traps.c 46.9 KB
Newer Older
1 2
/*
 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3
 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 *
 *  Modified by Cort Dougan (cort@cs.nmt.edu)
 *  and Paul Mackerras (paulus@samba.org)
 */

/*
 * This file handles the architecture-dependent parts of hardware exceptions
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
P
Paul Mackerras 已提交
24
#include <linux/ptrace.h>
25 26 27 28
#include <linux/user.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/module.h>
P
Paul Mackerras 已提交
29
#include <linux/prctl.h>
30 31
#include <linux/delay.h>
#include <linux/kprobes.h>
32
#include <linux/kexec.h>
33
#include <linux/backlight.h>
34
#include <linux/bug.h>
35
#include <linux/kdebug.h>
36
#include <linux/debugfs.h>
37
#include <linux/ratelimit.h>
38
#include <linux/context_tracking.h>
39

40
#include <asm/emulated_ops.h>
41 42 43
#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/io.h>
44 45
#include <asm/machdep.h>
#include <asm/rtas.h>
46
#include <asm/pmc.h>
47
#ifdef CONFIG_PPC32
48
#include <asm/reg.h>
49
#endif
50 51 52
#ifdef CONFIG_PMAC_BACKLIGHT
#include <asm/backlight.h>
#endif
53
#ifdef CONFIG_PPC64
54
#include <asm/firmware.h>
55
#include <asm/processor.h>
56
#include <asm/tm.h>
57
#endif
58
#include <asm/kexec.h>
59
#include <asm/ppc-opcode.h>
60
#include <asm/rio.h>
61
#include <asm/fadump.h>
62
#include <asm/switch_to.h>
63
#include <asm/tm.h>
64
#include <asm/debug.h>
65

66
#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
67 68 69 70 71
int (*__debugger)(struct pt_regs *regs) __read_mostly;
int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
72
int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
73
int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
74 75 76 77 78 79

EXPORT_SYMBOL(__debugger);
EXPORT_SYMBOL(__debugger_ipi);
EXPORT_SYMBOL(__debugger_bpt);
EXPORT_SYMBOL(__debugger_sstep);
EXPORT_SYMBOL(__debugger_iabr_match);
80
EXPORT_SYMBOL(__debugger_break_match);
81 82 83
EXPORT_SYMBOL(__debugger_fault_handler);
#endif

84 85 86 87 88 89 90
/* Transactional Memory trap debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

91 92 93 94
/*
 * Trap & Exception support
 */

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
#ifdef CONFIG_PMAC_BACKLIGHT
static void pmac_backlight_unblank(void)
{
	mutex_lock(&pmac_backlight_mutex);
	if (pmac_backlight) {
		struct backlight_properties *props;

		props = &pmac_backlight->props;
		props->brightness = props->max_brightness;
		props->power = FB_BLANK_UNBLANK;
		backlight_update_status(pmac_backlight);
	}
	mutex_unlock(&pmac_backlight_mutex);
}
#else
static inline void pmac_backlight_unblank(void) { }
#endif

A
Anton Blanchard 已提交
113 114 115 116 117 118
static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
static int die_owner = -1;
static unsigned int die_nest_count;
static int die_counter;

static unsigned __kprobes long oops_begin(struct pt_regs *regs)
119
{
A
Anton Blanchard 已提交
120
	int cpu;
121
	unsigned long flags;
122 123 124 125

	if (debugger(regs))
		return 1;

126 127
	oops_enter();

A
Anton Blanchard 已提交
128 129 130 131 132 133 134 135
	/* racy, but better than risking deadlock. */
	raw_local_irq_save(flags);
	cpu = smp_processor_id();
	if (!arch_spin_trylock(&die_lock)) {
		if (cpu == die_owner)
			/* nested oops. should stop eventually */;
		else
			arch_spin_lock(&die_lock);
136
	}
A
Anton Blanchard 已提交
137 138 139 140 141 142 143 144
	die_nest_count++;
	die_owner = cpu;
	console_verbose();
	bust_spinlocks(1);
	if (machine_is(powermac))
		pmac_backlight_unblank();
	return flags;
}
145

A
Anton Blanchard 已提交
146 147 148
static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
			       int signr)
{
149
	bust_spinlocks(0);
A
Anton Blanchard 已提交
150
	die_owner = -1;
151
	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
A
Anton Blanchard 已提交
152
	die_nest_count--;
153 154
	oops_exit();
	printk("\n");
A
Anton Blanchard 已提交
155 156 157 158
	if (!die_nest_count)
		/* Nest count reaches zero, release the lock. */
		arch_spin_unlock(&die_lock);
	raw_local_irq_restore(flags);
159

160 161
	crash_fadump(regs, "die oops");

162 163 164 165 166
	/*
	 * A system reset (0x100) is a request to dump, so we always send
	 * it through the crashdump code.
	 */
	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
167
		crash_kexec(regs);
168 169 170 171 172 173 174 175

		/*
		 * We aren't the primary crash CPU. We need to send it
		 * to a holding pattern to avoid it ending up in the panic
		 * code.
		 */
		crash_kexec_secondary(regs);
	}
176

A
Anton Blanchard 已提交
177 178 179
	if (!signr)
		return;

180 181 182 183 184 185 186 187 188 189 190
	/*
	 * While our oops output is serialised by a spinlock, output
	 * from panic() called below can race and corrupt it. If we
	 * know we are going to panic, delay for 1 second so we have a
	 * chance to get clean backtraces from all CPUs that are oopsing.
	 */
	if (in_interrupt() || panic_on_oops || !current->pid ||
	    is_global_init(current)) {
		mdelay(MSEC_PER_SEC);
	}

191 192
	if (in_interrupt())
		panic("Fatal exception in interrupt");
H
Horms 已提交
193
	if (panic_on_oops)
194
		panic("Fatal exception");
A
Anton Blanchard 已提交
195 196
	do_exit(signr);
}
H
Horms 已提交
197

A
Anton Blanchard 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
{
	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
#ifdef CONFIG_PREEMPT
	printk("PREEMPT ");
#endif
#ifdef CONFIG_SMP
	printk("SMP NR_CPUS=%d ", NR_CPUS);
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
	printk("DEBUG_PAGEALLOC ");
#endif
#ifdef CONFIG_NUMA
	printk("NUMA ");
#endif
	printk("%s\n", ppc_md.name ? ppc_md.name : "");

	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
		return 1;

	print_modules();
	show_regs(regs);
220 221 222 223

	return 0;
}

A
Anton Blanchard 已提交
224 225 226 227 228 229 230 231 232
void die(const char *str, struct pt_regs *regs, long err)
{
	unsigned long flags = oops_begin(regs);

	if (__die(str, regs, err))
		err = 0;
	oops_end(flags, regs, err);
}

233 234 235 236 237 238 239 240 241
void user_single_step_siginfo(struct task_struct *tsk,
				struct pt_regs *regs, siginfo_t *info)
{
	memset(info, 0, sizeof(*info));
	info->si_signo = SIGTRAP;
	info->si_code = TRAP_TRACE;
	info->si_addr = (void __user *)regs->nip;
}

242 243 244
void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
{
	siginfo_t info;
245 246 247 248
	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
			"at %08lx nip %08lx lr %08lx code %x\n";
	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
			"at %016lx nip %016lx lr %016lx code %x\n";
249 250

	if (!user_mode(regs)) {
A
Anton Blanchard 已提交
251 252 253 254 255
		die("Exception in kernel mode", regs, signr);
		return;
	}

	if (show_unhandled_signals && unhandled_signal(current, signr)) {
256 257 258 259
		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
				   current->comm, current->pid, signr,
				   addr, regs->nip, regs->link, code);
	}
260

261
	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
262 263
		local_irq_enable();

264
	current->thread.trap_nr = code;
265 266 267 268 269 270 271 272 273 274 275
	memset(&info, 0, sizeof(info));
	info.si_signo = signr;
	info.si_code = code;
	info.si_addr = (void __user *) addr;
	force_sig_info(signr, &info, current);
}

#ifdef CONFIG_PPC64
void system_reset_exception(struct pt_regs *regs)
{
	/* See if any machine dependent calls */
276 277 278 279
	if (ppc_md.system_reset_exception) {
		if (ppc_md.system_reset_exception(regs))
			return;
	}
280

P
Paul Mackerras 已提交
281
	die("System Reset", regs, SIGABRT);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

	/* Must die if the interrupt is not recoverable */
	if (!(regs->msr & MSR_RI))
		panic("Unrecoverable System Reset");

	/* What should we do here? We could issue a shutdown or hard reset. */
}
#endif

/*
 * I/O accesses can cause machine checks on powermacs.
 * Check if the NIP corresponds to the address of a sync
 * instruction for which there is an entry in the exception
 * table.
 * Note that the 601 only takes a machine check on TEA
 * (transfer error ack) signal assertion, and does not
 * set any of the top 16 bits of SRR1.
 *  -- paulus.
 */
static inline int check_io_access(struct pt_regs *regs)
{
303
#ifdef CONFIG_PPC32
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	unsigned long msr = regs->msr;
	const struct exception_table_entry *entry;
	unsigned int *nip = (unsigned int *)regs->nip;

	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
	    && (entry = search_exception_tables(regs->nip)) != NULL) {
		/*
		 * Check that it's a sync instruction, or somewhere
		 * in the twi; isync; nop sequence that inb/inw/inl uses.
		 * As the address is in the exception table
		 * we should be able to read the instr there.
		 * For the debug message, we look at the preceding
		 * load or store.
		 */
		if (*nip == 0x60000000)		/* nop */
			nip -= 2;
		else if (*nip == 0x4c00012c)	/* isync */
			--nip;
		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
			/* sync or twi */
			unsigned int rb;

			--nip;
			rb = (*nip >> 11) & 0x1f;
			printk(KERN_DEBUG "%s bad port %lx at %p\n",
			       (*nip & 0x100)? "OUT to": "IN from",
			       regs->gpr[rb] - _IO_BASE, nip);
			regs->msr |= MSR_RI;
			regs->nip = entry->fixup;
			return 1;
		}
	}
336
#endif /* CONFIG_PPC32 */
337 338 339
	return 0;
}

340
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
341 342 343 344 345 346
/* On 4xx, the reason for the machine check or program exception
   is in the ESR. */
#define get_reason(regs)	((regs)->dsisr)
#ifndef CONFIG_FSL_BOOKE
#define get_mc_reason(regs)	((regs)->dsisr)
#else
347
#define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
#endif
#define REASON_FP		ESR_FP
#define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
#define REASON_PRIVILEGED	ESR_PPR
#define REASON_TRAP		ESR_PTR

/* single-step stuff */
#define single_stepping(regs)	(current->thread.dbcr0 & DBCR0_IC)
#define clear_single_step(regs)	(current->thread.dbcr0 &= ~DBCR0_IC)

#else
/* On non-4xx, the reason for the machine check or program
   exception is in the MSR. */
#define get_reason(regs)	((regs)->msr)
#define get_mc_reason(regs)	((regs)->msr)
363
#define REASON_TM		0x200000
364 365 366 367 368 369 370 371 372
#define REASON_FP		0x100000
#define REASON_ILLEGAL		0x80000
#define REASON_PRIVILEGED	0x40000
#define REASON_TRAP		0x20000

#define single_stepping(regs)	((regs)->msr & MSR_SE)
#define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
#endif

373 374
#if defined(CONFIG_4xx)
int machine_check_4xx(struct pt_regs *regs)
375
{
376
	unsigned long reason = get_mc_reason(regs);
377 378 379 380 381 382 383

	if (reason & ESR_IMCP) {
		printk("Instruction");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
	} else
		printk("Data");
	printk(" machine check in kernel mode.\n");
384 385 386 387 388 389 390 391

	return 0;
}

int machine_check_440A(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	printk("Machine check in kernel mode.\n");
	if (reason & ESR_IMCP){
		printk("Instruction Synchronous Machine Check exception\n");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
	}
	else {
		u32 mcsr = mfspr(SPRN_MCSR);
		if (mcsr & MCSR_IB)
			printk("Instruction Read PLB Error\n");
		if (mcsr & MCSR_DRB)
			printk("Data Read PLB Error\n");
		if (mcsr & MCSR_DWB)
			printk("Data Write PLB Error\n");
		if (mcsr & MCSR_TLBP)
			printk("TLB Parity Error\n");
		if (mcsr & MCSR_ICP){
			flush_instruction_cache();
			printk("I-Cache Parity Error\n");
		}
		if (mcsr & MCSR_DCSP)
			printk("D-Cache Search Parity Error\n");
		if (mcsr & MCSR_DCFP)
			printk("D-Cache Flush Parity Error\n");
		if (mcsr & MCSR_IMPE)
			printk("Machine Check exception is imprecise\n");

		/* Clear MCSR */
		mtspr(SPRN_MCSR, mcsr);
	}
421 422
	return 0;
}
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

int machine_check_47x(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);
	u32 mcsr;

	printk(KERN_ERR "Machine check in kernel mode.\n");
	if (reason & ESR_IMCP) {
		printk(KERN_ERR
		       "Instruction Synchronous Machine Check exception\n");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
		return 0;
	}
	mcsr = mfspr(SPRN_MCSR);
	if (mcsr & MCSR_IB)
		printk(KERN_ERR "Instruction Read PLB Error\n");
	if (mcsr & MCSR_DRB)
		printk(KERN_ERR "Data Read PLB Error\n");
	if (mcsr & MCSR_DWB)
		printk(KERN_ERR "Data Write PLB Error\n");
	if (mcsr & MCSR_TLBP)
		printk(KERN_ERR "TLB Parity Error\n");
	if (mcsr & MCSR_ICP) {
		flush_instruction_cache();
		printk(KERN_ERR "I-Cache Parity Error\n");
	}
	if (mcsr & MCSR_DCSP)
		printk(KERN_ERR "D-Cache Search Parity Error\n");
	if (mcsr & PPC47x_MCSR_GPR)
		printk(KERN_ERR "GPR Parity Error\n");
	if (mcsr & PPC47x_MCSR_FPR)
		printk(KERN_ERR "FPR Parity Error\n");
	if (mcsr & PPC47x_MCSR_IPR)
		printk(KERN_ERR "Machine Check exception is imprecise\n");

	/* Clear MCSR */
	mtspr(SPRN_MCSR, mcsr);

	return 0;
}
463
#elif defined(CONFIG_E500)
464 465 466 467 468 469
int machine_check_e500mc(struct pt_regs *regs)
{
	unsigned long mcsr = mfspr(SPRN_MCSR);
	unsigned long reason = mcsr;
	int recoverable = 1;

470
	if (reason & MCSR_LD) {
471 472 473 474 475
		recoverable = fsl_rio_mcheck_exception(regs);
		if (recoverable == 1)
			goto silent_out;
	}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");

	if (reason & MCSR_ICPERR) {
		printk("Instruction Cache Parity Error\n");

		/*
		 * This is recoverable by invalidating the i-cache.
		 */
		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
			;

		/*
		 * This will generally be accompanied by an instruction
		 * fetch error report -- only treat MCSR_IF as fatal
		 * if it wasn't due to an L1 parity error.
		 */
		reason &= ~MCSR_IF;
	}

	if (reason & MCSR_DCPERR_MC) {
		printk("Data Cache Parity Error\n");
502 503 504 505 506 507 508 509

		/*
		 * In write shadow mode we auto-recover from the error, but it
		 * may still get logged and cause a machine check.  We should
		 * only treat the non-write shadow case as non-recoverable.
		 */
		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
			recoverable = 0;
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	}

	if (reason & MCSR_L2MMU_MHIT) {
		printk("Hit on multiple TLB entries\n");
		recoverable = 0;
	}

	if (reason & MCSR_NMI)
		printk("Non-maskable interrupt\n");

	if (reason & MCSR_IF) {
		printk("Instruction Fetch Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_LD) {
		printk("Load Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_ST) {
		printk("Store Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_LDG) {
		printk("Guarded Load Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_TLBSYNC)
		printk("Simultaneous tlbsync operations\n");

	if (reason & MCSR_BSL2_ERR) {
		printk("Level 2 Cache Error\n");
		recoverable = 0;
	}

	if (reason & MCSR_MAV) {
		u64 addr;

		addr = mfspr(SPRN_MCAR);
		addr |= (u64)mfspr(SPRN_MCARU) << 32;

		printk("Machine Check %s Address: %#llx\n",
		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
	}

558
silent_out:
559 560 561 562
	mtspr(SPRN_MCSR, mcsr);
	return mfspr(SPRN_MCSR) == 0 && recoverable;
}

563 564 565 566
int machine_check_e500(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

567 568 569 570 571
	if (reason & MCSR_BUS_RBERR) {
		if (fsl_rio_mcheck_exception(regs))
			return 1;
	}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");
	if (reason & MCSR_ICPERR)
		printk("Instruction Cache Parity Error\n");
	if (reason & MCSR_DCP_PERR)
		printk("Data Cache Push Parity Error\n");
	if (reason & MCSR_DCPERR)
		printk("Data Cache Parity Error\n");
	if (reason & MCSR_BUS_IAERR)
		printk("Bus - Instruction Address Error\n");
	if (reason & MCSR_BUS_RAERR)
		printk("Bus - Read Address Error\n");
	if (reason & MCSR_BUS_WAERR)
		printk("Bus - Write Address Error\n");
	if (reason & MCSR_BUS_IBERR)
		printk("Bus - Instruction Data Error\n");
	if (reason & MCSR_BUS_RBERR)
		printk("Bus - Read Data Bus Error\n");
	if (reason & MCSR_BUS_WBERR)
		printk("Bus - Read Data Bus Error\n");
	if (reason & MCSR_BUS_IPERR)
		printk("Bus - Instruction Parity Error\n");
	if (reason & MCSR_BUS_RPERR)
		printk("Bus - Read Parity Error\n");
599 600 601

	return 0;
}
602 603 604 605 606

int machine_check_generic(struct pt_regs *regs)
{
	return 0;
}
607 608 609 610 611
#elif defined(CONFIG_E200)
int machine_check_e200(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");
	if (reason & MCSR_CP_PERR)
		printk("Cache Push Parity Error\n");
	if (reason & MCSR_CPERR)
		printk("Cache Parity Error\n");
	if (reason & MCSR_EXCP_ERR)
		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
	if (reason & MCSR_BUS_IRERR)
		printk("Bus - Read Bus Error on instruction fetch\n");
	if (reason & MCSR_BUS_DRERR)
		printk("Bus - Read Bus Error on data load\n");
	if (reason & MCSR_BUS_WRERR)
		printk("Bus - Write Bus Error on buffered store or cache line push\n");
629 630 631 632 633 634 635 636

	return 0;
}
#else
int machine_check_generic(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from SRR1=%lx): ", reason);
	switch (reason & 0x601F0000) {
	case 0x80000:
		printk("Machine check signal\n");
		break;
	case 0:		/* for 601 */
	case 0x40000:
	case 0x140000:	/* 7450 MSS error and TEA */
		printk("Transfer error ack signal\n");
		break;
	case 0x20000:
		printk("Data parity error signal\n");
		break;
	case 0x10000:
		printk("Address parity error signal\n");
		break;
	case 0x20000000:
		printk("L1 Data Cache error\n");
		break;
	case 0x40000000:
		printk("L1 Instruction Cache error\n");
		break;
	case 0x00100000:
		printk("L2 data cache parity error\n");
		break;
	default:
		printk("Unknown values in msr\n");
	}
666 667
	return 0;
}
668
#endif /* everything else */
669 670 671

void machine_check_exception(struct pt_regs *regs)
{
672
	enum ctx_state prev_state = exception_enter();
673 674
	int recover = 0;

675 676
	__get_cpu_var(irq_stat).mce_exceptions++;

677 678 679 680 681 682
	/* See if any machine dependent calls. In theory, we would want
	 * to call the CPU first, and call the ppc_md. one if the CPU
	 * one returns a positive number. However there is existing code
	 * that assumes the board gets a first chance, so let's keep it
	 * that way for now and fix things later. --BenH.
	 */
683 684
	if (ppc_md.machine_check_exception)
		recover = ppc_md.machine_check_exception(regs);
685 686
	else if (cur_cpu_spec->machine_check)
		recover = cur_cpu_spec->machine_check(regs);
687

688
	if (recover > 0)
689
		goto bail;
690 691

#if defined(CONFIG_8xx) && defined(CONFIG_PCI)
692 693 694 695 696 697
	/* the qspan pci read routines can cause machine checks -- Cort
	 *
	 * yuck !!! that totally needs to go away ! There are better ways
	 * to deal with that than having a wart in the mcheck handler.
	 * -- BenH
	 */
698
	bad_page_fault(regs, regs->dar, SIGBUS);
699
	goto bail;
700 701
#endif

702
	if (debugger_fault_handler(regs))
703
		goto bail;
704 705

	if (check_io_access(regs))
706
		goto bail;
707

P
Paul Mackerras 已提交
708
	die("Machine check", regs, SIGBUS);
709 710 711 712

	/* Must die if the interrupt is not recoverable */
	if (!(regs->msr & MSR_RI))
		panic("Unrecoverable Machine check");
713 714 715

bail:
	exception_exit(prev_state);
716 717 718 719 720 721 722
}

void SMIException(struct pt_regs *regs)
{
	die("System Management Interrupt", regs, SIGABRT);
}

723
void unknown_exception(struct pt_regs *regs)
724
{
725 726
	enum ctx_state prev_state = exception_enter();

727 728 729 730
	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
	       regs->nip, regs->msr, regs->trap);

	_exception(SIGTRAP, regs, 0, 0);
731 732

	exception_exit(prev_state);
733 734
}

735
void instruction_breakpoint_exception(struct pt_regs *regs)
736
{
737 738
	enum ctx_state prev_state = exception_enter();

739 740
	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
					5, SIGTRAP) == NOTIFY_STOP)
741
		goto bail;
742
	if (debugger_iabr_match(regs))
743
		goto bail;
744
	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
745 746 747

bail:
	exception_exit(prev_state);
748 749 750 751 752 753 754
}

void RunModeException(struct pt_regs *regs)
{
	_exception(SIGTRAP, regs, 0, 0);
}

P
Paul Mackerras 已提交
755
void __kprobes single_step_exception(struct pt_regs *regs)
756
{
757 758
	enum ctx_state prev_state = exception_enter();

759
	clear_single_step(regs);
760 761 762

	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
					5, SIGTRAP) == NOTIFY_STOP)
763
		goto bail;
764
	if (debugger_sstep(regs))
765
		goto bail;
766 767

	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
768 769 770

bail:
	exception_exit(prev_state);
771 772 773 774 775 776 777 778
}

/*
 * After we have successfully emulated an instruction, we have to
 * check if the instruction was being single-stepped, and if so,
 * pretend we got a single-step exception.  This was pointed out
 * by Kumar Gala.  -- paulus
 */
P
Paul Mackerras 已提交
779
static void emulate_single_step(struct pt_regs *regs)
780
{
781 782
	if (single_stepping(regs))
		single_step_exception(regs);
783 784
}

785
static inline int __parse_fpscr(unsigned long fpscr)
786
{
787
	int ret = 0;
788 789 790

	/* Invalid operation */
	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
791
		ret = FPE_FLTINV;
792 793 794

	/* Overflow */
	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
795
		ret = FPE_FLTOVF;
796 797 798

	/* Underflow */
	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
799
		ret = FPE_FLTUND;
800 801 802

	/* Divide by zero */
	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
803
		ret = FPE_FLTDIV;
804 805 806

	/* Inexact result */
	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
807 808 809 810 811 812 813 814 815 816 817 818
		ret = FPE_FLTRES;

	return ret;
}

static void parse_fpe(struct pt_regs *regs)
{
	int code = 0;

	flush_fp_to_thread(current);

	code = __parse_fpscr(current->thread.fpscr.val);
819 820 821 822 823 824

	_exception(SIGFPE, regs, code, regs->nip);
}

/*
 * Illegal instruction emulation support.  Originally written to
825 826 827 828 829 830 831
 * provide the PVR to user applications using the mfspr rd, PVR.
 * Return non-zero if we can't emulate, or -EFAULT if the associated
 * memory access caused an access fault.  Return zero on success.
 *
 * There are a couple of ways to do this, either "decode" the instruction
 * or directly match lots of bits.  In this case, matching lots of
 * bits is faster and easier.
832
 *
833 834 835 836 837 838 839 840 841 842 843
 */
static int emulate_string_inst(struct pt_regs *regs, u32 instword)
{
	u8 rT = (instword >> 21) & 0x1f;
	u8 rA = (instword >> 16) & 0x1f;
	u8 NB_RB = (instword >> 11) & 0x1f;
	u32 num_bytes;
	unsigned long EA;
	int pos = 0;

	/* Early out if we are an invalid form of lswx */
844
	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
845 846 847 848 849
		if ((rT == rA) || (rT == NB_RB))
			return -EINVAL;

	EA = (rA == 0) ? 0 : regs->gpr[rA];

850 851 852
	switch (instword & PPC_INST_STRING_MASK) {
		case PPC_INST_LSWX:
		case PPC_INST_STSWX:
853 854 855
			EA += NB_RB;
			num_bytes = regs->xer & 0x7f;
			break;
856 857
		case PPC_INST_LSWI:
		case PPC_INST_STSWI:
858 859 860 861 862 863 864 865 866 867 868
			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
			break;
		default:
			return -EINVAL;
	}

	while (num_bytes != 0)
	{
		u8 val;
		u32 shift = 8 * (3 - (pos & 0x3));

869 870 871 872
		/* if process is 32-bit, clear upper 32 bits of EA */
		if ((regs->msr & MSR_64BIT) == 0)
			EA &= 0xFFFFFFFF;

873 874 875
		switch ((instword & PPC_INST_STRING_MASK)) {
			case PPC_INST_LSWX:
			case PPC_INST_LSWI:
876 877 878 879 880 881 882 883
				if (get_user(val, (u8 __user *)EA))
					return -EFAULT;
				/* first time updating this reg,
				 * zero it out */
				if (pos == 0)
					regs->gpr[rT] = 0;
				regs->gpr[rT] |= val << shift;
				break;
884 885
			case PPC_INST_STSWI:
			case PPC_INST_STSWX:
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
				val = regs->gpr[rT] >> shift;
				if (put_user(val, (u8 __user *)EA))
					return -EFAULT;
				break;
		}
		/* move EA to next address */
		EA += 1;
		num_bytes--;

		/* manage our position within the register */
		if (++pos == 4) {
			pos = 0;
			if (++rT == 32)
				rT = 0;
		}
	}

	return 0;
}

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
{
	u32 ra,rs;
	unsigned long tmp;

	ra = (instword >> 16) & 0x1f;
	rs = (instword >> 21) & 0x1f;

	tmp = regs->gpr[rs];
	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
	regs->gpr[ra] = tmp;

	return 0;
}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
static int emulate_isel(struct pt_regs *regs, u32 instword)
{
	u8 rT = (instword >> 21) & 0x1f;
	u8 rA = (instword >> 16) & 0x1f;
	u8 rB = (instword >> 11) & 0x1f;
	u8 BC = (instword >> 6) & 0x1f;
	u8 bit;
	unsigned long tmp;

	tmp = (rA == 0) ? 0 : regs->gpr[rA];
	bit = (regs->ccr >> (31 - BC)) & 0x1;

	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];

	return 0;
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static inline bool tm_abort_check(struct pt_regs *regs, int cause)
{
        /* If we're emulating a load/store in an active transaction, we cannot
         * emulate it as the kernel operates in transaction suspended context.
         * We need to abort the transaction.  This creates a persistent TM
         * abort so tell the user what caused it with a new code.
	 */
	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
		tm_enable();
		tm_abort(cause);
		return true;
	}
	return false;
}
#else
static inline bool tm_abort_check(struct pt_regs *regs, int reason)
{
	return false;
}
#endif

962 963 964 965 966
static int emulate_instruction(struct pt_regs *regs)
{
	u32 instword;
	u32 rd;

967
	if (!user_mode(regs) || (regs->msr & MSR_LE))
968 969 970 971 972 973 974
		return -EINVAL;
	CHECK_FULL_REGS(regs);

	if (get_user(instword, (u32 __user *)(regs->nip)))
		return -EFAULT;

	/* Emulate the mfspr rD, PVR. */
975
	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
976
		PPC_WARN_EMULATED(mfpvr, regs);
977 978 979 980 981 982
		rd = (instword >> 21) & 0x1f;
		regs->gpr[rd] = mfspr(SPRN_PVR);
		return 0;
	}

	/* Emulating the dcba insn is just a no-op.  */
983
	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
984
		PPC_WARN_EMULATED(dcba, regs);
985
		return 0;
986
	}
987 988

	/* Emulate the mcrxr insn.  */
989
	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
990
		int shift = (instword >> 21) & 0x1c;
991 992
		unsigned long msk = 0xf0000000UL >> shift;

993
		PPC_WARN_EMULATED(mcrxr, regs);
994 995 996 997 998 999
		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
		regs->xer &= ~0xf0000000UL;
		return 0;
	}

	/* Emulate load/store string insn. */
1000
	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1001 1002 1003
		if (tm_abort_check(regs,
				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
			return -EINVAL;
1004
		PPC_WARN_EMULATED(string, regs);
1005
		return emulate_string_inst(regs, instword);
1006
	}
1007

1008
	/* Emulate the popcntb (Population Count Bytes) instruction. */
1009
	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1010
		PPC_WARN_EMULATED(popcntb, regs);
1011 1012 1013
		return emulate_popcntb_inst(regs, instword);
	}

1014
	/* Emulate isel (Integer Select) instruction */
1015
	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1016
		PPC_WARN_EMULATED(isel, regs);
1017 1018 1019
		return emulate_isel(regs, instword);
	}

1020 1021
#ifdef CONFIG_PPC64
	/* Emulate the mfspr rD, DSCR. */
1022 1023 1024 1025
	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
		PPC_INST_MFSPR_DSCR_USER) ||
	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
		PPC_INST_MFSPR_DSCR)) &&
1026 1027 1028 1029 1030 1031 1032
			cpu_has_feature(CPU_FTR_DSCR)) {
		PPC_WARN_EMULATED(mfdscr, regs);
		rd = (instword >> 21) & 0x1f;
		regs->gpr[rd] = mfspr(SPRN_DSCR);
		return 0;
	}
	/* Emulate the mtspr DSCR, rD. */
1033 1034 1035 1036
	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
		PPC_INST_MTSPR_DSCR_USER) ||
	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
		PPC_INST_MTSPR_DSCR)) &&
1037 1038 1039
			cpu_has_feature(CPU_FTR_DSCR)) {
		PPC_WARN_EMULATED(mtdscr, regs);
		rd = (instword >> 21) & 0x1f;
1040
		current->thread.dscr = regs->gpr[rd];
1041
		current->thread.dscr_inherit = 1;
1042
		mtspr(SPRN_DSCR, current->thread.dscr);
1043 1044 1045 1046
		return 0;
	}
#endif

1047 1048 1049
	return -EINVAL;
}

1050
int is_valid_bugaddr(unsigned long addr)
1051
{
1052
	return is_kernel_addr(addr);
1053 1054
}

P
Paul Mackerras 已提交
1055
void __kprobes program_check_exception(struct pt_regs *regs)
1056
{
1057
	enum ctx_state prev_state = exception_enter();
1058 1059 1060
	unsigned int reason = get_reason(regs);
	extern int do_mathemu(struct pt_regs *regs);

1061
	/* We can now get here via a FP Unavailable exception if the core
1062
	 * has no FPU, in that case the reason flags will be 0 */
1063

1064 1065 1066
	if (reason & REASON_FP) {
		/* IEEE FP exception */
		parse_fpe(regs);
1067
		goto bail;
P
Paul Mackerras 已提交
1068 1069
	}
	if (reason & REASON_TRAP) {
1070 1071 1072
		/* Debugger is first in line to stop recursive faults in
		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
		if (debugger_bpt(regs))
1073
			goto bail;
1074

1075
		/* trap exception */
1076 1077
		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
				== NOTIFY_STOP)
1078
			goto bail;
1079 1080

		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1081
		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1082
			regs->nip += 4;
1083
			goto bail;
1084
		}
P
Paul Mackerras 已提交
1085
		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1086
		goto bail;
P
Paul Mackerras 已提交
1087
	}
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (reason & REASON_TM) {
		/* This is a TM "Bad Thing Exception" program check.
		 * This occurs when:
		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
		 *    transition in TM states.
		 * -  A trechkpt is attempted when transactional.
		 * -  A treclaim is attempted when non transactional.
		 * -  A tend is illegally attempted.
		 * -  writing a TM SPR when transactional.
		 */
		if (!user_mode(regs) &&
		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
			regs->nip += 4;
1102
			goto bail;
1103 1104 1105 1106 1107 1108 1109 1110 1111
		}
		/* If usermode caused this, it's done something illegal and
		 * gets a SIGILL slap on the wrist.  We call it an illegal
		 * operand to distinguish from the instruction just being bad
		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
		 * illegal /placement/ of a valid instruction.
		 */
		if (user_mode(regs)) {
			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1112
			goto bail;
1113 1114 1115 1116 1117 1118 1119
		} else {
			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
			       "at %lx (msr 0x%x)\n", regs->nip, reason);
			die("Unrecoverable exception", regs, SIGABRT);
		}
	}
#endif
P
Paul Mackerras 已提交
1120

1121 1122 1123
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();
1124

1125 1126 1127 1128 1129 1130 1131
#ifdef CONFIG_MATH_EMULATION
	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
	 * but there seems to be a hardware bug on the 405GP (RevD)
	 * that means ESR is sometimes set incorrectly - either to
	 * ESR_DST (!?) or 0.  In the process of chasing this with the
	 * hardware people - not sure if it can happen on any illegal
	 * instruction or only on FP instructions, whether there is a
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	 * pattern to occurrences etc. -dgibson 31/Mar/2003
	 */

	/*
	 * If we support a HW FPU, we need to ensure the FP state
	 * if flushed into the thread_struct before attempting
	 * emulation
	 */
#ifdef CONFIG_PPC_FPU
	flush_fp_to_thread(current);
#endif
1143 1144
	switch (do_mathemu(regs)) {
	case 0:
1145
		emulate_single_step(regs);
1146
		goto bail;
1147 1148 1149 1150
	case 1: {
			int code = 0;
			code = __parse_fpscr(current->thread.fpscr.val);
			_exception(SIGFPE, regs, code, regs->nip);
1151
			goto bail;
1152 1153 1154
		}
	case -EFAULT:
		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1155
		goto bail;
1156
	}
1157
	/* fall through on any other errors */
1158 1159
#endif /* CONFIG_MATH_EMULATION */

P
Paul Mackerras 已提交
1160 1161
	/* Try to emulate it if we should. */
	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1162 1163 1164 1165
		switch (emulate_instruction(regs)) {
		case 0:
			regs->nip += 4;
			emulate_single_step(regs);
1166
			goto bail;
1167 1168
		case -EFAULT:
			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1169
			goto bail;
1170 1171
		}
	}
P
Paul Mackerras 已提交
1172 1173 1174 1175 1176

	if (reason & REASON_PRIVILEGED)
		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
	else
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1177 1178 1179

bail:
	exception_exit(prev_state);
1180 1181
}

1182
void alignment_exception(struct pt_regs *regs)
1183
{
1184
	enum ctx_state prev_state = exception_enter();
1185
	int sig, code, fixed = 0;
1186

1187 1188 1189 1190
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();

1191 1192 1193
	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
		goto bail;

1194 1195 1196
	/* we don't implement logging of alignment exceptions */
	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
		fixed = fix_alignment(regs);
1197 1198 1199 1200

	if (fixed == 1) {
		regs->nip += 4;	/* skip over emulated instruction */
		emulate_single_step(regs);
1201
		goto bail;
1202 1203
	}

1204
	/* Operand address was bad */
1205
	if (fixed == -EFAULT) {
1206 1207 1208 1209 1210
		sig = SIGSEGV;
		code = SEGV_ACCERR;
	} else {
		sig = SIGBUS;
		code = BUS_ADRALN;
1211
	}
1212 1213 1214 1215
	if (user_mode(regs))
		_exception(sig, regs, code, regs->dar);
	else
		bad_page_fault(regs, regs->dar, sig);
1216 1217 1218

bail:
	exception_exit(prev_state);
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
}

void StackOverflow(struct pt_regs *regs)
{
	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
	       current, regs->gpr[1]);
	debugger(regs);
	show_regs(regs);
	panic("kernel stack overflow");
}

void nonrecoverable_exception(struct pt_regs *regs)
{
	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
	       regs->nip, regs->msr);
	debugger(regs);
	die("nonrecoverable exception", regs, SIGKILL);
}

void trace_syscall(struct pt_regs *regs)
{
	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1241
	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1242 1243
	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
}
1244 1245 1246

void kernel_fp_unavailable_exception(struct pt_regs *regs)
{
1247 1248
	enum ctx_state prev_state = exception_enter();

1249 1250 1251
	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
			  "%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1252 1253

	exception_exit(prev_state);
1254 1255 1256 1257
}

void altivec_unavailable_exception(struct pt_regs *regs)
{
1258 1259
	enum ctx_state prev_state = exception_enter();

1260 1261 1262 1263
	if (user_mode(regs)) {
		/* A user program has executed an altivec instruction,
		   but this kernel doesn't support altivec. */
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1264
		goto bail;
1265
	}
1266

1267 1268 1269
	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
			"%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1270 1271 1272

bail:
	exception_exit(prev_state);
1273 1274
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
void vsx_unavailable_exception(struct pt_regs *regs)
{
	if (user_mode(regs)) {
		/* A user program has executed an vsx instruction,
		   but this kernel doesn't support vsx. */
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
		return;
	}

	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
			"%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
}

1289
void facility_unavailable_exception(struct pt_regs *regs)
1290
{
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	static char *facility_strings[] = {
		"FPU",
		"VMX/VSX",
		"DSCR",
		"PMU SPRs",
		"BHRB",
		"TM",
		"AT",
		"EBB",
		"TAR",
	};
	char *facility;
	u64 value;

	value = mfspr(SPRN_FSCR) >> 56;

1307 1308 1309 1310
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();

1311 1312 1313 1314 1315 1316 1317
	if (value < ARRAY_SIZE(facility_strings))
		facility = facility_strings[value];
	else
		facility = "unknown";

	pr_err("Facility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
		facility, regs->nip, regs->msr);
1318 1319 1320 1321 1322 1323

	if (user_mode(regs)) {
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
		return;
	}

1324
	die("Unexpected facility unavailable exception", regs, SIGABRT);
1325 1326
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM

extern void do_load_up_fpu(struct pt_regs *regs);

void fp_unavailable_tm(struct pt_regs *regs)
{
	/* Note:  This does not handle any kind of FP laziness. */

	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
		 regs->nip, regs->msr);
	tm_enable();

        /* We can only have got here if the task started using FP after
         * beginning the transaction.  So, the transactional regs are just a
         * copy of the checkpointed ones.  But, we still need to recheckpoint
         * as we're enabling FP for the process; it will return, abort the
         * transaction, and probably retry but now with FP enabled.  So the
         * checkpointed FP registers need to be loaded.
	 */
	tm_reclaim(&current->thread, current->thread.regs->msr,
		   TM_CAUSE_FAC_UNAV);
	/* Reclaim didn't save out any FPRs to transact_fprs. */

	/* Enable FP for the task: */
	regs->msr |= (MSR_FP | current->thread.fpexc_mode);

	/* This loads and recheckpoints the FP registers from
	 * thread.fpr[].  They will remain in registers after the
	 * checkpoint so we don't need to reload them after.
	 */
	tm_recheckpoint(&current->thread, regs->msr);
}

#ifdef CONFIG_ALTIVEC
extern void do_load_up_altivec(struct pt_regs *regs);

void altivec_unavailable_tm(struct pt_regs *regs)
{
	/* See the comments in fp_unavailable_tm().  This function operates
	 * the same way.
	 */

	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
		 "MSR=%lx\n",
		 regs->nip, regs->msr);
	tm_enable();
	tm_reclaim(&current->thread, current->thread.regs->msr,
		   TM_CAUSE_FAC_UNAV);
	regs->msr |= MSR_VEC;
	tm_recheckpoint(&current->thread, regs->msr);
	current->thread.used_vr = 1;
}
#endif

#ifdef CONFIG_VSX
void vsx_unavailable_tm(struct pt_regs *regs)
{
	/* See the comments in fp_unavailable_tm().  This works similarly,
	 * though we're loading both FP and VEC registers in here.
	 *
	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
	 * regs.  Either way, set MSR_VSX.
	 */

	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
		 "MSR=%lx\n",
		 regs->nip, regs->msr);

	tm_enable();
	/* This reclaims FP and/or VR regs if they're already enabled */
	tm_reclaim(&current->thread, current->thread.regs->msr,
		   TM_CAUSE_FAC_UNAV);

	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
		MSR_VSX;
	/* This loads & recheckpoints FP and VRs. */
	tm_recheckpoint(&current->thread, regs->msr);
	current->thread.used_vsr = 1;
}
#endif
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

1409 1410
void performance_monitor_exception(struct pt_regs *regs)
{
1411 1412
	__get_cpu_var(irq_stat).pmu_irqs++;

1413 1414 1415
	perf_irq(regs);
}

P
Paul Mackerras 已提交
1416
#ifdef CONFIG_8xx
1417 1418 1419
void SoftwareEmulation(struct pt_regs *regs)
{
	extern int do_mathemu(struct pt_regs *);
1420
#if defined(CONFIG_MATH_EMULATION)
1421
	int errcode;
1422
#endif
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

	CHECK_FULL_REGS(regs);

	if (!user_mode(regs)) {
		debugger(regs);
		die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
	}

#ifdef CONFIG_MATH_EMULATION
	errcode = do_mathemu(regs);
1433
	if (errcode >= 0)
1434
		PPC_WARN_EMULATED(math, regs);
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

	switch (errcode) {
	case 0:
		emulate_single_step(regs);
		return;
	case 1: {
			int code = 0;
			code = __parse_fpscr(current->thread.fpscr.val);
			_exception(SIGFPE, regs, code, regs->nip);
			return;
		}
	case -EFAULT:
		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
		return;
	default:
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
		return;
	}
1453 1454
#else
	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1455
#endif
1456
}
P
Paul Mackerras 已提交
1457
#endif /* CONFIG_8xx */
1458

1459
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
{
	int changed = 0;
	/*
	 * Determine the cause of the debug event, clear the
	 * event flags and send a trap to the handler. Torez
	 */
	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
		current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
#endif
		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
			     5);
		changed |= 0x01;
	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
			     6);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC1) {
		current->thread.dbcr0 &= ~DBCR0_IAC1;
		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
			     1);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC2) {
		current->thread.dbcr0 &= ~DBCR0_IAC2;
		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
			     2);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC3) {
		current->thread.dbcr0 &= ~DBCR0_IAC3;
		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
			     3);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC4) {
		current->thread.dbcr0 &= ~DBCR0_IAC4;
		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
			     4);
		changed |= 0x01;
	}
	/*
	 * At the point this routine was called, the MSR(DE) was turned off.
	 * Check all other debug flags and see if that bit needs to be turned
	 * back on or not.
	 */
	if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
		regs->msr |= MSR_DE;
	else
		/* Make sure the IDM flag is off */
		current->thread.dbcr0 &= ~DBCR0_IDM;

	if (changed & 0x01)
		mtspr(SPRN_DBCR0, current->thread.dbcr0);
}
1517

1518
void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1519
{
1520 1521
	current->thread.dbsr = debug_status;

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
	 * on server, it stops on the target of the branch. In order to simulate
	 * the server behaviour, we thus restart right away with a single step
	 * instead of stopping here when hitting a BT
	 */
	if (debug_status & DBSR_BT) {
		regs->msr &= ~MSR_DE;

		/* Disable BT */
		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
		/* Clear the BT event */
		mtspr(SPRN_DBSR, DBSR_BT);

		/* Do the single step trick only when coming from userspace */
		if (user_mode(regs)) {
			current->thread.dbcr0 &= ~DBCR0_BT;
			current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
			regs->msr |= MSR_DE;
			return;
		}

		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
			       5, SIGTRAP) == NOTIFY_STOP) {
			return;
		}
		if (debugger_sstep(regs))
			return;
	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1550
		regs->msr &= ~MSR_DE;
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564

		/* Disable instruction completion */
		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
		/* Clear the instruction completion event */
		mtspr(SPRN_DBSR, DBSR_IC);

		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
			       5, SIGTRAP) == NOTIFY_STOP) {
			return;
		}

		if (debugger_sstep(regs))
			return;

1565
		if (user_mode(regs)) {
1566 1567 1568 1569 1570 1571 1572
			current->thread.dbcr0 &= ~DBCR0_IC;
			if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
					       current->thread.dbcr1))
				regs->msr |= MSR_DE;
			else
				/* Make sure the IDM bit is off */
				current->thread.dbcr0 &= ~DBCR0_IDM;
1573
		}
1574 1575 1576 1577

		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
	} else
		handle_debug(regs, debug_status);
1578
}
1579
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

#if !defined(CONFIG_TAU_INT)
void TAUException(struct pt_regs *regs)
{
	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
	       regs->nip, regs->msr, regs->trap, print_tainted());
}
#endif /* CONFIG_INT_TAU */

#ifdef CONFIG_ALTIVEC
1590
void altivec_assist_exception(struct pt_regs *regs)
1591 1592 1593 1594 1595 1596
{
	int err;

	if (!user_mode(regs)) {
		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
		       " at %lx\n", regs->nip);
P
Paul Mackerras 已提交
1597
		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1598 1599
	}

1600 1601
	flush_altivec_to_thread(current);

1602
	PPC_WARN_EMULATED(altivec, regs);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	err = emulate_altivec(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else {
		/* didn't recognize the instruction */
		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1616 1617
		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
				   "in %s at %lx\n", current->comm, regs->nip);
1618 1619 1620 1621 1622
		current->thread.vscr.u[3] |= 0x10000;
	}
}
#endif /* CONFIG_ALTIVEC */

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
#ifdef CONFIG_VSX
void vsx_assist_exception(struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		printk(KERN_EMERG "VSX assist exception in kernel mode"
		       " at %lx\n", regs->nip);
		die("Kernel VSX assist exception", regs, SIGILL);
	}

	flush_vsx_to_thread(current);
	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
}
#endif /* CONFIG_VSX */

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
#ifdef CONFIG_FSL_BOOKE
void CacheLockingException(struct pt_regs *regs, unsigned long address,
			   unsigned long error_code)
{
	/* We treat cache locking instructions from the user
	 * as priv ops, in the future we could try to do
	 * something smarter
	 */
	if (error_code & (ESR_DLK|ESR_ILK))
		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
	return;
}
#endif /* CONFIG_FSL_BOOKE */

#ifdef CONFIG_SPE
void SPEFloatingPointException(struct pt_regs *regs)
{
1655
	extern int do_spe_mathemu(struct pt_regs *regs);
1656 1657 1658
	unsigned long spefscr;
	int fpexc_mode;
	int code = 0;
1659 1660
	int err;

1661
	flush_spe_to_thread(current);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

	spefscr = current->thread.spefscr;
	fpexc_mode = current->thread.fpexc_mode;

	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
		code = FPE_FLTOVF;
	}
	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
		code = FPE_FLTUND;
	}
	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
		code = FPE_FLTDIV;
	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
		code = FPE_FLTINV;
	}
	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
		code = FPE_FLTRES;

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	err = do_spe_mathemu(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else if (err == -EINVAL) {
		/* didn't recognize the instruction */
		printk(KERN_ERR "unrecognized spe instruction "
		       "in %s at %lx\n", current->comm, regs->nip);
	} else {
		_exception(SIGFPE, regs, code, regs->nip);
	}
1697 1698 1699

	return;
}
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

void SPEFloatingPointRoundException(struct pt_regs *regs)
{
	extern int speround_handler(struct pt_regs *regs);
	int err;

	preempt_disable();
	if (regs->msr & MSR_SPE)
		giveup_spe(current);
	preempt_enable();

	regs->nip -= 4;
	err = speround_handler(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else if (err == -EINVAL) {
		/* didn't recognize the instruction */
		printk(KERN_ERR "unrecognized spe instruction "
		       "in %s at %lx\n", current->comm, regs->nip);
	} else {
		_exception(SIGFPE, regs, 0, regs->nip);
		return;
	}
}
1731 1732
#endif

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
/*
 * We enter here if we get an unrecoverable exception, that is, one
 * that happened at a point where the RI (recoverable interrupt) bit
 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
 * we therefore lost state by taking this exception.
 */
void unrecoverable_exception(struct pt_regs *regs)
{
	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
	       regs->trap, regs->nip);
	die("Unrecoverable exception", regs, SIGABRT);
}

1746
#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
/*
 * Default handler for a Watchdog exception,
 * spins until a reboot occurs
 */
void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
{
	/* Generic WatchdogHandler, implement your own */
	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
	return;
}

void WatchdogException(struct pt_regs *regs)
{
	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
	WatchdogHandler(regs);
}
#endif
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774

/*
 * We enter here if we discover during exception entry that we are
 * running in supervisor mode with a userspace value in the stack pointer.
 */
void kernel_bad_stack(struct pt_regs *regs)
{
	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
	       regs->gpr[1], regs->nip);
	die("Bad kernel stack pointer", regs, SIGABRT);
}
1775 1776 1777 1778

void __init trap_init(void)
{
}
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805


#ifdef CONFIG_PPC_EMULATED_STATS

#define WARN_EMULATED_SETUP(type)	.type = { .name = #type }

struct ppc_emulated ppc_emulated = {
#ifdef CONFIG_ALTIVEC
	WARN_EMULATED_SETUP(altivec),
#endif
	WARN_EMULATED_SETUP(dcba),
	WARN_EMULATED_SETUP(dcbz),
	WARN_EMULATED_SETUP(fp_pair),
	WARN_EMULATED_SETUP(isel),
	WARN_EMULATED_SETUP(mcrxr),
	WARN_EMULATED_SETUP(mfpvr),
	WARN_EMULATED_SETUP(multiple),
	WARN_EMULATED_SETUP(popcntb),
	WARN_EMULATED_SETUP(spe),
	WARN_EMULATED_SETUP(string),
	WARN_EMULATED_SETUP(unaligned),
#ifdef CONFIG_MATH_EMULATION
	WARN_EMULATED_SETUP(math),
#endif
#ifdef CONFIG_VSX
	WARN_EMULATED_SETUP(vsx),
#endif
1806 1807 1808 1809
#ifdef CONFIG_PPC64
	WARN_EMULATED_SETUP(mfdscr),
	WARN_EMULATED_SETUP(mtdscr),
#endif
1810 1811 1812 1813 1814 1815
};

u32 ppc_warn_emulated;

void ppc_warn_emulated_print(const char *type)
{
1816 1817
	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
			    type);
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
}

static int __init ppc_warn_emulated_init(void)
{
	struct dentry *dir, *d;
	unsigned int i;
	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;

	if (!powerpc_debugfs_root)
		return -ENODEV;

	dir = debugfs_create_dir("emulated_instructions",
				 powerpc_debugfs_root);
	if (!dir)
		return -ENOMEM;

	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
			       &ppc_warn_emulated);
	if (!d)
		goto fail;

	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
				       (u32 *)&entries[i].val.counter);
		if (!d)
			goto fail;
	}

	return 0;

fail:
	debugfs_remove_recursive(dir);
	return -ENOMEM;
}

device_initcall(ppc_warn_emulated_init);

#endif /* CONFIG_PPC_EMULATED_STATS */