rt2500pci.c 60.5 KB
Newer Older
1
/*
2
	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2500pci
	Abstract: rt2500pci device specific routines.
	Supported chipsets: RT2560.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2500pci.h"

/*
 * Register access.
 * All access to the CSR registers will go through the methods
 * rt2x00pci_register_read and rt2x00pci_register_write.
 * BBP and RF register require indirect register access,
 * and use the CSR registers BBPCSR and RFCSR to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
52 53 54 55
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56

A
Adam Baker 已提交
57
static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58 59 60 61
				const unsigned int word, const u8 value)
{
	u32 reg;

62 63
	mutex_lock(&rt2x00dev->csr_mutex);

64
	/*
65 66
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
67
	 */
68 69 70 71 72 73 74 75 76
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);

		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
	}
77 78

	mutex_unlock(&rt2x00dev->csr_mutex);
79 80
}

A
Adam Baker 已提交
81
static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82 83 84 85
			       const unsigned int word, u8 *value)
{
	u32 reg;

86 87
	mutex_lock(&rt2x00dev->csr_mutex);

88
	/*
89 90 91 92 93 94
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
95
	 */
96 97 98 99 100
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101

102
		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
103

104 105
		WAIT_FOR_BBP(rt2x00dev, &reg);
	}
106 107

	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108 109

	mutex_unlock(&rt2x00dev->csr_mutex);
110 111
}

A
Adam Baker 已提交
112
static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
113 114 115 116
			       const unsigned int word, const u32 value)
{
	u32 reg;

117 118
	mutex_lock(&rt2x00dev->csr_mutex);

119 120 121 122 123 124 125 126 127 128 129 130 131
	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);

		rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
132 133
	}

134
	mutex_unlock(&rt2x00dev->csr_mutex);
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
}

static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
}

static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt2500pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
171 172 173 174
		.read		= rt2x00pci_register_read,
		.write		= rt2x00pci_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
175 176 177 178 179 180
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
181
		.word_base	= EEPROM_BASE,
182 183 184 185 186 187
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt2500pci_bbp_read,
		.write		= rt2500pci_bbp_write,
188
		.word_base	= BBP_BASE,
189 190 191 192 193 194
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt2500pci_rf_write,
195
		.word_base	= RF_BASE,
196 197 198 199 200 201 202 203 204 205 206 207 208 209
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
}

210
#ifdef CONFIG_RT2X00_LIB_LEDS
211
static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
212 213 214 215 216 217 218 219 220
				     enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);

221
	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
222
		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
223 224
	else if (led->type == LED_TYPE_ACTIVITY)
		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
225 226 227

	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
}
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

static int rt2500pci_blink_set(struct led_classdev *led_cdev,
			       unsigned long *delay_on,
			       unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);

	return 0;
}
244 245 246 247 248 249 250 251 252 253 254

static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00_led *led,
			       enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt2500pci_brightness_set;
	led->led_dev.blink_set = rt2500pci_blink_set;
	led->flags = LED_INITIALIZED;
}
255
#endif /* CONFIG_RT2X00_LIB_LEDS */
256

257 258 259
/*
 * Configuration handlers.
 */
I
Ivo van Doorn 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
				    const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * and broadcast frames will always be accepted since
	 * there is no filter for it at this time.
	 */
	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
			   !(filter_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281 282
			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
			   !rt2x00dev->intf_ap_count);
I
Ivo van Doorn 已提交
283 284 285 286 287 288 289
	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
			   !(filter_flags & FIF_ALLMULTI));
	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
}

290 291 292 293
static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
				  struct rt2x00_intf *intf,
				  struct rt2x00intf_conf *conf,
				  const unsigned int flags)
294
{
295
	struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
296
	unsigned int bcn_preload;
297 298
	u32 reg;

299 300 301 302
	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Enable beacon config
		 */
303
		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
304 305 306 307
		rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
		rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
308

309 310 311 312
		/*
		 * Enable synchronisation.
		 */
		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
313
		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
314
		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
315
		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
316 317 318 319 320 321 322 323 324 325
		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
	}

	if (flags & CONFIG_UPDATE_MAC)
		rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
					      conf->mac, sizeof(conf->mac));

	if (flags & CONFIG_UPDATE_BSSID)
		rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
					      conf->bssid, sizeof(conf->bssid));
326 327
}

I
Ivo van Doorn 已提交
328 329
static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
				 struct rt2x00lib_erp *erp)
330
{
331
	int preamble_mask;
332 333
	u32 reg;

334 335 336
	/*
	 * When short preamble is enabled, we should set bit 0x08
	 */
337
	preamble_mask = erp->short_preamble << 3;
338 339

	rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
340 341
	rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
	rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
342 343
	rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
	rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
344 345 346
	rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
347
	rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
348
	rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
349
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
350 351 352
	rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
353
	rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
354
	rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
355
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
356 357 358
	rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
359
	rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
360
	rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
361
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
362 363 364
	rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
365
	rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
366
	rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
367
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
368
	rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
369 370 371 372 373 374 375

	rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);

	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
	rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);

376 377 378 379 380
	rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
	rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
	rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
	rt2x00pci_register_write(rt2x00dev, CSR12, reg);

381 382 383 384 385 386 387 388 389
	rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
	rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
	rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
	rt2x00pci_register_write(rt2x00dev, CSR18, reg);

	rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
	rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
	rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
	rt2x00pci_register_write(rt2x00dev, CSR19, reg);
390 391
}

392 393
static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
				 struct antenna_setup *ant)
394
{
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	u32 reg;
	u8 r14;
	u8 r2;

	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

	rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
	rt2500pci_bbp_read(rt2x00dev, 14, &r14);
	rt2500pci_bbp_read(rt2x00dev, 2, &r2);

	/*
	 * Configure the TX antenna.
	 */
	switch (ant->tx) {
	case ANTENNA_A:
		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
		break;
	}

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_A:
		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
		break;
	}

	/*
	 * RT2525E and RT5222 need to flip TX I/Q
	 */
443
	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
444 445 446 447 448 449 450
		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);

		/*
		 * RT2525E does not need RX I/Q Flip.
		 */
451
		if (rt2x00_rf(rt2x00dev, RF2525E))
452 453 454 455 456 457 458 459 460
			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
	} else {
		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
	}

	rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
	rt2500pci_bbp_write(rt2x00dev, 14, r14);
	rt2500pci_bbp_write(rt2x00dev, 2, r2);
461 462 463
}

static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
464
				     struct rf_channel *rf, const int txpower)
465 466 467 468 469 470
{
	u8 r70;

	/*
	 * Set TXpower.
	 */
471
	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
472 473 474 475 476

	/*
	 * Switch on tuning bits.
	 * For RT2523 devices we do not need to update the R1 register.
	 */
477
	if (!rt2x00_rf(rt2x00dev, RF2523))
478 479
		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
480 481 482 483

	/*
	 * For RT2525 we should first set the channel to half band higher.
	 */
484
	if (rt2x00_rf(rt2x00dev, RF2525)) {
485 486 487 488 489 490 491
		static const u32 vals[] = {
			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
			0x00080d2e, 0x00080d3a
		};

492 493 494 495 496
		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
		if (rf->rf4)
			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
497 498
	}

499 500 501 502 503
	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
	if (rf->rf4)
		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
504 505 506 507 508

	/*
	 * Channel 14 requires the Japan filter bit to be set.
	 */
	r70 = 0x46;
509
	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
510 511 512 513 514 515 516 517
	rt2500pci_bbp_write(rt2x00dev, 70, r70);

	msleep(1);

	/*
	 * Switch off tuning bits.
	 * For RT2523 devices we do not need to update the R1 register.
	 */
518
	if (!rt2x00_rf(rt2x00dev, RF2523)) {
519 520
		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
521 522
	}

523 524
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
525 526 527 528

	/*
	 * Clear false CRC during channel switch.
	 */
529
	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
530 531 532 533 534 535 536 537 538 539 540 541
}

static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
				     const int txpower)
{
	u32 rf3;

	rt2x00_rf_read(rt2x00dev, 3, &rf3);
	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
	rt2500pci_rf_write(rt2x00dev, 3, rf3);
}

542 543
static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
					 struct rt2x00lib_conf *libconf)
544 545 546
{
	u32 reg;

547 548 549 550 551 552
	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
			   libconf->conf->long_frame_max_tx_count);
	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
			   libconf->conf->short_frame_max_tx_count);
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
553 554
}

I
Ivo van Doorn 已提交
555 556 557 558 559 560 561 562 563 564 565
static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u32 reg;

	if (state == STATE_SLEEP) {
		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
566
				   (rt2x00dev->beacon_int - 20) * 16);
I
Ivo van Doorn 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580
		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
				   libconf->conf->listen_interval - 1);

		/* We must first disable autowake before it can be enabled */
		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
		rt2x00pci_register_write(rt2x00dev, CSR20, reg);

		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
	}

	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
}

581
static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
582 583
			     struct rt2x00lib_conf *libconf,
			     const unsigned int flags)
584
{
585
	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
586 587
		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
					 libconf->conf->power_level);
588 589
	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
590 591
		rt2500pci_config_txpower(rt2x00dev,
					 libconf->conf->power_level);
592 593
	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
		rt2500pci_config_retry_limit(rt2x00dev, libconf);
I
Ivo van Doorn 已提交
594 595
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt2500pci_config_ps(rt2x00dev, libconf);
596 597 598 599 600
}

/*
 * Link tuning
 */
601 602
static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual)
603 604 605 606 607 608 609
{
	u32 reg;

	/*
	 * Update FCS error count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
610
	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
611 612 613 614 615

	/*
	 * Update False CCA count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
616
	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
617 618
}

619 620
static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
				     struct link_qual *qual, u8 vgc_level)
621
{
622
	if (qual->vgc_level_reg != vgc_level) {
623
		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
624
		qual->vgc_level_reg = vgc_level;
625 626 627
	}
}

628 629
static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
				  struct link_qual *qual)
630
{
631
	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
632 633
}

634 635
static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual, const u32 count)
636 637 638 639
{
	/*
	 * To prevent collisions with MAC ASIC on chipsets
	 * up to version C the link tuning should halt after 20
640
	 * seconds while being associated.
641
	 */
642
	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
643
	    rt2x00dev->intf_associated && count > 20)
644 645 646 647
		return;

	/*
	 * Chipset versions C and lower should directly continue
648 649 650
	 * to the dynamic CCA tuning. Chipset version D and higher
	 * should go straight to dynamic CCA tuning when they
	 * are not associated.
651
	 */
652
	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
653
	    !rt2x00dev->intf_associated)
654 655 656 657 658 659 660
		goto dynamic_cca_tune;

	/*
	 * A too low RSSI will cause too much false CCA which will
	 * then corrupt the R17 tuning. To remidy this the tuning should
	 * be stopped (While making sure the R17 value will not exceed limits)
	 */
661 662 663
	if (qual->rssi < -80 && count > 20) {
		if (qual->vgc_level_reg >= 0x41)
			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
664 665 666 667 668 669
		return;
	}

	/*
	 * Special big-R17 for short distance
	 */
670 671
	if (qual->rssi >= -58) {
		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
672 673 674 675 676 677
		return;
	}

	/*
	 * Special mid-R17 for middle distance
	 */
678 679
	if (qual->rssi >= -74) {
		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
680 681 682 683 684 685 686
		return;
	}

	/*
	 * Leave short or middle distance condition, restore r17
	 * to the dynamic tuning range.
	 */
687 688
	if (qual->vgc_level_reg >= 0x41) {
		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
689 690 691 692 693 694 695 696 697
		return;
	}

dynamic_cca_tune:

	/*
	 * R17 is inside the dynamic tuning range,
	 * start tuning the link based on the false cca counter.
	 */
698 699 700 701 702 703
	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) {
		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
		qual->vgc_level = qual->vgc_level_reg;
	} else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) {
		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
		qual->vgc_level = qual->vgc_level_reg;
704 705 706 707 708 709
	}
}

/*
 * Initialization functions.
 */
710
static bool rt2500pci_get_entry_state(struct queue_entry *entry)
711
{
712
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
713 714
	u32 word;

715 716 717 718 719 720
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);

		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
721

722 723 724
		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		        rt2x00_get_field32(word, TXD_W0_VALID));
	}
725 726
}

727
static void rt2500pci_clear_entry(struct queue_entry *entry)
728
{
729
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
730
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
731 732
	u32 word;

733 734 735 736 737 738 739 740 741 742 743 744 745 746
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 1, word);

		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	}
747 748
}

I
Ivo van Doorn 已提交
749
static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
750
{
751
	struct queue_entry_priv_pci *entry_priv;
752 753 754 755 756 757
	u32 reg;

	/*
	 * Initialize registers.
	 */
	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
I
Ivo van Doorn 已提交
758 759 760 761
	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
762 763
	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);

764
	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
765
	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
766
	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
767
			   entry_priv->desc_dma);
768 769
	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);

770
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
771
	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
772
	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
773
			   entry_priv->desc_dma);
774 775
	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);

776
	entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
777
	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
778
	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
779
			   entry_priv->desc_dma);
780 781
	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);

782
	entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
783
	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
784
	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
785
			   entry_priv->desc_dma);
786 787 788 789
	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
I
Ivo van Doorn 已提交
790
	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
791 792
	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);

793
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
794
	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
795 796
	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
			   entry_priv->desc_dma);
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);

	return 0;
}

static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);

	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);

	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
			   rt2x00dev->rx->data_size / 128);
	rt2x00pci_register_write(rt2x00dev, CSR9, reg);

	/*
	 * Always use CWmin and CWmax set in descriptor.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);

829 830 831 832 833 834 835 836 837 838 839
	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	rt2x00pci_register_write(rt2x00dev, CNT3, 0);

	rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);

	rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
	rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);

	rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
	rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);

	rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
	rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);

	rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
	rt2x00pci_register_write(rt2x00dev, PCICSR, reg);

	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);

	rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
	rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);

	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);

	rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);

	rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	/*
	 * We must clear the FCS and FIFO error count.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);

	return 0;
}

945
static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
946 947 948 949 950 951 952
{
	unsigned int i;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2500pci_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
953
			return 0;
954 955 956 957 958
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;
959 960 961 962 963 964 965 966 967 968 969
}

static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
		return -EACCES;
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
				enum dev_state state)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
	rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1025 1026
			   (state == STATE_RADIO_RX_OFF) ||
			   (state == STATE_RADIO_RX_OFF_LINK));
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
}

static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
	int mask = (state == STATE_RADIO_IRQ_OFF);
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
}

static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Initialize all registers.
	 */
1063 1064 1065
	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
		     rt2500pci_init_registers(rt2x00dev) ||
		     rt2500pci_init_bbp(rt2x00dev)))
1066 1067 1068 1069 1070 1071 1072 1073
		return -EIO;

	return 0;
}

static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
1074
	 * Disable power
1075
	 */
1076
	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
}

static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	u32 reg;
	unsigned int i;
	char put_to_sleep;
	char bbp_state;
	char rf_state;

	put_to_sleep = (state != STATE_AWAKE);

	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
		bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
		rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
		if (bbp_state == state && rf_state == state)
			return 0;
		msleep(10);
	}

	return -EBUSY;
}

static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2500pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt2500pci_disable_radio(rt2x00dev);
		break;
	case STATE_RADIO_RX_ON:
1127
	case STATE_RADIO_RX_ON_LINK:
1128
	case STATE_RADIO_RX_OFF:
1129
	case STATE_RADIO_RX_OFF_LINK:
1130 1131 1132 1133 1134
		rt2500pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2500pci_toggle_irq(rt2x00dev, state);
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2500pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

1147 1148 1149 1150
	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

1151 1152 1153 1154 1155 1156 1157
	return retval;
}

/*
 * TX descriptor initialization
 */
static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1158
				    struct sk_buff *skb,
1159
				    struct txentry_desc *txdesc)
1160
{
I
Ivo van Doorn 已提交
1161
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1162
	struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1163
	__le32 *txd = skbdesc->desc;
1164 1165 1166 1167 1168
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
1169
	rt2x00_desc_read(entry_priv->desc, 1, &word);
1170
	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1171 1172
	rt2x00_desc_write(entry_priv->desc, 1, word);

1173 1174
	rt2x00_desc_read(txd, 2, &word);
	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
I
Ivo van Doorn 已提交
1175 1176 1177
	rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
	rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
	rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1178 1179 1180
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
I
Ivo van Doorn 已提交
1181 1182 1183 1184
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1185 1186 1187 1188
	rt2x00_desc_write(txd, 3, word);

	rt2x00_desc_read(txd, 10, &word);
	rt2x00_set_field32(&word, TXD_W10_RTS,
I
Ivo van Doorn 已提交
1189
			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1190 1191 1192 1193 1194 1195
	rt2x00_desc_write(txd, 10, word);

	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
I
Ivo van Doorn 已提交
1196
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1197
	rt2x00_set_field32(&word, TXD_W0_ACK,
I
Ivo van Doorn 已提交
1198
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1199
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
I
Ivo van Doorn 已提交
1200
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1201
	rt2x00_set_field32(&word, TXD_W0_OFDM,
1202
			   (txdesc->rate_mode == RATE_MODE_OFDM));
1203
	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
I
Ivo van Doorn 已提交
1204
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1205
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1206
			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
P
Peter Chubb 已提交
1207
	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1208 1209 1210 1211 1212 1213 1214
	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
	rt2x00_desc_write(txd, 0, word);
}

/*
 * TX data initialization
 */
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
static void rt2500pci_write_beacon(struct queue_entry *entry)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	u32 word;
	u32 reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);

	/*
	 * Replace rt2x00lib allocated descriptor with the
	 * pointer to the _real_ hardware descriptor.
	 * After that, map the beacon to DMA and update the
	 * descriptor.
	 */
	memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
	skbdesc->desc = entry_priv->desc;

	rt2x00queue_map_txskb(rt2x00dev, entry->skb);

	rt2x00_desc_read(entry_priv->desc, 1, &word);
	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
	rt2x00_desc_write(entry_priv->desc, 1, word);
}

1247
static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1248
				    const enum data_queue_qid queue)
1249 1250 1251
{
	u32 reg;

1252
	if (queue == QID_BEACON) {
1253 1254
		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
		if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1255 1256
			rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
			rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1257 1258 1259 1260 1261 1262 1263
			rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
			rt2x00pci_register_write(rt2x00dev, CSR14, reg);
		}
		return;
	}

	rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1264 1265 1266
	rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
	rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
	rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1267 1268 1269
	rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
}

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
static void rt2500pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
				    const enum data_queue_qid qid)
{
	u32 reg;

	if (qid == QID_BEACON) {
		rt2x00pci_register_write(rt2x00dev, CSR14, 0);
	} else {
		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
	}
}

1284 1285 1286
/*
 * RX control handlers
 */
I
Ivo van Doorn 已提交
1287 1288
static void rt2500pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
1289
{
1290
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1291 1292 1293
	u32 word0;
	u32 word2;

1294 1295
	rt2x00_desc_read(entry_priv->desc, 0, &word0);
	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1296

1297
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
I
Ivo van Doorn 已提交
1298
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1299
	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
I
Ivo van Doorn 已提交
1300 1301
		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;

I
Ivo van Doorn 已提交
1302 1303 1304 1305 1306 1307
	/*
	 * Obtain the status about this packet.
	 * When frame was received with an OFDM bitrate,
	 * the signal is the PLCP value. If it was received with
	 * a CCK bitrate the signal is the rate in 100kbit/s.
	 */
I
Ivo van Doorn 已提交
1308 1309 1310 1311
	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
	    entry->queue->rt2x00dev->rssi_offset;
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1312 1313 1314

	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
I
Ivo van Doorn 已提交
1315 1316
	else
		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1317 1318
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
1319 1320 1321 1322 1323
}

/*
 * Interrupt functions.
 */
I
Ivo van Doorn 已提交
1324
static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1325
			     const enum data_queue_qid queue_idx)
1326
{
I
Ivo van Doorn 已提交
1327
	struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1328
	struct queue_entry_priv_pci *entry_priv;
I
Ivo van Doorn 已提交
1329 1330
	struct queue_entry *entry;
	struct txdone_entry_desc txdesc;
1331 1332
	u32 word;

I
Ivo van Doorn 已提交
1333 1334
	while (!rt2x00queue_empty(queue)) {
		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1335 1336
		entry_priv = entry->priv_data;
		rt2x00_desc_read(entry_priv->desc, 0, &word);
1337 1338 1339 1340 1341 1342 1343 1344

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			break;

		/*
		 * Obtain the status about this packet.
		 */
I
Ivo van Doorn 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
		txdesc.flags = 0;
		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
		case 0: /* Success */
		case 1: /* Success with retry */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			break;
		case 2: /* Failure, excessive retries */
			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
			/* Don't break, this is a failed frame! */
		default: /* Failure */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
		}
I
Ivo van Doorn 已提交
1357
		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1358

I
Ivo van Doorn 已提交
1359
		rt2x00lib_txdone(entry, &txdesc);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	}
}

static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg;

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
	rt2x00pci_register_write(rt2x00dev, CSR7, reg);

	if (!reg)
		return IRQ_NONE;

1378
	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		return IRQ_HANDLED;

	/*
	 * Handle interrupts, walk through all bits
	 * and run the tasks, the bits are checked in order of
	 * priority.
	 */

	/*
	 * 1 - Beacon timer expired interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
		rt2x00lib_beacondone(rt2x00dev);

	/*
	 * 2 - Rx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_RXDONE))
		rt2x00pci_rxdone(rt2x00dev);

	/*
	 * 3 - Atim ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1403
		rt2500pci_txdone(rt2x00dev, QID_ATIM);
1404 1405 1406 1407 1408

	/*
	 * 4 - Priority ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1409
		rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1410 1411 1412 1413 1414

	/*
	 * 5 - Tx ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1415
		rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450

	return IRQ_HANDLED;
}

/*
 * Device probe functions.
 */
static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2500pci_eepromregister_read;
	eeprom.register_write = rt2500pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
		random_ether_addr(mac);
J
Johannes Berg 已提交
1451
		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1452 1453 1454 1455 1456
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
I
Ivo van Doorn 已提交
1457 1458 1459 1460 1461 1462
		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
				   ANTENNA_SW_DIVERSITY);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
				   ANTENNA_SW_DIVERSITY);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
				   LED_MODE_DEFAULT);
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
				   DEFAULT_RSSI_OFFSET);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
		EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
	}

	return 0;
}

static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1506 1507
	rt2x00_set_chip(rt2x00dev, RT2560, value,
			rt2x00_get_field32(reg, CSR0_REVISION));
1508

1509 1510 1511 1512 1513 1514
	if (!rt2x00_rf(rt2x00dev, RF2522) &&
	    !rt2x00_rf(rt2x00dev, RF2523) &&
	    !rt2x00_rf(rt2x00dev, RF2524) &&
	    !rt2x00_rf(rt2x00dev, RF2525) &&
	    !rt2x00_rf(rt2x00dev, RF2525E) &&
	    !rt2x00_rf(rt2x00dev, RF5222)) {
1515 1516 1517 1518 1519 1520 1521
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

	/*
	 * Identify default antenna configuration.
	 */
1522
	rt2x00dev->default_ant.tx =
1523
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1524
	rt2x00dev->default_ant.rx =
1525 1526 1527 1528 1529
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

	/*
	 * Store led mode, for correct led behaviour.
	 */
1530
#ifdef CONFIG_RT2X00_LIB_LEDS
1531 1532
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);

1533
	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1534 1535 1536
	if (value == LED_MODE_TXRX_ACTIVITY ||
	    value == LED_MODE_DEFAULT ||
	    value == LED_MODE_ASUS)
1537 1538
		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
				   LED_TYPE_ACTIVITY);
1539
#endif /* CONFIG_RT2X00_LIB_LEDS */
1540 1541 1542 1543 1544

	/*
	 * Detect if this device has an hardware controlled radio.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1545
		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

	/*
	 * Check if the BBP tuning should be enabled.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);

	if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
		__set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);

	/*
	 * Read the RSSI <-> dBm offset information.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
	rt2x00dev->rssi_offset =
	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);

	return 0;
}

/*
 * RF value list for RF2522
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2522[] = {
	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
};

/*
 * RF value list for RF2523
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2523[] = {
	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
};

/*
 * RF value list for RF2524
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2524[] = {
	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
};

/*
 * RF value list for RF2525
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2525[] = {
	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
};

/*
 * RF value list for RF2525e
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2525e[] = {
	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
};

/*
 * RF value list for RF5222
 * Supports: 2.4 GHz & 5.2 GHz
 */
static const struct rf_channel rf_vals_5222[] = {
	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },

	/* 802.11 UNII */
	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
};

1720
static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1721 1722
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
1723 1724
	struct channel_info *info;
	char *tx_power;
1725 1726 1727 1728 1729
	unsigned int i;

	/*
	 * Initialize all hw fields.
	 */
1730
	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1731 1732 1733
			       IEEE80211_HW_SIGNAL_DBM |
			       IEEE80211_HW_SUPPORTS_PS |
			       IEEE80211_HW_PS_NULLFUNC_STACK;
1734

1735
	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1736 1737 1738 1739 1740 1741 1742
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
	 * Initialize hw_mode information.
	 */
1743 1744
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1745

1746
	if (rt2x00_rf(rt2x00dev, RF2522)) {
1747 1748
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
		spec->channels = rf_vals_bg_2522;
1749
	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1750 1751
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
		spec->channels = rf_vals_bg_2523;
1752
	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1753 1754
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
		spec->channels = rf_vals_bg_2524;
1755
	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1756 1757
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
		spec->channels = rf_vals_bg_2525;
1758
	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1759 1760
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
		spec->channels = rf_vals_bg_2525e;
1761
	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1762
		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1763 1764 1765
		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
		spec->channels = rf_vals_5222;
	}
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

	/*
	 * Create channel information array
	 */
	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;

	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
	for (i = 0; i < 14; i++)
		info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);

	if (spec->num_channels > 14) {
		for (i = 14; i < spec->num_channels; i++)
			info[i].tx_power1 = DEFAULT_TXPOWER;
	}

	return 0;
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
}

static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2500pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt2500pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
1806 1807 1808
	retval = rt2500pci_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;
1809 1810

	/*
1811
	 * This device requires the atim queue and DMA-mapped skbs.
1812
	 */
I
Ivo van Doorn 已提交
1813
	__set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1814
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);

	return tsf;
}

static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
}

static const struct ieee80211_ops rt2500pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
1852 1853
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
1854 1855 1856
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
I
Ivo van Doorn 已提交
1857
	.configure_filter	= rt2x00mac_configure_filter,
1858
	.set_tim		= rt2x00mac_set_tim,
1859
	.get_stats		= rt2x00mac_get_stats,
1860
	.bss_info_changed	= rt2x00mac_bss_info_changed,
1861 1862 1863
	.conf_tx		= rt2x00mac_conf_tx,
	.get_tsf		= rt2500pci_get_tsf,
	.tx_last_beacon		= rt2500pci_tx_last_beacon,
1864
	.rfkill_poll		= rt2x00mac_rfkill_poll,
1865 1866 1867 1868 1869 1870 1871
};

static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
	.irq_handler		= rt2500pci_interrupt,
	.probe_hw		= rt2500pci_probe_hw,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
1872 1873
	.get_entry_state	= rt2500pci_get_entry_state,
	.clear_entry		= rt2500pci_clear_entry,
1874 1875 1876 1877 1878 1879 1880
	.set_device_state	= rt2500pci_set_device_state,
	.rfkill_poll		= rt2500pci_rfkill_poll,
	.link_stats		= rt2500pci_link_stats,
	.reset_tuner		= rt2500pci_reset_tuner,
	.link_tuner		= rt2500pci_link_tuner,
	.write_tx_desc		= rt2500pci_write_tx_desc,
	.write_tx_data		= rt2x00pci_write_tx_data,
1881
	.write_beacon		= rt2500pci_write_beacon,
1882
	.kick_tx_queue		= rt2500pci_kick_tx_queue,
1883
	.kill_tx_queue		= rt2500pci_kill_tx_queue,
1884
	.fill_rxdone		= rt2500pci_fill_rxdone,
I
Ivo van Doorn 已提交
1885
	.config_filter		= rt2500pci_config_filter,
1886
	.config_intf		= rt2500pci_config_intf,
1887
	.config_erp		= rt2500pci_config_erp,
1888
	.config_ant		= rt2500pci_config_ant,
1889 1890 1891
	.config			= rt2500pci_config,
};

I
Ivo van Doorn 已提交
1892 1893 1894 1895
static const struct data_queue_desc rt2500pci_queue_rx = {
	.entry_num		= RX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= RXD_DESC_SIZE,
1896
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1897 1898 1899 1900 1901 1902
};

static const struct data_queue_desc rt2500pci_queue_tx = {
	.entry_num		= TX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1903
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1904 1905 1906 1907 1908 1909
};

static const struct data_queue_desc rt2500pci_queue_bcn = {
	.entry_num		= BEACON_ENTRIES,
	.data_size		= MGMT_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1910
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1911 1912 1913 1914 1915 1916
};

static const struct data_queue_desc rt2500pci_queue_atim = {
	.entry_num		= ATIM_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1917
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1918 1919
};

1920
static const struct rt2x00_ops rt2500pci_ops = {
G
Gertjan van Wingerde 已提交
1921 1922 1923 1924 1925 1926
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 1,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1927
	.extra_tx_headroom	= 0,
G
Gertjan van Wingerde 已提交
1928 1929 1930 1931 1932 1933
	.rx			= &rt2500pci_queue_rx,
	.tx			= &rt2500pci_queue_tx,
	.bcn			= &rt2500pci_queue_bcn,
	.atim			= &rt2500pci_queue_atim,
	.lib			= &rt2500pci_rt2x00_ops,
	.hw			= &rt2500pci_mac80211_ops,
1934
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1935
	.debugfs		= &rt2500pci_rt2x00debug,
1936 1937 1938 1939 1940 1941
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2500pci module information.
 */
1942
static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
	{ PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
MODULE_LICENSE("GPL");

static struct pci_driver rt2500pci_driver = {
1955
	.name		= KBUILD_MODNAME,
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	.id_table	= rt2500pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};

static int __init rt2500pci_init(void)
{
	return pci_register_driver(&rt2500pci_driver);
}

static void __exit rt2500pci_exit(void)
{
	pci_unregister_driver(&rt2500pci_driver);
}

module_init(rt2500pci_init);
module_exit(rt2500pci_exit);