nand_micron.c 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2017 Free Electrons
 * Copyright (C) 2017 NextThing Co
 *
 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

18
#include <linux/mtd/rawnand.h>
19

20
/*
21 22
 * Special Micron status bit 3 indicates that the block has been
 * corrected by on-die ECC and should be rewritten.
23
 */
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#define NAND_ECC_STATUS_WRITE_RECOMMENDED	BIT(3)

/*
 * On chips with 8-bit ECC and additional bit can be used to distinguish
 * cases where a errors were corrected without needing a rewrite
 *
 * Bit 4 Bit 3 Bit 0 Description
 * ----- ----- ----- -----------
 * 0     0     0     No Errors
 * 0     0     1     Multiple uncorrected errors
 * 0     1     0     4 - 6 errors corrected, recommend rewrite
 * 0     1     1     Reserved
 * 1     0     0     1 - 3 errors corrected
 * 1     0     1     Reserved
 * 1     1     0     7 - 8 errors corrected, recommend rewrite
 */
#define NAND_ECC_STATUS_MASK		(BIT(4) | BIT(3) | BIT(0))
#define NAND_ECC_STATUS_UNCORRECTABLE	BIT(0)
#define NAND_ECC_STATUS_4_6_CORRECTED	BIT(3)
#define NAND_ECC_STATUS_1_3_CORRECTED	BIT(4)
#define NAND_ECC_STATUS_7_8_CORRECTED	(BIT(4) | BIT(3))
45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
struct nand_onfi_vendor_micron {
	u8 two_plane_read;
	u8 read_cache;
	u8 read_unique_id;
	u8 dq_imped;
	u8 dq_imped_num_settings;
	u8 dq_imped_feat_addr;
	u8 rb_pulldown_strength;
	u8 rb_pulldown_strength_feat_addr;
	u8 rb_pulldown_strength_num_settings;
	u8 otp_mode;
	u8 otp_page_start;
	u8 otp_data_prot_addr;
	u8 otp_num_pages;
	u8 otp_feat_addr;
	u8 read_retry_options;
	u8 reserved[72];
	u8 param_revision;
} __packed;

static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};

71
	return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
72 73 74 75 76 77 78
}

/*
 * Configure chip properties from Micron vendor-specific ONFI table
 */
static int micron_nand_onfi_init(struct nand_chip *chip)
{
79 80
	struct nand_parameters *p = &chip->parameters;
	struct nand_onfi_vendor_micron *micron = (void *)p->onfi.vendor;
81

82 83 84 85
	if (chip->parameters.onfi.version && p->onfi.vendor_revision) {
		chip->read_retries = micron->read_retry_options;
		chip->setup_read_retry = micron_nand_setup_read_retry;
	}
86

87 88
	if (p->supports_set_get_features) {
		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
89
		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list);
90
		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
91
		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list);
92
	}
93 94 95 96

	return 0;
}

97 98 99
static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
					      int section,
					      struct mtd_oob_region *oobregion)
100 101 102 103 104 105 106 107 108 109
{
	if (section >= 4)
		return -ERANGE;

	oobregion->offset = (section * 16) + 8;
	oobregion->length = 8;

	return 0;
}

110 111 112
static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
					       int section,
					       struct mtd_oob_region *oobregion)
113 114 115 116 117 118 119 120 121 122
{
	if (section >= 4)
		return -ERANGE;

	oobregion->offset = (section * 16) + 2;
	oobregion->length = 6;

	return 0;
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
	.ecc = micron_nand_on_die_4_ooblayout_ecc,
	.free = micron_nand_on_die_4_ooblayout_free,
};

static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
					      int section,
					      struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = mtd->oobsize - chip->ecc.total;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
					       int section,
					       struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = 2;
	oobregion->length = mtd->oobsize - chip->ecc.total - 2;

	return 0;
}

static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
	.ecc = micron_nand_on_die_8_ooblayout_ecc,
	.free = micron_nand_on_die_8_ooblayout_free,
161 162 163 164 165 166 167 168 169
};

static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
{
	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };

	if (enable)
		feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;

170
	return nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
171 172
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	/*
	 * The internal ECC doesn't tell us the number of bitflips
	 * that have been corrected, but tells us if it recommends to
	 * rewrite the block. If it's the case, then we pretend we had
	 * a number of bitflips equal to the ECC strength, which will
	 * hint the NAND core to rewrite the block.
	 */
	if (status & NAND_STATUS_FAIL) {
		mtd->ecc_stats.failed++;
	} else if (status & NAND_ECC_STATUS_WRITE_RECOMMENDED) {
		mtd->ecc_stats.corrected += chip->ecc.strength;
		return chip->ecc.strength;
	}

	return 0;
}

static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	/*
	 * With 8/512 we have more information but still don't know precisely
	 * how many bit-flips were seen.
	 */
	switch (status & NAND_ECC_STATUS_MASK) {
	case NAND_ECC_STATUS_UNCORRECTABLE:
		mtd->ecc_stats.failed++;
		return 0;
	case NAND_ECC_STATUS_1_3_CORRECTED:
		mtd->ecc_stats.corrected += 3;
		return 3;
	case NAND_ECC_STATUS_4_6_CORRECTED:
		mtd->ecc_stats.corrected += 6;
		/* rewrite recommended */
		return 6;
	case NAND_ECC_STATUS_7_8_CORRECTED:
		mtd->ecc_stats.corrected += 8;
		/* rewrite recommended */
		return 8;
	default:
		return 0;
	}
}

222 223 224 225 226
static int
micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
				 uint8_t *buf, int oob_required,
				 int page)
{
227 228
	u8 status;
	int ret, max_bitflips = 0;
229

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	ret = micron_nand_on_die_ecc_setup(chip, true);
	if (ret)
		return ret;

	ret = nand_read_page_op(chip, page, 0, NULL, 0);
	if (ret)
		goto out;

	ret = nand_status_op(chip, &status);
	if (ret)
		goto out;

	ret = nand_exit_status_op(chip);
	if (ret)
		goto out;
245

246 247 248 249
	if (chip->ecc.strength == 4)
		max_bitflips = micron_nand_on_die_ecc_status_4(chip, status);
	else
		max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);
250

251 252 253 254
	ret = nand_read_data_op(chip, buf, mtd->writesize, false);
	if (!ret && oob_required)
		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
					false);
255

256
out:
257 258
	micron_nand_on_die_ecc_setup(chip, false);

259
	return ret ? ret : max_bitflips;
260 261 262 263 264 265 266
}

static int
micron_nand_write_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
				  const uint8_t *buf, int oob_required,
				  int page)
{
267 268 269 270 271
	int ret;

	ret = micron_nand_on_die_ecc_setup(chip, true);
	if (ret)
		return ret;
272

273
	ret = nand_write_page_raw(mtd, chip, buf, oob_required, page);
274 275
	micron_nand_on_die_ecc_setup(chip, false);

276
	return ret;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
}

enum {
	/* The NAND flash doesn't support on-die ECC */
	MICRON_ON_DIE_UNSUPPORTED,

	/*
	 * The NAND flash supports on-die ECC and it can be
	 * enabled/disabled by a set features command.
	 */
	MICRON_ON_DIE_SUPPORTED,

	/*
	 * The NAND flash supports on-die ECC, and it cannot be
	 * disabled.
	 */
	MICRON_ON_DIE_MANDATORY,
};

296 297 298
#define MICRON_ID_INTERNAL_ECC_MASK	GENMASK(1, 0)
#define MICRON_ID_ECC_ENABLED		BIT(7)

299 300 301 302 303 304 305 306 307 308 309 310
/*
 * Try to detect if the NAND support on-die ECC. To do this, we enable
 * the feature, and read back if it has been enabled as expected. We
 * also check if it can be disabled, because some Micron NANDs do not
 * allow disabling the on-die ECC and we don't support such NANDs for
 * now.
 *
 * This function also has the side effect of disabling on-die ECC if
 * it had been left enabled by the firmware/bootloader.
 */
static int micron_supports_on_die_ecc(struct nand_chip *chip)
{
311
	u8 id[5];
312 313
	int ret;

314
	if (!chip->parameters.onfi.version)
315 316 317 318 319
		return MICRON_ON_DIE_UNSUPPORTED;

	if (chip->bits_per_cell != 1)
		return MICRON_ON_DIE_UNSUPPORTED;

320 321 322 323 324 325 326 327 328 329 330
	/*
	 * We only support on-die ECC of 4/512 or 8/512
	 */
	if  (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
		return MICRON_ON_DIE_UNSUPPORTED;

	/* 0x2 means on-die ECC is available. */
	if (chip->id.len != 5 ||
	    (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
		return MICRON_ON_DIE_UNSUPPORTED;

331 332 333 334
	ret = micron_nand_on_die_ecc_setup(chip, true);
	if (ret)
		return MICRON_ON_DIE_UNSUPPORTED;

335 336 337
	ret = nand_readid_op(chip, 0, id, sizeof(id));
	if (ret)
		return MICRON_ON_DIE_UNSUPPORTED;
338

339
	if (!(id[4] & MICRON_ID_ECC_ENABLED))
340 341 342 343 344 345
		return MICRON_ON_DIE_UNSUPPORTED;

	ret = micron_nand_on_die_ecc_setup(chip, false);
	if (ret)
		return MICRON_ON_DIE_UNSUPPORTED;

346 347 348
	ret = nand_readid_op(chip, 0, id, sizeof(id));
	if (ret)
		return MICRON_ON_DIE_UNSUPPORTED;
349

350
	if (id[4] & MICRON_ID_ECC_ENABLED)
351 352 353
		return MICRON_ON_DIE_MANDATORY;

	/*
354
	 * We only support on-die ECC of 4/512 or 8/512
355
	 */
356
	if  (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
357 358 359 360 361
		return MICRON_ON_DIE_UNSUPPORTED;

	return MICRON_ON_DIE_SUPPORTED;
}

362 363 364
static int micron_nand_init(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
365
	int ondie;
366 367 368 369 370 371 372 373 374
	int ret;

	ret = micron_nand_onfi_init(chip);
	if (ret)
		return ret;

	if (mtd->writesize == 2048)
		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;

375 376
	ondie = micron_supports_on_die_ecc(chip);

377 378
	if (ondie == MICRON_ON_DIE_MANDATORY &&
	    chip->ecc.mode != NAND_ECC_ON_DIE) {
379 380 381 382 383 384 385 386 387 388
		pr_err("On-die ECC forcefully enabled, not supported\n");
		return -EINVAL;
	}

	if (chip->ecc.mode == NAND_ECC_ON_DIE) {
		if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
			pr_err("On-die ECC selected but not supported\n");
			return -EINVAL;
		}

389 390 391 392 393 394 395 396
		if (chip->ecc_strength_ds == 4)
			mtd_set_ooblayout(mtd,
					  &micron_nand_on_die_4_ooblayout_ops);
		else
			mtd_set_ooblayout(mtd,
					  &micron_nand_on_die_8_ooblayout_ops);

		chip->ecc.bytes = chip->ecc_strength_ds * 2;
397
		chip->ecc.size = 512;
398
		chip->ecc.strength = chip->ecc_strength_ds;
399 400 401
		chip->ecc.algo = NAND_ECC_BCH;
		chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
		chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
402 403 404 405 406 407 408 409

		if (ondie == MICRON_ON_DIE_MANDATORY) {
			chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
			chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
		} else {
			chip->ecc.read_page_raw = nand_read_page_raw;
			chip->ecc.write_page_raw = nand_write_page_raw;
		}
410 411
	}

412 413 414
	return 0;
}

415 416 417 418 419 420 421 422 423 424 425 426
static void micron_fixup_onfi_param_page(struct nand_chip *chip,
					 struct nand_onfi_params *p)
{
	/*
	 * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
	 * revision number field of the ONFI parameter page. Assume ONFI
	 * version 1.0 if the revision number is 00 00.
	 */
	if (le16_to_cpu(p->revision) == 0)
		p->revision = cpu_to_le16(ONFI_VERSION_1_0);
}

427 428
const struct nand_manufacturer_ops micron_nand_manuf_ops = {
	.init = micron_nand_init,
429
	.fixup_onfi_param_page = micron_fixup_onfi_param_page,
430
};