (obj->pin_count != 0) {
2164 2165 2166 2167
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2168 2169 2170
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2171 2172 2173 2174 2175 2176
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2177
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2178
	if (ret == -ERESTARTSYS)
2179
		return ret;
2180 2181 2182 2183
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2184 2185
	if (ret) {
		i915_gem_clflush_object(obj);
2186
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2187
	}
2188

2189
	/* release the fence reg _after_ flushing */
2190 2191 2192
	ret = i915_gem_object_put_fence(obj);
	if (ret == -ERESTARTSYS)
		return ret;
2193

2194
	i915_gem_gtt_unbind_object(obj);
2195
	i915_gem_object_put_pages_gtt(obj);
2196

2197
	list_del_init(&obj->gtt_list);
2198
	list_del_init(&obj->mm_list);
2199
	/* Avoid an unnecessary call to unbind on rebind. */
2200
	obj->map_and_fenceable = true;
2201

2202 2203 2204
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2205

2206
	if (i915_gem_object_is_purgeable(obj))
2207 2208
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2209 2210
	trace_i915_gem_object_unbind(obj);

2211
	return ret;
2212 2213
}

2214
int
2215 2216 2217 2218 2219
i915_gem_flush_ring(struct drm_device *dev,
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2220 2221 2222 2223 2224 2225 2226 2227
	int ret;

	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

	i915_gem_process_flushing_list(dev, flush_domains, ring);
	return 0;
2228 2229
}

2230 2231 2232
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
2233 2234
	int ret;

2235
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2236 2237
		return 0;

2238 2239
	if (!list_empty(&ring->gpu_write_list)) {
		ret = i915_gem_flush_ring(dev, ring,
2240
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2241 2242 2243 2244
		if (ret)
			return ret;
	}

2245 2246 2247 2248 2249
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2250
int
2251 2252 2253 2254
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2255
	int ret, i;
2256

2257
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2258
		       list_empty(&dev_priv->mm.active_list));
2259 2260 2261 2262
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2263 2264 2265 2266 2267
	for (i = 0; i < I915_NUM_RINGS; i++) {
		ret = i915_ring_idle(dev, &dev_priv->ring[i]);
		if (ret)
			return ret;
	}
2268

2269
	return 0;
2270 2271
}

2272 2273
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
				       struct intel_ring_buffer *pipelined)
2274
{
2275
	struct drm_device *dev = obj->base.dev;
2276
	drm_i915_private_t *dev_priv = dev->dev_private;
2277 2278
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2279 2280
	uint64_t val;

2281
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2282
			 0xfffff000) << 32;
2283 2284
	val |= obj->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj->stride / 128) - 1) <<
2285 2286
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

2287
	if (obj->tiling_mode == I915_TILING_Y)
2288 2289 2290
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);

	return 0;
2307 2308
}

2309 2310
static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2311
{
2312
	struct drm_device *dev = obj->base.dev;
2313
	drm_i915_private_t *dev_priv = dev->dev_private;
2314 2315
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2316 2317
	uint64_t val;

2318
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2319
		    0xfffff000) << 32;
2320 2321 2322
	val |= obj->gtt_offset & 0xfffff000;
	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj->tiling_mode == I915_TILING_Y)
2323 2324 2325
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);

	return 0;
2342 2343
}

2344 2345
static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2346
{
2347
	struct drm_device *dev = obj->base.dev;
2348
	drm_i915_private_t *dev_priv = dev->dev_private;
2349
	u32 size = obj->gtt_space->size;
2350
	u32 fence_reg, val, pitch_val;
2351
	int tile_width;
2352

2353 2354 2355 2356 2357 2358
	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		 obj->gtt_offset, obj->map_and_fenceable, size))
		return -EINVAL;
2359

2360
	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2361
		tile_width = 128;
2362
	else
2363 2364 2365
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
2366
	pitch_val = obj->stride / tile_width;
2367
	pitch_val = ffs(pitch_val) - 1;
2368

2369 2370
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2371
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2372
	val |= I915_FENCE_SIZE_BITS(size);
2373 2374 2375
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2376
	fence_reg = obj->fence_reg;
2377 2378
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2379
	else
2380
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, fence_reg);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(fence_reg, val);

	return 0;
2396 2397
}

2398 2399
static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2400
{
2401
	struct drm_device *dev = obj->base.dev;
2402
	drm_i915_private_t *dev_priv = dev->dev_private;
2403 2404
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2405 2406 2407
	uint32_t val;
	uint32_t pitch_val;

2408 2409 2410 2411 2412 2413
	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		 obj->gtt_offset, size))
		return -EINVAL;
2414

2415
	pitch_val = obj->stride / 128;
2416 2417
	pitch_val = ffs(pitch_val) - 1;

2418 2419
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2420
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2421
	val |= I830_FENCE_SIZE_BITS(size);
2422 2423 2424
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);

	return 0;
2439 2440
}

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
{
	return i915_seqno_passed(ring->get_seqno(ring), seqno);
}

static int
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
			    struct intel_ring_buffer *pipelined,
			    bool interruptible)
{
	int ret;

	if (obj->fenced_gpu_access) {
2454 2455 2456 2457 2458 2459 2460
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
			ret = i915_gem_flush_ring(obj->base.dev,
						  obj->last_fenced_ring,
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

		obj->fenced_gpu_access = false;
	}

	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
		if (!ring_passed_seqno(obj->last_fenced_ring,
				       obj->last_fenced_seqno)) {
			ret = i915_do_wait_request(obj->base.dev,
						   obj->last_fenced_seqno,
						   interruptible,
						   obj->last_fenced_ring);
			if (ret)
				return ret;
		}

		obj->last_fenced_seqno = 0;
		obj->last_fenced_ring = NULL;
	}

2480 2481 2482 2483 2484 2485
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	ret = i915_gem_object_flush_fence(obj, NULL, true);
	if (ret)
		return ret;

	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		i915_gem_clear_fence_reg(obj->base.dev,
					 &dev_priv->fence_regs[obj->fence_reg]);

		obj->fence_reg = I915_FENCE_REG_NONE;
	}

	return 0;
}

static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev,
		    struct intel_ring_buffer *pipelined)
2515 2516
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2517 2518
	struct drm_i915_fence_reg *reg, *first, *avail;
	int i;
2519 2520

	/* First try to find a free reg */
2521
	avail = NULL;
2522 2523 2524
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2525
			return reg;
2526

2527
		if (!reg->obj->pin_count)
2528
			avail = reg;
2529 2530
	}

2531 2532
	if (avail == NULL)
		return NULL;
2533 2534

	/* None available, try to steal one or wait for a user to finish */
2535 2536 2537
	avail = first = NULL;
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
		if (reg->obj->pin_count)
2538 2539
			continue;

2540 2541 2542 2543 2544 2545 2546 2547 2548
		if (first == NULL)
			first = reg;

		if (!pipelined ||
		    !reg->obj->last_fenced_ring ||
		    reg->obj->last_fenced_ring == pipelined) {
			avail = reg;
			break;
		}
2549 2550
	}

2551 2552
	if (avail == NULL)
		avail = first;
2553

2554
	return avail;
2555 2556
}

2557
/**
2558
 * i915_gem_object_get_fence - set up a fence reg for an object
2559
 * @obj: object to map through a fence reg
2560 2561
 * @pipelined: ring on which to queue the change, or NULL for CPU access
 * @interruptible: must we wait uninterruptibly for the register to retire?
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2572
int
2573 2574 2575
i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
			  struct intel_ring_buffer *pipelined,
			  bool interruptible)
2576
{
2577
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2578
	struct drm_i915_private *dev_priv = dev->dev_private;
2579
	struct drm_i915_fence_reg *reg;
2580
	int ret;
2581

2582 2583 2584
	/* XXX disable pipelining. There are bugs. Shocking. */
	pipelined = NULL;

2585
	/* Just update our place in the LRU if our fence is getting reused. */
2586 2587
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2588
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615

		if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
			pipelined = NULL;

		if (!pipelined) {
			if (reg->setup_seqno) {
				if (!ring_passed_seqno(obj->last_fenced_ring,
						       reg->setup_seqno)) {
					ret = i915_do_wait_request(obj->base.dev,
								   reg->setup_seqno,
								   interruptible,
								   obj->last_fenced_ring);
					if (ret)
						return ret;
				}

				reg->setup_seqno = 0;
			}
		} else if (obj->last_fenced_ring &&
			   obj->last_fenced_ring != pipelined) {
			ret = i915_gem_object_flush_fence(obj,
							  pipelined,
							  interruptible);
			if (ret)
				return ret;
		} else if (obj->tiling_changed) {
			if (obj->fenced_gpu_access) {
2616 2617 2618 2619 2620 2621
				if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
					ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
								  0, obj->base.write_domain);
					if (ret)
						return ret;
				}
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640

				obj->fenced_gpu_access = false;
			}
		}

		if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
			pipelined = NULL;
		BUG_ON(!pipelined && reg->setup_seqno);

		if (obj->tiling_changed) {
			if (pipelined) {
				reg->setup_seqno =
					i915_gem_next_request_seqno(dev, pipelined);
				obj->last_fenced_seqno = reg->setup_seqno;
				obj->last_fenced_ring = pipelined;
			}
			goto update;
		}

2641 2642 2643
		return 0;
	}

2644 2645 2646
	reg = i915_find_fence_reg(dev, pipelined);
	if (reg == NULL)
		return -ENOSPC;
2647

2648 2649
	ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
	if (ret)
2650
		return ret;
2651

2652 2653 2654 2655 2656 2657 2658 2659 2660
	if (reg->obj) {
		struct drm_i915_gem_object *old = reg->obj;

		drm_gem_object_reference(&old->base);

		if (old->tiling_mode)
			i915_gem_release_mmap(old);

		ret = i915_gem_object_flush_fence(old,
2661
						  pipelined,
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
						  interruptible);
		if (ret) {
			drm_gem_object_unreference(&old->base);
			return ret;
		}

		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
			pipelined = NULL;

		old->fence_reg = I915_FENCE_REG_NONE;
		old->last_fenced_ring = pipelined;
		old->last_fenced_seqno =
			pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;

		drm_gem_object_unreference(&old->base);
	} else if (obj->last_fenced_seqno == 0)
		pipelined = NULL;
2679

2680
	reg->obj = obj;
2681 2682 2683
	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	obj->fence_reg = reg - dev_priv->fence_regs;
	obj->last_fenced_ring = pipelined;
2684

2685 2686 2687 2688 2689 2690
	reg->setup_seqno =
		pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
	obj->last_fenced_seqno = reg->setup_seqno;

update:
	obj->tiling_changed = false;
2691 2692
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2693
		ret = sandybridge_write_fence_reg(obj, pipelined);
2694 2695 2696
		break;
	case 5:
	case 4:
2697
		ret = i965_write_fence_reg(obj, pipelined);
2698 2699
		break;
	case 3:
2700
		ret = i915_write_fence_reg(obj, pipelined);
2701 2702
		break;
	case 2:
2703
		ret = i830_write_fence_reg(obj, pipelined);
2704 2705
		break;
	}
2706

2707
	return ret;
2708 2709 2710 2711 2712 2713 2714
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
2715
 * data structures in dev_priv and obj.
2716 2717
 */
static void
2718 2719
i915_gem_clear_fence_reg(struct drm_device *dev,
			 struct drm_i915_fence_reg *reg)
2720
{
J
Jesse Barnes 已提交
2721
	drm_i915_private_t *dev_priv = dev->dev_private;
2722
	uint32_t fence_reg = reg - dev_priv->fence_regs;
2723

2724 2725
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2726
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2727 2728 2729
		break;
	case 5:
	case 4:
2730
		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2731 2732
		break;
	case 3:
2733 2734
		if (fence_reg >= 8)
			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2735
		else
2736
	case 2:
2737
			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2738 2739

		I915_WRITE(fence_reg, 0);
2740
		break;
2741
	}
2742

2743
	list_del_init(&reg->lru_list);
2744 2745
	reg->obj = NULL;
	reg->setup_seqno = 0;
2746 2747
}

2748 2749 2750 2751
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2752
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2753
			    unsigned alignment,
2754
			    bool map_and_fenceable)
2755
{
2756
	struct drm_device *dev = obj->base.dev;
2757 2758
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2759
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2760
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2761
	bool mappable, fenceable;
2762
	int ret;
2763

2764
	if (obj->madv != I915_MADV_WILLNEED) {
2765 2766 2767 2768
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2769 2770 2771
	fence_size = i915_gem_get_gtt_size(obj);
	fence_alignment = i915_gem_get_gtt_alignment(obj);
	unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2772

2773
	if (alignment == 0)
2774 2775
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2776
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2777 2778 2779 2780
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2781
	size = map_and_fenceable ? fence_size : obj->base.size;
2782

2783 2784 2785
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2786
	if (obj->base.size >
2787
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2788 2789 2790 2791
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2792
 search_free:
2793
	if (map_and_fenceable)
2794 2795
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2796
						    size, alignment, 0,
2797 2798 2799 2800
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2801
						size, alignment, 0);
2802 2803

	if (free_space != NULL) {
2804
		if (map_and_fenceable)
2805
			obj->gtt_space =
2806
				drm_mm_get_block_range_generic(free_space,
2807
							       size, alignment, 0,
2808 2809 2810
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2811
			obj->gtt_space =
2812
				drm_mm_get_block(free_space, size, alignment);
2813
	}
2814
	if (obj->gtt_space == NULL) {
2815 2816 2817
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2818 2819
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2820
		if (ret)
2821
			return ret;
2822

2823 2824 2825
		goto search_free;
	}

2826
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2827
	if (ret) {
2828 2829
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2830 2831

		if (ret == -ENOMEM) {
2832 2833
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2834 2835
			if (ret) {
				/* now try to shrink everyone else */
2836 2837 2838
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2839 2840
				}

2841
				return -ENOMEM;
2842 2843 2844 2845 2846
			}

			goto search_free;
		}

2847 2848 2849
		return ret;
	}

2850 2851
	ret = i915_gem_gtt_bind_object(obj);
	if (ret) {
2852
		i915_gem_object_put_pages_gtt(obj);
2853 2854
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2855

2856
		if (i915_gem_evict_everything(dev, false))
2857 2858 2859
			return ret;

		goto search_free;
2860 2861
	}

2862
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2863
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2864

2865 2866 2867 2868
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2869 2870
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2871

2872
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2873

2874
	fenceable =
2875 2876
		obj->gtt_space->size == fence_size &&
		(obj->gtt_space->start & (fence_alignment -1)) == 0;
2877

2878
	mappable =
2879
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2880

2881
	obj->map_and_fenceable = mappable && fenceable;
2882

2883
	trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
2884 2885 2886 2887
	return 0;
}

void
2888
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2889 2890 2891 2892 2893
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2894
	if (obj->pages == NULL)
2895 2896
		return;

C
Chris Wilson 已提交
2897
	trace_i915_gem_object_clflush(obj);
2898

2899
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2900 2901
}

2902
/** Flushes any GPU write domain for the object if it's dirty. */
2903
static int
2904
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2905
{
2906
	struct drm_device *dev = obj->base.dev;
2907

2908
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2909
		return 0;
2910 2911

	/* Queue the GPU write cache flushing we need. */
2912
	return i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
2913 2914 2915 2916
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2917
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2918
{
C
Chris Wilson 已提交
2919 2920
	uint32_t old_write_domain;

2921
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2922 2923
		return;

2924
	/* No actual flushing is required for the GTT write domain.  Writes
2925 2926
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2927 2928 2929 2930
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2931
	 */
2932 2933
	wmb();

2934 2935
	i915_gem_release_mmap(obj);

2936 2937
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2938 2939

	trace_i915_gem_object_change_domain(obj,
2940
					    obj->base.read_domains,
C
Chris Wilson 已提交
2941
					    old_write_domain);
2942 2943 2944 2945
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2946
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2947
{
C
Chris Wilson 已提交
2948
	uint32_t old_write_domain;
2949

2950
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2951 2952 2953
		return;

	i915_gem_clflush_object(obj);
2954
	intel_gtt_chipset_flush();
2955 2956
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2957 2958

	trace_i915_gem_object_change_domain(obj,
2959
					    obj->base.read_domains,
C
Chris Wilson 已提交
2960
					    old_write_domain);
2961 2962
}

2963 2964 2965 2966 2967 2968
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2969
int
2970
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2971
{
C
Chris Wilson 已提交
2972
	uint32_t old_write_domain, old_read_domains;
2973
	int ret;
2974

2975
	/* Not valid to be called on unbound objects. */
2976
	if (obj->gtt_space == NULL)
2977 2978
		return -EINVAL;

2979 2980 2981 2982
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2983 2984 2985 2986 2987
	if (obj->pending_gpu_write || write) {
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}
2988

2989
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2990

2991 2992
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2993

2994 2995 2996
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2997 2998
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2999
	if (write) {
3000 3001 3002
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3003 3004
	}

C
Chris Wilson 已提交
3005 3006 3007 3008
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3009 3010 3011
	return 0;
}

3012 3013 3014 3015 3016
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
3017
i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
3018
				     struct intel_ring_buffer *pipelined)
3019
{
3020
	uint32_t old_read_domains;
3021 3022 3023
	int ret;

	/* Not valid to be called on unbound objects. */
3024
	if (obj->gtt_space == NULL)
3025 3026
		return -EINVAL;

3027 3028 3029 3030
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3031

3032
	/* Currently, we are always called from an non-interruptible context. */
3033
	if (pipelined != obj->ring) {
3034 3035
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
3036 3037 3038
			return ret;
	}

3039 3040
	i915_gem_object_flush_cpu_write_domain(obj);

3041 3042
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3043 3044 3045

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3046
					    obj->base.write_domain);
3047 3048 3049 3050

	return 0;
}

3051 3052 3053 3054
int
i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
			  bool interruptible)
{
3055 3056
	int ret;

3057 3058 3059
	if (!obj->active)
		return 0;

3060 3061 3062 3063 3064 3065
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
		ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
					  0, obj->base.write_domain);
		if (ret)
			return ret;
	}
3066

3067
	return i915_gem_object_wait_rendering(obj, interruptible);
3068 3069
}

3070 3071 3072 3073 3074 3075 3076
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3077
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3078
{
C
Chris Wilson 已提交
3079
	uint32_t old_write_domain, old_read_domains;
3080 3081
	int ret;

3082 3083 3084 3085
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3086 3087
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
3088
		return ret;
3089

3090
	i915_gem_object_flush_gtt_write_domain(obj);
3091

3092 3093
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
3094
	 */
3095
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3096

3097 3098
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3099

3100
	/* Flush the CPU cache if it's still invalid. */
3101
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3102 3103
		i915_gem_clflush_object(obj);

3104
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3105 3106 3107 3108 3109
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3110
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3111 3112 3113 3114 3115

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3116 3117
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3118
	}
3119

C
Chris Wilson 已提交
3120 3121 3122 3123
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3124 3125 3126
	return 0;
}

3127
/**
3128
 * Moves the object from a partially CPU read to a full one.
3129
 *
3130 3131
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3132
 */
3133
static void
3134
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3135
{
3136
	if (!obj->page_cpu_valid)
3137 3138 3139 3140
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
3141
	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3142 3143
		int i;

3144 3145
		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
			if (obj->page_cpu_valid[i])
3146
				continue;
3147
			drm_clflush_pages(obj->pages + i, 1);
3148 3149 3150 3151 3152 3153
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3154 3155
	kfree(obj->page_cpu_valid);
	obj->page_cpu_valid = NULL;
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3171
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3172 3173
					  uint64_t offset, uint64_t size)
{
C
Chris Wilson 已提交
3174
	uint32_t old_read_domains;
3175
	int i, ret;
3176

3177
	if (offset == 0 && size == obj->base.size)
3178
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3179

3180 3181 3182 3183
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3184 3185
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
3186
		return ret;
3187

3188 3189 3190
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
3191 3192
	if (obj->page_cpu_valid == NULL &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3193
		return 0;
3194

3195 3196 3197
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3198 3199 3200 3201
	if (obj->page_cpu_valid == NULL) {
		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
					      GFP_KERNEL);
		if (obj->page_cpu_valid == NULL)
3202
			return -ENOMEM;
3203 3204
	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3205 3206 3207 3208

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3209 3210
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3211
		if (obj->page_cpu_valid[i])
3212 3213
			continue;

3214
		drm_clflush_pages(obj->pages + i, 1);
3215

3216
		obj->page_cpu_valid[i] = 1;
3217 3218
	}

3219 3220 3221
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3222
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3223

3224 3225
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3226

C
Chris Wilson 已提交
3227 3228
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3229
					    obj->base.write_domain);
C
Chris Wilson 已提交
3230

3231 3232 3233 3234 3235 3236
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3237 3238 3239 3240
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3241 3242 3243
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3244
static int
3245
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3246
{
3247 3248
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3249
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3250 3251 3252 3253
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3254

3255
	spin_lock(&file_priv->mm.lock);
3256
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3257 3258
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3259

3260 3261
		ring = request->ring;
		seqno = request->seqno;
3262
	}
3263
	spin_unlock(&file_priv->mm.lock);
3264

3265 3266
	if (seqno == 0)
		return 0;
3267

3268
	ret = 0;
3269
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3270 3271 3272 3273 3274
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3275 3276 3277 3278 3279
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3280

3281 3282 3283
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
		}
3284 3285
	}

3286 3287
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3288 3289 3290 3291

	return ret;
}

3292
int
3293 3294
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3295
		    bool map_and_fenceable)
3296
{
3297
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3298
	struct drm_i915_private *dev_priv = dev->dev_private;
3299 3300
	int ret;

3301
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3302
	WARN_ON(i915_verify_lists(dev));
3303

3304 3305 3306 3307
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3308
			     "bo is already pinned with incorrect alignment:"
3309 3310
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3311
			     obj->gtt_offset, alignment,
3312
			     map_and_fenceable,
3313
			     obj->map_and_fenceable);
3314 3315 3316 3317 3318 3319
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3320
	if (obj->gtt_space == NULL) {
3321
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3322
						  map_and_fenceable);
3323
		if (ret)
3324
			return ret;
3325
	}
J
Jesse Barnes 已提交
3326

3327 3328 3329
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3330
				       &dev_priv->mm.pinned_list);
3331
	}
3332
	obj->pin_mappable |= map_and_fenceable;
3333

3334
	WARN_ON(i915_verify_lists(dev));
3335 3336 3337 3338
	return 0;
}

void
3339
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3340
{
3341
	struct drm_device *dev = obj->base.dev;
3342 3343
	drm_i915_private_t *dev_priv = dev->dev_private;

3344
	WARN_ON(i915_verify_lists(dev));
3345 3346
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3347

3348 3349 3350
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3351
				       &dev_priv->mm.inactive_list);
3352
		obj->pin_mappable = false;
3353
	}
3354
	WARN_ON(i915_verify_lists(dev));
3355 3356 3357 3358
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3359
		   struct drm_file *file)
3360 3361
{
	struct drm_i915_gem_pin *args = data;
3362
	struct drm_i915_gem_object *obj;
3363 3364
	int ret;

3365 3366 3367
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3368

3369
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3370
	if (obj == NULL) {
3371 3372
		ret = -ENOENT;
		goto unlock;
3373 3374
	}

3375
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3376
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3377 3378
		ret = -EINVAL;
		goto out;
3379 3380
	}

3381
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3382 3383
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3384 3385
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3386 3387
	}

3388 3389 3390
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3391
		ret = i915_gem_object_pin(obj, args->alignment, true);
3392 3393
		if (ret)
			goto out;
3394 3395 3396 3397 3398
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3399
	i915_gem_object_flush_cpu_write_domain(obj);
3400
	args->offset = obj->gtt_offset;
3401
out:
3402
	drm_gem_object_unreference(&obj->base);
3403
unlock:
3404
	mutex_unlock(&dev->struct_mutex);
3405
	return ret;
3406 3407 3408 3409
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3410
		     struct drm_file *file)
3411 3412
{
	struct drm_i915_gem_pin *args = data;
3413
	struct drm_i915_gem_object *obj;
3414
	int ret;
3415

3416 3417 3418
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3419

3420
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3421
	if (obj == NULL) {
3422 3423
		ret = -ENOENT;
		goto unlock;
3424
	}
3425

3426
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3427 3428
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3429 3430
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3431
	}
3432 3433 3434
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3435 3436
		i915_gem_object_unpin(obj);
	}
3437

3438
out:
3439
	drm_gem_object_unreference(&obj->base);
3440
unlock:
3441
	mutex_unlock(&dev->struct_mutex);
3442
	return ret;
3443 3444 3445 3446
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3447
		    struct drm_file *file)
3448 3449
{
	struct drm_i915_gem_busy *args = data;
3450
	struct drm_i915_gem_object *obj;
3451 3452
	int ret;

3453
	ret = i915_mutex_lock_interruptible(dev);
3454
	if (ret)
3455
		return ret;
3456

3457
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3458
	if (obj == NULL) {
3459 3460
		ret = -ENOENT;
		goto unlock;
3461
	}
3462

3463 3464 3465 3466
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3467
	 */
3468
	args->busy = obj->active;
3469 3470 3471 3472 3473 3474
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3475
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3476 3477
			ret = i915_gem_flush_ring(dev, obj->ring,
						  0, obj->base.write_domain);
3478 3479 3480 3481
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3482 3483 3484
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3485 3486 3487 3488 3489 3490
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (request)
				ret = i915_add_request(dev,
						       NULL, request,
						       obj->ring);
			else
3491 3492
				ret = -ENOMEM;
		}
3493 3494 3495 3496 3497 3498

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
3499
		i915_gem_retire_requests_ring(dev, obj->ring);
3500

3501
		args->busy = obj->active;
3502
	}
3503

3504
	drm_gem_object_unreference(&obj->base);
3505
unlock:
3506
	mutex_unlock(&dev->struct_mutex);
3507
	return ret;
3508 3509 3510 3511 3512 3513 3514 3515 3516
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

3517 3518 3519 3520 3521
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3522
	struct drm_i915_gem_object *obj;
3523
	int ret;
3524 3525 3526 3527 3528 3529 3530 3531 3532

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3533 3534 3535 3536
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3537
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3538
	if (obj == NULL) {
3539 3540
		ret = -ENOENT;
		goto unlock;
3541 3542
	}

3543
	if (obj->pin_count) {
3544 3545
		ret = -EINVAL;
		goto out;
3546 3547
	}

3548 3549
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3550

3551
	/* if the object is no longer bound, discard its backing storage */
3552 3553
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3554 3555
		i915_gem_object_truncate(obj);

3556
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3557

3558
out:
3559
	drm_gem_object_unreference(&obj->base);
3560
unlock:
3561
	mutex_unlock(&dev->struct_mutex);
3562
	return ret;
3563 3564
}

3565 3566
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3567
{
3568
	struct drm_i915_private *dev_priv = dev->dev_private;
3569
	struct drm_i915_gem_object *obj;
3570

3571 3572 3573
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3574

3575 3576 3577 3578
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3579

3580 3581
	i915_gem_info_add_obj(dev_priv, size);

3582 3583
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3584

3585
	obj->agp_type = AGP_USER_MEMORY;
3586
	obj->base.driver_private = NULL;
3587
	obj->fence_reg = I915_FENCE_REG_NONE;
3588
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3589
	INIT_LIST_HEAD(&obj->gtt_list);
3590
	INIT_LIST_HEAD(&obj->ring_list);
3591
	INIT_LIST_HEAD(&obj->exec_list);
3592 3593
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3594 3595
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3596

3597
	return obj;
3598 3599 3600 3601 3602
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3603

3604 3605 3606
	return 0;
}

3607
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3608
{
3609
	struct drm_device *dev = obj->base.dev;
3610 3611
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3612

3613 3614
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3615
		list_move(&obj->mm_list,
3616 3617 3618
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3619

3620
	if (obj->base.map_list.map)
3621
		i915_gem_free_mmap_offset(obj);
3622

3623 3624
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3625

3626 3627 3628
	kfree(obj->page_cpu_valid);
	kfree(obj->bit_17);
	kfree(obj);
3629 3630
}

3631
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3632
{
3633 3634
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3635 3636 3637

	trace_i915_gem_object_destroy(obj);

3638
	while (obj->pin_count > 0)
3639 3640
		i915_gem_object_unpin(obj);

3641
	if (obj->phys_obj)
3642 3643 3644 3645 3646
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3647 3648 3649 3650 3651
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3652

3653
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3654

3655
	if (dev_priv->mm.suspended) {
3656 3657
		mutex_unlock(&dev->struct_mutex);
		return 0;
3658 3659
	}

3660
	ret = i915_gpu_idle(dev);
3661 3662
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3663
		return ret;
3664
	}
3665

3666 3667
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3668
		ret = i915_gem_evict_inactive(dev, false);
3669 3670 3671 3672 3673 3674
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3675 3676
	i915_gem_reset_fences(dev);

3677 3678 3679 3680 3681
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3682
	del_timer_sync(&dev_priv->hangcheck_timer);
3683 3684

	i915_kernel_lost_context(dev);
3685
	i915_gem_cleanup_ringbuffer(dev);
3686

3687 3688
	mutex_unlock(&dev->struct_mutex);

3689 3690 3691
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3692 3693 3694
	return 0;
}

3695 3696 3697 3698 3699
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3700

3701
	ret = intel_init_render_ring_buffer(dev);
3702
	if (ret)
3703
		return ret;
3704 3705

	if (HAS_BSD(dev)) {
3706
		ret = intel_init_bsd_ring_buffer(dev);
3707 3708
		if (ret)
			goto cleanup_render_ring;
3709
	}
3710

3711 3712 3713 3714 3715 3716
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3717 3718
	dev_priv->next_seqno = 1;

3719 3720
	return 0;

3721
cleanup_bsd_ring:
3722
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3723
cleanup_render_ring:
3724
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3725 3726 3727 3728 3729 3730 3731
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3732
	int i;
3733

3734 3735
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3736 3737
}

3738 3739 3740 3741 3742
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3743
	int ret, i;
3744

J
Jesse Barnes 已提交
3745 3746 3747
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3748
	if (atomic_read(&dev_priv->mm.wedged)) {
3749
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3750
		atomic_set(&dev_priv->mm.wedged, 0);
3751 3752 3753
	}

	mutex_lock(&dev->struct_mutex);
3754 3755 3756
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
3757 3758
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3759
		return ret;
3760
	}
3761

3762
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3763 3764
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3765 3766 3767 3768
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3769
	mutex_unlock(&dev->struct_mutex);
3770

3771 3772 3773
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3774

3775
	return 0;
3776 3777 3778 3779 3780 3781 3782 3783

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3784 3785 3786 3787 3788 3789
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3790 3791 3792
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3793
	drm_irq_uninstall(dev);
3794
	return i915_gem_idle(dev);
3795 3796 3797 3798 3799 3800 3801
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3802 3803 3804
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3805 3806 3807
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3808 3809
}

3810 3811 3812 3813 3814 3815 3816 3817
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3818 3819 3820
void
i915_gem_load(struct drm_device *dev)
{
3821
	int i;
3822 3823
	drm_i915_private_t *dev_priv = dev->dev_private;

3824
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3825 3826
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3827
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3828
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3829
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3830
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3831 3832
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3833 3834
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3835 3836
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3837
	init_completion(&dev_priv->error_completion);
3838

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3849 3850
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3851
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3852 3853
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3854

3855
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3856 3857 3858 3859
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3860
	/* Initialize fence registers to zero */
3861 3862 3863 3864 3865 3866 3867
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
3868 3869
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
3870 3871
		break;
	case 3:
3872 3873 3874
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
3875 3876 3877 3878
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
3879
	}
3880
	i915_gem_detect_bit_6_swizzle(dev);
3881
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3882 3883 3884 3885

	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3886
}
3887 3888 3889 3890 3891

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3892 3893
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3894 3895 3896 3897 3898 3899 3900 3901
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3902
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3903 3904 3905 3906 3907
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3908
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3921
	kfree(phys_obj);
3922 3923 3924
	return ret;
}

3925
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3950
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3951 3952 3953 3954
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3955
				 struct drm_i915_gem_object *obj)
3956
{
3957
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3958
	char *vaddr;
3959 3960 3961
	int i;
	int page_count;

3962
	if (!obj->phys_obj)
3963
		return;
3964
	vaddr = obj->phys_obj->handle->vaddr;
3965

3966
	page_count = obj->base.size / PAGE_SIZE;
3967
	for (i = 0; i < page_count; i++) {
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
		struct page *page = read_cache_page_gfp(mapping, i,
							GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3981
	}
3982
	intel_gtt_chipset_flush();
3983

3984 3985
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3986 3987 3988 3989
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3990
			    struct drm_i915_gem_object *obj,
3991 3992
			    int id,
			    int align)
3993
{
3994
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3995 3996 3997 3998 3999 4000 4001 4002
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4003 4004
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4005 4006 4007 4008 4009 4010 4011
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4012
						obj->base.size, align);
4013
		if (ret) {
4014 4015
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4016
			return ret;
4017 4018 4019 4020
		}
	}

	/* bind to the object */
4021 4022
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4023

4024
	page_count = obj->base.size / PAGE_SIZE;
4025 4026

	for (i = 0; i < page_count; i++) {
4027 4028 4029 4030 4031 4032 4033
		struct page *page;
		char *dst, *src;

		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);
4034

4035
		src = kmap_atomic(page);
4036
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4037
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4038
		kunmap_atomic(src);
4039

4040 4041 4042
		mark_page_accessed(page);
		page_cache_release(page);
	}
4043

4044 4045 4046 4047
	return 0;
}

static int
4048 4049
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4050 4051 4052
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4053
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4054
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4055

4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4069

4070
	intel_gtt_chipset_flush();
4071 4072
	return 0;
}
4073

4074
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4075
{
4076
	struct drm_i915_file_private *file_priv = file->driver_priv;
4077 4078 4079 4080 4081

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4082
	spin_lock(&file_priv->mm.lock);
4083 4084 4085 4086 4087 4088 4089 4090 4091
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4092
	spin_unlock(&file_priv->mm.lock);
4093
}
4094

4095 4096 4097 4098 4099 4100 4101
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4102
		      list_empty(&dev_priv->mm.active_list);
4103 4104 4105 4106

	return !lists_empty;
}

4107
static int
4108 4109 4110
i915_gem_inactive_shrink(struct shrinker *shrinker,
			 int nr_to_scan,
			 gfp_t gfp_mask)
4111
{
4112 4113 4114 4115 4116 4117 4118 4119 4120
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4121
		return 0;
4122 4123 4124

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4125 4126 4127 4128 4129 4130 4131
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4132 4133
	}

4134
rescan:
4135
	/* first scan for clean buffers */
4136
	i915_gem_retire_requests(dev);
4137

4138 4139 4140 4141
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4142 4143
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4144
				break;
4145 4146 4147 4148
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4149 4150 4151 4152
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4153 4154
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4155
			nr_to_scan--;
4156
		else
4157 4158 4159 4160
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4161 4162 4163 4164 4165 4166
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4167
		if (i915_gpu_idle(dev) == 0)
4168 4169
			goto rescan;
	}
4170 4171
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4172
}