rt2500pci.c 57.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
/*
	Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2500pci
	Abstract: rt2500pci device specific routines.
	Supported chipsets: RT2560.
 */

/*
 * Set enviroment defines for rt2x00.h
 */
#define DRV_NAME "rt2500pci"

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2500pci.h"

/*
 * Register access.
 * All access to the CSR registers will go through the methods
 * rt2x00pci_register_read and rt2x00pci_register_write.
 * BBP and RF register require indirect register access,
 * and use the CSR registers BBPCSR and RFCSR to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
A
Adam Baker 已提交
57
static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
58 59 60 61 62 63 64 65 66 67 68 69 70 71
{
	u32 reg;
	unsigned int i;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
		if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
			break;
		udelay(REGISTER_BUSY_DELAY);
	}

	return reg;
}

A
Adam Baker 已提交
72
static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
				const unsigned int word, const u8 value)
{
	u32 reg;

	/*
	 * Wait until the BBP becomes ready.
	 */
	reg = rt2500pci_bbp_check(rt2x00dev);
	if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
		ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
		return;
	}

	/*
	 * Write the data into the BBP.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
	rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
	rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
	rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);

	rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
}

A
Adam Baker 已提交
98
static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
			       const unsigned int word, u8 *value)
{
	u32 reg;

	/*
	 * Wait until the BBP becomes ready.
	 */
	reg = rt2500pci_bbp_check(rt2x00dev);
	if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
		ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
		return;
	}

	/*
	 * Write the request into the BBP.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
	rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
	rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);

	rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);

	/*
	 * Wait until the BBP becomes ready.
	 */
	reg = rt2500pci_bbp_check(rt2x00dev);
	if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
		ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
		*value = 0xff;
		return;
	}

	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
}

A
Adam Baker 已提交
135
static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
			       const unsigned int word, const u32 value)
{
	u32 reg;
	unsigned int i;

	if (!word)
		return;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
		if (!rt2x00_get_field32(reg, RFCSR_BUSY))
			goto rf_write;
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
	return;

rf_write:
	reg = 0;
	rt2x00_set_field32(&reg, RFCSR_VALUE, value);
	rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
	rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
	rt2x00_set_field32(&reg, RFCSR_BUSY, 1);

	rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
	rt2x00_rf_write(rt2x00dev, word, value);
}

static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
}

static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
#define CSR_OFFSET(__word)	( CSR_REG_BASE + ((__word) * sizeof(u32)) )

A
Adam Baker 已提交
198
static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
199 200 201 202 203
			       const unsigned int word, u32 *data)
{
	rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
}

A
Adam Baker 已提交
204
static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
				const unsigned int word, u32 data)
{
	rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
}

static const struct rt2x00debug rt2500pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
		.read		= rt2500pci_read_csr,
		.write		= rt2500pci_write_csr,
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt2500pci_bbp_read,
		.write		= rt2500pci_bbp_write,
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt2500pci_rf_write,
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

#ifdef CONFIG_RT2500PCI_RFKILL
static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
}
247 248
#else
#define rt2500pci_rfkill_poll	NULL
249
#endif /* CONFIG_RT2500PCI_RFKILL */
250 251 252 253

/*
 * Configuration handlers.
 */
254 255
static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
				      __le32 *mac)
256
{
257 258
	rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
				      (2 * sizeof(__le32)));
259 260
}

261 262
static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
				   __le32 *bssid)
263
{
264 265
	rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
				      (2 * sizeof(__le32)));
266 267
}

268 269
static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
				  const int tsf_sync)
270 271 272 273 274 275 276 277 278 279
{
	u32 reg;

	rt2x00pci_register_write(rt2x00dev, CSR14, 0);

	/*
	 * Enable beacon config
	 */
	rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
	rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
280
			   PREAMBLE + get_duration(IEEE80211_HEADER, 20));
281 282 283 284 285 286 287 288 289 290
	rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
			   rt2x00lib_get_ring(rt2x00dev,
					      IEEE80211_TX_QUEUE_BEACON)
			   ->tx_params.cw_min);
	rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);

	/*
	 * Enable synchronisation.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
291 292
	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
	rt2x00_set_field32(&reg, CSR14_TBCN, 1);
293
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
294
	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
295 296 297
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
}

298 299 300 301
static void rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
				      const int short_preamble,
				      const int ack_timeout,
				      const int ack_consume_time)
302
{
303
	int preamble_mask;
304 305
	u32 reg;

306 307 308 309
	/*
	 * When short preamble is enabled, we should set bit 0x08
	 */
	preamble_mask = short_preamble << 3;
310 311

	rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
312 313
	rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
	rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
314 315 316
	rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
317
	rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
318 319 320 321 322
	rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
	rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
323
	rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
324 325 326 327 328
	rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
	rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
329
	rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
330 331 332 333 334
	rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
	rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
335
	rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
336 337 338 339 340 341
	rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
	rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
}

static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
342
				     const int basic_rate_mask)
343
{
344
	rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
345 346 347
}

static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
348
				     struct rf_channel *rf, const int txpower)
349 350 351 352 353 354
{
	u8 r70;

	/*
	 * Set TXpower.
	 */
355
	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
356 357 358 359 360 361

	/*
	 * Switch on tuning bits.
	 * For RT2523 devices we do not need to update the R1 register.
	 */
	if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
362 363
		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
364 365 366 367 368 369 370 371 372 373 374 375

	/*
	 * For RT2525 we should first set the channel to half band higher.
	 */
	if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
		static const u32 vals[] = {
			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
			0x00080d2e, 0x00080d3a
		};

376 377 378 379 380
		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
		if (rf->rf4)
			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
381 382
	}

383 384 385 386 387
	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
	if (rf->rf4)
		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
388 389 390 391 392

	/*
	 * Channel 14 requires the Japan filter bit to be set.
	 */
	r70 = 0x46;
393
	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
394 395 396 397 398 399 400 401 402
	rt2500pci_bbp_write(rt2x00dev, 70, r70);

	msleep(1);

	/*
	 * Switch off tuning bits.
	 * For RT2523 devices we do not need to update the R1 register.
	 */
	if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
403 404
		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
405 406
	}

407 408
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
409 410 411 412

	/*
	 * Clear false CRC during channel switch.
	 */
413
	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
414 415 416 417 418 419 420 421 422 423 424 425 426
}

static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
				     const int txpower)
{
	u32 rf3;

	rt2x00_rf_read(rt2x00dev, 3, &rf3);
	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
	rt2500pci_rf_write(rt2x00dev, 3, rf3);
}

static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
427
				     struct antenna_setup *ant)
428 429 430 431 432 433 434 435 436 437 438 439
{
	u32 reg;
	u8 r14;
	u8 r2;

	rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
	rt2500pci_bbp_read(rt2x00dev, 14, &r14);
	rt2500pci_bbp_read(rt2x00dev, 2, &r2);

	/*
	 * Configure the TX antenna.
	 */
440
	switch (ant->tx) {
441 442 443 444 445
	case ANTENNA_A:
		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
		break;
446 447 448 449 450 451 452 453
	case ANTENNA_HW_DIVERSITY:
	case ANTENNA_SW_DIVERSITY:
		/*
		 * NOTE: We should never come here because rt2x00lib is
		 * supposed to catch this and send us the correct antenna
		 * explicitely. However we are nog going to bug about this.
		 * Instead, just default to antenna B.
		 */
454 455 456 457 458 459 460 461 462 463
	case ANTENNA_B:
		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
		break;
	}

	/*
	 * Configure the RX antenna.
	 */
464
	switch (ant->rx) {
465 466 467
	case ANTENNA_A:
		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
		break;
468 469 470 471 472 473 474 475
	case ANTENNA_HW_DIVERSITY:
	case ANTENNA_SW_DIVERSITY:
		/*
		 * NOTE: We should never come here because rt2x00lib is
		 * supposed to catch this and send us the correct antenna
		 * explicitely. However we are nog going to bug about this.
		 * Instead, just default to antenna B.
		 */
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	case ANTENNA_B:
		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
		break;
	}

	/*
	 * RT2525E and RT5222 need to flip TX I/Q
	 */
	if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
	    rt2x00_rf(&rt2x00dev->chip, RF5222)) {
		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);

		/*
		 * RT2525E does not need RX I/Q Flip.
		 */
		if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
	} else {
		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
	}

	rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
	rt2500pci_bbp_write(rt2x00dev, 14, r14);
	rt2500pci_bbp_write(rt2x00dev, 2, r2);
}

static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
506
				      struct rt2x00lib_conf *libconf)
507 508 509 510
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
511
	rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
512 513 514
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);

	rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
515 516
	rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
	rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
517 518 519
	rt2x00pci_register_write(rt2x00dev, CSR18, reg);

	rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
520 521
	rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
	rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
522 523 524 525 526 527 528 529
	rt2x00pci_register_write(rt2x00dev, CSR19, reg);

	rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
	rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
	rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
	rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);

	rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
530 531 532 533
	rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
			   libconf->conf->beacon_int * 16);
	rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
			   libconf->conf->beacon_int * 16);
534 535 536 537 538
	rt2x00pci_register_write(rt2x00dev, CSR12, reg);
}

static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
			     const unsigned int flags,
539
			     struct rt2x00lib_conf *libconf)
540 541
{
	if (flags & CONFIG_UPDATE_PHYMODE)
542
		rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
543
	if (flags & CONFIG_UPDATE_CHANNEL)
544 545
		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
					 libconf->conf->power_level);
546
	if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
547 548
		rt2500pci_config_txpower(rt2x00dev,
					 libconf->conf->power_level);
549
	if (flags & CONFIG_UPDATE_ANTENNA)
550
		rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
551
	if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
552
		rt2500pci_config_duration(rt2x00dev, libconf);
553 554 555 556 557 558 559 560 561 562 563 564 565
}

/*
 * LED functions.
 */
static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);

	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
566 567 568 569
	rt2x00_set_field32(&reg, LEDCSR_LINK,
			   (rt2x00dev->led_mode != LED_MODE_ASUS));
	rt2x00_set_field32(&reg, LEDCSR_ACTIVITY,
			   (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
}

static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
	rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
	rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
	rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
}

/*
 * Link tuning
 */
586 587
static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual)
588 589 590 591 592 593 594
{
	u32 reg;

	/*
	 * Update FCS error count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
595
	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
596 597 598 599 600

	/*
	 * Update False CCA count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
601
	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
}

static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
{
	rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
	rt2x00dev->link.vgc_level = 0x48;
}

static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
{
	int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
	u8 r17;

	/*
	 * To prevent collisions with MAC ASIC on chipsets
	 * up to version C the link tuning should halt after 20
	 * seconds.
	 */
620
	if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
621 622 623 624 625 626 627 628 629
	    rt2x00dev->link.count > 20)
		return;

	rt2500pci_bbp_read(rt2x00dev, 17, &r17);

	/*
	 * Chipset versions C and lower should directly continue
	 * to the dynamic CCA tuning.
	 */
630
	if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
		goto dynamic_cca_tune;

	/*
	 * A too low RSSI will cause too much false CCA which will
	 * then corrupt the R17 tuning. To remidy this the tuning should
	 * be stopped (While making sure the R17 value will not exceed limits)
	 */
	if (rssi < -80 && rt2x00dev->link.count > 20) {
		if (r17 >= 0x41) {
			r17 = rt2x00dev->link.vgc_level;
			rt2500pci_bbp_write(rt2x00dev, 17, r17);
		}
		return;
	}

	/*
	 * Special big-R17 for short distance
	 */
	if (rssi >= -58) {
		if (r17 != 0x50)
			rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
		return;
	}

	/*
	 * Special mid-R17 for middle distance
	 */
	if (rssi >= -74) {
		if (r17 != 0x41)
			rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
		return;
	}

	/*
	 * Leave short or middle distance condition, restore r17
	 * to the dynamic tuning range.
	 */
	if (r17 >= 0x41) {
		rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
		return;
	}

dynamic_cca_tune:

	/*
	 * R17 is inside the dynamic tuning range,
	 * start tuning the link based on the false cca counter.
	 */
679
	if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
680 681
		rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
		rt2x00dev->link.vgc_level = r17;
682
	} else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
683 684 685 686 687 688 689 690 691 692 693
		rt2500pci_bbp_write(rt2x00dev, 17, --r17);
		rt2x00dev->link.vgc_level = r17;
	}
}

/*
 * Initialization functions.
 */
static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
{
	struct data_ring *ring = rt2x00dev->rx;
694
	__le32 *rxd;
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	unsigned int i;
	u32 word;

	memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));

	for (i = 0; i < ring->stats.limit; i++) {
		rxd = ring->entry[i].priv;

		rt2x00_desc_read(rxd, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
				   ring->entry[i].data_dma);
		rt2x00_desc_write(rxd, 1, word);

		rt2x00_desc_read(rxd, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
		rt2x00_desc_write(rxd, 0, word);
	}

	rt2x00_ring_index_clear(rt2x00dev->rx);
}

static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
{
	struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
719
	__le32 *txd;
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	unsigned int i;
	u32 word;

	memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));

	for (i = 0; i < ring->stats.limit; i++) {
		txd = ring->entry[i].priv;

		rt2x00_desc_read(txd, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
				   ring->entry[i].data_dma);
		rt2x00_desc_write(txd, 1, word);

		rt2x00_desc_read(txd, 0, &word);
		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
		rt2x00_desc_write(txd, 0, word);
	}

	rt2x00_ring_index_clear(ring);
}

static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Initialize rings.
	 */
	rt2500pci_init_rxring(rt2x00dev);
	rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
	rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
	rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
	rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);

	/*
	 * Initialize registers.
	 */
	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
			   rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
			   rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
			   rt2x00dev->bcn[1].stats.limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
			   rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
			   rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);

	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
			   rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);

	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
			   rt2x00dev->bcn[1].data_dma);
	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);

	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
			   rt2x00dev->bcn[0].data_dma);
	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
			   rt2x00dev->rx->data_dma);
	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);

	return 0;
}

static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);

	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);

	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
			   rt2x00dev->rx->data_size / 128);
	rt2x00pci_register_write(rt2x00dev, CSR9, reg);

	/*
	 * Always use CWmin and CWmax set in descriptor.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);

	rt2x00pci_register_write(rt2x00dev, CNT3, 0);

	rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);

	rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
	rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);

	rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
	rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);

	rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
	rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);

	rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
	rt2x00pci_register_write(rt2x00dev, PCICSR, reg);

	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);

	rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
	rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);

	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);

	rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);

	rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	/*
	 * We must clear the FCS and FIFO error count.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);

	return 0;
}

static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2500pci_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
			goto continue_csr_init;
		NOTICE(rt2x00dev, "Waiting for BBP register.\n");
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;

continue_csr_init:
	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);

	DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
			      reg_id, value);
			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}
	DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
				enum dev_state state)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
	rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
			   state == STATE_RADIO_RX_OFF);
	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
}

static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
	int mask = (state == STATE_RADIO_IRQ_OFF);
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
}

static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Initialize all registers.
	 */
	if (rt2500pci_init_rings(rt2x00dev) ||
	    rt2500pci_init_registers(rt2x00dev) ||
	    rt2500pci_init_bbp(rt2x00dev)) {
		ERROR(rt2x00dev, "Register initialization failed.\n");
		return -EIO;
	}

	/*
	 * Enable interrupts.
	 */
	rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);

	/*
	 * Enable LED
	 */
	rt2500pci_enable_led(rt2x00dev);

	return 0;
}

static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Disable LED
	 */
	rt2500pci_disable_led(rt2x00dev);

	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);

	/*
	 * Disable synchronisation.
	 */
	rt2x00pci_register_write(rt2x00dev, CSR14, 0);

	/*
	 * Cancel RX and TX.
	 */
	rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
	rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
	rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);

	/*
	 * Disable interrupts.
	 */
	rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
}

static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	u32 reg;
	unsigned int i;
	char put_to_sleep;
	char bbp_state;
	char rf_state;

	put_to_sleep = (state != STATE_AWAKE);

	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
		bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
		rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
		if (bbp_state == state && rf_state == state)
			return 0;
		msleep(10);
	}

	NOTICE(rt2x00dev, "Device failed to enter state %d, "
	       "current device state: bbp %d and rf %d.\n",
	       state, bbp_state, rf_state);

	return -EBUSY;
}

static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2500pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt2500pci_disable_radio(rt2x00dev);
		break;
	case STATE_RADIO_RX_ON:
	case STATE_RADIO_RX_OFF:
		rt2500pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2500pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	return retval;
}

/*
 * TX descriptor initialization
 */
static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1170
				    __le32 *txd,
1171
				    struct txdata_entry_desc *desc,
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
				    struct ieee80211_hdr *ieee80211hdr,
				    unsigned int length,
				    struct ieee80211_tx_control *control)
{
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
	rt2x00_desc_read(txd, 2, &word);
	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
	rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
	rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
	rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
	rt2x00_desc_write(txd, 3, word);

	rt2x00_desc_read(txd, 10, &word);
	rt2x00_set_field32(&word, TXD_W10_RTS,
			   test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
	rt2x00_desc_write(txd, 10, word);

	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
			   test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
	rt2x00_set_field32(&word, TXD_W0_ACK,
1206
			   test_bit(ENTRY_TXD_ACK, &desc->flags));
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
	rt2x00_set_field32(&word, TXD_W0_OFDM,
			   test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
	rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
			   !!(control->flags &
			      IEEE80211_TXCTL_LONG_RETRY_LIMIT));
	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
	rt2x00_desc_write(txd, 0, word);
}

/*
 * TX data initialization
 */
static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
				    unsigned int queue)
{
	u32 reg;

	if (queue == IEEE80211_TX_QUEUE_BEACON) {
		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
		if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
			rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
			rt2x00pci_register_write(rt2x00dev, CSR14, reg);
		}
		return;
	}

	rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1239 1240 1241 1242 1243 1244
	rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
			   (queue == IEEE80211_TX_QUEUE_DATA0));
	rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
			   (queue == IEEE80211_TX_QUEUE_DATA1));
	rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
			   (queue == IEEE80211_TX_QUEUE_AFTER_BEACON));
1245 1246 1247 1248 1249 1250
	rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
}

/*
 * RX control handlers
 */
1251 1252
static void rt2500pci_fill_rxdone(struct data_entry *entry,
				  struct rxdata_entry_desc *desc)
1253
{
1254
	__le32 *rxd = entry->priv;
1255 1256 1257 1258 1259 1260
	u32 word0;
	u32 word2;

	rt2x00_desc_read(rxd, 0, &word0);
	rt2x00_desc_read(rxd, 2, &word2);

1261 1262 1263 1264 1265
	desc->flags = 0;
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
		desc->flags |= RX_FLAG_FAILED_FCS_CRC;
	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
		desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1266

1267 1268
	desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
	desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1269
	    entry->ring->rt2x00dev->rssi_offset;
1270 1271
	desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
	desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1272 1273 1274 1275 1276 1277 1278 1279 1280
}

/*
 * Interrupt functions.
 */
static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
{
	struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
	struct data_entry *entry;
1281
	__le32 *txd;
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	u32 word;
	int tx_status;
	int retry;

	while (!rt2x00_ring_empty(ring)) {
		entry = rt2x00_get_data_entry_done(ring);
		txd = entry->priv;
		rt2x00_desc_read(txd, 0, &word);

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			break;

		/*
		 * Obtain the status about this packet.
		 */
		tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
		retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);

1301
		rt2x00pci_txdone(rt2x00dev, entry, tx_status, retry);
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	}
}

static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg;

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
	rt2x00pci_register_write(rt2x00dev, CSR7, reg);

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

	/*
	 * Handle interrupts, walk through all bits
	 * and run the tasks, the bits are checked in order of
	 * priority.
	 */

	/*
	 * 1 - Beacon timer expired interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
		rt2x00lib_beacondone(rt2x00dev);

	/*
	 * 2 - Rx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_RXDONE))
		rt2x00pci_rxdone(rt2x00dev);

	/*
	 * 3 - Atim ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
		rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);

	/*
	 * 4 - Priority ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
		rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);

	/*
	 * 5 - Tx ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
		rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);

	return IRQ_HANDLED;
}

/*
 * Device probe functions.
 */
static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2500pci_eepromregister_read;
	eeprom.register_write = rt2500pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
1392 1393
		DECLARE_MAC_BUF(macbuf);

1394
		random_ether_addr(mac);
1395 1396
		EEPROM(rt2x00dev, "MAC: %s\n",
		       print_mac(macbuf, mac));
1397 1398 1399 1400 1401
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
I
Ivo van Doorn 已提交
1402 1403 1404 1405 1406 1407
		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
				   ANTENNA_SW_DIVERSITY);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
				   ANTENNA_SW_DIVERSITY);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
				   LED_MODE_DEFAULT);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
				   DEFAULT_RSSI_OFFSET);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
		EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
	}

	return 0;
}

static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
	rt2x00_set_chip(rt2x00dev, RT2560, value, reg);

	if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

	/*
	 * Identify default antenna configuration.
	 */
1466
	rt2x00dev->default_ant.tx =
1467
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1468
	rt2x00dev->default_ant.rx =
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

	/*
	 * Store led mode, for correct led behaviour.
	 */
	rt2x00dev->led_mode =
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);

	/*
	 * Detect if this device has an hardware controlled radio.
	 */
1480
#ifdef CONFIG_RT2500PCI_RFKILL
1481
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1482
		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1483
#endif /* CONFIG_RT2500PCI_RFKILL */
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

	/*
	 * Check if the BBP tuning should be enabled.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);

	if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
		__set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);

	/*
	 * Read the RSSI <-> dBm offset information.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
	rt2x00dev->rssi_offset =
	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);

	return 0;
}

/*
 * RF value list for RF2522
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2522[] = {
	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
};

/*
 * RF value list for RF2523
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2523[] = {
	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
};

/*
 * RF value list for RF2524
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2524[] = {
	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
};

/*
 * RF value list for RF2525
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2525[] = {
	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
};

/*
 * RF value list for RF2525e
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2525e[] = {
	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
};

/*
 * RF value list for RF5222
 * Supports: 2.4 GHz & 5.2 GHz
 */
static const struct rf_channel rf_vals_5222[] = {
	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },

	/* 802.11 UNII */
	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
};

static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
	u8 *txpower;
	unsigned int i;

	/*
	 * Initialize all hw fields.
	 */
1667
	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	rt2x00dev->hw->extra_tx_headroom = 0;
	rt2x00dev->hw->max_signal = MAX_SIGNAL;
	rt2x00dev->hw->max_rssi = MAX_RX_SSI;
	rt2x00dev->hw->queues = 2;

	SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
	 * Convert tx_power array in eeprom.
	 */
	txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
	for (i = 0; i < 14; i++)
		txpower[i] = TXPOWER_FROM_DEV(txpower[i]);

	/*
	 * Initialize hw_mode information.
	 */
	spec->num_modes = 2;
	spec->num_rates = 12;
	spec->tx_power_a = NULL;
	spec->tx_power_bg = txpower;
	spec->tx_power_default = DEFAULT_TXPOWER;

	if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
		spec->channels = rf_vals_bg_2522;
	} else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
		spec->channels = rf_vals_bg_2523;
	} else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
		spec->channels = rf_vals_bg_2524;
	} else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
		spec->channels = rf_vals_bg_2525;
	} else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
		spec->channels = rf_vals_bg_2525e;
	} else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
		spec->channels = rf_vals_5222;
		spec->num_modes = 3;
	}
}

static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2500pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt2500pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
	rt2500pci_probe_hw_mode(rt2x00dev);

	/*
	 * This device requires the beacon ring
	 */
1739
	__set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
				       unsigned int changed_flags,
				       unsigned int *total_flags,
				       int mc_count,
				       struct dev_addr_list *mc_list)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	struct interface *intf = &rt2x00dev->interface;
	u32 reg;

	/*
	 * Mask off any flags we are going to ignore from
	 * the total_flags field.
	 */
	*total_flags &=
	    FIF_ALLMULTI |
	    FIF_FCSFAIL |
	    FIF_PLCPFAIL |
	    FIF_CONTROL |
	    FIF_OTHER_BSS |
	    FIF_PROMISC_IN_BSS;

	/*
	 * Apply some rules to the filters:
	 * - Some filters imply different filters to be set.
	 * - Some things we can't filter out at all.
	 * - Some filters are set based on interface type.
	 */
	if (mc_count)
		*total_flags |= FIF_ALLMULTI;
1782 1783
	if (*total_flags & FIF_OTHER_BSS ||
	    *total_flags & FIF_PROMISC_IN_BSS)
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
		*total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
	if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
		*total_flags |= FIF_PROMISC_IN_BSS;

	/*
	 * Check if there is any work left for us.
	 */
	if (intf->filter == *total_flags)
		return;
	intf->filter = *total_flags;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * and broadcast frames will always be accepted since
	 * there is no filter for it at this time.
	 */
	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
			   !(*total_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
			   !(*total_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
			   !(*total_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
			   !(*total_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
			   !(*total_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
			   !(*total_flags & FIF_ALLMULTI));
	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
}

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
				     u32 short_retry, u32 long_retry)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
	rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);

	return 0;
}

static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);

	return tsf;
}

static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;

	rt2x00pci_register_write(rt2x00dev, CSR16, 0);
	rt2x00pci_register_write(rt2x00dev, CSR17, 0);
}

static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
}

static const struct ieee80211_ops rt2500pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
1866 1867
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
1868 1869 1870 1871
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.config_interface	= rt2x00mac_config_interface,
1872
	.configure_filter	= rt2500pci_configure_filter,
1873 1874
	.get_stats		= rt2x00mac_get_stats,
	.set_retry_limit	= rt2500pci_set_retry_limit,
1875
	.erp_ie_changed		= rt2x00mac_erp_ie_changed,
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	.conf_tx		= rt2x00mac_conf_tx,
	.get_tx_stats		= rt2x00mac_get_tx_stats,
	.get_tsf		= rt2500pci_get_tsf,
	.reset_tsf		= rt2500pci_reset_tsf,
	.beacon_update		= rt2x00pci_beacon_update,
	.tx_last_beacon		= rt2500pci_tx_last_beacon,
};

static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
	.irq_handler		= rt2500pci_interrupt,
	.probe_hw		= rt2500pci_probe_hw,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.set_device_state	= rt2500pci_set_device_state,
	.rfkill_poll		= rt2500pci_rfkill_poll,
	.link_stats		= rt2500pci_link_stats,
	.reset_tuner		= rt2500pci_reset_tuner,
	.link_tuner		= rt2500pci_link_tuner,
	.write_tx_desc		= rt2500pci_write_tx_desc,
	.write_tx_data		= rt2x00pci_write_tx_data,
	.kick_tx_queue		= rt2500pci_kick_tx_queue,
	.fill_rxdone		= rt2500pci_fill_rxdone,
	.config_mac_addr	= rt2500pci_config_mac_addr,
	.config_bssid		= rt2500pci_config_bssid,
	.config_type		= rt2500pci_config_type,
1901
	.config_preamble	= rt2500pci_config_preamble,
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
	.config			= rt2500pci_config,
};

static const struct rt2x00_ops rt2500pci_ops = {
	.name		= DRV_NAME,
	.rxd_size	= RXD_DESC_SIZE,
	.txd_size	= TXD_DESC_SIZE,
	.eeprom_size	= EEPROM_SIZE,
	.rf_size	= RF_SIZE,
	.lib		= &rt2500pci_rt2x00_ops,
	.hw		= &rt2500pci_mac80211_ops,
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
	.debugfs	= &rt2500pci_rt2x00debug,
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2500pci module information.
 */
static struct pci_device_id rt2500pci_device_table[] = {
	{ PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
MODULE_LICENSE("GPL");

static struct pci_driver rt2500pci_driver = {
	.name		= DRV_NAME,
	.id_table	= rt2500pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};

static int __init rt2500pci_init(void)
{
	return pci_register_driver(&rt2500pci_driver);
}

static void __exit rt2500pci_exit(void)
{
	pci_unregister_driver(&rt2500pci_driver);
}

module_init(rt2500pci_init);
module_exit(rt2500pci_exit);