adv7604.c 96.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * adv7604 - Analog Devices ADV7604 video decoder driver
 *
 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
 *
 * This program is free software; you may redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

/*
 * References (c = chapter, p = page):
 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
 *		Revision 2.5, June 2010
 * REF_02 - Analog devices, Register map documentation, Documentation of
 *		the register maps, Software manual, Rev. F, June 2010
 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
 */

30
#include <linux/delay.h>
31
#include <linux/gpio/consumer.h>
H
Hans Verkuil 已提交
32
#include <linux/hdmi.h>
33
#include <linux/i2c.h>
34 35 36
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
37
#include <linux/v4l2-dv-timings.h>
38 39
#include <linux/videodev2.h>
#include <linux/workqueue.h>
40
#include <linux/regmap.h>
41

42
#include <media/i2c/adv7604.h>
43
#include <media/v4l2-ctrls.h>
44
#include <media/v4l2-device.h>
45
#include <media/v4l2-event.h>
46
#include <media/v4l2-dv-timings.h>
47
#include <media/v4l2-of.h>
48 49 50 51 52 53 54 55 56 57 58

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-2)");

MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
MODULE_LICENSE("GPL");

/* ADV7604 system clock frequency */
59
#define ADV76XX_FSC (28636360)
60

61
#define ADV76XX_RGB_OUT					(1 << 1)
62

63
#define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
64
#define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
65
#define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
66

67
#define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
68
#define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
69
#define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
70
#define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
71
#define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
72 73
#define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)

74 75 76 77 78 79
#define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
#define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
#define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
#define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
#define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
#define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
80

81
#define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
82

83
enum adv76xx_type {
84 85
	ADV7604,
	ADV7611,
86
	ADV7612,
87 88
};

89
struct adv76xx_reg_seq {
90 91 92 93
	unsigned int reg;
	u8 val;
};

94
struct adv76xx_format_info {
95
	u32 code;
96 97 98 99 100 101
	u8 op_ch_sel;
	bool rgb_out;
	bool swap_cb_cr;
	u8 op_format_sel;
};

H
Hans Verkuil 已提交
102 103 104 105 106 107 108
struct adv76xx_cfg_read_infoframe {
	const char *desc;
	u8 present_mask;
	u8 head_addr;
	u8 payload_addr;
};

109 110
struct adv76xx_chip_info {
	enum adv76xx_type type;
111 112 113 114 115 116 117 118 119 120 121 122

	bool has_afe;
	unsigned int max_port;
	unsigned int num_dv_ports;

	unsigned int edid_enable_reg;
	unsigned int edid_status_reg;
	unsigned int lcf_reg;

	unsigned int cable_det_mask;
	unsigned int tdms_lock_mask;
	unsigned int fmt_change_digital_mask;
123
	unsigned int cp_csc;
124

125
	const struct adv76xx_format_info *formats;
126 127
	unsigned int nformats;

128 129 130 131 132 133
	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
	void (*setup_irqs)(struct v4l2_subdev *sd);
	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);

	/* 0 = AFE, 1 = HDMI */
134
	const struct adv76xx_reg_seq *recommended_settings[2];
135 136 137
	unsigned int num_recommended_settings[2];

	unsigned long page_mask;
138 139 140 141 142 143 144 145 146 147 148 149 150 151

	/* Masks for timings */
	unsigned int linewidth_mask;
	unsigned int field0_height_mask;
	unsigned int field1_height_mask;
	unsigned int hfrontporch_mask;
	unsigned int hsync_mask;
	unsigned int hbackporch_mask;
	unsigned int field0_vfrontporch_mask;
	unsigned int field1_vfrontporch_mask;
	unsigned int field0_vsync_mask;
	unsigned int field1_vsync_mask;
	unsigned int field0_vbackporch_mask;
	unsigned int field1_vbackporch_mask;
152 153
};

154 155 156 157 158 159 160
/*
 **********************************************************************
 *
 *  Arrays with configuration parameters for the ADV7604
 *
 **********************************************************************
 */
161

162 163 164
struct adv76xx_state {
	const struct adv76xx_chip_info *info;
	struct adv76xx_platform_data pdata;
165

166
	struct gpio_desc *hpd_gpio[4];
167
	struct gpio_desc *reset_gpio;
168

169
	struct v4l2_subdev sd;
170
	struct media_pad pads[ADV76XX_PAD_MAX];
171
	unsigned int source_pad;
172

173
	struct v4l2_ctrl_handler hdl;
174

175
	enum adv76xx_pad selected_input;
176

177
	struct v4l2_dv_timings timings;
178
	const struct adv76xx_format_info *format;
179

180 181 182 183 184
	struct {
		u8 edid[256];
		u32 present;
		unsigned blocks;
	} edid;
185
	u16 spa_port_a[2];
186 187 188
	struct v4l2_fract aspect_ratio;
	u32 rgb_quantization_range;
	struct delayed_work delayed_work_enable_hotplug;
189
	bool restart_stdi_once;
190 191

	/* i2c clients */
192
	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
193

194 195 196
	/* Regmaps */
	struct regmap *regmap[ADV76XX_PAGE_MAX];

197 198 199 200 201 202 203 204
	/* controls */
	struct v4l2_ctrl *detect_tx_5v_ctrl;
	struct v4l2_ctrl *analog_sampling_phase_ctrl;
	struct v4l2_ctrl *free_run_color_manual_ctrl;
	struct v4l2_ctrl *free_run_color_ctrl;
	struct v4l2_ctrl *rgb_quantization_range_ctrl;
};

205
static bool adv76xx_has_afe(struct adv76xx_state *state)
206 207 208 209
{
	return state->info->has_afe;
}

210 211 212 213
/* Unsupported timings. This device cannot support 720p30. */
static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
	V4L2_DV_BT_CEA_1280X720P30,
	{ }
214 215
};

216 217 218 219 220 221 222 223 224 225
static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
{
	int i;

	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
			return false;
	return true;
}

226
struct adv76xx_video_standards {
227 228 229 230 231 232
	struct v4l2_dv_timings timings;
	u8 vid_std;
	u8 v_freq;
};

/* sorted by number of lines */
233
static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
234 235 236 237 238 239 240 241 242 243 244 245 246 247
	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	/* TODO add 1920x1080P60_RB (CVT timing) */
	{ },
};

/* sorted by number of lines */
248
static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
	/* TODO add 1600X1200P60_RB (not a DMT timing) */
	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
	{ },
};

/* sorted by number of lines */
276
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
277 278 279 280 281 282 283 284 285 286 287 288 289
	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	{ },
};

/* sorted by number of lines */
290
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ },
};

309 310 311 312 313
static const struct v4l2_event adv76xx_ev_fmt = {
	.type = V4L2_EVENT_SOURCE_CHANGE,
	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
};

314 315
/* ----------------------------------------------------------------------- */

316
static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
317
{
318
	return container_of(sd, struct adv76xx_state, sd);
319 320 321 322
}

static inline unsigned htotal(const struct v4l2_bt_timings *t)
{
323
	return V4L2_DV_BT_FRAME_WIDTH(t);
324 325 326 327
}

static inline unsigned vtotal(const struct v4l2_bt_timings *t)
{
328
	return V4L2_DV_BT_FRAME_HEIGHT(t);
329 330 331 332
}

/* ----------------------------------------------------------------------- */

333 334
static int adv76xx_read_check(struct adv76xx_state *state,
			     int client_page, u8 reg)
335
{
336
	struct i2c_client *client = state->i2c_clients[client_page];
337
	int err;
338
	unsigned int val;
339

340 341 342 343 344 345
	err = regmap_read(state->regmap[client_page], reg, &val);

	if (err) {
		v4l_err(client, "error reading %02x, %02x\n",
				client->addr, reg);
		return err;
346
	}
347
	return val;
348 349
}

350 351 352 353 354 355 356 357 358
/* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
 * size to one or more registers.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
			      unsigned int init_reg, const void *val,
			      size_t val_len)
359
{
360 361 362 363
	struct regmap *regmap = state->regmap[client_page];

	if (val_len > I2C_SMBUS_BLOCK_MAX)
		val_len = I2C_SMBUS_BLOCK_MAX;
364

365
	return regmap_raw_write(regmap, init_reg, val, val_len);
366 367 368 369 370 371
}

/* ----------------------------------------------------------------------- */

static inline int io_read(struct v4l2_subdev *sd, u8 reg)
{
372
	struct adv76xx_state *state = to_state(sd);
373

374
	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
375 376 377 378
}

static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
379
	struct adv76xx_state *state = to_state(sd);
380

381
	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
382 383
}

384
static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
385
{
386
	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
387 388 389 390
}

static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
{
391
	struct adv76xx_state *state = to_state(sd);
392

393
	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
394 395 396 397
}

static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
398
	struct adv76xx_state *state = to_state(sd);
399

400
	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
401 402 403 404
}

static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
{
405
	struct adv76xx_state *state = to_state(sd);
406

407
	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
408 409 410 411
}

static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
412
	struct adv76xx_state *state = to_state(sd);
413

414
	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
415 416 417 418
}

static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
{
419
	struct adv76xx_state *state = to_state(sd);
420

421
	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
422 423 424 425
}

static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
426
	struct adv76xx_state *state = to_state(sd);
427

428
	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
429 430 431 432
}

static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
{
433
	struct adv76xx_state *state = to_state(sd);
434

435
	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
436 437 438 439
}

static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
440
	struct adv76xx_state *state = to_state(sd);
441

442
	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
443 444 445 446
}

static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
{
447
	struct adv76xx_state *state = to_state(sd);
448

449
	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
450 451 452 453
}

static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
454
	struct adv76xx_state *state = to_state(sd);
455

456
	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
457 458
}

459
static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
460
{
461
	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
462 463 464 465
}

static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
{
466
	struct adv76xx_state *state = to_state(sd);
467

468
	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
469 470 471 472
}

static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
473
	struct adv76xx_state *state = to_state(sd);
474

475
	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
476 477 478
}

static inline int edid_write_block(struct v4l2_subdev *sd,
479
					unsigned int total_len, const u8 *val)
480
{
481
	struct adv76xx_state *state = to_state(sd);
482
	int err = 0;
483 484
	int i = 0;
	int len = 0;
485

486 487 488 489 490 491 492 493 494 495 496 497
	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
				__func__, total_len);

	while (!err && i < total_len) {
		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
				I2C_SMBUS_BLOCK_MAX :
				(total_len - i);

		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
				i, val + i, len);
		i += len;
	}
498

499 500
	return err;
}
501

502
static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
503 504 505
{
	unsigned int i;

506
	for (i = 0; i < state->info->num_dv_ports; ++i)
507 508
		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));

509
	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
510 511
}

512
static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
513 514
{
	struct delayed_work *dwork = to_delayed_work(work);
515
	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
516 517
						delayed_work_enable_hotplug);
	struct v4l2_subdev *sd = &state->sd;
518

519
	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
520

521
	adv76xx_set_hpd(state, state->edid.present);
522 523 524 525
}

static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
{
526
	struct adv76xx_state *state = to_state(sd);
527

528
	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
529 530
}

531 532 533 534 535
static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
}

536 537
static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
538
	struct adv76xx_state *state = to_state(sd);
539

540
	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
541 542
}

543
static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
544
{
545
	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
546 547
}

548 549
static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
550
	struct adv76xx_state *state = to_state(sd);
551

552
	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
553 554 555 556
}

static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
{
557
	struct adv76xx_state *state = to_state(sd);
558

559
	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
560 561
}

562 563 564 565 566
static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
}

567 568
static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
569
	struct adv76xx_state *state = to_state(sd);
570

571
	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
572 573
}

574
static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
575
{
576
	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
577 578 579 580
}

static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
{
581
	struct adv76xx_state *state = to_state(sd);
582

583
	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
584 585 586 587
}

static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
588
	struct adv76xx_state *state = to_state(sd);
589

590
	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
591
}
592

593 594
#define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
#define ADV76XX_REG_SEQ_TERM		0xffff
595 596

#ifdef CONFIG_VIDEO_ADV_DEBUG
597
static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
598
{
599
	struct adv76xx_state *state = to_state(sd);
600
	unsigned int page = reg >> 8;
601 602
	unsigned int val;
	int err;
603 604 605 606 607

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;
608
	err = regmap_read(state->regmap[page], reg, &val);
609

610
	return err ? err : val;
611 612 613
}
#endif

614
static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
615
{
616
	struct adv76xx_state *state = to_state(sd);
617 618 619 620 621 622 623
	unsigned int page = reg >> 8;

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;

624
	return regmap_write(state->regmap[page], reg, val);
625 626
}

627 628
static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
				  const struct adv76xx_reg_seq *reg_seq)
629 630 631
{
	unsigned int i;

632 633
	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
634 635
}

636 637 638 639
/* -----------------------------------------------------------------------------
 * Format helpers
 */

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
static const struct adv76xx_format_info adv7604_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
679 680
};

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
static const struct adv76xx_format_info adv7611_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
708 709
};

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
static const struct adv76xx_format_info adv7612_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
};

727 728
static const struct adv76xx_format_info *
adv76xx_format_info(struct adv76xx_state *state, u32 code)
729 730 731 732 733 734 735 736 737 738 739
{
	unsigned int i;

	for (i = 0; i < state->info->nformats; ++i) {
		if (state->info->formats[i].code == code)
			return &state->info->formats[i];
	}

	return NULL;
}

740 741
/* ----------------------------------------------------------------------- */

742 743
static inline bool is_analog_input(struct v4l2_subdev *sd)
{
744
	struct adv76xx_state *state = to_state(sd);
745

746 747
	return state->selected_input == ADV7604_PAD_VGA_RGB ||
	       state->selected_input == ADV7604_PAD_VGA_COMP;
748 749 750 751
}

static inline bool is_digital_input(struct v4l2_subdev *sd)
{
752
	struct adv76xx_state *state = to_state(sd);
753

754
	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
755 756 757
	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
758 759
}

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
	.type = V4L2_DV_BT_656_1120,
	/* keep this initialization for compatibility with GCC < 4.4.6 */
	.reserved = { 0 },
	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
			V4L2_DV_BT_CAP_CUSTOM)
};

static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
	.type = V4L2_DV_BT_656_1120,
	/* keep this initialization for compatibility with GCC < 4.4.6 */
	.reserved = { 0 },
	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000,
		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
			V4L2_DV_BT_CAP_CUSTOM)
};

782 783 784 785 786 787
/*
 * Return the DV timings capabilities for the requested sink pad. As a special
 * case, pad value -1 returns the capabilities for the currently selected input.
 */
static const struct v4l2_dv_timings_cap *
adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
788
{
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
	if (pad == -1) {
		struct adv76xx_state *state = to_state(sd);

		pad = state->selected_input;
	}

	switch (pad) {
	case ADV76XX_PAD_HDMI_PORT_A:
	case ADV7604_PAD_HDMI_PORT_B:
	case ADV7604_PAD_HDMI_PORT_C:
	case ADV7604_PAD_HDMI_PORT_D:
		return &adv76xx_timings_cap_digital;

	case ADV7604_PAD_VGA_RGB:
	case ADV7604_PAD_VGA_COMP:
	default:
		return &adv7604_timings_cap_analog;
	}
807 808 809
}


810 811
/* ----------------------------------------------------------------------- */

812
#ifdef CONFIG_VIDEO_ADV_DEBUG
813
static void adv76xx_inv_register(struct v4l2_subdev *sd)
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
{
	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
}

830
static int adv76xx_g_register(struct v4l2_subdev *sd,
831 832
					struct v4l2_dbg_register *reg)
{
833 834
	int ret;

835
	ret = adv76xx_read_reg(sd, reg->reg);
836
	if (ret < 0) {
837
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
838
		adv76xx_inv_register(sd);
839
		return ret;
840
	}
841 842 843 844

	reg->size = 1;
	reg->val = ret;

845 846 847
	return 0;
}

848
static int adv76xx_s_register(struct v4l2_subdev *sd,
849
					const struct v4l2_dbg_register *reg)
850
{
851
	int ret;
852

853
	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
854
	if (ret < 0) {
855
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
856
		adv76xx_inv_register(sd);
857
		return ret;
858
	}
859

860 861 862 863
	return 0;
}
#endif

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return ((value & 0x10) >> 4)
	     | ((value & 0x08) >> 2)
	     | ((value & 0x04) << 0)
	     | ((value & 0x02) << 2);
}

static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return value & 1;
}

881 882 883 884 885 886 887 888 889 890
static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
{
	/*  Reads CABLE_DET_A_RAW. For input B support, need to
	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
	 */
	u8 value = io_read(sd, 0x6f);

	return value & 1;
}

891
static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
892
{
893 894
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
895 896

	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
897
				info->read_cable_det(sd));
898 899
}

900 901
static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
		u8 prim_mode,
902
		const struct adv76xx_video_standards *predef_vid_timings,
903 904 905 906 907
		const struct v4l2_dv_timings *timings)
{
	int i;

	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
908
		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
909
				is_digital_input(sd) ? 250000 : 1000000, false))
910 911 912 913 914 915 916 917 918 919 920 921
			continue;
		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
				prim_mode); /* v_freq and prim mode */
		return 0;
	}

	return -1;
}

static int configure_predefined_video_timings(struct v4l2_subdev *sd,
		struct v4l2_dv_timings *timings)
922
{
923
	struct adv76xx_state *state = to_state(sd);
924 925 926 927
	int err;

	v4l2_dbg(1, debug, sd, "%s", __func__);

928
	if (adv76xx_has_afe(state)) {
929 930 931 932
		/* reset to default values */
		io_write(sd, 0x16, 0x43);
		io_write(sd, 0x17, 0x5a);
	}
933
	/* disable embedded syncs for auto graphics mode */
934
	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
935 936 937 938 939 940 941 942 943 944 945
	cp_write(sd, 0x8f, 0x00);
	cp_write(sd, 0x90, 0x00);
	cp_write(sd, 0xa2, 0x00);
	cp_write(sd, 0xa3, 0x00);
	cp_write(sd, 0xa4, 0x00);
	cp_write(sd, 0xa5, 0x00);
	cp_write(sd, 0xa6, 0x00);
	cp_write(sd, 0xa7, 0x00);
	cp_write(sd, 0xab, 0x00);
	cp_write(sd, 0xac, 0x00);

946
	if (is_analog_input(sd)) {
947 948 949 950 951
		err = find_and_set_predefined_video_timings(sd,
				0x01, adv7604_prim_mode_comp, timings);
		if (err)
			err = find_and_set_predefined_video_timings(sd,
					0x02, adv7604_prim_mode_gr, timings);
952
	} else if (is_digital_input(sd)) {
953
		err = find_and_set_predefined_video_timings(sd,
954
				0x05, adv76xx_prim_mode_hdmi_comp, timings);
955 956
		if (err)
			err = find_and_set_predefined_video_timings(sd,
957
					0x06, adv76xx_prim_mode_hdmi_gr, timings);
958 959 960
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
961 962 963 964 965 966 967 968 969 970
		err = -1;
	}


	return err;
}

static void configure_custom_video_timings(struct v4l2_subdev *sd,
		const struct v4l2_bt_timings *bt)
{
971
	struct adv76xx_state *state = to_state(sd);
972 973 974 975 976 977 978
	u32 width = htotal(bt);
	u32 height = vtotal(bt);
	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
	u16 cp_start_eav = width - bt->hfrontporch;
	u16 cp_start_vbi = height - bt->vfrontporch;
	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
979
		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
980 981 982 983
	const u8 pll[2] = {
		0xc0 | ((width >> 8) & 0x1f),
		width & 0xff
	};
984 985 986

	v4l2_dbg(2, debug, sd, "%s\n", __func__);

987
	if (is_analog_input(sd)) {
988 989 990 991
		/* auto graphics */
		io_write(sd, 0x00, 0x07); /* video std */
		io_write(sd, 0x01, 0x02); /* prim mode */
		/* enable embedded syncs for auto graphics mode */
992
		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
993

994
		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
995 996
		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
997 998
		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
					0x16, pll, 2))
999 1000 1001 1002
			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");

		/* active video - horizontal timing */
		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1003
		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1004
				   ((cp_start_eav >> 8) & 0x0f));
1005 1006 1007 1008
		cp_write(sd, 0xa4, cp_start_eav & 0xff);

		/* active video - vertical timing */
		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1009
		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1010
				   ((cp_end_vbi >> 8) & 0xf));
1011
		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1012
	} else if (is_digital_input(sd)) {
1013
		/* set default prim_mode/vid_std for HDMI
1014
		   according to [REF_03, c. 4.2] */
1015 1016
		io_write(sd, 0x00, 0x02); /* video std */
		io_write(sd, 0x01, 0x06); /* prim mode */
1017 1018 1019
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1020 1021
	}

1022 1023 1024 1025 1026
	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
	cp_write(sd, 0xab, (height >> 4) & 0xff);
	cp_write(sd, 0xac, (height & 0x0f) << 4);
}
1027

1028
static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1029
{
1030
	struct adv76xx_state *state = to_state(sd);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	u8 offset_buf[4];

	if (auto_offset) {
		offset_a = 0x3ff;
		offset_b = 0x3ff;
		offset_c = 0x3ff;
	}

	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_offset ? "Auto" : "Manual",
			offset_a, offset_b, offset_c);

	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
	offset_buf[3] = offset_c & 0x0ff;

	/* Registers must be written in this order with no i2c access in between */
1049 1050
	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
			0x77, offset_buf, 4))
1051 1052 1053
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
}

1054
static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1055
{
1056
	struct adv76xx_state *state = to_state(sd);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	u8 gain_buf[4];
	u8 gain_man = 1;
	u8 agc_mode_man = 1;

	if (auto_gain) {
		gain_man = 0;
		agc_mode_man = 0;
		gain_a = 0x100;
		gain_b = 0x100;
		gain_c = 0x100;
	}

	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_gain ? "Auto" : "Manual",
			gain_a, gain_b, gain_c);

	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
	gain_buf[3] = ((gain_c & 0x0ff));

	/* Registers must be written in this order with no i2c access in between */
1079 1080
	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
			     0x73, gain_buf, 4))
1081 1082 1083
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
}

1084 1085
static void set_rgb_quantization_range(struct v4l2_subdev *sd)
{
1086
	struct adv76xx_state *state = to_state(sd);
1087 1088 1089 1090 1091 1092
	bool rgb_output = io_read(sd, 0x02) & 0x02;
	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;

	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
			__func__, state->rgb_quantization_range,
			rgb_output, hdmi_signal);
1093

1094 1095
	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1096

1097 1098
	switch (state->rgb_quantization_range) {
	case V4L2_DV_RGB_RANGE_AUTO:
1099
		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1100 1101
			/* Receiving analog RGB signal
			 * Set RGB full range (0-255) */
1102
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1103 1104 1105
			break;
		}

1106
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1107 1108
			/* Receiving analog YPbPr signal
			 * Set automode */
1109
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1110 1111 1112
			break;
		}

1113
		if (hdmi_signal) {
1114 1115
			/* Receiving HDMI signal
			 * Set automode */
1116
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1117 1118 1119 1120 1121 1122
			break;
		}

		/* Receiving DVI-D signal
		 * ADV7604 selects RGB limited range regardless of
		 * input format (CE/IT) in automatic mode */
1123
		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1124
			/* RGB limited range (16-235) */
1125
			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1126 1127
		} else {
			/* RGB full range (0-255) */
1128
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1129 1130

			if (is_digital_input(sd) && rgb_output) {
1131
				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1132
			} else {
1133 1134
				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1135
			}
1136 1137 1138
		}
		break;
	case V4L2_DV_RGB_RANGE_LIMITED:
1139
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1140
			/* YCrCb limited range (16-235) */
1141
			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1142
			break;
1143
		}
1144 1145

		/* RGB limited range (16-235) */
1146
		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1147

1148 1149
		break;
	case V4L2_DV_RGB_RANGE_FULL:
1150
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1151
			/* YCrCb full range (0-255) */
1152
			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1153 1154 1155 1156
			break;
		}

		/* RGB full range (0-255) */
1157
		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1158 1159 1160 1161 1162 1163

		if (is_analog_input(sd) || hdmi_signal)
			break;

		/* Adjust gain/offset for DVI-D signals only */
		if (rgb_output) {
1164
			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1165
		} else {
1166 1167
			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1168
		}
1169 1170 1171 1172
		break;
	}
}

1173
static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1174
{
1175
	struct v4l2_subdev *sd =
1176
		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1177

1178
	struct adv76xx_state *state = to_state(sd);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		cp_write(sd, 0x3c, ctrl->val);
		return 0;
	case V4L2_CID_CONTRAST:
		cp_write(sd, 0x3a, ctrl->val);
		return 0;
	case V4L2_CID_SATURATION:
		cp_write(sd, 0x3b, ctrl->val);
		return 0;
	case V4L2_CID_HUE:
		cp_write(sd, 0x3d, ctrl->val);
		return 0;
	case  V4L2_CID_DV_RX_RGB_RANGE:
		state->rgb_quantization_range = ctrl->val;
		set_rgb_quantization_range(sd);
		return 0;
	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1198
		if (!adv76xx_has_afe(state))
1199
			return -EINVAL;
1200 1201 1202 1203 1204 1205 1206 1207 1208
		/* Set the analog sampling phase. This is needed to find the
		   best sampling phase for analog video: an application or
		   driver has to try a number of phases and analyze the picture
		   quality before settling on the best performing phase. */
		afe_write(sd, 0xc8, ctrl->val);
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
		/* Use the default blue color for free running mode,
		   or supply your own. */
1209
		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
		return 0;
	}
	return -EINVAL;
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
	struct v4l2_subdev *sd =
		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;

	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
		return 0;
	}
	return -EINVAL;
}

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/* ----------------------------------------------------------------------- */

static inline bool no_power(struct v4l2_subdev *sd)
{
	/* Entire chip or CP powered off */
	return io_read(sd, 0x0c) & 0x24;
}

static inline bool no_signal_tmds(struct v4l2_subdev *sd)
{
1244
	struct adv76xx_state *state = to_state(sd);
1245 1246

	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1247 1248 1249 1250
}

static inline bool no_lock_tmds(struct v4l2_subdev *sd)
{
1251 1252
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1253 1254

	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1255 1256
}

1257 1258 1259 1260 1261
static inline bool is_hdmi(struct v4l2_subdev *sd)
{
	return hdmi_read(sd, 0x05) & 0x80;
}

1262 1263
static inline bool no_lock_sspd(struct v4l2_subdev *sd)
{
1264
	struct adv76xx_state *state = to_state(sd);
1265 1266 1267 1268 1269

	/*
	 * Chips without a AFE don't expose registers for the SSPD, so just assume
	 * that we have a lock.
	 */
1270
	if (adv76xx_has_afe(state))
1271 1272
		return false;

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	/* TODO channel 2 */
	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
}

static inline bool no_lock_stdi(struct v4l2_subdev *sd)
{
	/* TODO channel 2 */
	return !(cp_read(sd, 0xb1) & 0x80);
}

static inline bool no_signal(struct v4l2_subdev *sd)
{
	bool ret;

	ret = no_power(sd);

	ret |= no_lock_stdi(sd);
	ret |= no_lock_sspd(sd);

1292
	if (is_digital_input(sd)) {
1293 1294 1295 1296 1297 1298 1299 1300 1301
		ret |= no_lock_tmds(sd);
		ret |= no_signal_tmds(sd);
	}

	return ret;
}

static inline bool no_lock_cp(struct v4l2_subdev *sd)
{
1302
	struct adv76xx_state *state = to_state(sd);
1303

1304
	if (!adv76xx_has_afe(state))
1305 1306
		return false;

1307 1308 1309 1310 1311
	/* CP has detected a non standard number of lines on the incoming
	   video compared to what it is configured to receive by s_dv_timings */
	return io_read(sd, 0x12) & 0x01;
}

1312 1313 1314 1315 1316
static inline bool in_free_run(struct v4l2_subdev *sd)
{
	return cp_read(sd, 0xff) & 0x10;
}

1317
static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1318 1319 1320 1321
{
	*status = 0;
	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1322 1323 1324
	if (!in_free_run(sd) && no_lock_cp(sd))
		*status |= is_digital_input(sd) ?
			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);

	return 0;
}

/* ----------------------------------------------------------------------- */

struct stdi_readback {
	u16 bl, lcf, lcvs;
	u8 hs_pol, vs_pol;
	bool interlaced;
};

static int stdi2dv_timings(struct v4l2_subdev *sd,
		struct stdi_readback *stdi,
		struct v4l2_dv_timings *timings)
{
1343 1344
	struct adv76xx_state *state = to_state(sd);
	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1345 1346 1347
	u32 pix_clk;
	int i;

1348 1349 1350 1351
	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;

		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1352
					   adv76xx_get_dv_timings_cap(sd, -1),
1353
					   adv76xx_check_dv_timings, NULL))
1354
			continue;
1355 1356 1357
		if (vtotal(bt) != stdi->lcf + 1)
			continue;
		if (bt->vsync != stdi->lcvs)
1358 1359
			continue;

1360
		pix_clk = hfreq * htotal(bt);
1361

1362 1363 1364
		if ((pix_clk < bt->pixelclock + 1000000) &&
		    (pix_clk > bt->pixelclock - 1000000)) {
			*timings = v4l2_dv_timings_presets[i];
1365 1366 1367 1368
			return 0;
		}
	}

1369
	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1370 1371
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1372
			false, timings))
1373 1374 1375 1376
		return 0;
	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1377
			false, state->aspect_ratio, timings))
1378 1379
		return 0;

1380 1381 1382 1383
	v4l2_dbg(2, debug, sd,
		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
		stdi->hs_pol, stdi->vs_pol);
1384 1385 1386
	return -1;
}

1387

1388 1389
static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
{
1390 1391
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1392 1393
	u8 polarity;

1394 1395 1396 1397 1398 1399
	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
		return -1;
	}

	/* read STDI */
1400
	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1401
	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1402 1403 1404
	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
	stdi->interlaced = io_read(sd, 0x12) & 0x10;

1405
	if (adv76xx_has_afe(state)) {
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
		/* read SSPD */
		polarity = cp_read(sd, 0xb5);
		if ((polarity & 0x03) == 0x01) {
			stdi->hs_pol = polarity & 0x10
				     ? (polarity & 0x08 ? '+' : '-') : 'x';
			stdi->vs_pol = polarity & 0x40
				     ? (polarity & 0x20 ? '+' : '-') : 'x';
		} else {
			stdi->hs_pol = 'x';
			stdi->vs_pol = 'x';
		}
1417
	} else {
1418 1419 1420
		polarity = hdmi_read(sd, 0x05);
		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	}

	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd,
			"%s: signal lost during readout of STDI/SSPD\n", __func__);
		return -1;
	}

	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
		memset(stdi, 0, sizeof(struct stdi_readback));
		return -1;
	}

	v4l2_dbg(2, debug, sd,
		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
		stdi->hs_pol, stdi->vs_pol,
		stdi->interlaced ? "interlaced" : "progressive");

	return 0;
}

1444
static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1445 1446
			struct v4l2_enum_dv_timings *timings)
{
1447
	struct adv76xx_state *state = to_state(sd);
1448 1449 1450 1451

	if (timings->pad >= state->source_pad)
		return -EINVAL;

1452
	return v4l2_enum_dv_timings_cap(timings,
1453 1454
		adv76xx_get_dv_timings_cap(sd, timings->pad),
		adv76xx_check_dv_timings, NULL);
1455 1456
}

1457
static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1458
			struct v4l2_dv_timings_cap *cap)
1459
{
1460
	struct adv76xx_state *state = to_state(sd);
1461
	unsigned int pad = cap->pad;
1462 1463 1464 1465

	if (cap->pad >= state->source_pad)
		return -EINVAL;

1466 1467 1468
	*cap = *adv76xx_get_dv_timings_cap(sd, pad);
	cap->pad = pad;

1469 1470 1471 1472
	return 0;
}

/* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1473 1474
   if the format is listed in adv76xx_timings[] */
static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1475 1476
		struct v4l2_dv_timings *timings)
{
1477 1478 1479
	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
				 is_digital_input(sd) ? 250000 : 1000000,
				 adv76xx_check_dv_timings, NULL);
1480 1481
}

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	unsigned int freq;
	int a, b;

	a = hdmi_read(sd, 0x06);
	b = hdmi_read(sd, 0x3b);
	if (a < 0 || b < 0)
		return 0;
	freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;

	if (is_hdmi(sd)) {
		/* adjust for deep color mode */
		unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;

		freq = freq * 8 / bits_per_channel;
	}

	return freq;
}

static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	int a, b;

	a = hdmi_read(sd, 0x51);
	b = hdmi_read(sd, 0x52);
	if (a < 0 || b < 0)
		return 0;
	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
}

1514
static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1515 1516
			struct v4l2_dv_timings *timings)
{
1517 1518
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1519 1520 1521 1522 1523 1524 1525 1526 1527
	struct v4l2_bt_timings *bt = &timings->bt;
	struct stdi_readback stdi;

	if (!timings)
		return -EINVAL;

	memset(timings, 0, sizeof(struct v4l2_dv_timings));

	if (no_signal(sd)) {
1528
		state->restart_stdi_once = true;
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
		return -ENOLINK;
	}

	/* read STDI */
	if (read_stdi(sd, &stdi)) {
		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
		return -ENOLINK;
	}
	bt->interlaced = stdi.interlaced ?
		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;

1541
	if (is_digital_input(sd)) {
1542 1543
		timings->type = V4L2_DV_BT_656_1120;

1544 1545
		bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask);
		bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask);
1546
		bt->pixelclock = info->read_hdmi_pixelclock(sd);
1547 1548 1549 1550 1551 1552 1553 1554
		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
		bt->vfrontporch = hdmi_read16(sd, 0x2a,
			info->field0_vfrontporch_mask) / 2;
		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
		bt->vbackporch = hdmi_read16(sd, 0x32,
			info->field0_vbackporch_mask) / 2;
1555 1556 1557
		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
		if (bt->interlaced == V4L2_DV_INTERLACED) {
1558 1559 1560 1561 1562 1563 1564 1565
			bt->height += hdmi_read16(sd, 0x0b,
				info->field1_height_mask);
			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
				info->field1_vfrontporch_mask) / 2;
			bt->il_vsync = hdmi_read16(sd, 0x30,
				info->field1_vsync_mask) / 2;
			bt->il_vbackporch = hdmi_read16(sd, 0x34,
				info->field1_vbackporch_mask) / 2;
1566
		}
1567
		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1568 1569
	} else {
		/* find format
H
Hans Verkuil 已提交
1570
		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
		 */
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs += 1;
		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs -= 2;
		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
		if (stdi2dv_timings(sd, &stdi, timings)) {
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
			/*
			 * The STDI block may measure wrong values, especially
			 * for lcvs and lcf. If the driver can not find any
			 * valid timing, the STDI block is restarted to measure
			 * the video timings again. The function will return an
			 * error, but the restart of STDI will generate a new
			 * STDI interrupt and the format detection process will
			 * restart.
			 */
			if (state->restart_stdi_once) {
				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
				/* TODO restart STDI for Sync Channel 2 */
				/* enter one-shot mode */
1595
				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1596
				/* trigger STDI restart */
1597
				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1598
				/* reset to continuous mode */
1599
				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1600 1601 1602
				state->restart_stdi_once = false;
				return -ENOLINK;
			}
1603 1604 1605
			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
			return -ERANGE;
		}
1606
		state->restart_stdi_once = true;
1607 1608 1609 1610 1611 1612 1613 1614 1615
	}
found:

	if (no_signal(sd)) {
		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
		memset(timings, 0, sizeof(struct v4l2_dv_timings));
		return -ENOLINK;
	}

1616 1617
	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1618 1619 1620 1621 1622 1623
		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
				__func__, (u32)bt->pixelclock);
		return -ERANGE;
	}

	if (debug > 1)
1624
		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1625
				      timings, true);
1626 1627 1628 1629

	return 0;
}

1630
static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1631 1632
		struct v4l2_dv_timings *timings)
{
1633
	struct adv76xx_state *state = to_state(sd);
1634
	struct v4l2_bt_timings *bt;
1635
	int err;
1636 1637 1638 1639

	if (!timings)
		return -EINVAL;

1640
	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1641 1642 1643 1644
		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
		return 0;
	}

1645 1646
	bt = &timings->bt;

1647
	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1648
				   adv76xx_check_dv_timings, NULL))
1649
		return -ERANGE;
1650

1651
	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1652 1653 1654

	state->timings = *timings;

1655
	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1656 1657 1658 1659 1660 1661 1662 1663

	/* Use prim_mode and vid_std when available */
	err = configure_predefined_video_timings(sd, timings);
	if (err) {
		/* custom settings when the video format
		 does not have prim_mode/vid_std */
		configure_custom_video_timings(sd, bt);
	}
1664 1665 1666 1667

	set_rgb_quantization_range(sd);

	if (debug > 1)
1668
		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1669
				      timings, true);
1670 1671 1672
	return 0;
}

1673
static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1674 1675
		struct v4l2_dv_timings *timings)
{
1676
	struct adv76xx_state *state = to_state(sd);
1677 1678 1679 1680 1681

	*timings = state->timings;
	return 0;
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
}

static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
}

1692
static void enable_input(struct v4l2_subdev *sd)
1693
{
1694
	struct adv76xx_state *state = to_state(sd);
1695

1696
	if (is_analog_input(sd)) {
1697
		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1698
	} else if (is_digital_input(sd)) {
1699
		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1700
		state->info->set_termination(sd, true);
1701
		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1702
		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1703 1704 1705
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1706 1707 1708 1709 1710
	}
}

static void disable_input(struct v4l2_subdev *sd)
{
1711
	struct adv76xx_state *state = to_state(sd);
1712

1713
	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1714
	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1715
	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1716
	state->info->set_termination(sd, false);
1717 1718
}

1719
static void select_input(struct v4l2_subdev *sd)
1720
{
1721 1722
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1723

1724
	if (is_analog_input(sd)) {
1725
		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1726 1727 1728 1729

		afe_write(sd, 0x00, 0x08); /* power up ADC */
		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
		afe_write(sd, 0xc8, 0x00); /* phase control */
1730 1731
	} else if (is_digital_input(sd)) {
		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1732

1733
		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1734

1735
		if (adv76xx_has_afe(state)) {
1736 1737 1738 1739 1740
			afe_write(sd, 0x00, 0xff); /* power down ADC */
			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
			afe_write(sd, 0xc8, 0x40); /* phase control */
		}

1741 1742 1743
		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1744 1745 1746
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1747 1748 1749
	}
}

1750
static int adv76xx_s_routing(struct v4l2_subdev *sd,
1751 1752
		u32 input, u32 output, u32 config)
{
1753
	struct adv76xx_state *state = to_state(sd);
1754

1755 1756 1757 1758 1759
	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
			__func__, input, state->selected_input);

	if (input == state->selected_input)
		return 0;
1760

1761 1762 1763
	if (input > state->info->max_port)
		return -EINVAL;

1764
	state->selected_input = input;
1765 1766

	disable_input(sd);
1767 1768
	select_input(sd);
	enable_input(sd);
1769

1770 1771
	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);

1772 1773 1774
	return 0;
}

1775
static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1776
				  struct v4l2_subdev_pad_config *cfg,
1777
				  struct v4l2_subdev_mbus_code_enum *code)
1778
{
1779
	struct adv76xx_state *state = to_state(sd);
1780 1781

	if (code->index >= state->info->nformats)
1782
		return -EINVAL;
1783 1784 1785

	code->code = state->info->formats[code->index].code;

1786 1787 1788
	return 0;
}

1789
static void adv76xx_fill_format(struct adv76xx_state *state,
1790
				struct v4l2_mbus_framefmt *format)
1791
{
1792
	memset(format, 0, sizeof(*format));
1793

1794 1795 1796
	format->width = state->timings.bt.width;
	format->height = state->timings.bt.height;
	format->field = V4L2_FIELD_NONE;
1797
	format->colorspace = V4L2_COLORSPACE_SRGB;
1798

1799
	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1800
		format->colorspace = (state->timings.bt.height <= 576) ?
1801
			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1802 1803 1804 1805 1806 1807 1808 1809 1810
}

/*
 * Compute the op_ch_sel value required to obtain on the bus the component order
 * corresponding to the selected format taking into account bus reordering
 * applied by the board at the output of the device.
 *
 * The following table gives the op_ch_value from the format component order
 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1811
 * adv76xx_bus_order value in row).
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
 *
 *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
 * ----------+-------------------------------------------------
 * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
 * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
 * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
 * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
 * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
 * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
 */
1822
static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1823 1824
{
#define _SEL(a,b,c,d,e,f)	{ \
1825 1826
	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
#define _BUS(x)			[ADV7604_BUS_ORDER_##x]

	static const unsigned int op_ch_sel[6][6] = {
		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
	};

	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
}

1841
static void adv76xx_setup_format(struct adv76xx_state *state)
1842 1843 1844
{
	struct v4l2_subdev *sd = &state->sd;

1845
	io_write_clr_set(sd, 0x02, 0x02,
1846
			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1847 1848
	io_write(sd, 0x03, state->format->op_format_sel |
		 state->pdata.op_format_mode_sel);
1849
	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1850
	io_write_clr_set(sd, 0x05, 0x01,
1851
			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1852 1853
}

1854 1855
static int adv76xx_get_format(struct v4l2_subdev *sd,
			      struct v4l2_subdev_pad_config *cfg,
1856 1857
			      struct v4l2_subdev_format *format)
{
1858
	struct adv76xx_state *state = to_state(sd);
1859 1860 1861 1862

	if (format->pad != state->source_pad)
		return -EINVAL;

1863
	adv76xx_fill_format(state, &format->format);
1864 1865 1866 1867

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

1868
		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1869 1870 1871
		format->format.code = fmt->code;
	} else {
		format->format.code = state->format->code;
1872
	}
1873 1874 1875 1876

	return 0;
}

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
static int adv76xx_get_selection(struct v4l2_subdev *sd,
				 struct v4l2_subdev_pad_config *cfg,
				 struct v4l2_subdev_selection *sel)
{
	struct adv76xx_state *state = to_state(sd);

	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
		return -EINVAL;
	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
		return -EINVAL;

	sel->r.left	= 0;
	sel->r.top	= 0;
	sel->r.width	= state->timings.bt.width;
	sel->r.height	= state->timings.bt.height;

	return 0;
}

1897 1898
static int adv76xx_set_format(struct v4l2_subdev *sd,
			      struct v4l2_subdev_pad_config *cfg,
1899 1900
			      struct v4l2_subdev_format *format)
{
1901 1902
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_format_info *info;
1903 1904 1905 1906

	if (format->pad != state->source_pad)
		return -EINVAL;

1907
	info = adv76xx_format_info(state, format->format.code);
1908
	if (info == NULL)
1909
		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1910

1911
	adv76xx_fill_format(state, &format->format);
1912 1913 1914 1915 1916
	format->format.code = info->code;

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

1917
		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1918 1919 1920
		fmt->code = format->format.code;
	} else {
		state->format = info;
1921
		adv76xx_setup_format(state);
1922 1923
	}

1924 1925 1926
	return 0;
}

1927
static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
1928
{
1929 1930
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	const u8 irq_reg_0x43 = io_read(sd, 0x43);
	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
	const u8 irq_reg_0x70 = io_read(sd, 0x70);
	u8 fmt_change_digital;
	u8 fmt_change;
	u8 tx_5v;

	if (irq_reg_0x43)
		io_write(sd, 0x44, irq_reg_0x43);
	if (irq_reg_0x70)
		io_write(sd, 0x71, irq_reg_0x70);
	if (irq_reg_0x6b)
		io_write(sd, 0x6c, irq_reg_0x6b);
1944

1945 1946
	v4l2_dbg(2, debug, sd, "%s: ", __func__);

1947
	/* format change */
1948
	fmt_change = irq_reg_0x43 & 0x98;
1949 1950 1951
	fmt_change_digital = is_digital_input(sd)
			   ? irq_reg_0x6b & info->fmt_change_digital_mask
			   : 0;
1952

1953 1954
	if (fmt_change || fmt_change_digital) {
		v4l2_dbg(1, debug, sd,
1955
			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
1956
			__func__, fmt_change, fmt_change_digital);
1957

1958
		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1959

1960 1961 1962
		if (handled)
			*handled = true;
	}
1963 1964 1965 1966 1967 1968 1969 1970 1971
	/* HDMI/DVI mode */
	if (irq_reg_0x6b & 0x01) {
		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
		set_rgb_quantization_range(sd);
		if (handled)
			*handled = true;
	}

1972
	/* tx 5v detect */
1973
	tx_5v = irq_reg_0x70 & info->cable_det_mask;
1974 1975
	if (tx_5v) {
		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
1976
		adv76xx_s_detect_tx_5v_ctrl(sd);
1977 1978 1979 1980 1981 1982
		if (handled)
			*handled = true;
	}
	return 0;
}

1983
static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1984
{
1985
	struct adv76xx_state *state = to_state(sd);
1986
	u8 *data = NULL;
1987

1988
	memset(edid->reserved, 0, sizeof(edid->reserved));
1989 1990

	switch (edid->pad) {
1991
	case ADV76XX_PAD_HDMI_PORT_A:
1992 1993 1994
	case ADV7604_PAD_HDMI_PORT_B:
	case ADV7604_PAD_HDMI_PORT_C:
	case ADV7604_PAD_HDMI_PORT_D:
1995 1996 1997 1998 1999 2000
		if (state->edid.present & (1 << edid->pad))
			data = state->edid.edid;
		break;
	default:
		return -EINVAL;
	}
2001 2002 2003 2004 2005 2006 2007

	if (edid->start_block == 0 && edid->blocks == 0) {
		edid->blocks = data ? state->edid.blocks : 0;
		return 0;
	}

	if (data == NULL)
2008 2009
		return -ENODATA;

2010 2011 2012 2013 2014 2015 2016 2017
	if (edid->start_block >= state->edid.blocks)
		return -EINVAL;

	if (edid->start_block + edid->blocks > state->edid.blocks)
		edid->blocks = state->edid.blocks - edid->start_block;

	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);

2018 2019 2020
	return 0;
}

2021
static int get_edid_spa_location(const u8 *edid)
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
{
	u8 d;

	if ((edid[0x7e] != 1) ||
	    (edid[0x80] != 0x02) ||
	    (edid[0x81] != 0x03)) {
		return -1;
	}

	/* search Vendor Specific Data Block (tag 3) */
	d = edid[0x82] & 0x7f;
	if (d > 4) {
		int i = 0x84;
		int end = 0x80 + d;

		do {
			u8 tag = edid[i] >> 5;
			u8 len = edid[i] & 0x1f;

			if ((tag == 3) && (len >= 5))
				return i + 4;
			i += len + 1;
		} while (i < end);
	}
	return -1;
}

2049
static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2050
{
2051 2052
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2053
	int spa_loc;
2054
	int err;
2055
	int i;
2056

2057 2058
	memset(edid->reserved, 0, sizeof(edid->reserved));

2059
	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2060 2061 2062 2063
		return -EINVAL;
	if (edid->start_block != 0)
		return -EINVAL;
	if (edid->blocks == 0) {
2064
		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2065
		state->edid.present &= ~(1 << edid->pad);
2066
		adv76xx_set_hpd(state, state->edid.present);
2067
		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2068

2069 2070 2071
		/* Fall back to a 16:9 aspect ratio */
		state->aspect_ratio.numerator = 16;
		state->aspect_ratio.denominator = 9;
2072 2073 2074 2075 2076 2077

		if (!state->edid.present)
			state->edid.blocks = 0;

		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
				__func__, edid->pad, state->edid.present);
2078 2079
		return 0;
	}
2080 2081
	if (edid->blocks > 2) {
		edid->blocks = 2;
2082
		return -E2BIG;
2083 2084
	}

2085 2086 2087
	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
			__func__, edid->pad, state->edid.present);

2088
	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2089
	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2090
	adv76xx_set_hpd(state, 0);
2091
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2092

2093 2094 2095 2096
	spa_loc = get_edid_spa_location(edid->edid);
	if (spa_loc < 0)
		spa_loc = 0xc0; /* Default value [REF_02, p. 116] */

2097
	switch (edid->pad) {
2098
	case ADV76XX_PAD_HDMI_PORT_A:
2099 2100
		state->spa_port_a[0] = edid->edid[spa_loc];
		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2101
		break;
2102
	case ADV7604_PAD_HDMI_PORT_B:
2103 2104
		rep_write(sd, 0x70, edid->edid[spa_loc]);
		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2105
		break;
2106
	case ADV7604_PAD_HDMI_PORT_C:
2107 2108
		rep_write(sd, 0x72, edid->edid[spa_loc]);
		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2109
		break;
2110
	case ADV7604_PAD_HDMI_PORT_D:
2111 2112
		rep_write(sd, 0x74, edid->edid[spa_loc]);
		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2113
		break;
2114 2115
	default:
		return -EINVAL;
2116
	}
2117 2118 2119

	if (info->type == ADV7604) {
		rep_write(sd, 0x76, spa_loc & 0xff);
2120
		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2121
	} else {
2122 2123
		/* ADV7612 Software Manual Rev. A, p. 15 */
		rep_write(sd, 0x70, spa_loc & 0xff);
2124
		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2125
	}
2126

2127 2128
	edid->edid[spa_loc] = state->spa_port_a[0];
	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2129 2130 2131

	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
	state->edid.blocks = edid->blocks;
2132 2133
	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
			edid->edid[0x16]);
2134
	state->edid.present |= 1 << edid->pad;
2135 2136 2137

	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
	if (err < 0) {
2138
		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2139 2140 2141
		return err;
	}

2142
	/* adv76xx calculates the checksums and enables I2C access to internal
2143
	   EDID RAM from DDC port. */
2144
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2145 2146

	for (i = 0; i < 1000; i++) {
2147
		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2148 2149 2150 2151 2152 2153 2154 2155
			break;
		mdelay(1);
	}
	if (i == 1000) {
		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
		return -EIO;
	}

2156
	/* enable hotplug after 100 ms */
2157
	schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2158
	return 0;
2159 2160 2161 2162
}

/*********** avi info frame CEA-861-E **************/

H
Hans Verkuil 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171
static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
	{ "AVI", 0x01, 0xe0, 0x00 },
	{ "Audio", 0x02, 0xe3, 0x1c },
	{ "SDP", 0x04, 0xe6, 0x2a },
	{ "Vendor", 0x10, 0xec, 0x54 }
};

static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
				  union hdmi_infoframe *frame)
2172
{
H
Hans Verkuil 已提交
2173 2174
	uint8_t buffer[32];
	u8 len;
2175 2176
	int i;

H
Hans Verkuil 已提交
2177 2178 2179 2180
	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
		v4l2_info(sd, "%s infoframe not received\n",
			  adv76xx_cri[index].desc);
		return -ENOENT;
2181
	}
H
Hans Verkuil 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192

	for (i = 0; i < 3; i++)
		buffer[i] = infoframe_read(sd,
					   adv76xx_cri[index].head_addr + i);

	len = buffer[2] + 1;

	if (len + 3 > sizeof(buffer)) {
		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
			 adv76xx_cri[index].desc, len);
		return -ENOENT;
2193 2194
	}

H
Hans Verkuil 已提交
2195 2196 2197 2198 2199 2200 2201 2202
	for (i = 0; i < len; i++)
		buffer[i + 3] = infoframe_read(sd,
				       adv76xx_cri[index].payload_addr + i);

	if (hdmi_infoframe_unpack(frame, buffer) < 0) {
		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
			 adv76xx_cri[index].desc);
		return -ENOENT;
2203
	}
H
Hans Verkuil 已提交
2204 2205
	return 0;
}
2206

H
Hans Verkuil 已提交
2207 2208 2209
static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
{
	int i;
2210

H
Hans Verkuil 已提交
2211 2212
	if (!is_hdmi(sd)) {
		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2213
		return;
H
Hans Verkuil 已提交
2214
	}
2215

H
Hans Verkuil 已提交
2216 2217 2218
	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
		union hdmi_infoframe frame;
		struct i2c_client *client = v4l2_get_subdevdata(sd);
2219

H
Hans Verkuil 已提交
2220 2221 2222 2223
		if (adv76xx_read_infoframe(sd, i, &frame))
			return;
		hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
	}
2224 2225
}

2226
static int adv76xx_log_status(struct v4l2_subdev *sd)
2227
{
2228 2229
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2230 2231 2232
	struct v4l2_dv_timings timings;
	struct stdi_readback stdi;
	u8 reg_io_0x02 = io_read(sd, 0x02);
2233 2234
	u8 edid_enabled;
	u8 cable_det;
2235

2236
	static const char * const csc_coeff_sel_rb[16] = {
2237 2238 2239 2240 2241
		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
		"reserved", "reserved", "reserved", "reserved", "manual"
	};
2242
	static const char * const input_color_space_txt[16] = {
2243 2244
		"RGB limited range (16-235)", "RGB full range (0-255)",
		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2245
		"xvYCC Bt.601", "xvYCC Bt.709",
2246 2247 2248 2249
		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
		"invalid", "invalid", "invalid", "invalid", "invalid",
		"invalid", "invalid", "automatic"
	};
2250 2251 2252 2253 2254 2255 2256 2257
	static const char * const hdmi_color_space_txt[16] = {
		"RGB limited range (16-235)", "RGB full range (0-255)",
		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
		"xvYCC Bt.601", "xvYCC Bt.709",
		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
		"sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
		"invalid", "invalid", "invalid"
	};
2258
	static const char * const rgb_quantization_range_txt[] = {
2259 2260 2261 2262
		"Automatic",
		"RGB limited range (16-235)",
		"RGB full range (0-255)",
	};
2263
	static const char * const deep_color_mode_txt[4] = {
2264 2265 2266 2267 2268
		"8-bits per channel",
		"10-bits per channel",
		"12-bits per channel",
		"16-bits per channel (not supported)"
	};
2269 2270 2271

	v4l2_info(sd, "-----Chip status-----\n");
	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2272
	edid_enabled = rep_read(sd, info->edid_status_reg);
2273
	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2274 2275 2276 2277
			((edid_enabled & 0x01) ? "Yes" : "No"),
			((edid_enabled & 0x02) ? "Yes" : "No"),
			((edid_enabled & 0x04) ? "Yes" : "No"),
			((edid_enabled & 0x08) ? "Yes" : "No"));
2278 2279 2280 2281
	v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ?
			"enabled" : "disabled");

	v4l2_info(sd, "-----Signal status-----\n");
2282
	cable_det = info->read_cable_det(sd);
2283
	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2284 2285
			((cable_det & 0x01) ? "Yes" : "No"),
			((cable_det & 0x02) ? "Yes" : "No"),
2286
			((cable_det & 0x04) ? "Yes" : "No"),
2287
			((cable_det & 0x08) ? "Yes" : "No"));
2288 2289 2290 2291 2292 2293 2294 2295
	v4l2_info(sd, "TMDS signal detected: %s\n",
			no_signal_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "TMDS signal locked: %s\n",
			no_lock_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
	v4l2_info(sd, "CP free run: %s\n",
2296
			(in_free_run(sd)) ? "on" : "off");
2297 2298 2299
	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
			(io_read(sd, 0x01) & 0x70) >> 4);
2300 2301 2302 2303 2304 2305 2306 2307 2308

	v4l2_info(sd, "-----Video Timings-----\n");
	if (read_stdi(sd, &stdi))
		v4l2_info(sd, "STDI: not locked\n");
	else
		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
				stdi.lcf, stdi.bl, stdi.lcvs,
				stdi.interlaced ? "interlaced" : "progressive",
				stdi.hs_pol, stdi.vs_pol);
2309
	if (adv76xx_query_dv_timings(sd, &timings))
2310 2311
		v4l2_info(sd, "No video detected\n");
	else
2312 2313 2314 2315
		v4l2_print_dv_timings(sd->name, "Detected format: ",
				      &timings, true);
	v4l2_print_dv_timings(sd->name, "Configured format: ",
			      &state->timings, true);
2316

2317 2318 2319
	if (no_signal(sd))
		return 0;

2320 2321 2322 2323 2324
	v4l2_info(sd, "-----Color space-----\n");
	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
			rgb_quantization_range_txt[state->rgb_quantization_range]);
	v4l2_info(sd, "Input color space: %s\n",
			input_color_space_txt[reg_io_0x02 >> 4]);
2325
	v4l2_info(sd, "Output color space: %s %s, saturator %s, alt-gamma %s\n",
2326 2327
			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
			(reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)",
2328
			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2329 2330
				"enabled" : "disabled",
			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2331
	v4l2_info(sd, "Color space conversion: %s\n",
2332
			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2333

2334
	if (!is_digital_input(sd))
2335 2336 2337
		return 0;

	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2338 2339 2340 2341
	v4l2_info(sd, "Digital video port selected: %c\n",
			(hdmi_read(sd, 0x00) & 0x03) + 'A');
	v4l2_info(sd, "HDCP encrypted content: %s\n",
			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2342 2343 2344
	v4l2_info(sd, "HDCP keys read: %s%s\n",
			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2345
	if (is_hdmi(sd)) {
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
		bool audio_mute = io_read(sd, 0x65) & 0x40;

		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
				audio_pll_locked ? "locked" : "not locked",
				audio_sample_packet_detect ? "detected" : "not detected",
				audio_mute ? "muted" : "enabled");
		if (audio_pll_locked && audio_sample_packet_detect) {
			v4l2_info(sd, "Audio format: %s\n",
					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
		}
		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
				(hdmi_read(sd, 0x5c) << 8) +
				(hdmi_read(sd, 0x5d) & 0xf0));
		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
				(hdmi_read(sd, 0x5e) << 8) +
				hdmi_read(sd, 0x5f));
		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");

		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2367
		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2368

H
Hans Verkuil 已提交
2369
		adv76xx_log_infoframes(sd);
2370 2371 2372 2373 2374
	}

	return 0;
}

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
				   struct v4l2_fh *fh,
				   struct v4l2_event_subscription *sub)
{
	switch (sub->type) {
	case V4L2_EVENT_SOURCE_CHANGE:
		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
	case V4L2_EVENT_CTRL:
		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
	default:
		return -EINVAL;
	}
}

2389 2390
/* ----------------------------------------------------------------------- */

2391 2392
static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
	.s_ctrl = adv76xx_s_ctrl,
2393
	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2394 2395
};

2396 2397 2398
static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
	.log_status = adv76xx_log_status,
	.interrupt_service_routine = adv76xx_isr,
2399
	.subscribe_event = adv76xx_subscribe_event,
2400
	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2401
#ifdef CONFIG_VIDEO_ADV_DEBUG
2402 2403
	.g_register = adv76xx_g_register,
	.s_register = adv76xx_s_register,
2404 2405 2406
#endif
};

2407 2408 2409 2410 2411 2412
static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
	.s_routing = adv76xx_s_routing,
	.g_input_status = adv76xx_g_input_status,
	.s_dv_timings = adv76xx_s_dv_timings,
	.g_dv_timings = adv76xx_g_dv_timings,
	.query_dv_timings = adv76xx_query_dv_timings,
2413 2414
};

2415 2416
static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
	.enum_mbus_code = adv76xx_enum_mbus_code,
2417
	.get_selection = adv76xx_get_selection,
2418 2419 2420 2421 2422 2423
	.get_fmt = adv76xx_get_format,
	.set_fmt = adv76xx_set_format,
	.get_edid = adv76xx_get_edid,
	.set_edid = adv76xx_set_edid,
	.dv_timings_cap = adv76xx_dv_timings_cap,
	.enum_dv_timings = adv76xx_enum_dv_timings,
2424 2425
};

2426 2427 2428 2429
static const struct v4l2_subdev_ops adv76xx_ops = {
	.core = &adv76xx_core_ops,
	.video = &adv76xx_video_ops,
	.pad = &adv76xx_pad_ops,
2430 2431 2432 2433 2434
};

/* -------------------------- custom ctrls ---------------------------------- */

static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2435
	.ops = &adv76xx_ctrl_ops,
2436 2437 2438 2439 2440 2441 2442 2443 2444
	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
	.name = "Analog Sampling Phase",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0,
	.max = 0x1f,
	.step = 1,
	.def = 0,
};

2445 2446
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
	.ops = &adv76xx_ctrl_ops,
2447 2448 2449 2450 2451 2452 2453 2454 2455
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
	.name = "Free Running Color, Manual",
	.type = V4L2_CTRL_TYPE_BOOLEAN,
	.min = false,
	.max = true,
	.step = 1,
	.def = false,
};

2456 2457
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
	.ops = &adv76xx_ctrl_ops,
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
	.name = "Free Running Color",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0x0,
	.max = 0xffffff,
	.step = 0x1,
	.def = 0x0,
};

/* ----------------------------------------------------------------------- */

2469
static int adv76xx_core_init(struct v4l2_subdev *sd)
2470
{
2471 2472 2473
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
	struct adv76xx_platform_data *pdata = &state->pdata;
2474 2475 2476 2477 2478 2479 2480

	hdmi_write(sd, 0x48,
		(pdata->disable_pwrdnb ? 0x80 : 0) |
		(pdata->disable_cable_det_rst ? 0x40 : 0));

	disable_input(sd);

2481 2482 2483 2484 2485 2486 2487
	if (pdata->default_input >= 0 &&
	    pdata->default_input < state->source_pad) {
		state->selected_input = pdata->default_input;
		select_input(sd);
		enable_input(sd);
	}

2488 2489 2490 2491 2492 2493
	/* power */
	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */

	/* video format */
2494
	io_write_clr_set(sd, 0x02, 0x0f,
2495 2496 2497
			pdata->alt_gamma << 3 |
			pdata->op_656_range << 2 |
			pdata->alt_data_sat << 0);
2498
	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2499 2500
			pdata->insert_av_codes << 2 |
			pdata->replicate_av_codes << 1);
2501
	adv76xx_setup_format(state);
2502 2503

	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2504 2505

	/* VS, HS polarities */
2506 2507
	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2508 2509 2510 2511 2512 2513

	/* Adjust drive strength */
	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
				pdata->dr_str_clk << 2 |
				pdata->dr_str_sync);

2514 2515 2516
	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
H
Hans Verkuil 已提交
2517
				      ADI recommended setting [REF_01, c. 2.3.3] */
2518
	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
H
Hans Verkuil 已提交
2519
				      ADI recommended setting [REF_01, c. 2.3.3] */
2520 2521 2522
	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
				     for digital formats */

2523
	/* HDMI audio */
2524 2525 2526
	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2527

2528 2529 2530
	/* TODO from platform data */
	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */

2531
	if (adv76xx_has_afe(state)) {
2532
		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2533
		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2534
	}
2535 2536

	/* interrupts */
2537
	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2538
	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2539 2540 2541
	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
	info->setup_irqs(sd);
2542 2543 2544 2545

	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
}

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
static void adv7604_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
}

static void adv7611_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
}

2556 2557 2558 2559 2560
static void adv7612_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd0); /* disable INT2 */
}

2561
static void adv76xx_unregister_clients(struct adv76xx_state *state)
2562
{
2563 2564 2565 2566 2567 2568
	unsigned int i;

	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
		if (state->i2c_clients[i])
			i2c_unregister_device(state->i2c_clients[i]);
	}
2569 2570
}

2571
static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2572 2573 2574 2575 2576 2577 2578 2579 2580
							u8 addr, u8 io_reg)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	if (addr)
		io_write(sd, io_reg, addr << 1);
	return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
}

2581
static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2582 2583
	/* reset ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2596 2597 2598

	/* set ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2599 2600 2601 2602 2603
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2604

2605
	{ ADV76XX_REG_SEQ_TERM, 0 },
2606 2607
};

2608
static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2609 2610
	/* set ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2622 2623 2624

	/* reset ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2625 2626
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2627

2628
	{ ADV76XX_REG_SEQ_TERM, 0 },
2629 2630
};

2631
static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2632
	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },

	{ ADV76XX_REG_SEQ_TERM, 0 },
2646 2647
};

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
	{ ADV76XX_REG_SEQ_TERM, 0 },
};

2661
static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2662 2663 2664
	[ADV7604] = {
		.type = ADV7604,
		.has_afe = true,
2665
		.max_port = ADV7604_PAD_VGA_COMP,
2666 2667 2668 2669 2670 2671 2672
		.num_dv_ports = 4,
		.edid_enable_reg = 0x77,
		.edid_status_reg = 0x7d,
		.lcf_reg = 0xb3,
		.tdms_lock_mask = 0xe0,
		.cable_det_mask = 0x1e,
		.fmt_change_digital_mask = 0xc1,
2673
		.cp_csc = 0xfc,
2674 2675
		.formats = adv7604_formats,
		.nformats = ARRAY_SIZE(adv7604_formats),
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
		.set_termination = adv7604_set_termination,
		.setup_irqs = adv7604_setup_irqs,
		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
		.read_cable_det = adv7604_read_cable_det,
		.recommended_settings = {
		    [0] = adv7604_recommended_settings_afe,
		    [1] = adv7604_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
		},
2688 2689
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2690
			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2691 2692 2693
			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2694
			BIT(ADV7604_PAGE_VDP),
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
		.linewidth_mask = 0xfff,
		.field0_height_mask = 0xfff,
		.field1_height_mask = 0xfff,
		.hfrontporch_mask = 0x3ff,
		.hsync_mask = 0x3ff,
		.hbackporch_mask = 0x3ff,
		.field0_vfrontporch_mask = 0x1fff,
		.field0_vsync_mask = 0x1fff,
		.field0_vbackporch_mask = 0x1fff,
		.field1_vfrontporch_mask = 0x1fff,
		.field1_vsync_mask = 0x1fff,
		.field1_vbackporch_mask = 0x1fff,
2707 2708 2709 2710
	},
	[ADV7611] = {
		.type = ADV7611,
		.has_afe = false,
2711
		.max_port = ADV76XX_PAD_HDMI_PORT_A,
2712 2713 2714 2715 2716 2717 2718
		.num_dv_ports = 1,
		.edid_enable_reg = 0x74,
		.edid_status_reg = 0x76,
		.lcf_reg = 0xa3,
		.tdms_lock_mask = 0x43,
		.cable_det_mask = 0x01,
		.fmt_change_digital_mask = 0x03,
2719
		.cp_csc = 0xf4,
2720 2721
		.formats = adv7611_formats,
		.nformats = ARRAY_SIZE(adv7611_formats),
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
		.set_termination = adv7611_set_termination,
		.setup_irqs = adv7611_setup_irqs,
		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
		.read_cable_det = adv7611_read_cable_det,
		.recommended_settings = {
		    [1] = adv7611_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
		},
2732 2733 2734 2735
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
		.linewidth_mask = 0x1fff,
		.field0_height_mask = 0x1fff,
		.field1_height_mask = 0x1fff,
		.hfrontporch_mask = 0x1fff,
		.hsync_mask = 0x1fff,
		.hbackporch_mask = 0x1fff,
		.field0_vfrontporch_mask = 0x3fff,
		.field0_vsync_mask = 0x3fff,
		.field0_vbackporch_mask = 0x3fff,
		.field1_vfrontporch_mask = 0x3fff,
		.field1_vsync_mask = 0x3fff,
		.field1_vbackporch_mask = 0x3fff,
2748
	},
2749 2750 2751
	[ADV7612] = {
		.type = ADV7612,
		.has_afe = false,
2752 2753
		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
		.num_dv_ports = 1,			/* normally 2 */
2754 2755 2756 2757 2758 2759
		.edid_enable_reg = 0x74,
		.edid_status_reg = 0x76,
		.lcf_reg = 0xa3,
		.tdms_lock_mask = 0x43,
		.cable_det_mask = 0x01,
		.fmt_change_digital_mask = 0x03,
2760
		.cp_csc = 0xf4,
2761 2762 2763 2764 2765
		.formats = adv7612_formats,
		.nformats = ARRAY_SIZE(adv7612_formats),
		.set_termination = adv7611_set_termination,
		.setup_irqs = adv7612_setup_irqs,
		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2766
		.read_cable_det = adv7612_read_cable_det,
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
		.recommended_settings = {
		    [1] = adv7612_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
		},
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
		.linewidth_mask = 0x1fff,
		.field0_height_mask = 0x1fff,
		.field1_height_mask = 0x1fff,
		.hfrontporch_mask = 0x1fff,
		.hsync_mask = 0x1fff,
		.hbackporch_mask = 0x1fff,
		.field0_vfrontporch_mask = 0x3fff,
		.field0_vsync_mask = 0x3fff,
		.field0_vbackporch_mask = 0x3fff,
		.field1_vfrontporch_mask = 0x3fff,
		.field1_vsync_mask = 0x3fff,
		.field1_vbackporch_mask = 0x3fff,
	},
2790 2791
};

2792
static const struct i2c_device_id adv76xx_i2c_id[] = {
2793 2794
	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
2795
	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
2796 2797
	{ }
};
2798
MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
2799

2800
static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
2801
	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
2802
	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
2803 2804
	{ }
};
2805
MODULE_DEVICE_TABLE(of, adv76xx_of_id);
2806

2807
static int adv76xx_parse_dt(struct adv76xx_state *state)
2808
{
2809 2810 2811 2812
	struct v4l2_of_endpoint bus_cfg;
	struct device_node *endpoint;
	struct device_node *np;
	unsigned int flags;
2813
	int ret;
2814
	u32 v;
2815

2816
	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
2817 2818 2819 2820 2821 2822

	/* Parse the endpoint. */
	endpoint = of_graph_get_next_endpoint(np, NULL);
	if (!endpoint)
		return -EINVAL;

2823 2824 2825 2826 2827
	ret = v4l2_of_parse_endpoint(endpoint, &bus_cfg);
	if (ret) {
		of_node_put(endpoint);
		return ret;
	}
2828 2829 2830 2831 2832 2833

	if (!of_property_read_u32(endpoint, "default-input", &v))
		state->pdata.default_input = v;
	else
		state->pdata.default_input = -1;

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
	of_node_put(endpoint);

	flags = bus_cfg.bus.parallel.flags;

	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
		state->pdata.inv_hs_pol = 1;

	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
		state->pdata.inv_vs_pol = 1;

	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
		state->pdata.inv_llc_pol = 1;

	if (bus_cfg.bus_type == V4L2_MBUS_BT656) {
		state->pdata.insert_av_codes = 1;
		state->pdata.op_656_range = 1;
	}

2852
	/* Disable the interrupt for now as no DT-based board uses it. */
2853
	state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
2854 2855 2856

	/* Use the default I2C addresses. */
	state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
2857 2858
	state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
	state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
2859 2860
	state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
	state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
2861 2862 2863 2864 2865 2866
	state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
	state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
	state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
	state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
	state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
	state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;

	/* Hardcode the remaining platform data fields. */
	state->pdata.disable_pwrdnb = 0;
	state->pdata.disable_cable_det_rst = 0;
	state->pdata.blank_data = 1;
	state->pdata.alt_data_sat = 1;
	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;

	return 0;
}

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
static const struct regmap_config adv76xx_regmap_cnf[] = {
	{
		.name			= "io",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "avlink",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "cec",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "infoframe",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "esdp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "epp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "afe",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "rep",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "edid",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},

	{
		.name			= "hdmi",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "test",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "cp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "vdp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
};

static int configure_regmap(struct adv76xx_state *state, int region)
{
	int err;

	if (!state->i2c_clients[region])
		return -ENODEV;

	state->regmap[region] =
		devm_regmap_init_i2c(state->i2c_clients[region],
				     &adv76xx_regmap_cnf[region]);

	if (IS_ERR(state->regmap[region])) {
		err = PTR_ERR(state->regmap[region]);
		v4l_err(state->i2c_clients[region],
			"Error initializing regmap %d with error %d\n",
			region, err);
		return -EINVAL;
	}

	return 0;
}

static int configure_regmaps(struct adv76xx_state *state)
{
	int i, err;

	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
		err = configure_regmap(state, i);
		if (err && (err != -ENODEV))
			return err;
	}
	return 0;
}

3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
static void adv76xx_reset(struct adv76xx_state *state)
{
	if (state->reset_gpio) {
		/* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
		gpiod_set_value_cansleep(state->reset_gpio, 0);
		usleep_range(5000, 10000);
		gpiod_set_value_cansleep(state->reset_gpio, 1);
		/* It is recommended to wait 5 ms after the low pulse before */
		/* an I2C write is performed to the ADV76XX. */
		usleep_range(5000, 10000);
	}
}

3035
static int adv76xx_probe(struct i2c_client *client,
3036 3037
			 const struct i2c_device_id *id)
{
3038 3039
	static const struct v4l2_dv_timings cea640x480 =
		V4L2_DV_BT_CEA_640X480P59_94;
3040
	struct adv76xx_state *state;
3041
	struct v4l2_ctrl_handler *hdl;
3042
	struct v4l2_ctrl *ctrl;
3043
	struct v4l2_subdev *sd;
3044
	unsigned int i;
3045
	unsigned int val, val2;
3046 3047 3048 3049 3050
	int err;

	/* Check if the adapter supports the needed features */
	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
		return -EIO;
3051
	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3052 3053
			client->addr << 1);

3054
	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3055
	if (!state) {
3056
		v4l_err(client, "Could not allocate adv76xx_state memory!\n");
3057 3058 3059
		return -ENOMEM;
	}

3060
	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3061

3062 3063
	/* initialize variables */
	state->restart_stdi_once = true;
3064
	state->selected_input = ~0;
3065

3066 3067 3068
	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
		const struct of_device_id *oid;

3069
		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3070 3071
		state->info = oid->data;

3072
		err = adv76xx_parse_dt(state);
3073 3074 3075 3076 3077
		if (err < 0) {
			v4l_err(client, "DT parsing error\n");
			return err;
		}
	} else if (client->dev.platform_data) {
3078
		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3079

3080
		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3081 3082
		state->pdata = *pdata;
	} else {
3083
		v4l_err(client, "No platform data!\n");
3084
		return -ENODEV;
3085
	}
3086 3087 3088 3089

	/* Request GPIOs. */
	for (i = 0; i < state->info->num_dv_ports; ++i) {
		state->hpd_gpio[i] =
3090 3091
			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
						      GPIOD_OUT_LOW);
3092
		if (IS_ERR(state->hpd_gpio[i]))
3093
			return PTR_ERR(state->hpd_gpio[i]);
3094

3095 3096
		if (state->hpd_gpio[i])
			v4l_info(client, "Handling HPD %u GPIO\n", i);
3097
	}
3098 3099 3100 3101 3102 3103
	state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
								GPIOD_OUT_HIGH);
	if (IS_ERR(state->reset_gpio))
		return PTR_ERR(state->reset_gpio);

	adv76xx_reset(state);
3104

3105
	state->timings = cea640x480;
3106
	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3107 3108

	sd = &state->sd;
3109
	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3110 3111 3112
	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
		id->name, i2c_adapter_id(client->adapter),
		client->addr);
3113
	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3114

3115 3116 3117 3118 3119 3120 3121 3122
	/* Configure IO Regmap region */
	err = configure_regmap(state, ADV76XX_PAGE_IO);

	if (err) {
		v4l2_err(sd, "Error configuring IO regmap region\n");
		return -ENODEV;
	}

3123 3124 3125 3126 3127
	/*
	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
	 * identifies the revision, while on ADV7611 it identifies the model as
	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
	 */
3128 3129
	switch (state->info->type) {
	case ADV7604:
3130 3131 3132 3133 3134
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
3135
		if (val != 0x68) {
3136
			v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3137 3138 3139
					client->addr << 1);
			return -ENODEV;
		}
3140 3141 3142
		break;
	case ADV7611:
	case ADV7612:
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
				0xea,
				&val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
		val2 = val << 8;
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
			    0xeb,
			    &val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
3158
		val |= val2;
3159 3160 3161
		if ((state->info->type == ADV7611 && val != 0x2051) ||
			(state->info->type == ADV7612 && val != 0x2041)) {
			v4l2_err(sd, "not an adv761x on address 0x%x\n",
3162 3163 3164
					client->addr << 1);
			return -ENODEV;
		}
3165
		break;
3166 3167 3168 3169
	}

	/* control handlers */
	hdl = &state->hdl;
3170
	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3171

3172
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3173
			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3174
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3175
			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3176
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3177
			V4L2_CID_SATURATION, 0, 255, 1, 128);
3178
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3179
			V4L2_CID_HUE, 0, 128, 1, 0);
3180 3181 3182 3183 3184
	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
	if (ctrl)
		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3185 3186

	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3187 3188
			V4L2_CID_DV_RX_POWER_PRESENT, 0,
			(1 << state->info->num_dv_ports) - 1, 0, 0);
3189
	state->rgb_quantization_range_ctrl =
3190
		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3191 3192 3193 3194
			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
			0, V4L2_DV_RGB_RANGE_AUTO);

	/* custom controls */
3195
	if (adv76xx_has_afe(state))
3196 3197
		state->analog_sampling_phase_ctrl =
			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3198
	state->free_run_color_manual_ctrl =
3199
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3200
	state->free_run_color_ctrl =
3201
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3202 3203 3204 3205 3206 3207

	sd->ctrl_handler = hdl;
	if (hdl->error) {
		err = hdl->error;
		goto err_hdl;
	}
3208
	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3209 3210 3211 3212
		err = -ENODEV;
		goto err_hdl;
	}

3213
	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3214 3215
		if (!(BIT(i) & state->info->page_mask))
			continue;
3216

3217
		state->i2c_clients[i] =
3218
			adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
3219 3220
					     0xf2 + i);
		if (state->i2c_clients[i] == NULL) {
3221
			err = -ENOMEM;
3222
			v4l2_err(sd, "failed to create i2c client %u\n", i);
3223 3224 3225
			goto err_i2c;
		}
	}
3226

3227
	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3228
			adv76xx_delayed_work_enable_hotplug);
3229

3230 3231 3232 3233 3234 3235
	state->source_pad = state->info->num_dv_ports
			  + (state->info->has_afe ? 2 : 0);
	for (i = 0; i < state->source_pad; ++i)
		state->pads[i].flags = MEDIA_PAD_FL_SINK;
	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;

3236
	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3237
				state->pads);
3238 3239 3240
	if (err)
		goto err_work_queues;

3241 3242 3243 3244 3245
	/* Configure regmaps */
	err = configure_regmaps(state);
	if (err)
		goto err_entity;

3246
	err = adv76xx_core_init(sd);
3247 3248 3249 3250
	if (err)
		goto err_entity;
	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
			client->addr << 1, client->adapter->name);
3251 3252 3253 3254 3255

	err = v4l2_async_register_subdev(sd);
	if (err)
		goto err_entity;

3256 3257 3258 3259 3260 3261 3262
	return 0;

err_entity:
	media_entity_cleanup(&sd->entity);
err_work_queues:
	cancel_delayed_work(&state->delayed_work_enable_hotplug);
err_i2c:
3263
	adv76xx_unregister_clients(state);
3264 3265 3266 3267 3268 3269 3270
err_hdl:
	v4l2_ctrl_handler_free(hdl);
	return err;
}

/* ----------------------------------------------------------------------- */

3271
static int adv76xx_remove(struct i2c_client *client)
3272 3273
{
	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3274
	struct adv76xx_state *state = to_state(sd);
3275 3276

	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3277
	v4l2_async_unregister_subdev(sd);
3278
	media_entity_cleanup(&sd->entity);
3279
	adv76xx_unregister_clients(to_state(sd));
3280 3281 3282 3283 3284 3285
	v4l2_ctrl_handler_free(sd->ctrl_handler);
	return 0;
}

/* ----------------------------------------------------------------------- */

3286
static struct i2c_driver adv76xx_driver = {
3287 3288
	.driver = {
		.name = "adv7604",
3289
		.of_match_table = of_match_ptr(adv76xx_of_id),
3290
	},
3291 3292 3293
	.probe = adv76xx_probe,
	.remove = adv76xx_remove,
	.id_table = adv76xx_i2c_id,
3294 3295
};

3296
module_i2c_driver(adv76xx_driver);