nand_micron.c 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2017 Free Electrons
 * Copyright (C) 2017 NextThing Co
 *
 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

18
#include <linux/mtd/rawnand.h>
19
#include <linux/slab.h>
20

21
/*
22 23
 * Special Micron status bit 3 indicates that the block has been
 * corrected by on-die ECC and should be rewritten.
24
 */
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#define NAND_ECC_STATUS_WRITE_RECOMMENDED	BIT(3)

/*
 * On chips with 8-bit ECC and additional bit can be used to distinguish
 * cases where a errors were corrected without needing a rewrite
 *
 * Bit 4 Bit 3 Bit 0 Description
 * ----- ----- ----- -----------
 * 0     0     0     No Errors
 * 0     0     1     Multiple uncorrected errors
 * 0     1     0     4 - 6 errors corrected, recommend rewrite
 * 0     1     1     Reserved
 * 1     0     0     1 - 3 errors corrected
 * 1     0     1     Reserved
 * 1     1     0     7 - 8 errors corrected, recommend rewrite
 */
#define NAND_ECC_STATUS_MASK		(BIT(4) | BIT(3) | BIT(0))
#define NAND_ECC_STATUS_UNCORRECTABLE	BIT(0)
#define NAND_ECC_STATUS_4_6_CORRECTED	BIT(3)
#define NAND_ECC_STATUS_1_3_CORRECTED	BIT(4)
#define NAND_ECC_STATUS_7_8_CORRECTED	(BIT(4) | BIT(3))
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
struct nand_onfi_vendor_micron {
	u8 two_plane_read;
	u8 read_cache;
	u8 read_unique_id;
	u8 dq_imped;
	u8 dq_imped_num_settings;
	u8 dq_imped_feat_addr;
	u8 rb_pulldown_strength;
	u8 rb_pulldown_strength_feat_addr;
	u8 rb_pulldown_strength_num_settings;
	u8 otp_mode;
	u8 otp_page_start;
	u8 otp_data_prot_addr;
	u8 otp_num_pages;
	u8 otp_feat_addr;
	u8 read_retry_options;
	u8 reserved[72];
	u8 param_revision;
} __packed;

67
struct micron_on_die_ecc {
68
	bool forced;
69
	bool enabled;
70 71 72 73 74 75 76
	void *rawbuf;
};

struct micron_nand {
	struct micron_on_die_ecc ecc;
};

77 78 79 80 81
static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};

82
	return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
83 84 85 86 87 88 89
}

/*
 * Configure chip properties from Micron vendor-specific ONFI table
 */
static int micron_nand_onfi_init(struct nand_chip *chip)
{
90
	struct nand_parameters *p = &chip->parameters;
91

92 93 94
	if (p->onfi) {
		struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor;

95 96 97
		chip->read_retries = micron->read_retry_options;
		chip->setup_read_retry = micron_nand_setup_read_retry;
	}
98

99 100
	if (p->supports_set_get_features) {
		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
101
		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list);
102
		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
103
		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list);
104
	}
105 106 107 108

	return 0;
}

109 110 111
static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
					      int section,
					      struct mtd_oob_region *oobregion)
112 113 114 115 116 117 118 119 120 121
{
	if (section >= 4)
		return -ERANGE;

	oobregion->offset = (section * 16) + 8;
	oobregion->length = 8;

	return 0;
}

122 123 124
static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
					       int section,
					       struct mtd_oob_region *oobregion)
125 126 127 128 129 130 131 132 133 134
{
	if (section >= 4)
		return -ERANGE;

	oobregion->offset = (section * 16) + 2;
	oobregion->length = 6;

	return 0;
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
	.ecc = micron_nand_on_die_4_ooblayout_ecc,
	.free = micron_nand_on_die_4_ooblayout_free,
};

static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
					      int section,
					      struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = mtd->oobsize - chip->ecc.total;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
					       int section,
					       struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = 2;
	oobregion->length = mtd->oobsize - chip->ecc.total - 2;

	return 0;
}

static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
	.ecc = micron_nand_on_die_8_ooblayout_ecc,
	.free = micron_nand_on_die_8_ooblayout_free,
173 174 175 176
};

static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
{
177
	struct micron_nand *micron = nand_get_manufacturer_data(chip);
178
	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
179
	int ret;
180

181 182 183
	if (micron->ecc.forced)
		return 0;

184 185 186
	if (micron->ecc.enabled == enable)
		return 0;

187 188 189
	if (enable)
		feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;

190 191 192 193 194
	ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
	if (!ret)
		micron->ecc.enabled = enable;

	return ret;
195 196
}

197 198 199
static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status,
					   void *buf, int page,
					   int oob_required)
200
{
201
	struct micron_nand *micron = nand_get_manufacturer_data(chip);
202
	struct mtd_info *mtd = nand_to_mtd(chip);
203 204 205 206 207 208 209 210 211
	unsigned int step, max_bitflips = 0;
	int ret;

	if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) {
		if (status & NAND_STATUS_FAIL)
			mtd->ecc_stats.failed++;

		return 0;
	}
212 213

	/*
214 215 216 217 218 219 220
	 * The internal ECC doesn't tell us the number of bitflips that have
	 * been corrected, but tells us if it recommends to rewrite the block.
	 * If it's the case, we need to read the page in raw mode and compare
	 * its content to the corrected version to extract the actual number of
	 * bitflips.
	 * But before we do that, we must make sure we have all OOB bytes read
	 * in non-raw mode, even if the user did not request those bytes.
221
	 */
222 223 224 225 226
	if (!oob_required) {
		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
					false);
		if (ret)
			return ret;
227 228
	}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	micron_nand_on_die_ecc_setup(chip, false);

	ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf,
				mtd->writesize + mtd->oobsize);
	if (ret)
		return ret;

	for (step = 0; step < chip->ecc.steps; step++) {
		unsigned int offs, i, nbitflips = 0;
		u8 *rawbuf, *corrbuf;

		offs = step * chip->ecc.size;
		rawbuf = micron->ecc.rawbuf + offs;
		corrbuf = buf + offs;

		for (i = 0; i < chip->ecc.size; i++)
			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);

		offs = (step * 16) + 4;
		rawbuf = micron->ecc.rawbuf + mtd->writesize + offs;
		corrbuf = chip->oob_poi + offs;

		for (i = 0; i < chip->ecc.bytes + 4; i++)
			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);

		if (WARN_ON(nbitflips > chip->ecc.strength))
			return -EINVAL;

		max_bitflips = max(nbitflips, max_bitflips);
		mtd->ecc_stats.corrected += nbitflips;
	}

	return max_bitflips;
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
}

static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	/*
	 * With 8/512 we have more information but still don't know precisely
	 * how many bit-flips were seen.
	 */
	switch (status & NAND_ECC_STATUS_MASK) {
	case NAND_ECC_STATUS_UNCORRECTABLE:
		mtd->ecc_stats.failed++;
		return 0;
	case NAND_ECC_STATUS_1_3_CORRECTED:
		mtd->ecc_stats.corrected += 3;
		return 3;
	case NAND_ECC_STATUS_4_6_CORRECTED:
		mtd->ecc_stats.corrected += 6;
		/* rewrite recommended */
		return 6;
	case NAND_ECC_STATUS_7_8_CORRECTED:
		mtd->ecc_stats.corrected += 8;
		/* rewrite recommended */
		return 8;
	default:
		return 0;
	}
}

292 293 294 295 296
static int
micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
				 uint8_t *buf, int oob_required,
				 int page)
{
297 298
	u8 status;
	int ret, max_bitflips = 0;
299

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	ret = micron_nand_on_die_ecc_setup(chip, true);
	if (ret)
		return ret;

	ret = nand_read_page_op(chip, page, 0, NULL, 0);
	if (ret)
		goto out;

	ret = nand_status_op(chip, &status);
	if (ret)
		goto out;

	ret = nand_exit_status_op(chip);
	if (ret)
		goto out;
315

316 317 318 319
	ret = nand_read_data_op(chip, buf, mtd->writesize, false);
	if (!ret && oob_required)
		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
					false);
320

321 322 323 324 325 326 327
	if (chip->ecc.strength == 4)
		max_bitflips = micron_nand_on_die_ecc_status_4(chip, status,
							       buf, page,
							       oob_required);
	else
		max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);

328
out:
329 330
	micron_nand_on_die_ecc_setup(chip, false);

331
	return ret ? ret : max_bitflips;
332 333 334 335 336 337 338
}

static int
micron_nand_write_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
				  const uint8_t *buf, int oob_required,
				  int page)
{
339 340 341 342 343
	int ret;

	ret = micron_nand_on_die_ecc_setup(chip, true);
	if (ret)
		return ret;
344

345
	ret = nand_write_page_raw(mtd, chip, buf, oob_required, page);
346 347
	micron_nand_on_die_ecc_setup(chip, false);

348
	return ret;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
}

enum {
	/* The NAND flash doesn't support on-die ECC */
	MICRON_ON_DIE_UNSUPPORTED,

	/*
	 * The NAND flash supports on-die ECC and it can be
	 * enabled/disabled by a set features command.
	 */
	MICRON_ON_DIE_SUPPORTED,

	/*
	 * The NAND flash supports on-die ECC, and it cannot be
	 * disabled.
	 */
	MICRON_ON_DIE_MANDATORY,
};

368 369 370
#define MICRON_ID_INTERNAL_ECC_MASK	GENMASK(1, 0)
#define MICRON_ID_ECC_ENABLED		BIT(7)

371 372 373 374 375 376 377 378 379 380 381 382
/*
 * Try to detect if the NAND support on-die ECC. To do this, we enable
 * the feature, and read back if it has been enabled as expected. We
 * also check if it can be disabled, because some Micron NANDs do not
 * allow disabling the on-die ECC and we don't support such NANDs for
 * now.
 *
 * This function also has the side effect of disabling on-die ECC if
 * it had been left enabled by the firmware/bootloader.
 */
static int micron_supports_on_die_ecc(struct nand_chip *chip)
{
383
	u8 id[5];
384 385
	int ret;

386
	if (!chip->parameters.onfi)
387 388 389 390 391
		return MICRON_ON_DIE_UNSUPPORTED;

	if (chip->bits_per_cell != 1)
		return MICRON_ON_DIE_UNSUPPORTED;

392 393 394 395 396 397 398 399 400 401 402
	/*
	 * We only support on-die ECC of 4/512 or 8/512
	 */
	if  (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
		return MICRON_ON_DIE_UNSUPPORTED;

	/* 0x2 means on-die ECC is available. */
	if (chip->id.len != 5 ||
	    (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
		return MICRON_ON_DIE_UNSUPPORTED;

403 404 405 406
	ret = micron_nand_on_die_ecc_setup(chip, true);
	if (ret)
		return MICRON_ON_DIE_UNSUPPORTED;

407 408 409
	ret = nand_readid_op(chip, 0, id, sizeof(id));
	if (ret)
		return MICRON_ON_DIE_UNSUPPORTED;
410

411
	if (!(id[4] & MICRON_ID_ECC_ENABLED))
412 413 414 415 416 417
		return MICRON_ON_DIE_UNSUPPORTED;

	ret = micron_nand_on_die_ecc_setup(chip, false);
	if (ret)
		return MICRON_ON_DIE_UNSUPPORTED;

418 419 420
	ret = nand_readid_op(chip, 0, id, sizeof(id));
	if (ret)
		return MICRON_ON_DIE_UNSUPPORTED;
421

422
	if (id[4] & MICRON_ID_ECC_ENABLED)
423 424 425
		return MICRON_ON_DIE_MANDATORY;

	/*
426
	 * We only support on-die ECC of 4/512 or 8/512
427
	 */
428
	if  (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
429 430 431 432 433
		return MICRON_ON_DIE_UNSUPPORTED;

	return MICRON_ON_DIE_SUPPORTED;
}

434 435 436
static int micron_nand_init(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
437
	struct micron_nand *micron;
438
	int ondie;
439 440
	int ret;

441 442 443 444 445 446
	micron = kzalloc(sizeof(*micron), GFP_KERNEL);
	if (!micron)
		return -ENOMEM;

	nand_set_manufacturer_data(chip, micron);

447 448
	ret = micron_nand_onfi_init(chip);
	if (ret)
449
		goto err_free_manuf_data;
450 451 452 453

	if (mtd->writesize == 2048)
		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;

454 455
	ondie = micron_supports_on_die_ecc(chip);

456 457
	if (ondie == MICRON_ON_DIE_MANDATORY &&
	    chip->ecc.mode != NAND_ECC_ON_DIE) {
458
		pr_err("On-die ECC forcefully enabled, not supported\n");
459 460
		ret = -EINVAL;
		goto err_free_manuf_data;
461 462 463 464 465
	}

	if (chip->ecc.mode == NAND_ECC_ON_DIE) {
		if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
			pr_err("On-die ECC selected but not supported\n");
466 467 468 469
			ret = -EINVAL;
			goto err_free_manuf_data;
		}

470
		if (ondie == MICRON_ON_DIE_MANDATORY) {
471
			micron->ecc.forced = true;
472 473
			micron->ecc.enabled = true;
		}
474

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
		/*
		 * In case of 4bit on-die ECC, we need a buffer to store a
		 * page dumped in raw mode so that we can compare its content
		 * to the same page after ECC correction happened and extract
		 * the real number of bitflips from this comparison.
		 * That's not needed for 8-bit ECC, because the status expose
		 * a better approximation of the number of bitflips in a page.
		 */
		if (chip->ecc_strength_ds == 4) {
			micron->ecc.rawbuf = kmalloc(mtd->writesize +
						     mtd->oobsize,
						     GFP_KERNEL);
			if (!micron->ecc.rawbuf) {
				ret = -ENOMEM;
				goto err_free_manuf_data;
			}
491 492
		}

493 494 495 496 497 498 499 500
		if (chip->ecc_strength_ds == 4)
			mtd_set_ooblayout(mtd,
					  &micron_nand_on_die_4_ooblayout_ops);
		else
			mtd_set_ooblayout(mtd,
					  &micron_nand_on_die_8_ooblayout_ops);

		chip->ecc.bytes = chip->ecc_strength_ds * 2;
501
		chip->ecc.size = 512;
502
		chip->ecc.strength = chip->ecc_strength_ds;
503 504 505
		chip->ecc.algo = NAND_ECC_BCH;
		chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
		chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
506 507 508 509 510 511 512 513

		if (ondie == MICRON_ON_DIE_MANDATORY) {
			chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
			chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
		} else {
			chip->ecc.read_page_raw = nand_read_page_raw;
			chip->ecc.write_page_raw = nand_write_page_raw;
		}
514 515
	}

516
	return 0;
517 518 519 520 521 522 523 524 525 526 527 528 529 530

err_free_manuf_data:
	kfree(micron->ecc.rawbuf);
	kfree(micron);

	return ret;
}

static void micron_nand_cleanup(struct nand_chip *chip)
{
	struct micron_nand *micron = nand_get_manufacturer_data(chip);

	kfree(micron->ecc.rawbuf);
	kfree(micron);
531 532
}

533 534 535 536 537 538 539 540 541 542 543 544
static void micron_fixup_onfi_param_page(struct nand_chip *chip,
					 struct nand_onfi_params *p)
{
	/*
	 * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
	 * revision number field of the ONFI parameter page. Assume ONFI
	 * version 1.0 if the revision number is 00 00.
	 */
	if (le16_to_cpu(p->revision) == 0)
		p->revision = cpu_to_le16(ONFI_VERSION_1_0);
}

545 546
const struct nand_manufacturer_ops micron_nand_manuf_ops = {
	.init = micron_nand_init,
547
	.cleanup = micron_nand_cleanup,
548
	.fixup_onfi_param_page = micron_fixup_onfi_param_page,
549
};