intel_irq_remapping.c 30.8 KB
Newer Older
Y
Yinghai Lu 已提交
1
#include <linux/interrupt.h>
2
#include <linux/dmar.h>
3
#include <linux/spinlock.h>
4
#include <linux/slab.h>
5
#include <linux/jiffies.h>
6
#include <linux/hpet.h>
7
#include <linux/pci.h>
8
#include <linux/irq.h>
9 10
#include <linux/intel-iommu.h>
#include <linux/acpi.h>
11
#include <asm/io_apic.h>
Y
Yinghai Lu 已提交
12
#include <asm/smp.h>
13
#include <asm/cpu.h>
14
#include <asm/irq_remapping.h>
15
#include <asm/pci-direct.h>
16
#include <asm/msidef.h>
17

18
#include "irq_remapping.h"
19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
struct ioapic_scope {
	struct intel_iommu *iommu;
	unsigned int id;
	unsigned int bus;	/* PCI bus number */
	unsigned int devfn;	/* PCI devfn number */
};

struct hpet_scope {
	struct intel_iommu *iommu;
	u8 id;
	unsigned int bus;
	unsigned int devfn;
};

#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
35
#define IRTE_DEST(dest) ((x2apic_mode) ? dest : dest << 8)
36

37
static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
38
static struct hpet_scope ir_hpet[MAX_HPET_TBS];
39

40 41 42 43 44 45 46 47 48 49 50
/*
 * Lock ordering:
 * ->dmar_global_lock
 *	->irq_2_ir_lock
 *		->qi->q_lock
 *	->iommu->register_lock
 * Note:
 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
 * in single-threaded environment with interrupt disabled, so no need to tabke
 * the dmar_global_lock.
 */
51
static DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
52

53 54
static int __init parse_ioapics_under_ir(void);

55 56
static struct irq_2_iommu *irq_2_iommu(unsigned int irq)
{
57
	struct irq_cfg *cfg = irq_cfg(irq);
58
	return cfg ? &cfg->irq_2_iommu : NULL;
59 60
}

61
static int get_irte(int irq, struct irte *entry)
62
{
63
	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
64
	unsigned long flags;
65
	int index;
66

67
	if (!entry || !irq_iommu)
68 69
		return -1;

70
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
71

72 73 74 75 76
	if (unlikely(!irq_iommu->iommu)) {
		raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
		return -1;
	}

77 78
	index = irq_iommu->irte_index + irq_iommu->sub_handle;
	*entry = *(irq_iommu->iommu->ir_table->base + index);
79

80
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
81 82 83
	return 0;
}

84
static int alloc_irte(struct intel_iommu *iommu, int irq, u16 count)
85 86
{
	struct ir_table *table = iommu->ir_table;
87
	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
88
	struct irq_cfg *cfg = irq_cfg(irq);
89
	unsigned int mask = 0;
90
	unsigned long flags;
91
	int index;
92

93
	if (!count || !irq_iommu)
94 95
		return -1;

96 97 98 99 100 101 102 103 104 105 106 107 108
	if (count > 1) {
		count = __roundup_pow_of_two(count);
		mask = ilog2(count);
	}

	if (mask > ecap_max_handle_mask(iommu->ecap)) {
		printk(KERN_ERR
		       "Requested mask %x exceeds the max invalidation handle"
		       " mask value %Lx\n", mask,
		       ecap_max_handle_mask(iommu->ecap));
		return -1;
	}

109
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
110 111 112 113 114 115 116 117 118 119 120
	index = bitmap_find_free_region(table->bitmap,
					INTR_REMAP_TABLE_ENTRIES, mask);
	if (index < 0) {
		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
	} else {
		cfg->remapped = 1;
		irq_iommu->iommu = iommu;
		irq_iommu->irte_index =  index;
		irq_iommu->sub_handle = 0;
		irq_iommu->irte_mask = mask;
	}
121
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
122 123 124 125

	return index;
}

126
static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
127 128 129 130 131 132 133
{
	struct qi_desc desc;

	desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
		   | QI_IEC_SELECTIVE;
	desc.high = 0;

134
	return qi_submit_sync(&desc, iommu);
135 136
}

137
static int map_irq_to_irte_handle(int irq, u16 *sub_handle)
138
{
139
	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
140
	unsigned long flags;
141
	int index;
142

143
	if (!irq_iommu)
144 145
		return -1;

146
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
147 148
	*sub_handle = irq_iommu->sub_handle;
	index = irq_iommu->irte_index;
149
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
150 151 152
	return index;
}

153
static int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle)
154
{
155
	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
156
	struct irq_cfg *cfg = irq_cfg(irq);
157
	unsigned long flags;
158

159
	if (!irq_iommu)
160
		return -1;
161

162
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
163

164
	cfg->remapped = 1;
165 166 167 168
	irq_iommu->iommu = iommu;
	irq_iommu->irte_index = index;
	irq_iommu->sub_handle = subhandle;
	irq_iommu->irte_mask = 0;
169

170
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
171 172 173 174

	return 0;
}

175
static int modify_irte(int irq, struct irte *irte_modified)
176
{
177
	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
178
	struct intel_iommu *iommu;
179
	unsigned long flags;
180 181
	struct irte *irte;
	int rc, index;
182

183
	if (!irq_iommu)
184
		return -1;
185

186
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
187

188
	iommu = irq_iommu->iommu;
189

190
	index = irq_iommu->irte_index + irq_iommu->sub_handle;
191 192
	irte = &iommu->ir_table->base[index];

193 194
	set_64bit(&irte->low, irte_modified->low);
	set_64bit(&irte->high, irte_modified->high);
195 196
	__iommu_flush_cache(iommu, irte, sizeof(*irte));

197
	rc = qi_flush_iec(iommu, index, 0);
198
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
199 200

	return rc;
201 202
}

203
static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
204 205 206 207
{
	int i;

	for (i = 0; i < MAX_HPET_TBS; i++)
208
		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
209 210 211 212
			return ir_hpet[i].iommu;
	return NULL;
}

213
static struct intel_iommu *map_ioapic_to_ir(int apic)
214 215 216 217
{
	int i;

	for (i = 0; i < MAX_IO_APICS; i++)
218
		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
219 220 221 222
			return ir_ioapic[i].iommu;
	return NULL;
}

223
static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
224 225 226 227 228 229 230 231 232 233
{
	struct dmar_drhd_unit *drhd;

	drhd = dmar_find_matched_drhd_unit(dev);
	if (!drhd)
		return NULL;

	return drhd->iommu;
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static int clear_entries(struct irq_2_iommu *irq_iommu)
{
	struct irte *start, *entry, *end;
	struct intel_iommu *iommu;
	int index;

	if (irq_iommu->sub_handle)
		return 0;

	iommu = irq_iommu->iommu;
	index = irq_iommu->irte_index + irq_iommu->sub_handle;

	start = iommu->ir_table->base + index;
	end = start + (1 << irq_iommu->irte_mask);

	for (entry = start; entry < end; entry++) {
250 251
		set_64bit(&entry->low, 0);
		set_64bit(&entry->high, 0);
252
	}
253 254
	bitmap_release_region(iommu->ir_table->bitmap, index,
			      irq_iommu->irte_mask);
255 256 257 258

	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
}

259
static int free_irte(int irq)
260
{
261
	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
262
	unsigned long flags;
263
	int rc;
264

265
	if (!irq_iommu)
266
		return -1;
267

268
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
269

270
	rc = clear_entries(irq_iommu);
271

272 273 274 275
	irq_iommu->iommu = NULL;
	irq_iommu->irte_index = 0;
	irq_iommu->sub_handle = 0;
	irq_iommu->irte_mask = 0;
276

277
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
278

279
	return rc;
280 281
}

282 283 284 285
/*
 * source validation type
 */
#define SVT_NO_VERIFY		0x0  /* no verification is required */
L
Lucas De Marchi 已提交
286
#define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
#define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */

/*
 * source-id qualifier
 */
#define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
#define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
			      * the third least significant bit
			      */
#define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
			      * the second and third least significant bits
			      */
#define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
			      * the least three significant bits
			      */

/*
 * set SVT, SQ and SID fields of irte to verify
 * source ids of interrupt requests
 */
static void set_irte_sid(struct irte *irte, unsigned int svt,
			 unsigned int sq, unsigned int sid)
{
310 311
	if (disable_sourceid_checking)
		svt = SVT_NO_VERIFY;
312 313 314 315 316
	irte->svt = svt;
	irte->sq = sq;
	irte->sid = sid;
}

317
static int set_ioapic_sid(struct irte *irte, int apic)
318 319 320 321 322 323 324
{
	int i;
	u16 sid = 0;

	if (!irte)
		return -1;

325
	down_read(&dmar_global_lock);
326
	for (i = 0; i < MAX_IO_APICS; i++) {
327
		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
328 329 330 331
			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
			break;
		}
	}
332
	up_read(&dmar_global_lock);
333 334 335 336 337 338

	if (sid == 0) {
		pr_warning("Failed to set source-id of IOAPIC (%d)\n", apic);
		return -1;
	}

339
	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
340 341 342 343

	return 0;
}

344
static int set_hpet_sid(struct irte *irte, u8 id)
345 346 347 348 349 350 351
{
	int i;
	u16 sid = 0;

	if (!irte)
		return -1;

352
	down_read(&dmar_global_lock);
353
	for (i = 0; i < MAX_HPET_TBS; i++) {
354
		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
355 356 357 358
			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
			break;
		}
	}
359
	up_read(&dmar_global_lock);
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

	if (sid == 0) {
		pr_warning("Failed to set source-id of HPET block (%d)\n", id);
		return -1;
	}

	/*
	 * Should really use SQ_ALL_16. Some platforms are broken.
	 * While we figure out the right quirks for these broken platforms, use
	 * SQ_13_IGNORE_3 for now.
	 */
	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);

	return 0;
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
struct set_msi_sid_data {
	struct pci_dev *pdev;
	u16 alias;
};

static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct set_msi_sid_data *data = opaque;

	data->pdev = pdev;
	data->alias = alias;

	return 0;
}

391
static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
392
{
393
	struct set_msi_sid_data data;
394 395 396 397

	if (!irte || !dev)
		return -1;

398
	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	/*
	 * DMA alias provides us with a PCI device and alias.  The only case
	 * where the it will return an alias on a different bus than the
	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
	 * the subordinate bus.  In this case we can only verify the bus.
	 *
	 * If the alias device is on a different bus than our source device
	 * then we have a topology based alias, use it.
	 *
	 * Otherwise, the alias is for a device DMA quirk and we cannot
	 * assume that MSI uses the same requester ID.  Therefore use the
	 * original device.
	 */
	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
		set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
			     PCI_DEVID(PCI_BUS_NUM(data.alias),
				       dev->bus->number));
	else if (data.pdev->bus->number != dev->bus->number)
		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
	else
		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
			     PCI_DEVID(dev->bus->number, dev->devfn));
422 423 424 425

	return 0;
}

426
static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
427 428
{
	u64 addr;
429
	u32 sts;
430 431 432 433
	unsigned long flags;

	addr = virt_to_phys((void *)iommu->ir_table->base);

434
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
435 436 437 438 439

	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);

	/* Set interrupt-remapping table pointer */
440
	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
441 442 443

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, (sts & DMA_GSTS_IRTPS), sts);
444
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
445 446 447 448 449 450 451

	/*
	 * global invalidation of interrupt entry cache before enabling
	 * interrupt-remapping.
	 */
	qi_global_iec(iommu);

452
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
453 454 455

	/* Enable interrupt-remapping */
	iommu->gcmd |= DMA_GCMD_IRE;
456
	iommu->gcmd &= ~DMA_GCMD_CFI;  /* Block compatibility-format MSIs */
457
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
458 459 460 461

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, (sts & DMA_GSTS_IRES), sts);

462 463 464 465 466 467 468 469 470 471
	/*
	 * With CFI clear in the Global Command register, we should be
	 * protected from dangerous (i.e. compatibility) interrupts
	 * regardless of x2apic status.  Check just to be sure.
	 */
	if (sts & DMA_GSTS_CFIS)
		WARN(1, KERN_WARNING
			"Compatibility-format IRQs enabled despite intr remapping;\n"
			"you are vulnerable to IRQ injection.\n");

472
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
473 474
}

475
static int intel_setup_irq_remapping(struct intel_iommu *iommu)
476 477 478
{
	struct ir_table *ir_table;
	struct page *pages;
479
	unsigned long *bitmap;
480

481 482
	if (iommu->ir_table)
		return 0;
483

484
	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
485
	if (!ir_table)
486 487
		return -ENOMEM;

488
	pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
489
				 INTR_REMAP_PAGE_ORDER);
490 491

	if (!pages) {
492 493
		pr_err("IR%d: failed to allocate pages of order %d\n",
		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
494
		goto out_free_table;
495 496
	}

497 498 499 500
	bitmap = kcalloc(BITS_TO_LONGS(INTR_REMAP_TABLE_ENTRIES),
			 sizeof(long), GFP_ATOMIC);
	if (bitmap == NULL) {
		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
501
		goto out_free_pages;
502 503
	}

504
	ir_table->base = page_address(pages);
505
	ir_table->bitmap = bitmap;
506
	iommu->ir_table = ir_table;
507
	return 0;
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524

out_free_pages:
	__free_pages(pages, INTR_REMAP_PAGE_ORDER);
out_free_table:
	kfree(ir_table);
	return -ENOMEM;
}

static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
{
	if (iommu && iommu->ir_table) {
		free_pages((unsigned long)iommu->ir_table->base,
			   INTR_REMAP_PAGE_ORDER);
		kfree(iommu->ir_table->bitmap);
		kfree(iommu->ir_table);
		iommu->ir_table = NULL;
	}
525 526
}

527 528 529
/*
 * Disable Interrupt Remapping.
 */
530
static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
531 532 533 534 535 536 537
{
	unsigned long flags;
	u32 sts;

	if (!ecap_ir_support(iommu->ecap))
		return;

538 539 540 541 542 543
	/*
	 * global invalidation of interrupt entry cache before disabling
	 * interrupt-remapping.
	 */
	qi_global_iec(iommu);

544
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
545 546 547 548 549 550 551 552 553 554 555 556

	sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_IRES))
		goto end;

	iommu->gcmd &= ~DMA_GCMD_IRE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, !(sts & DMA_GSTS_IRES), sts);

end:
557
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
558 559
}

560 561 562 563 564 565 566 567 568
static int __init dmar_x2apic_optout(void)
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar || no_x2apic_optout)
		return 0;
	return dmar->flags & DMAR_X2APIC_OPT_OUT;
}

569
static int __init intel_irq_remapping_supported(void)
570 571
{
	struct dmar_drhd_unit *drhd;
572
	struct intel_iommu *iommu;
573

574
	if (disable_irq_remap)
575
		return 0;
576
	if (irq_remap_broken) {
577 578 579 580 581 582 583
		printk(KERN_WARNING
			"This system BIOS has enabled interrupt remapping\n"
			"on a chipset that contains an erratum making that\n"
			"feature unstable.  To maintain system stability\n"
			"interrupt remapping is being disabled.  Please\n"
			"contact your BIOS vendor for an update\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
584 585 586
		disable_irq_remap = 1;
		return 0;
	}
587

588 589 590
	if (!dmar_ir_support())
		return 0;

591
	for_each_iommu(iommu, drhd)
592 593 594 595 596 597
		if (!ecap_ir_support(iommu->ecap))
			return 0;

	return 1;
}

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
static void __init intel_cleanup_irq_remapping(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_iommu(iommu, drhd) {
		if (ecap_ir_support(iommu->ecap)) {
			iommu_disable_irq_remapping(iommu);
			intel_teardown_irq_remapping(iommu);
		}
	}

	if (x2apic_supported())
		pr_warn("Failed to enable irq remapping.  You are vulnerable to irq-injection attacks.\n");
}

static int __init intel_prepare_irq_remapping(void)
615 616
{
	struct dmar_drhd_unit *drhd;
617
	struct intel_iommu *iommu;
618

619 620
	if (dmar_table_init() < 0)
		return -1;
621

622
	if (parse_ioapics_under_ir() != 1) {
623
		printk(KERN_INFO "Not enabling interrupt remapping\n");
624
		goto error;
625 626
	}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	for_each_iommu(iommu, drhd) {
		if (!ecap_ir_support(iommu->ecap))
			continue;

		/* Do the allocations early */
		if (intel_setup_irq_remapping(iommu))
			goto error;
	}
	return 0;
error:
	intel_cleanup_irq_remapping();
	return -1;
}

static int __init intel_enable_irq_remapping(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int setup = 0;
	int eim = 0;

	if (x2apic_supported()) {
649 650
		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");

651
		eim = !dmar_x2apic_optout();
652 653 654 655 656
		if (!eim)
			printk(KERN_WARNING
				"Your BIOS is broken and requested that x2apic be disabled.\n"
				"This will slightly decrease performance.\n"
				"Use 'intremap=no_x2apic_optout' to override BIOS request.\n");
657 658
	}

659
	for_each_iommu(iommu, drhd) {
660 661 662 663 664 665 666
		/*
		 * If the queued invalidation is already initialized,
		 * shouldn't disable it.
		 */
		if (iommu->qi)
			continue;

667 668 669 670 671 672 673 674 675
		/*
		 * Clear previous faults.
		 */
		dmar_fault(-1, iommu);

		/*
		 * Disable intr remapping and queued invalidation, if already
		 * enabled prior to OS handover.
		 */
676
		iommu_disable_irq_remapping(iommu);
677 678 679 680

		dmar_disable_qi(iommu);
	}

681 682 683
	/*
	 * check for the Interrupt-remapping support
	 */
684
	for_each_iommu(iommu, drhd) {
685 686 687 688 689 690
		if (!ecap_ir_support(iommu->ecap))
			continue;

		if (eim && !ecap_eim_support(iommu->ecap)) {
			printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, "
			       " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap);
691
			goto error;
692 693 694 695 696 697
		}
	}

	/*
	 * Enable queued invalidation for all the DRHD's.
	 */
698 699
	for_each_iommu(iommu, drhd) {
		int ret = dmar_enable_qi(iommu);
700 701 702 703 704

		if (ret) {
			printk(KERN_ERR "DRHD %Lx: failed to enable queued, "
			       " invalidation, ecap %Lx, ret %d\n",
			       drhd->reg_base_addr, iommu->ecap, ret);
705
			goto error;
706 707 708 709 710 711
		}
	}

	/*
	 * Setup Interrupt-remapping for all the DRHD's now.
	 */
712
	for_each_iommu(iommu, drhd) {
713 714 715
		if (!ecap_ir_support(iommu->ecap))
			continue;

716
		iommu_set_irq_remapping(iommu, eim);
717 718 719 720 721 722
		setup = 1;
	}

	if (!setup)
		goto error;

723
	irq_remapping_enabled = 1;
724 725 726 727 728 729 730 731

	/*
	 * VT-d has a different layout for IO-APIC entries when
	 * interrupt remapping is enabled. So it needs a special routine
	 * to print IO-APIC entries for debugging purposes too.
	 */
	x86_io_apic_ops.print_entries = intel_ir_io_apic_print_entries;

732
	pr_info("Enabled IRQ remapping in %s mode\n", eim ? "x2apic" : "xapic");
733

734
	return eim ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
735 736

error:
737
	intel_cleanup_irq_remapping();
738 739
	return -1;
}
740

741 742 743
static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
				   struct intel_iommu *iommu,
				   struct acpi_dmar_hardware_unit *drhd)
744 745 746
{
	struct acpi_dmar_pci_path *path;
	u8 bus;
747
	int count, free = -1;
748 749 750 751 752 753 754 755 756 757 758

	bus = scope->bus;
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (--count > 0) {
		/*
		 * Access PCI directly due to the PCI
		 * subsystem isn't initialized yet.
		 */
L
Lv Zheng 已提交
759
		bus = read_pci_config_byte(bus, path->device, path->function,
760 761 762
					   PCI_SECONDARY_BUS);
		path++;
	}
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

	for (count = 0; count < MAX_HPET_TBS; count++) {
		if (ir_hpet[count].iommu == iommu &&
		    ir_hpet[count].id == scope->enumeration_id)
			return 0;
		else if (ir_hpet[count].iommu == NULL && free == -1)
			free = count;
	}
	if (free == -1) {
		pr_warn("Exceeded Max HPET blocks\n");
		return -ENOSPC;
	}

	ir_hpet[free].iommu = iommu;
	ir_hpet[free].id    = scope->enumeration_id;
	ir_hpet[free].bus   = bus;
	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
	pr_info("HPET id %d under DRHD base 0x%Lx\n",
		scope->enumeration_id, drhd->address);

	return 0;
784 785
}

786 787 788
static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
				     struct intel_iommu *iommu,
				     struct acpi_dmar_hardware_unit *drhd)
789 790 791
{
	struct acpi_dmar_pci_path *path;
	u8 bus;
792
	int count, free = -1;
793 794 795 796 797 798 799 800 801 802 803

	bus = scope->bus;
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (--count > 0) {
		/*
		 * Access PCI directly due to the PCI
		 * subsystem isn't initialized yet.
		 */
L
Lv Zheng 已提交
804
		bus = read_pci_config_byte(bus, path->device, path->function,
805 806 807 808
					   PCI_SECONDARY_BUS);
		path++;
	}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	for (count = 0; count < MAX_IO_APICS; count++) {
		if (ir_ioapic[count].iommu == iommu &&
		    ir_ioapic[count].id == scope->enumeration_id)
			return 0;
		else if (ir_ioapic[count].iommu == NULL && free == -1)
			free = count;
	}
	if (free == -1) {
		pr_warn("Exceeded Max IO APICS\n");
		return -ENOSPC;
	}

	ir_ioapic[free].bus   = bus;
	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
	ir_ioapic[free].iommu = iommu;
	ir_ioapic[free].id    = scope->enumeration_id;
	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
		scope->enumeration_id, drhd->address, iommu->seq_id);

	return 0;
829 830
}

831 832
static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
				      struct intel_iommu *iommu)
833
{
834
	int ret = 0;
835 836 837 838 839 840 841 842
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_device_scope *scope;
	void *start, *end;

	drhd = (struct acpi_dmar_hardware_unit *)header;
	start = (void *)(drhd + 1);
	end = ((void *)drhd) + header->length;

843
	while (start < end && ret == 0) {
844
		scope = start;
845 846 847 848 849 850
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
		start += scope->length;
	}
851

852 853
	return ret;
}
854

855 856 857
static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
{
	int i;
858

859 860 861
	for (i = 0; i < MAX_HPET_TBS; i++)
		if (ir_hpet[i].iommu == iommu)
			ir_hpet[i].iommu = NULL;
862

863 864 865
	for (i = 0; i < MAX_IO_APICS; i++)
		if (ir_ioapic[i].iommu == iommu)
			ir_ioapic[i].iommu = NULL;
866 867 868 869 870 871
}

/*
 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
 * hardware unit.
 */
872
static int __init parse_ioapics_under_ir(void)
873 874
{
	struct dmar_drhd_unit *drhd;
875
	struct intel_iommu *iommu;
876
	int ir_supported = 0;
877
	int ioapic_idx;
878

879
	for_each_iommu(iommu, drhd)
880
		if (ecap_ir_support(iommu->ecap)) {
881
			if (ir_parse_ioapic_hpet_scope(drhd->hdr, iommu))
882 883 884 885 886
				return -1;

			ir_supported = 1;
		}

887 888 889 890 891 892 893 894 895 896 897
	if (!ir_supported)
		return 0;

	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
		int ioapic_id = mpc_ioapic_id(ioapic_idx);
		if (!map_ioapic_to_ir(ioapic_id)) {
			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
			       "interrupt remapping will be disabled\n",
			       ioapic_id);
			return -1;
		}
898 899
	}

900
	return 1;
901
}
902

903
static int __init ir_dev_scope_init(void)
904
{
905 906
	int ret;

907
	if (!irq_remapping_enabled)
908 909
		return 0;

910 911 912 913 914
	down_write(&dmar_global_lock);
	ret = dmar_dev_scope_init();
	up_write(&dmar_global_lock);

	return ret;
915 916 917
}
rootfs_initcall(ir_dev_scope_init);

918
static void disable_irq_remapping(void)
919 920 921 922 923 924 925 926 927 928 929
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	/*
	 * Disable Interrupt-remapping for all the DRHD's now.
	 */
	for_each_iommu(iommu, drhd) {
		if (!ecap_ir_support(iommu->ecap))
			continue;

930
		iommu_disable_irq_remapping(iommu);
931 932 933
	}
}

934
static int reenable_irq_remapping(int eim)
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
{
	struct dmar_drhd_unit *drhd;
	int setup = 0;
	struct intel_iommu *iommu = NULL;

	for_each_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

	/*
	 * Setup Interrupt-remapping for all the DRHD's now.
	 */
	for_each_iommu(iommu, drhd) {
		if (!ecap_ir_support(iommu->ecap))
			continue;

		/* Set up interrupt remapping for iommu.*/
952
		iommu_set_irq_remapping(iommu, eim);
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
		setup = 1;
	}

	if (!setup)
		goto error;

	return 0;

error:
	/*
	 * handle error condition gracefully here!
	 */
	return -1;
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static void prepare_irte(struct irte *irte, int vector,
			 unsigned int dest)
{
	memset(irte, 0, sizeof(*irte));

	irte->present = 1;
	irte->dst_mode = apic->irq_dest_mode;
	/*
	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
	 * actual level or edge trigger will be setup in the IO-APIC
	 * RTE. This will help simplify level triggered irq migration.
	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
	 * irq migration in the presence of interrupt-remapping.
	*/
	irte->trigger_mode = 0;
	irte->dlvry_mode = apic->irq_delivery_mode;
	irte->vector = vector;
	irte->dest_id = IRTE_DEST(dest);
	irte->redir_hint = 1;
}

static int intel_setup_ioapic_entry(int irq,
				    struct IO_APIC_route_entry *route_entry,
				    unsigned int destination, int vector,
				    struct io_apic_irq_attr *attr)
{
	int ioapic_id = mpc_ioapic_id(attr->ioapic);
995
	struct intel_iommu *iommu;
996 997 998 999
	struct IR_IO_APIC_route_entry *entry;
	struct irte irte;
	int index;

1000 1001
	down_read(&dmar_global_lock);
	iommu = map_ioapic_to_ir(ioapic_id);
1002 1003
	if (!iommu) {
		pr_warn("No mapping iommu for ioapic %d\n", ioapic_id);
1004 1005 1006 1007 1008 1009 1010 1011
		index = -ENODEV;
	} else {
		index = alloc_irte(iommu, irq, 1);
		if (index < 0) {
			pr_warn("Failed to allocate IRTE for ioapic %d\n",
				ioapic_id);
			index = -ENOMEM;
		}
1012
	}
1013 1014 1015
	up_read(&dmar_global_lock);
	if (index < 0)
		return index;
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

	prepare_irte(&irte, vector, destination);

	/* Set source-id of interrupt request */
	set_ioapic_sid(&irte, ioapic_id);

	modify_irte(irq, &irte);

	apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: "
		"Set IRTE entry (P:%d FPD:%d Dst_Mode:%d "
		"Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X "
		"Avail:%X Vector:%02X Dest:%08X "
		"SID:%04X SQ:%X SVT:%X)\n",
		attr->ioapic, irte.present, irte.fpd, irte.dst_mode,
		irte.redir_hint, irte.trigger_mode, irte.dlvry_mode,
		irte.avail, irte.vector, irte.dest_id,
		irte.sid, irte.sq, irte.svt);

1034
	entry = (struct IR_IO_APIC_route_entry *)route_entry;
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	memset(entry, 0, sizeof(*entry));

	entry->index2	= (index >> 15) & 0x1;
	entry->zero	= 0;
	entry->format	= 1;
	entry->index	= (index & 0x7fff);
	/*
	 * IO-APIC RTE will be configured with virtual vector.
	 * irq handler will do the explicit EOI to the io-apic.
	 */
	entry->vector	= attr->ioapic_pin;
	entry->mask	= 0;			/* enable IRQ */
	entry->trigger	= attr->trigger;
	entry->polarity	= attr->polarity;

	/* Mask level triggered irqs.
	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/*
 * Migrate the IO-APIC irq in the presence of intr-remapping.
 *
 * For both level and edge triggered, irq migration is a simple atomic
 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
 *
 * For level triggered, we eliminate the io-apic RTE modification (with the
 * updated vector information), by using a virtual vector (io-apic pin number).
 * Real vector that is used for interrupting cpu will be coming from
 * the interrupt-remapping table entry.
 *
 * As the migration is a simple atomic update of IRTE, the same mechanism
 * is used to migrate MSI irq's in the presence of interrupt-remapping.
 */
static int
intel_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
			  bool force)
{
1077
	struct irq_cfg *cfg = irqd_cfg(data);
1078 1079
	unsigned int dest, irq = data->irq;
	struct irte irte;
1080
	int err;
1081

1082 1083 1084
	if (!config_enabled(CONFIG_SMP))
		return -EINVAL;

1085 1086 1087 1088 1089 1090
	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

	if (get_irte(irq, &irte))
		return -EBUSY;

1091 1092 1093
	err = assign_irq_vector(irq, cfg, mask);
	if (err)
		return err;
1094

1095 1096
	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
1097
		if (assign_irq_vector(irq, cfg, data->affinity))
1098 1099 1100
			pr_err("Failed to recover vector for irq %d\n", irq);
		return err;
	}
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

	irte.vector = cfg->vector;
	irte.dest_id = IRTE_DEST(dest);

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	modify_irte(irq, &irte);

	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);
	return 0;
}
1122

1123 1124 1125 1126 1127 1128
static void intel_compose_msi_msg(struct pci_dev *pdev,
				  unsigned int irq, unsigned int dest,
				  struct msi_msg *msg, u8 hpet_id)
{
	struct irq_cfg *cfg;
	struct irte irte;
1129
	u16 sub_handle = 0;
1130 1131
	int ir_index;

1132
	cfg = irq_cfg(irq);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

	ir_index = map_irq_to_irte_handle(irq, &sub_handle);
	BUG_ON(ir_index == -1);

	prepare_irte(&irte, cfg->vector, dest);

	/* Set source-id of interrupt request */
	if (pdev)
		set_msi_sid(&irte, pdev);
	else
		set_hpet_sid(&irte, hpet_id);

	modify_irte(irq, &irte);

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->data = sub_handle;
	msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
			  MSI_ADDR_IR_SHV |
			  MSI_ADDR_IR_INDEX1(ir_index) |
			  MSI_ADDR_IR_INDEX2(ir_index);
}

/*
 * Map the PCI dev to the corresponding remapping hardware unit
 * and allocate 'nvec' consecutive interrupt-remapping table entries
 * in it.
 */
static int intel_msi_alloc_irq(struct pci_dev *dev, int irq, int nvec)
{
	struct intel_iommu *iommu;
	int index;

1165
	down_read(&dmar_global_lock);
1166 1167 1168 1169
	iommu = map_dev_to_ir(dev);
	if (!iommu) {
		printk(KERN_ERR
		       "Unable to map PCI %s to iommu\n", pci_name(dev));
1170 1171 1172 1173 1174 1175 1176 1177 1178
		index = -ENOENT;
	} else {
		index = alloc_irte(iommu, irq, nvec);
		if (index < 0) {
			printk(KERN_ERR
			       "Unable to allocate %d IRTE for PCI %s\n",
			       nvec, pci_name(dev));
			index = -ENOSPC;
		}
1179
	}
1180
	up_read(&dmar_global_lock);
1181 1182 1183 1184 1185 1186 1187 1188

	return index;
}

static int intel_msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			       int index, int sub_handle)
{
	struct intel_iommu *iommu;
1189
	int ret = -ENOENT;
1190

1191
	down_read(&dmar_global_lock);
1192
	iommu = map_dev_to_ir(pdev);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	if (iommu) {
		/*
		 * setup the mapping between the irq and the IRTE
		 * base index, the sub_handle pointing to the
		 * appropriate interrupt remap table entry.
		 */
		set_irte_irq(irq, iommu, index, sub_handle);
		ret = 0;
	}
	up_read(&dmar_global_lock);
1203

1204
	return ret;
1205 1206
}

1207
static int intel_alloc_hpet_msi(unsigned int irq, unsigned int id)
1208
{
1209 1210
	int ret = -1;
	struct intel_iommu *iommu;
1211 1212
	int index;

1213 1214 1215 1216 1217 1218 1219 1220
	down_read(&dmar_global_lock);
	iommu = map_hpet_to_ir(id);
	if (iommu) {
		index = alloc_irte(iommu, irq, 1);
		if (index >= 0)
			ret = 0;
	}
	up_read(&dmar_global_lock);
1221

1222
	return ret;
1223 1224
}

1225
struct irq_remap_ops intel_irq_remap_ops = {
1226
	.supported		= intel_irq_remapping_supported,
1227
	.prepare		= intel_prepare_irq_remapping,
1228 1229 1230
	.enable			= intel_enable_irq_remapping,
	.disable		= disable_irq_remapping,
	.reenable		= reenable_irq_remapping,
1231
	.enable_faulting	= enable_drhd_fault_handling,
1232
	.setup_ioapic_entry	= intel_setup_ioapic_entry,
1233
	.set_affinity		= intel_ioapic_set_affinity,
1234
	.free_irq		= free_irte,
1235 1236 1237
	.compose_msi_msg	= intel_compose_msi_msg,
	.msi_alloc_irq		= intel_msi_alloc_irq,
	.msi_setup_irq		= intel_msi_setup_irq,
1238
	.alloc_hpet_msi		= intel_alloc_hpet_msi,
1239
};
1240

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
/*
 * Support of Interrupt Remapping Unit Hotplug
 */
static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
{
	int ret;
	int eim = x2apic_enabled();

	if (eim && !ecap_eim_support(iommu->ecap)) {
		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
			iommu->reg_phys, iommu->ecap);
		return -ENODEV;
	}

	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
			iommu->reg_phys);
		return -ENODEV;
	}

	/* TODO: check all IOAPICs are covered by IOMMU */

	/* Setup Interrupt-remapping now. */
	ret = intel_setup_irq_remapping(iommu);
	if (ret) {
		pr_err("DRHD %Lx: failed to allocate resource\n",
		       iommu->reg_phys);
		ir_remove_ioapic_hpet_scope(iommu);
		return ret;
	}

	if (!iommu->qi) {
		/* Clear previous faults. */
		dmar_fault(-1, iommu);
		iommu_disable_irq_remapping(iommu);
		dmar_disable_qi(iommu);
	}

	/* Enable queued invalidation */
	ret = dmar_enable_qi(iommu);
	if (!ret) {
		iommu_set_irq_remapping(iommu, eim);
	} else {
		pr_err("DRHD %Lx: failed to enable queued invalidation, ecap %Lx, ret %d\n",
		       iommu->reg_phys, iommu->ecap, ret);
		intel_teardown_irq_remapping(iommu);
		ir_remove_ioapic_hpet_scope(iommu);
	}

	return ret;
}

1293 1294
int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!irq_remapping_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;
	if (!ecap_ir_support(iommu->ecap))
		return 0;

	if (insert) {
		if (!iommu->ir_table)
			ret = dmar_ir_add(dmaru, iommu);
	} else {
		if (iommu->ir_table) {
			if (!bitmap_empty(iommu->ir_table->bitmap,
					  INTR_REMAP_TABLE_ENTRIES)) {
				ret = -EBUSY;
			} else {
				iommu_disable_irq_remapping(iommu);
				intel_teardown_irq_remapping(iommu);
				ir_remove_ioapic_hpet_scope(iommu);
			}
		}
	}

	return ret;
1322
}