traps.c 48.8 KB
Newer Older
1 2
/*
 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3
 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 *
 *  Modified by Cort Dougan (cort@cs.nmt.edu)
 *  and Paul Mackerras (paulus@samba.org)
 */

/*
 * This file handles the architecture-dependent parts of hardware exceptions
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
P
Paul Mackerras 已提交
24
#include <linux/ptrace.h>
25 26 27 28
#include <linux/user.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/module.h>
P
Paul Mackerras 已提交
29
#include <linux/prctl.h>
30 31
#include <linux/delay.h>
#include <linux/kprobes.h>
32
#include <linux/kexec.h>
33
#include <linux/backlight.h>
34
#include <linux/bug.h>
35
#include <linux/kdebug.h>
36
#include <linux/debugfs.h>
37
#include <linux/ratelimit.h>
38
#include <linux/context_tracking.h>
39

40
#include <asm/emulated_ops.h>
41 42 43
#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/io.h>
44 45
#include <asm/machdep.h>
#include <asm/rtas.h>
46
#include <asm/pmc.h>
47 48 49 50
#include <asm/reg.h>
#ifdef CONFIG_PMAC_BACKLIGHT
#include <asm/backlight.h>
#endif
51
#ifdef CONFIG_PPC64
52
#include <asm/firmware.h>
53
#include <asm/processor.h>
54
#include <asm/tm.h>
55
#endif
56
#include <asm/kexec.h>
57
#include <asm/ppc-opcode.h>
58
#include <asm/rio.h>
59
#include <asm/fadump.h>
60
#include <asm/switch_to.h>
61
#include <asm/tm.h>
62
#include <asm/debug.h>
63
#include <sysdev/fsl_pci.h>
64

65
#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
66 67 68 69 70
int (*__debugger)(struct pt_regs *regs) __read_mostly;
int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
71
int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
72
int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
73 74 75 76 77 78

EXPORT_SYMBOL(__debugger);
EXPORT_SYMBOL(__debugger_ipi);
EXPORT_SYMBOL(__debugger_bpt);
EXPORT_SYMBOL(__debugger_sstep);
EXPORT_SYMBOL(__debugger_iabr_match);
79
EXPORT_SYMBOL(__debugger_break_match);
80 81 82
EXPORT_SYMBOL(__debugger_fault_handler);
#endif

83 84 85 86 87 88 89
/* Transactional Memory trap debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

90 91 92 93
/*
 * Trap & Exception support
 */

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#ifdef CONFIG_PMAC_BACKLIGHT
static void pmac_backlight_unblank(void)
{
	mutex_lock(&pmac_backlight_mutex);
	if (pmac_backlight) {
		struct backlight_properties *props;

		props = &pmac_backlight->props;
		props->brightness = props->max_brightness;
		props->power = FB_BLANK_UNBLANK;
		backlight_update_status(pmac_backlight);
	}
	mutex_unlock(&pmac_backlight_mutex);
}
#else
static inline void pmac_backlight_unblank(void) { }
#endif

A
Anton Blanchard 已提交
112 113 114 115 116 117
static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
static int die_owner = -1;
static unsigned int die_nest_count;
static int die_counter;

static unsigned __kprobes long oops_begin(struct pt_regs *regs)
118
{
A
Anton Blanchard 已提交
119
	int cpu;
120
	unsigned long flags;
121 122 123 124

	if (debugger(regs))
		return 1;

125 126
	oops_enter();

A
Anton Blanchard 已提交
127 128 129 130 131 132 133 134
	/* racy, but better than risking deadlock. */
	raw_local_irq_save(flags);
	cpu = smp_processor_id();
	if (!arch_spin_trylock(&die_lock)) {
		if (cpu == die_owner)
			/* nested oops. should stop eventually */;
		else
			arch_spin_lock(&die_lock);
135
	}
A
Anton Blanchard 已提交
136 137 138 139 140 141 142 143
	die_nest_count++;
	die_owner = cpu;
	console_verbose();
	bust_spinlocks(1);
	if (machine_is(powermac))
		pmac_backlight_unblank();
	return flags;
}
144

A
Anton Blanchard 已提交
145 146 147
static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
			       int signr)
{
148
	bust_spinlocks(0);
A
Anton Blanchard 已提交
149
	die_owner = -1;
150
	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
A
Anton Blanchard 已提交
151
	die_nest_count--;
152 153
	oops_exit();
	printk("\n");
A
Anton Blanchard 已提交
154 155 156 157
	if (!die_nest_count)
		/* Nest count reaches zero, release the lock. */
		arch_spin_unlock(&die_lock);
	raw_local_irq_restore(flags);
158

159 160
	crash_fadump(regs, "die oops");

161 162 163 164 165
	/*
	 * A system reset (0x100) is a request to dump, so we always send
	 * it through the crashdump code.
	 */
	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
166
		crash_kexec(regs);
167 168 169 170 171 172 173 174

		/*
		 * We aren't the primary crash CPU. We need to send it
		 * to a holding pattern to avoid it ending up in the panic
		 * code.
		 */
		crash_kexec_secondary(regs);
	}
175

A
Anton Blanchard 已提交
176 177 178
	if (!signr)
		return;

179 180 181 182 183 184 185 186 187 188 189
	/*
	 * While our oops output is serialised by a spinlock, output
	 * from panic() called below can race and corrupt it. If we
	 * know we are going to panic, delay for 1 second so we have a
	 * chance to get clean backtraces from all CPUs that are oopsing.
	 */
	if (in_interrupt() || panic_on_oops || !current->pid ||
	    is_global_init(current)) {
		mdelay(MSEC_PER_SEC);
	}

190 191
	if (in_interrupt())
		panic("Fatal exception in interrupt");
H
Horms 已提交
192
	if (panic_on_oops)
193
		panic("Fatal exception");
A
Anton Blanchard 已提交
194 195
	do_exit(signr);
}
H
Horms 已提交
196

A
Anton Blanchard 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
{
	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
#ifdef CONFIG_PREEMPT
	printk("PREEMPT ");
#endif
#ifdef CONFIG_SMP
	printk("SMP NR_CPUS=%d ", NR_CPUS);
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
	printk("DEBUG_PAGEALLOC ");
#endif
#ifdef CONFIG_NUMA
	printk("NUMA ");
#endif
	printk("%s\n", ppc_md.name ? ppc_md.name : "");

	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
		return 1;

	print_modules();
	show_regs(regs);
219 220 221 222

	return 0;
}

A
Anton Blanchard 已提交
223 224 225 226 227 228 229 230 231
void die(const char *str, struct pt_regs *regs, long err)
{
	unsigned long flags = oops_begin(regs);

	if (__die(str, regs, err))
		err = 0;
	oops_end(flags, regs, err);
}

232 233 234 235 236 237 238 239 240
void user_single_step_siginfo(struct task_struct *tsk,
				struct pt_regs *regs, siginfo_t *info)
{
	memset(info, 0, sizeof(*info));
	info->si_signo = SIGTRAP;
	info->si_code = TRAP_TRACE;
	info->si_addr = (void __user *)regs->nip;
}

241 242 243
void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
{
	siginfo_t info;
244 245 246 247
	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
			"at %08lx nip %08lx lr %08lx code %x\n";
	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
			"at %016lx nip %016lx lr %016lx code %x\n";
248 249

	if (!user_mode(regs)) {
A
Anton Blanchard 已提交
250 251 252 253 254
		die("Exception in kernel mode", regs, signr);
		return;
	}

	if (show_unhandled_signals && unhandled_signal(current, signr)) {
255 256 257 258
		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
				   current->comm, current->pid, signr,
				   addr, regs->nip, regs->link, code);
	}
259

260
	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
261 262
		local_irq_enable();

263
	current->thread.trap_nr = code;
264 265 266 267 268 269 270 271 272 273 274
	memset(&info, 0, sizeof(info));
	info.si_signo = signr;
	info.si_code = code;
	info.si_addr = (void __user *) addr;
	force_sig_info(signr, &info, current);
}

#ifdef CONFIG_PPC64
void system_reset_exception(struct pt_regs *regs)
{
	/* See if any machine dependent calls */
275 276 277 278
	if (ppc_md.system_reset_exception) {
		if (ppc_md.system_reset_exception(regs))
			return;
	}
279

P
Paul Mackerras 已提交
280
	die("System Reset", regs, SIGABRT);
281 282 283 284 285 286 287

	/* Must die if the interrupt is not recoverable */
	if (!(regs->msr & MSR_RI))
		panic("Unrecoverable System Reset");

	/* What should we do here? We could issue a shutdown or hard reset. */
}
288 289 290 291 292 293 294 295

/*
 * This function is called in real mode. Strictly no printk's please.
 *
 * regs->nip and regs->msr contains srr0 and ssr1.
 */
long machine_check_early(struct pt_regs *regs)
{
296 297 298 299 300
	long handled = 0;

	if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
		handled = cur_cpu_spec->machine_check_early(regs);
	return handled;
301 302
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316
#endif

/*
 * I/O accesses can cause machine checks on powermacs.
 * Check if the NIP corresponds to the address of a sync
 * instruction for which there is an entry in the exception
 * table.
 * Note that the 601 only takes a machine check on TEA
 * (transfer error ack) signal assertion, and does not
 * set any of the top 16 bits of SRR1.
 *  -- paulus.
 */
static inline int check_io_access(struct pt_regs *regs)
{
317
#ifdef CONFIG_PPC32
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
	unsigned long msr = regs->msr;
	const struct exception_table_entry *entry;
	unsigned int *nip = (unsigned int *)regs->nip;

	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
	    && (entry = search_exception_tables(regs->nip)) != NULL) {
		/*
		 * Check that it's a sync instruction, or somewhere
		 * in the twi; isync; nop sequence that inb/inw/inl uses.
		 * As the address is in the exception table
		 * we should be able to read the instr there.
		 * For the debug message, we look at the preceding
		 * load or store.
		 */
		if (*nip == 0x60000000)		/* nop */
			nip -= 2;
		else if (*nip == 0x4c00012c)	/* isync */
			--nip;
		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
			/* sync or twi */
			unsigned int rb;

			--nip;
			rb = (*nip >> 11) & 0x1f;
			printk(KERN_DEBUG "%s bad port %lx at %p\n",
			       (*nip & 0x100)? "OUT to": "IN from",
			       regs->gpr[rb] - _IO_BASE, nip);
			regs->msr |= MSR_RI;
			regs->nip = entry->fixup;
			return 1;
		}
	}
350
#endif /* CONFIG_PPC32 */
351 352 353
	return 0;
}

354
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
355 356 357 358 359 360
/* On 4xx, the reason for the machine check or program exception
   is in the ESR. */
#define get_reason(regs)	((regs)->dsisr)
#ifndef CONFIG_FSL_BOOKE
#define get_mc_reason(regs)	((regs)->dsisr)
#else
361
#define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
362 363 364 365 366 367 368
#endif
#define REASON_FP		ESR_FP
#define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
#define REASON_PRIVILEGED	ESR_PPR
#define REASON_TRAP		ESR_PTR

/* single-step stuff */
369 370
#define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
#define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
371 372 373 374 375 376

#else
/* On non-4xx, the reason for the machine check or program
   exception is in the MSR. */
#define get_reason(regs)	((regs)->msr)
#define get_mc_reason(regs)	((regs)->msr)
377
#define REASON_TM		0x200000
378 379 380 381 382 383 384 385 386
#define REASON_FP		0x100000
#define REASON_ILLEGAL		0x80000
#define REASON_PRIVILEGED	0x40000
#define REASON_TRAP		0x20000

#define single_stepping(regs)	((regs)->msr & MSR_SE)
#define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
#endif

387 388
#if defined(CONFIG_4xx)
int machine_check_4xx(struct pt_regs *regs)
389
{
390
	unsigned long reason = get_mc_reason(regs);
391 392 393 394 395 396 397

	if (reason & ESR_IMCP) {
		printk("Instruction");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
	} else
		printk("Data");
	printk(" machine check in kernel mode.\n");
398 399 400 401 402 403 404 405

	return 0;
}

int machine_check_440A(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
	printk("Machine check in kernel mode.\n");
	if (reason & ESR_IMCP){
		printk("Instruction Synchronous Machine Check exception\n");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
	}
	else {
		u32 mcsr = mfspr(SPRN_MCSR);
		if (mcsr & MCSR_IB)
			printk("Instruction Read PLB Error\n");
		if (mcsr & MCSR_DRB)
			printk("Data Read PLB Error\n");
		if (mcsr & MCSR_DWB)
			printk("Data Write PLB Error\n");
		if (mcsr & MCSR_TLBP)
			printk("TLB Parity Error\n");
		if (mcsr & MCSR_ICP){
			flush_instruction_cache();
			printk("I-Cache Parity Error\n");
		}
		if (mcsr & MCSR_DCSP)
			printk("D-Cache Search Parity Error\n");
		if (mcsr & MCSR_DCFP)
			printk("D-Cache Flush Parity Error\n");
		if (mcsr & MCSR_IMPE)
			printk("Machine Check exception is imprecise\n");

		/* Clear MCSR */
		mtspr(SPRN_MCSR, mcsr);
	}
435 436
	return 0;
}
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476

int machine_check_47x(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);
	u32 mcsr;

	printk(KERN_ERR "Machine check in kernel mode.\n");
	if (reason & ESR_IMCP) {
		printk(KERN_ERR
		       "Instruction Synchronous Machine Check exception\n");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
		return 0;
	}
	mcsr = mfspr(SPRN_MCSR);
	if (mcsr & MCSR_IB)
		printk(KERN_ERR "Instruction Read PLB Error\n");
	if (mcsr & MCSR_DRB)
		printk(KERN_ERR "Data Read PLB Error\n");
	if (mcsr & MCSR_DWB)
		printk(KERN_ERR "Data Write PLB Error\n");
	if (mcsr & MCSR_TLBP)
		printk(KERN_ERR "TLB Parity Error\n");
	if (mcsr & MCSR_ICP) {
		flush_instruction_cache();
		printk(KERN_ERR "I-Cache Parity Error\n");
	}
	if (mcsr & MCSR_DCSP)
		printk(KERN_ERR "D-Cache Search Parity Error\n");
	if (mcsr & PPC47x_MCSR_GPR)
		printk(KERN_ERR "GPR Parity Error\n");
	if (mcsr & PPC47x_MCSR_FPR)
		printk(KERN_ERR "FPR Parity Error\n");
	if (mcsr & PPC47x_MCSR_IPR)
		printk(KERN_ERR "Machine Check exception is imprecise\n");

	/* Clear MCSR */
	mtspr(SPRN_MCSR, mcsr);

	return 0;
}
477
#elif defined(CONFIG_E500)
478 479 480 481 482 483
int machine_check_e500mc(struct pt_regs *regs)
{
	unsigned long mcsr = mfspr(SPRN_MCSR);
	unsigned long reason = mcsr;
	int recoverable = 1;

484
	if (reason & MCSR_LD) {
485 486 487 488 489
		recoverable = fsl_rio_mcheck_exception(regs);
		if (recoverable == 1)
			goto silent_out;
	}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");

	if (reason & MCSR_ICPERR) {
		printk("Instruction Cache Parity Error\n");

		/*
		 * This is recoverable by invalidating the i-cache.
		 */
		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
			;

		/*
		 * This will generally be accompanied by an instruction
		 * fetch error report -- only treat MCSR_IF as fatal
		 * if it wasn't due to an L1 parity error.
		 */
		reason &= ~MCSR_IF;
	}

	if (reason & MCSR_DCPERR_MC) {
		printk("Data Cache Parity Error\n");
516 517 518 519 520 521 522 523

		/*
		 * In write shadow mode we auto-recover from the error, but it
		 * may still get logged and cause a machine check.  We should
		 * only treat the non-write shadow case as non-recoverable.
		 */
		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
			recoverable = 0;
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	}

	if (reason & MCSR_L2MMU_MHIT) {
		printk("Hit on multiple TLB entries\n");
		recoverable = 0;
	}

	if (reason & MCSR_NMI)
		printk("Non-maskable interrupt\n");

	if (reason & MCSR_IF) {
		printk("Instruction Fetch Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_LD) {
		printk("Load Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_ST) {
		printk("Store Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_LDG) {
		printk("Guarded Load Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_TLBSYNC)
		printk("Simultaneous tlbsync operations\n");

	if (reason & MCSR_BSL2_ERR) {
		printk("Level 2 Cache Error\n");
		recoverable = 0;
	}

	if (reason & MCSR_MAV) {
		u64 addr;

		addr = mfspr(SPRN_MCAR);
		addr |= (u64)mfspr(SPRN_MCARU) << 32;

		printk("Machine Check %s Address: %#llx\n",
		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
	}

572
silent_out:
573 574 575 576
	mtspr(SPRN_MCSR, mcsr);
	return mfspr(SPRN_MCSR) == 0 && recoverable;
}

577 578 579 580
int machine_check_e500(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

581 582 583
	if (reason & MCSR_BUS_RBERR) {
		if (fsl_rio_mcheck_exception(regs))
			return 1;
584 585
		if (fsl_pci_mcheck_exception(regs))
			return 1;
586 587
	}

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");
	if (reason & MCSR_ICPERR)
		printk("Instruction Cache Parity Error\n");
	if (reason & MCSR_DCP_PERR)
		printk("Data Cache Push Parity Error\n");
	if (reason & MCSR_DCPERR)
		printk("Data Cache Parity Error\n");
	if (reason & MCSR_BUS_IAERR)
		printk("Bus - Instruction Address Error\n");
	if (reason & MCSR_BUS_RAERR)
		printk("Bus - Read Address Error\n");
	if (reason & MCSR_BUS_WAERR)
		printk("Bus - Write Address Error\n");
	if (reason & MCSR_BUS_IBERR)
		printk("Bus - Instruction Data Error\n");
	if (reason & MCSR_BUS_RBERR)
		printk("Bus - Read Data Bus Error\n");
	if (reason & MCSR_BUS_WBERR)
		printk("Bus - Read Data Bus Error\n");
	if (reason & MCSR_BUS_IPERR)
		printk("Bus - Instruction Parity Error\n");
	if (reason & MCSR_BUS_RPERR)
		printk("Bus - Read Parity Error\n");
615 616 617

	return 0;
}
618 619 620 621 622

int machine_check_generic(struct pt_regs *regs)
{
	return 0;
}
623 624 625 626 627
#elif defined(CONFIG_E200)
int machine_check_e200(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");
	if (reason & MCSR_CP_PERR)
		printk("Cache Push Parity Error\n");
	if (reason & MCSR_CPERR)
		printk("Cache Parity Error\n");
	if (reason & MCSR_EXCP_ERR)
		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
	if (reason & MCSR_BUS_IRERR)
		printk("Bus - Read Bus Error on instruction fetch\n");
	if (reason & MCSR_BUS_DRERR)
		printk("Bus - Read Bus Error on data load\n");
	if (reason & MCSR_BUS_WRERR)
		printk("Bus - Write Bus Error on buffered store or cache line push\n");
645 646 647 648 649 650 651 652

	return 0;
}
#else
int machine_check_generic(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from SRR1=%lx): ", reason);
	switch (reason & 0x601F0000) {
	case 0x80000:
		printk("Machine check signal\n");
		break;
	case 0:		/* for 601 */
	case 0x40000:
	case 0x140000:	/* 7450 MSS error and TEA */
		printk("Transfer error ack signal\n");
		break;
	case 0x20000:
		printk("Data parity error signal\n");
		break;
	case 0x10000:
		printk("Address parity error signal\n");
		break;
	case 0x20000000:
		printk("L1 Data Cache error\n");
		break;
	case 0x40000000:
		printk("L1 Instruction Cache error\n");
		break;
	case 0x00100000:
		printk("L2 data cache parity error\n");
		break;
	default:
		printk("Unknown values in msr\n");
	}
682 683
	return 0;
}
684
#endif /* everything else */
685 686 687

void machine_check_exception(struct pt_regs *regs)
{
688
	enum ctx_state prev_state = exception_enter();
689 690
	int recover = 0;

691 692
	__get_cpu_var(irq_stat).mce_exceptions++;

693 694 695 696 697 698
	/* See if any machine dependent calls. In theory, we would want
	 * to call the CPU first, and call the ppc_md. one if the CPU
	 * one returns a positive number. However there is existing code
	 * that assumes the board gets a first chance, so let's keep it
	 * that way for now and fix things later. --BenH.
	 */
699 700
	if (ppc_md.machine_check_exception)
		recover = ppc_md.machine_check_exception(regs);
701 702
	else if (cur_cpu_spec->machine_check)
		recover = cur_cpu_spec->machine_check(regs);
703

704
	if (recover > 0)
705
		goto bail;
706 707

#if defined(CONFIG_8xx) && defined(CONFIG_PCI)
708 709 710 711 712 713
	/* the qspan pci read routines can cause machine checks -- Cort
	 *
	 * yuck !!! that totally needs to go away ! There are better ways
	 * to deal with that than having a wart in the mcheck handler.
	 * -- BenH
	 */
714
	bad_page_fault(regs, regs->dar, SIGBUS);
715
	goto bail;
716 717
#endif

718
	if (debugger_fault_handler(regs))
719
		goto bail;
720 721

	if (check_io_access(regs))
722
		goto bail;
723

P
Paul Mackerras 已提交
724
	die("Machine check", regs, SIGBUS);
725 726 727 728

	/* Must die if the interrupt is not recoverable */
	if (!(regs->msr & MSR_RI))
		panic("Unrecoverable Machine check");
729 730 731

bail:
	exception_exit(prev_state);
732 733 734 735 736 737 738
}

void SMIException(struct pt_regs *regs)
{
	die("System Management Interrupt", regs, SIGABRT);
}

739
void unknown_exception(struct pt_regs *regs)
740
{
741 742
	enum ctx_state prev_state = exception_enter();

743 744 745 746
	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
	       regs->nip, regs->msr, regs->trap);

	_exception(SIGTRAP, regs, 0, 0);
747 748

	exception_exit(prev_state);
749 750
}

751
void instruction_breakpoint_exception(struct pt_regs *regs)
752
{
753 754
	enum ctx_state prev_state = exception_enter();

755 756
	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
					5, SIGTRAP) == NOTIFY_STOP)
757
		goto bail;
758
	if (debugger_iabr_match(regs))
759
		goto bail;
760
	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
761 762 763

bail:
	exception_exit(prev_state);
764 765 766 767 768 769 770
}

void RunModeException(struct pt_regs *regs)
{
	_exception(SIGTRAP, regs, 0, 0);
}

P
Paul Mackerras 已提交
771
void __kprobes single_step_exception(struct pt_regs *regs)
772
{
773 774
	enum ctx_state prev_state = exception_enter();

775
	clear_single_step(regs);
776 777 778

	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
					5, SIGTRAP) == NOTIFY_STOP)
779
		goto bail;
780
	if (debugger_sstep(regs))
781
		goto bail;
782 783

	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
784 785 786

bail:
	exception_exit(prev_state);
787 788 789 790 791 792 793 794
}

/*
 * After we have successfully emulated an instruction, we have to
 * check if the instruction was being single-stepped, and if so,
 * pretend we got a single-step exception.  This was pointed out
 * by Kumar Gala.  -- paulus
 */
P
Paul Mackerras 已提交
795
static void emulate_single_step(struct pt_regs *regs)
796
{
797 798
	if (single_stepping(regs))
		single_step_exception(regs);
799 800
}

801
static inline int __parse_fpscr(unsigned long fpscr)
802
{
803
	int ret = 0;
804 805 806

	/* Invalid operation */
	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
807
		ret = FPE_FLTINV;
808 809 810

	/* Overflow */
	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
811
		ret = FPE_FLTOVF;
812 813 814

	/* Underflow */
	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
815
		ret = FPE_FLTUND;
816 817 818

	/* Divide by zero */
	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
819
		ret = FPE_FLTDIV;
820 821 822

	/* Inexact result */
	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
823 824 825 826 827 828 829 830 831 832 833
		ret = FPE_FLTRES;

	return ret;
}

static void parse_fpe(struct pt_regs *regs)
{
	int code = 0;

	flush_fp_to_thread(current);

834
	code = __parse_fpscr(current->thread.fp_state.fpscr);
835 836 837 838 839 840

	_exception(SIGFPE, regs, code, regs->nip);
}

/*
 * Illegal instruction emulation support.  Originally written to
841 842 843 844 845 846 847
 * provide the PVR to user applications using the mfspr rd, PVR.
 * Return non-zero if we can't emulate, or -EFAULT if the associated
 * memory access caused an access fault.  Return zero on success.
 *
 * There are a couple of ways to do this, either "decode" the instruction
 * or directly match lots of bits.  In this case, matching lots of
 * bits is faster and easier.
848
 *
849 850 851 852 853 854 855 856 857 858 859
 */
static int emulate_string_inst(struct pt_regs *regs, u32 instword)
{
	u8 rT = (instword >> 21) & 0x1f;
	u8 rA = (instword >> 16) & 0x1f;
	u8 NB_RB = (instword >> 11) & 0x1f;
	u32 num_bytes;
	unsigned long EA;
	int pos = 0;

	/* Early out if we are an invalid form of lswx */
860
	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
861 862 863 864 865
		if ((rT == rA) || (rT == NB_RB))
			return -EINVAL;

	EA = (rA == 0) ? 0 : regs->gpr[rA];

866 867 868
	switch (instword & PPC_INST_STRING_MASK) {
		case PPC_INST_LSWX:
		case PPC_INST_STSWX:
869 870 871
			EA += NB_RB;
			num_bytes = regs->xer & 0x7f;
			break;
872 873
		case PPC_INST_LSWI:
		case PPC_INST_STSWI:
874 875 876 877 878 879 880 881 882 883 884
			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
			break;
		default:
			return -EINVAL;
	}

	while (num_bytes != 0)
	{
		u8 val;
		u32 shift = 8 * (3 - (pos & 0x3));

885 886 887 888
		/* if process is 32-bit, clear upper 32 bits of EA */
		if ((regs->msr & MSR_64BIT) == 0)
			EA &= 0xFFFFFFFF;

889 890 891
		switch ((instword & PPC_INST_STRING_MASK)) {
			case PPC_INST_LSWX:
			case PPC_INST_LSWI:
892 893 894 895 896 897 898 899
				if (get_user(val, (u8 __user *)EA))
					return -EFAULT;
				/* first time updating this reg,
				 * zero it out */
				if (pos == 0)
					regs->gpr[rT] = 0;
				regs->gpr[rT] |= val << shift;
				break;
900 901
			case PPC_INST_STSWI:
			case PPC_INST_STSWX:
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
				val = regs->gpr[rT] >> shift;
				if (put_user(val, (u8 __user *)EA))
					return -EFAULT;
				break;
		}
		/* move EA to next address */
		EA += 1;
		num_bytes--;

		/* manage our position within the register */
		if (++pos == 4) {
			pos = 0;
			if (++rT == 32)
				rT = 0;
		}
	}

	return 0;
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
{
	u32 ra,rs;
	unsigned long tmp;

	ra = (instword >> 16) & 0x1f;
	rs = (instword >> 21) & 0x1f;

	tmp = regs->gpr[rs];
	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
	regs->gpr[ra] = tmp;

	return 0;
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
static int emulate_isel(struct pt_regs *regs, u32 instword)
{
	u8 rT = (instword >> 21) & 0x1f;
	u8 rA = (instword >> 16) & 0x1f;
	u8 rB = (instword >> 11) & 0x1f;
	u8 BC = (instword >> 6) & 0x1f;
	u8 bit;
	unsigned long tmp;

	tmp = (rA == 0) ? 0 : regs->gpr[rA];
	bit = (regs->ccr >> (31 - BC)) & 0x1;

	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];

	return 0;
}

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static inline bool tm_abort_check(struct pt_regs *regs, int cause)
{
        /* If we're emulating a load/store in an active transaction, we cannot
         * emulate it as the kernel operates in transaction suspended context.
         * We need to abort the transaction.  This creates a persistent TM
         * abort so tell the user what caused it with a new code.
	 */
	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
		tm_enable();
		tm_abort(cause);
		return true;
	}
	return false;
}
#else
static inline bool tm_abort_check(struct pt_regs *regs, int reason)
{
	return false;
}
#endif

978 979 980 981 982
static int emulate_instruction(struct pt_regs *regs)
{
	u32 instword;
	u32 rd;

983
	if (!user_mode(regs))
984 985 986 987 988 989 990
		return -EINVAL;
	CHECK_FULL_REGS(regs);

	if (get_user(instword, (u32 __user *)(regs->nip)))
		return -EFAULT;

	/* Emulate the mfspr rD, PVR. */
991
	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
992
		PPC_WARN_EMULATED(mfpvr, regs);
993 994 995 996 997 998
		rd = (instword >> 21) & 0x1f;
		regs->gpr[rd] = mfspr(SPRN_PVR);
		return 0;
	}

	/* Emulating the dcba insn is just a no-op.  */
999
	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1000
		PPC_WARN_EMULATED(dcba, regs);
1001
		return 0;
1002
	}
1003 1004

	/* Emulate the mcrxr insn.  */
1005
	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1006
		int shift = (instword >> 21) & 0x1c;
1007 1008
		unsigned long msk = 0xf0000000UL >> shift;

1009
		PPC_WARN_EMULATED(mcrxr, regs);
1010 1011 1012 1013 1014 1015
		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
		regs->xer &= ~0xf0000000UL;
		return 0;
	}

	/* Emulate load/store string insn. */
1016
	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1017 1018 1019
		if (tm_abort_check(regs,
				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
			return -EINVAL;
1020
		PPC_WARN_EMULATED(string, regs);
1021
		return emulate_string_inst(regs, instword);
1022
	}
1023

1024
	/* Emulate the popcntb (Population Count Bytes) instruction. */
1025
	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1026
		PPC_WARN_EMULATED(popcntb, regs);
1027 1028 1029
		return emulate_popcntb_inst(regs, instword);
	}

1030
	/* Emulate isel (Integer Select) instruction */
1031
	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1032
		PPC_WARN_EMULATED(isel, regs);
1033 1034 1035
		return emulate_isel(regs, instword);
	}

1036 1037 1038 1039 1040 1041 1042
	/* Emulate sync instruction variants */
	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
		PPC_WARN_EMULATED(sync, regs);
		asm volatile("sync");
		return 0;
	}

1043 1044
#ifdef CONFIG_PPC64
	/* Emulate the mfspr rD, DSCR. */
1045 1046 1047 1048
	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
		PPC_INST_MFSPR_DSCR_USER) ||
	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
		PPC_INST_MFSPR_DSCR)) &&
1049 1050 1051 1052 1053 1054 1055
			cpu_has_feature(CPU_FTR_DSCR)) {
		PPC_WARN_EMULATED(mfdscr, regs);
		rd = (instword >> 21) & 0x1f;
		regs->gpr[rd] = mfspr(SPRN_DSCR);
		return 0;
	}
	/* Emulate the mtspr DSCR, rD. */
1056 1057 1058 1059
	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
		PPC_INST_MTSPR_DSCR_USER) ||
	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
		PPC_INST_MTSPR_DSCR)) &&
1060 1061 1062
			cpu_has_feature(CPU_FTR_DSCR)) {
		PPC_WARN_EMULATED(mtdscr, regs);
		rd = (instword >> 21) & 0x1f;
1063
		current->thread.dscr = regs->gpr[rd];
1064
		current->thread.dscr_inherit = 1;
1065
		mtspr(SPRN_DSCR, current->thread.dscr);
1066 1067 1068 1069
		return 0;
	}
#endif

1070 1071 1072
	return -EINVAL;
}

1073
int is_valid_bugaddr(unsigned long addr)
1074
{
1075
	return is_kernel_addr(addr);
1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
#ifdef CONFIG_MATH_EMULATION
static int emulate_math(struct pt_regs *regs)
{
	int ret;
	extern int do_mathemu(struct pt_regs *regs);

	ret = do_mathemu(regs);
	if (ret >= 0)
		PPC_WARN_EMULATED(math, regs);

	switch (ret) {
	case 0:
		emulate_single_step(regs);
		return 0;
	case 1: {
			int code = 0;
1094
			code = __parse_fpscr(current->thread.fp_state.fpscr);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
			_exception(SIGFPE, regs, code, regs->nip);
			return 0;
		}
	case -EFAULT:
		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
		return 0;
	}

	return -1;
}
#else
static inline int emulate_math(struct pt_regs *regs) { return -1; }
#endif

P
Paul Mackerras 已提交
1109
void __kprobes program_check_exception(struct pt_regs *regs)
1110
{
1111
	enum ctx_state prev_state = exception_enter();
1112 1113
	unsigned int reason = get_reason(regs);

1114
	/* We can now get here via a FP Unavailable exception if the core
1115
	 * has no FPU, in that case the reason flags will be 0 */
1116

1117 1118 1119
	if (reason & REASON_FP) {
		/* IEEE FP exception */
		parse_fpe(regs);
1120
		goto bail;
P
Paul Mackerras 已提交
1121 1122
	}
	if (reason & REASON_TRAP) {
1123 1124 1125
		/* Debugger is first in line to stop recursive faults in
		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
		if (debugger_bpt(regs))
1126
			goto bail;
1127

1128
		/* trap exception */
1129 1130
		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
				== NOTIFY_STOP)
1131
			goto bail;
1132 1133

		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1134
		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1135
			regs->nip += 4;
1136
			goto bail;
1137
		}
P
Paul Mackerras 已提交
1138
		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1139
		goto bail;
P
Paul Mackerras 已提交
1140
	}
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (reason & REASON_TM) {
		/* This is a TM "Bad Thing Exception" program check.
		 * This occurs when:
		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
		 *    transition in TM states.
		 * -  A trechkpt is attempted when transactional.
		 * -  A treclaim is attempted when non transactional.
		 * -  A tend is illegally attempted.
		 * -  writing a TM SPR when transactional.
		 */
		if (!user_mode(regs) &&
		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
			regs->nip += 4;
1155
			goto bail;
1156 1157 1158 1159 1160 1161 1162 1163 1164
		}
		/* If usermode caused this, it's done something illegal and
		 * gets a SIGILL slap on the wrist.  We call it an illegal
		 * operand to distinguish from the instruction just being bad
		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
		 * illegal /placement/ of a valid instruction.
		 */
		if (user_mode(regs)) {
			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1165
			goto bail;
1166 1167 1168 1169 1170 1171 1172
		} else {
			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
			       "at %lx (msr 0x%x)\n", regs->nip, reason);
			die("Unrecoverable exception", regs, SIGABRT);
		}
	}
#endif
P
Paul Mackerras 已提交
1173

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	/*
	 * If we took the program check in the kernel skip down to sending a
	 * SIGILL. The subsequent cases all relate to emulating instructions
	 * which we should only do for userspace. We also do not want to enable
	 * interrupts for kernel faults because that might lead to further
	 * faults, and loose the context of the original exception.
	 */
	if (!user_mode(regs))
		goto sigill;

1184 1185 1186
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();
1187

1188 1189 1190 1191 1192 1193
	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
	 * but there seems to be a hardware bug on the 405GP (RevD)
	 * that means ESR is sometimes set incorrectly - either to
	 * ESR_DST (!?) or 0.  In the process of chasing this with the
	 * hardware people - not sure if it can happen on any illegal
	 * instruction or only on FP instructions, whether there is a
1194 1195
	 * pattern to occurrences etc. -dgibson 31/Mar/2003
	 */
1196
	if (!emulate_math(regs))
1197
		goto bail;
1198

P
Paul Mackerras 已提交
1199 1200
	/* Try to emulate it if we should. */
	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1201 1202 1203 1204
		switch (emulate_instruction(regs)) {
		case 0:
			regs->nip += 4;
			emulate_single_step(regs);
1205
			goto bail;
1206 1207
		case -EFAULT:
			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1208
			goto bail;
1209 1210
		}
	}
P
Paul Mackerras 已提交
1211

1212
sigill:
P
Paul Mackerras 已提交
1213 1214 1215 1216
	if (reason & REASON_PRIVILEGED)
		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
	else
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1217 1218 1219

bail:
	exception_exit(prev_state);
1220 1221
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/*
 * This occurs when running in hypervisor mode on POWER6 or later
 * and an illegal instruction is encountered.
 */
void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
{
	regs->msr |= REASON_ILLEGAL;
	program_check_exception(regs);
}

1232
void alignment_exception(struct pt_regs *regs)
1233
{
1234
	enum ctx_state prev_state = exception_enter();
1235
	int sig, code, fixed = 0;
1236

1237 1238 1239 1240
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();

1241 1242 1243
	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
		goto bail;

1244 1245 1246
	/* we don't implement logging of alignment exceptions */
	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
		fixed = fix_alignment(regs);
1247 1248 1249 1250

	if (fixed == 1) {
		regs->nip += 4;	/* skip over emulated instruction */
		emulate_single_step(regs);
1251
		goto bail;
1252 1253
	}

1254
	/* Operand address was bad */
1255
	if (fixed == -EFAULT) {
1256 1257 1258 1259 1260
		sig = SIGSEGV;
		code = SEGV_ACCERR;
	} else {
		sig = SIGBUS;
		code = BUS_ADRALN;
1261
	}
1262 1263 1264 1265
	if (user_mode(regs))
		_exception(sig, regs, code, regs->dar);
	else
		bad_page_fault(regs, regs->dar, sig);
1266 1267 1268

bail:
	exception_exit(prev_state);
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
}

void StackOverflow(struct pt_regs *regs)
{
	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
	       current, regs->gpr[1]);
	debugger(regs);
	show_regs(regs);
	panic("kernel stack overflow");
}

void nonrecoverable_exception(struct pt_regs *regs)
{
	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
	       regs->nip, regs->msr);
	debugger(regs);
	die("nonrecoverable exception", regs, SIGKILL);
}

void trace_syscall(struct pt_regs *regs)
{
	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1291
	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1292 1293
	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
}
1294 1295 1296

void kernel_fp_unavailable_exception(struct pt_regs *regs)
{
1297 1298
	enum ctx_state prev_state = exception_enter();

1299 1300 1301
	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
			  "%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1302 1303

	exception_exit(prev_state);
1304 1305 1306 1307
}

void altivec_unavailable_exception(struct pt_regs *regs)
{
1308 1309
	enum ctx_state prev_state = exception_enter();

1310 1311 1312 1313
	if (user_mode(regs)) {
		/* A user program has executed an altivec instruction,
		   but this kernel doesn't support altivec. */
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1314
		goto bail;
1315
	}
1316

1317 1318 1319
	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
			"%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1320 1321 1322

bail:
	exception_exit(prev_state);
1323 1324
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
void vsx_unavailable_exception(struct pt_regs *regs)
{
	if (user_mode(regs)) {
		/* A user program has executed an vsx instruction,
		   but this kernel doesn't support vsx. */
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
		return;
	}

	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
			"%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
}

1339
#ifdef CONFIG_PPC64
1340
void facility_unavailable_exception(struct pt_regs *regs)
1341
{
1342
	static char *facility_strings[] = {
1343 1344 1345 1346 1347 1348 1349 1350
		[FSCR_FP_LG] = "FPU",
		[FSCR_VECVSX_LG] = "VMX/VSX",
		[FSCR_DSCR_LG] = "DSCR",
		[FSCR_PM_LG] = "PMU SPRs",
		[FSCR_BHRB_LG] = "BHRB",
		[FSCR_TM_LG] = "TM",
		[FSCR_EBB_LG] = "EBB",
		[FSCR_TAR_LG] = "TAR",
1351
	};
1352
	char *facility = "unknown";
1353
	u64 value;
1354 1355
	u8 status;
	bool hv;
1356

1357 1358
	hv = (regs->trap == 0xf80);
	if (hv)
1359
		value = mfspr(SPRN_HFSCR);
1360 1361 1362 1363 1364 1365 1366
	else
		value = mfspr(SPRN_FSCR);

	status = value >> 56;
	if (status == FSCR_DSCR_LG) {
		/* User is acessing the DSCR.  Set the inherit bit and allow
		 * the user to set it directly in future by setting via the
1367
		 * FSCR DSCR bit.  We always leave HFSCR DSCR set.
1368 1369
		 */
		current->thread.dscr_inherit = 1;
1370
		mtspr(SPRN_FSCR, value | FSCR_DSCR);
1371
		return;
1372 1373
	}

1374 1375 1376
	if ((status < ARRAY_SIZE(facility_strings)) &&
	    facility_strings[status])
		facility = facility_strings[status];
1377

1378 1379 1380 1381
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();

1382
	pr_err("%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1383
	       hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1384 1385 1386 1387 1388 1389

	if (user_mode(regs)) {
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
		return;
	}

1390
	die("Unexpected facility unavailable exception", regs, SIGABRT);
1391
}
1392
#endif
1393

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM

void fp_unavailable_tm(struct pt_regs *regs)
{
	/* Note:  This does not handle any kind of FP laziness. */

	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
		 regs->nip, regs->msr);

        /* We can only have got here if the task started using FP after
         * beginning the transaction.  So, the transactional regs are just a
         * copy of the checkpointed ones.  But, we still need to recheckpoint
         * as we're enabling FP for the process; it will return, abort the
         * transaction, and probably retry but now with FP enabled.  So the
         * checkpointed FP registers need to be loaded.
	 */
1410
	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1411 1412 1413 1414 1415 1416 1417 1418
	/* Reclaim didn't save out any FPRs to transact_fprs. */

	/* Enable FP for the task: */
	regs->msr |= (MSR_FP | current->thread.fpexc_mode);

	/* This loads and recheckpoints the FP registers from
	 * thread.fpr[].  They will remain in registers after the
	 * checkpoint so we don't need to reload them after.
1419 1420
	 * If VMX is in use, the VRs now hold checkpointed values,
	 * so we don't want to load the VRs from the thread_struct.
1421
	 */
1422 1423 1424 1425 1426 1427 1428 1429
	tm_recheckpoint(&current->thread, MSR_FP);

	/* If VMX is in use, get the transactional values back */
	if (regs->msr & MSR_VEC) {
		do_load_up_transact_altivec(&current->thread);
		/* At this point all the VSX state is loaded, so enable it */
		regs->msr |= MSR_VSX;
	}
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
}

void altivec_unavailable_tm(struct pt_regs *regs)
{
	/* See the comments in fp_unavailable_tm().  This function operates
	 * the same way.
	 */

	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
		 "MSR=%lx\n",
		 regs->nip, regs->msr);
1441
	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1442
	regs->msr |= MSR_VEC;
1443
	tm_recheckpoint(&current->thread, MSR_VEC);
1444
	current->thread.used_vr = 1;
1445 1446 1447 1448 1449

	if (regs->msr & MSR_FP) {
		do_load_up_transact_fpu(&current->thread);
		regs->msr |= MSR_VSX;
	}
1450 1451 1452 1453
}

void vsx_unavailable_tm(struct pt_regs *regs)
{
1454 1455
	unsigned long orig_msr = regs->msr;

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	/* See the comments in fp_unavailable_tm().  This works similarly,
	 * though we're loading both FP and VEC registers in here.
	 *
	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
	 * regs.  Either way, set MSR_VSX.
	 */

	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
		 "MSR=%lx\n",
		 regs->nip, regs->msr);

1467 1468 1469 1470 1471 1472 1473 1474
	current->thread.used_vsr = 1;

	/* If FP and VMX are already loaded, we have all the state we need */
	if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
		regs->msr |= MSR_VSX;
		return;
	}

1475
	/* This reclaims FP and/or VR regs if they're already enabled */
1476
	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1477 1478 1479

	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
		MSR_VSX;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

	/* This loads & recheckpoints FP and VRs; but we have
	 * to be sure not to overwrite previously-valid state.
	 */
	tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);

	if (orig_msr & MSR_FP)
		do_load_up_transact_fpu(&current->thread);
	if (orig_msr & MSR_VEC)
		do_load_up_transact_altivec(&current->thread);
1490 1491 1492
}
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

1493 1494
void performance_monitor_exception(struct pt_regs *regs)
{
1495 1496
	__get_cpu_var(irq_stat).pmu_irqs++;

1497 1498 1499
	perf_irq(regs);
}

P
Paul Mackerras 已提交
1500
#ifdef CONFIG_8xx
1501 1502 1503 1504 1505 1506
void SoftwareEmulation(struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);

	if (!user_mode(regs)) {
		debugger(regs);
1507 1508
		die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
			regs, SIGFPE);
1509 1510
	}

1511
	if (!emulate_math(regs))
1512
		return;
1513

1514
	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1515
}
P
Paul Mackerras 已提交
1516
#endif /* CONFIG_8xx */
1517

1518
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
{
	int changed = 0;
	/*
	 * Determine the cause of the debug event, clear the
	 * event flags and send a trap to the handler. Torez
	 */
	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1529
		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
#endif
		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
			     5);
		changed |= 0x01;
	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
			     6);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC1) {
1540
		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1541 1542 1543 1544 1545
		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
			     1);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC2) {
1546
		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1547 1548 1549 1550
		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
			     2);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC3) {
1551
		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1552 1553 1554 1555 1556
		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
			     3);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC4) {
1557
		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1558 1559 1560 1561 1562 1563 1564 1565 1566
		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
			     4);
		changed |= 0x01;
	}
	/*
	 * At the point this routine was called, the MSR(DE) was turned off.
	 * Check all other debug flags and see if that bit needs to be turned
	 * back on or not.
	 */
1567
	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1568
			       current->thread.debug.dbcr1))
1569 1570 1571
		regs->msr |= MSR_DE;
	else
		/* Make sure the IDM flag is off */
1572
		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1573 1574

	if (changed & 0x01)
1575
		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1576
}
1577

1578
void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1579
{
1580
	current->thread.debug.dbsr = debug_status;
1581

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
	 * on server, it stops on the target of the branch. In order to simulate
	 * the server behaviour, we thus restart right away with a single step
	 * instead of stopping here when hitting a BT
	 */
	if (debug_status & DBSR_BT) {
		regs->msr &= ~MSR_DE;

		/* Disable BT */
		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
		/* Clear the BT event */
		mtspr(SPRN_DBSR, DBSR_BT);

		/* Do the single step trick only when coming from userspace */
		if (user_mode(regs)) {
1597 1598
			current->thread.debug.dbcr0 &= ~DBCR0_BT;
			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
			regs->msr |= MSR_DE;
			return;
		}

		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
			       5, SIGTRAP) == NOTIFY_STOP) {
			return;
		}
		if (debugger_sstep(regs))
			return;
	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1610
		regs->msr &= ~MSR_DE;
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

		/* Disable instruction completion */
		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
		/* Clear the instruction completion event */
		mtspr(SPRN_DBSR, DBSR_IC);

		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
			       5, SIGTRAP) == NOTIFY_STOP) {
			return;
		}

		if (debugger_sstep(regs))
			return;

1625
		if (user_mode(regs)) {
1626 1627 1628
			current->thread.debug.dbcr0 &= ~DBCR0_IC;
			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
					       current->thread.debug.dbcr1))
1629 1630 1631
				regs->msr |= MSR_DE;
			else
				/* Make sure the IDM bit is off */
1632
				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1633
		}
1634 1635 1636 1637

		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
	} else
		handle_debug(regs, debug_status);
1638
}
1639
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

#if !defined(CONFIG_TAU_INT)
void TAUException(struct pt_regs *regs)
{
	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
	       regs->nip, regs->msr, regs->trap, print_tainted());
}
#endif /* CONFIG_INT_TAU */

#ifdef CONFIG_ALTIVEC
1650
void altivec_assist_exception(struct pt_regs *regs)
1651 1652 1653 1654 1655 1656
{
	int err;

	if (!user_mode(regs)) {
		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
		       " at %lx\n", regs->nip);
P
Paul Mackerras 已提交
1657
		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1658 1659
	}

1660 1661
	flush_altivec_to_thread(current);

1662
	PPC_WARN_EMULATED(altivec, regs);
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	err = emulate_altivec(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else {
		/* didn't recognize the instruction */
		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1676 1677
		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
				   "in %s at %lx\n", current->comm, regs->nip);
1678
		current->thread.vr_state.vscr.u[3] |= 0x10000;
1679 1680 1681 1682
	}
}
#endif /* CONFIG_ALTIVEC */

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
#ifdef CONFIG_VSX
void vsx_assist_exception(struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		printk(KERN_EMERG "VSX assist exception in kernel mode"
		       " at %lx\n", regs->nip);
		die("Kernel VSX assist exception", regs, SIGILL);
	}

	flush_vsx_to_thread(current);
	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
}
#endif /* CONFIG_VSX */

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
#ifdef CONFIG_FSL_BOOKE
void CacheLockingException(struct pt_regs *regs, unsigned long address,
			   unsigned long error_code)
{
	/* We treat cache locking instructions from the user
	 * as priv ops, in the future we could try to do
	 * something smarter
	 */
	if (error_code & (ESR_DLK|ESR_ILK))
		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
	return;
}
#endif /* CONFIG_FSL_BOOKE */

#ifdef CONFIG_SPE
void SPEFloatingPointException(struct pt_regs *regs)
{
1715
	extern int do_spe_mathemu(struct pt_regs *regs);
1716 1717 1718
	unsigned long spefscr;
	int fpexc_mode;
	int code = 0;
1719 1720
	int err;

1721
	flush_spe_to_thread(current);
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

	spefscr = current->thread.spefscr;
	fpexc_mode = current->thread.fpexc_mode;

	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
		code = FPE_FLTOVF;
	}
	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
		code = FPE_FLTUND;
	}
	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
		code = FPE_FLTDIV;
	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
		code = FPE_FLTINV;
	}
	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
		code = FPE_FLTRES;

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	err = do_spe_mathemu(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else if (err == -EINVAL) {
		/* didn't recognize the instruction */
		printk(KERN_ERR "unrecognized spe instruction "
		       "in %s at %lx\n", current->comm, regs->nip);
	} else {
		_exception(SIGFPE, regs, code, regs->nip);
	}
1757 1758 1759

	return;
}
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

void SPEFloatingPointRoundException(struct pt_regs *regs)
{
	extern int speround_handler(struct pt_regs *regs);
	int err;

	preempt_disable();
	if (regs->msr & MSR_SPE)
		giveup_spe(current);
	preempt_enable();

	regs->nip -= 4;
	err = speround_handler(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else if (err == -EINVAL) {
		/* didn't recognize the instruction */
		printk(KERN_ERR "unrecognized spe instruction "
		       "in %s at %lx\n", current->comm, regs->nip);
	} else {
		_exception(SIGFPE, regs, 0, regs->nip);
		return;
	}
}
1791 1792
#endif

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
/*
 * We enter here if we get an unrecoverable exception, that is, one
 * that happened at a point where the RI (recoverable interrupt) bit
 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
 * we therefore lost state by taking this exception.
 */
void unrecoverable_exception(struct pt_regs *regs)
{
	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
	       regs->trap, regs->nip);
	die("Unrecoverable exception", regs, SIGABRT);
}

1806
#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
/*
 * Default handler for a Watchdog exception,
 * spins until a reboot occurs
 */
void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
{
	/* Generic WatchdogHandler, implement your own */
	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
	return;
}

void WatchdogException(struct pt_regs *regs)
{
	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
	WatchdogHandler(regs);
}
#endif
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

/*
 * We enter here if we discover during exception entry that we are
 * running in supervisor mode with a userspace value in the stack pointer.
 */
void kernel_bad_stack(struct pt_regs *regs)
{
	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
	       regs->gpr[1], regs->nip);
	die("Bad kernel stack pointer", regs, SIGABRT);
}
1835 1836 1837 1838

void __init trap_init(void)
{
}
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858


#ifdef CONFIG_PPC_EMULATED_STATS

#define WARN_EMULATED_SETUP(type)	.type = { .name = #type }

struct ppc_emulated ppc_emulated = {
#ifdef CONFIG_ALTIVEC
	WARN_EMULATED_SETUP(altivec),
#endif
	WARN_EMULATED_SETUP(dcba),
	WARN_EMULATED_SETUP(dcbz),
	WARN_EMULATED_SETUP(fp_pair),
	WARN_EMULATED_SETUP(isel),
	WARN_EMULATED_SETUP(mcrxr),
	WARN_EMULATED_SETUP(mfpvr),
	WARN_EMULATED_SETUP(multiple),
	WARN_EMULATED_SETUP(popcntb),
	WARN_EMULATED_SETUP(spe),
	WARN_EMULATED_SETUP(string),
1859
	WARN_EMULATED_SETUP(sync),
1860 1861 1862 1863 1864 1865 1866
	WARN_EMULATED_SETUP(unaligned),
#ifdef CONFIG_MATH_EMULATION
	WARN_EMULATED_SETUP(math),
#endif
#ifdef CONFIG_VSX
	WARN_EMULATED_SETUP(vsx),
#endif
1867 1868 1869 1870
#ifdef CONFIG_PPC64
	WARN_EMULATED_SETUP(mfdscr),
	WARN_EMULATED_SETUP(mtdscr),
#endif
1871 1872 1873 1874 1875 1876
};

u32 ppc_warn_emulated;

void ppc_warn_emulated_print(const char *type)
{
1877 1878
	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
			    type);
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
}

static int __init ppc_warn_emulated_init(void)
{
	struct dentry *dir, *d;
	unsigned int i;
	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;

	if (!powerpc_debugfs_root)
		return -ENODEV;

	dir = debugfs_create_dir("emulated_instructions",
				 powerpc_debugfs_root);
	if (!dir)
		return -ENOMEM;

	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
			       &ppc_warn_emulated);
	if (!d)
		goto fail;

	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
				       (u32 *)&entries[i].val.counter);
		if (!d)
			goto fail;
	}

	return 0;

fail:
	debugfs_remove_recursive(dir);
	return -ENOMEM;
}

device_initcall(ppc_warn_emulated_init);

#endif /* CONFIG_PPC_EMULATED_STATS */