nand_micron.c 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2017 Free Electrons
 * Copyright (C) 2017 NextThing Co
 *
 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

18
#include <linux/mtd/rawnand.h>
19
#include <linux/slab.h>
20

21
/*
22 23
 * Special Micron status bit 3 indicates that the block has been
 * corrected by on-die ECC and should be rewritten.
24
 */
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#define NAND_ECC_STATUS_WRITE_RECOMMENDED	BIT(3)

/*
 * On chips with 8-bit ECC and additional bit can be used to distinguish
 * cases where a errors were corrected without needing a rewrite
 *
 * Bit 4 Bit 3 Bit 0 Description
 * ----- ----- ----- -----------
 * 0     0     0     No Errors
 * 0     0     1     Multiple uncorrected errors
 * 0     1     0     4 - 6 errors corrected, recommend rewrite
 * 0     1     1     Reserved
 * 1     0     0     1 - 3 errors corrected
 * 1     0     1     Reserved
 * 1     1     0     7 - 8 errors corrected, recommend rewrite
 */
#define NAND_ECC_STATUS_MASK		(BIT(4) | BIT(3) | BIT(0))
#define NAND_ECC_STATUS_UNCORRECTABLE	BIT(0)
#define NAND_ECC_STATUS_4_6_CORRECTED	BIT(3)
#define NAND_ECC_STATUS_1_3_CORRECTED	BIT(4)
#define NAND_ECC_STATUS_7_8_CORRECTED	(BIT(4) | BIT(3))
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
struct nand_onfi_vendor_micron {
	u8 two_plane_read;
	u8 read_cache;
	u8 read_unique_id;
	u8 dq_imped;
	u8 dq_imped_num_settings;
	u8 dq_imped_feat_addr;
	u8 rb_pulldown_strength;
	u8 rb_pulldown_strength_feat_addr;
	u8 rb_pulldown_strength_num_settings;
	u8 otp_mode;
	u8 otp_page_start;
	u8 otp_data_prot_addr;
	u8 otp_num_pages;
	u8 otp_feat_addr;
	u8 read_retry_options;
	u8 reserved[72];
	u8 param_revision;
} __packed;

67 68 69 70 71 72 73 74
struct micron_on_die_ecc {
	void *rawbuf;
};

struct micron_nand {
	struct micron_on_die_ecc ecc;
};

75 76 77 78 79
static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};

80
	return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
81 82 83 84 85 86 87
}

/*
 * Configure chip properties from Micron vendor-specific ONFI table
 */
static int micron_nand_onfi_init(struct nand_chip *chip)
{
88 89
	struct nand_parameters *p = &chip->parameters;
	struct nand_onfi_vendor_micron *micron = (void *)p->onfi.vendor;
90

91 92 93 94
	if (chip->parameters.onfi.version && p->onfi.vendor_revision) {
		chip->read_retries = micron->read_retry_options;
		chip->setup_read_retry = micron_nand_setup_read_retry;
	}
95

96 97
	if (p->supports_set_get_features) {
		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
98
		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list);
99
		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
100
		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list);
101
	}
102 103 104 105

	return 0;
}

106 107 108
static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
					      int section,
					      struct mtd_oob_region *oobregion)
109 110 111 112 113 114 115 116 117 118
{
	if (section >= 4)
		return -ERANGE;

	oobregion->offset = (section * 16) + 8;
	oobregion->length = 8;

	return 0;
}

119 120 121
static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
					       int section,
					       struct mtd_oob_region *oobregion)
122 123 124 125 126 127 128 129 130 131
{
	if (section >= 4)
		return -ERANGE;

	oobregion->offset = (section * 16) + 2;
	oobregion->length = 6;

	return 0;
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
	.ecc = micron_nand_on_die_4_ooblayout_ecc,
	.free = micron_nand_on_die_4_ooblayout_free,
};

static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
					      int section,
					      struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = mtd->oobsize - chip->ecc.total;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
					       int section,
					       struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = 2;
	oobregion->length = mtd->oobsize - chip->ecc.total - 2;

	return 0;
}

static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
	.ecc = micron_nand_on_die_8_ooblayout_ecc,
	.free = micron_nand_on_die_8_ooblayout_free,
170 171 172 173 174 175 176 177 178
};

static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
{
	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };

	if (enable)
		feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;

179
	return nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
180 181
}

182 183 184
static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status,
					   void *buf, int page,
					   int oob_required)
185
{
186
	struct micron_nand *micron = nand_get_manufacturer_data(chip);
187
	struct mtd_info *mtd = nand_to_mtd(chip);
188 189 190 191 192 193 194 195 196
	unsigned int step, max_bitflips = 0;
	int ret;

	if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) {
		if (status & NAND_STATUS_FAIL)
			mtd->ecc_stats.failed++;

		return 0;
	}
197 198

	/*
199 200 201 202 203 204 205
	 * The internal ECC doesn't tell us the number of bitflips that have
	 * been corrected, but tells us if it recommends to rewrite the block.
	 * If it's the case, we need to read the page in raw mode and compare
	 * its content to the corrected version to extract the actual number of
	 * bitflips.
	 * But before we do that, we must make sure we have all OOB bytes read
	 * in non-raw mode, even if the user did not request those bytes.
206
	 */
207 208 209 210 211
	if (!oob_required) {
		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
					false);
		if (ret)
			return ret;
212 213
	}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	micron_nand_on_die_ecc_setup(chip, false);

	ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf,
				mtd->writesize + mtd->oobsize);
	if (ret)
		return ret;

	for (step = 0; step < chip->ecc.steps; step++) {
		unsigned int offs, i, nbitflips = 0;
		u8 *rawbuf, *corrbuf;

		offs = step * chip->ecc.size;
		rawbuf = micron->ecc.rawbuf + offs;
		corrbuf = buf + offs;

		for (i = 0; i < chip->ecc.size; i++)
			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);

		offs = (step * 16) + 4;
		rawbuf = micron->ecc.rawbuf + mtd->writesize + offs;
		corrbuf = chip->oob_poi + offs;

		for (i = 0; i < chip->ecc.bytes + 4; i++)
			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);

		if (WARN_ON(nbitflips > chip->ecc.strength))
			return -EINVAL;

		max_bitflips = max(nbitflips, max_bitflips);
		mtd->ecc_stats.corrected += nbitflips;
	}

	return max_bitflips;
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
}

static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	/*
	 * With 8/512 we have more information but still don't know precisely
	 * how many bit-flips were seen.
	 */
	switch (status & NAND_ECC_STATUS_MASK) {
	case NAND_ECC_STATUS_UNCORRECTABLE:
		mtd->ecc_stats.failed++;
		return 0;
	case NAND_ECC_STATUS_1_3_CORRECTED:
		mtd->ecc_stats.corrected += 3;
		return 3;
	case NAND_ECC_STATUS_4_6_CORRECTED:
		mtd->ecc_stats.corrected += 6;
		/* rewrite recommended */
		return 6;
	case NAND_ECC_STATUS_7_8_CORRECTED:
		mtd->ecc_stats.corrected += 8;
		/* rewrite recommended */
		return 8;
	default:
		return 0;
	}
}

277 278 279 280 281
static int
micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
				 uint8_t *buf, int oob_required,
				 int page)
{
282 283
	u8 status;
	int ret, max_bitflips = 0;
284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	ret = micron_nand_on_die_ecc_setup(chip, true);
	if (ret)
		return ret;

	ret = nand_read_page_op(chip, page, 0, NULL, 0);
	if (ret)
		goto out;

	ret = nand_status_op(chip, &status);
	if (ret)
		goto out;

	ret = nand_exit_status_op(chip);
	if (ret)
		goto out;
300

301 302 303 304
	ret = nand_read_data_op(chip, buf, mtd->writesize, false);
	if (!ret && oob_required)
		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
					false);
305

306 307 308 309 310 311 312
	if (chip->ecc.strength == 4)
		max_bitflips = micron_nand_on_die_ecc_status_4(chip, status,
							       buf, page,
							       oob_required);
	else
		max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);

313
out:
314 315
	micron_nand_on_die_ecc_setup(chip, false);

316
	return ret ? ret : max_bitflips;
317 318 319 320 321 322 323
}

static int
micron_nand_write_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
				  const uint8_t *buf, int oob_required,
				  int page)
{
324 325 326 327 328
	int ret;

	ret = micron_nand_on_die_ecc_setup(chip, true);
	if (ret)
		return ret;
329

330
	ret = nand_write_page_raw(mtd, chip, buf, oob_required, page);
331 332
	micron_nand_on_die_ecc_setup(chip, false);

333
	return ret;
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
}

enum {
	/* The NAND flash doesn't support on-die ECC */
	MICRON_ON_DIE_UNSUPPORTED,

	/*
	 * The NAND flash supports on-die ECC and it can be
	 * enabled/disabled by a set features command.
	 */
	MICRON_ON_DIE_SUPPORTED,

	/*
	 * The NAND flash supports on-die ECC, and it cannot be
	 * disabled.
	 */
	MICRON_ON_DIE_MANDATORY,
};

353 354 355
#define MICRON_ID_INTERNAL_ECC_MASK	GENMASK(1, 0)
#define MICRON_ID_ECC_ENABLED		BIT(7)

356 357 358 359 360 361 362 363 364 365 366 367
/*
 * Try to detect if the NAND support on-die ECC. To do this, we enable
 * the feature, and read back if it has been enabled as expected. We
 * also check if it can be disabled, because some Micron NANDs do not
 * allow disabling the on-die ECC and we don't support such NANDs for
 * now.
 *
 * This function also has the side effect of disabling on-die ECC if
 * it had been left enabled by the firmware/bootloader.
 */
static int micron_supports_on_die_ecc(struct nand_chip *chip)
{
368
	u8 id[5];
369 370
	int ret;

371
	if (!chip->parameters.onfi.version)
372 373 374 375 376
		return MICRON_ON_DIE_UNSUPPORTED;

	if (chip->bits_per_cell != 1)
		return MICRON_ON_DIE_UNSUPPORTED;

377 378 379 380 381 382 383 384 385 386 387
	/*
	 * We only support on-die ECC of 4/512 or 8/512
	 */
	if  (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
		return MICRON_ON_DIE_UNSUPPORTED;

	/* 0x2 means on-die ECC is available. */
	if (chip->id.len != 5 ||
	    (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
		return MICRON_ON_DIE_UNSUPPORTED;

388 389 390 391
	ret = micron_nand_on_die_ecc_setup(chip, true);
	if (ret)
		return MICRON_ON_DIE_UNSUPPORTED;

392 393 394
	ret = nand_readid_op(chip, 0, id, sizeof(id));
	if (ret)
		return MICRON_ON_DIE_UNSUPPORTED;
395

396
	if (!(id[4] & MICRON_ID_ECC_ENABLED))
397 398 399 400 401 402
		return MICRON_ON_DIE_UNSUPPORTED;

	ret = micron_nand_on_die_ecc_setup(chip, false);
	if (ret)
		return MICRON_ON_DIE_UNSUPPORTED;

403 404 405
	ret = nand_readid_op(chip, 0, id, sizeof(id));
	if (ret)
		return MICRON_ON_DIE_UNSUPPORTED;
406

407
	if (id[4] & MICRON_ID_ECC_ENABLED)
408 409 410
		return MICRON_ON_DIE_MANDATORY;

	/*
411
	 * We only support on-die ECC of 4/512 or 8/512
412
	 */
413
	if  (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
414 415 416 417 418
		return MICRON_ON_DIE_UNSUPPORTED;

	return MICRON_ON_DIE_SUPPORTED;
}

419 420 421
static int micron_nand_init(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
422
	struct micron_nand *micron;
423
	int ondie;
424 425
	int ret;

426 427 428 429 430 431
	micron = kzalloc(sizeof(*micron), GFP_KERNEL);
	if (!micron)
		return -ENOMEM;

	nand_set_manufacturer_data(chip, micron);

432 433
	ret = micron_nand_onfi_init(chip);
	if (ret)
434
		goto err_free_manuf_data;
435 436 437 438

	if (mtd->writesize == 2048)
		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;

439 440
	ondie = micron_supports_on_die_ecc(chip);

441 442
	if (ondie == MICRON_ON_DIE_MANDATORY &&
	    chip->ecc.mode != NAND_ECC_ON_DIE) {
443
		pr_err("On-die ECC forcefully enabled, not supported\n");
444 445
		ret = -EINVAL;
		goto err_free_manuf_data;
446 447 448 449 450
	}

	if (chip->ecc.mode == NAND_ECC_ON_DIE) {
		if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
			pr_err("On-die ECC selected but not supported\n");
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
			ret = -EINVAL;
			goto err_free_manuf_data;
		}

		/*
		 * In case of 4bit on-die ECC, we need a buffer to store a
		 * page dumped in raw mode so that we can compare its content
		 * to the same page after ECC correction happened and extract
		 * the real number of bitflips from this comparison.
		 * That's not needed for 8-bit ECC, because the status expose
		 * a better approximation of the number of bitflips in a page.
		 */
		if (chip->ecc_strength_ds == 4) {
			micron->ecc.rawbuf = kmalloc(mtd->writesize +
						     mtd->oobsize,
						     GFP_KERNEL);
			if (!micron->ecc.rawbuf) {
				ret = -ENOMEM;
				goto err_free_manuf_data;
			}
471 472
		}

473 474 475 476 477 478 479 480
		if (chip->ecc_strength_ds == 4)
			mtd_set_ooblayout(mtd,
					  &micron_nand_on_die_4_ooblayout_ops);
		else
			mtd_set_ooblayout(mtd,
					  &micron_nand_on_die_8_ooblayout_ops);

		chip->ecc.bytes = chip->ecc_strength_ds * 2;
481
		chip->ecc.size = 512;
482
		chip->ecc.strength = chip->ecc_strength_ds;
483 484 485
		chip->ecc.algo = NAND_ECC_BCH;
		chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
		chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
486 487 488 489 490 491 492 493

		if (ondie == MICRON_ON_DIE_MANDATORY) {
			chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
			chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
		} else {
			chip->ecc.read_page_raw = nand_read_page_raw;
			chip->ecc.write_page_raw = nand_write_page_raw;
		}
494 495
	}

496
	return 0;
497 498 499 500 501 502 503 504 505 506 507 508 509 510

err_free_manuf_data:
	kfree(micron->ecc.rawbuf);
	kfree(micron);

	return ret;
}

static void micron_nand_cleanup(struct nand_chip *chip)
{
	struct micron_nand *micron = nand_get_manufacturer_data(chip);

	kfree(micron->ecc.rawbuf);
	kfree(micron);
511 512
}

513 514 515 516 517 518 519 520 521 522 523 524
static void micron_fixup_onfi_param_page(struct nand_chip *chip,
					 struct nand_onfi_params *p)
{
	/*
	 * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
	 * revision number field of the ONFI parameter page. Assume ONFI
	 * version 1.0 if the revision number is 00 00.
	 */
	if (le16_to_cpu(p->revision) == 0)
		p->revision = cpu_to_le16(ONFI_VERSION_1_0);
}

525 526
const struct nand_manufacturer_ops micron_nand_manuf_ops = {
	.init = micron_nand_init,
527
	.cleanup = micron_nand_cleanup,
528
	.fixup_onfi_param_page = micron_fixup_onfi_param_page,
529
};