cpu.c 13.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * Suspend support specific for i386/x86-64.
L
Linus Torvalds 已提交
3 4 5
 *
 * Distribute under GPLv2
 *
6
 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
P
Pavel Machek 已提交
7
 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
L
Linus Torvalds 已提交
8 9 10 11
 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
 */

#include <linux/suspend.h>
12
#include <linux/export.h>
13
#include <linux/smp.h>
14
#include <linux/perf_event.h>
15
#include <linux/tboot.h>
16
#include <linux/dmi.h>
17

18
#include <asm/pgtable.h>
19
#include <asm/proto.h>
20
#include <asm/mtrr.h>
21 22
#include <asm/page.h>
#include <asm/mce.h>
23
#include <asm/suspend.h>
24
#include <asm/fpu/internal.h>
25
#include <asm/debugreg.h>
F
Fenghua Yu 已提交
26
#include <asm/cpu.h>
27
#include <asm/mmu_context.h>
28
#include <asm/cpu_device_id.h>
L
Linus Torvalds 已提交
29

30
#ifdef CONFIG_X86_32
31 32 33 34
__visible unsigned long saved_context_ebx;
__visible unsigned long saved_context_esp, saved_context_ebp;
__visible unsigned long saved_context_esi, saved_context_edi;
__visible unsigned long saved_context_eflags;
35
#endif
36
struct saved_context saved_context;
L
Linus Torvalds 已提交
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
static void msr_save_context(struct saved_context *ctxt)
{
	struct saved_msr *msr = ctxt->saved_msrs.array;
	struct saved_msr *end = msr + ctxt->saved_msrs.num;

	while (msr < end) {
		msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
		msr++;
	}
}

static void msr_restore_context(struct saved_context *ctxt)
{
	struct saved_msr *msr = ctxt->saved_msrs.array;
	struct saved_msr *end = msr + ctxt->saved_msrs.num;

	while (msr < end) {
		if (msr->valid)
			wrmsrl(msr->info.msr_no, msr->info.reg.q);
		msr++;
	}
}

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/**
 *	__save_processor_state - save CPU registers before creating a
 *		hibernation image and before restoring the memory state from it
 *	@ctxt - structure to store the registers contents in
 *
 *	NOTE: If there is a CPU register the modification of which by the
 *	boot kernel (ie. the kernel used for loading the hibernation image)
 *	might affect the operations of the restored target kernel (ie. the one
 *	saved in the hibernation image), then its contents must be saved by this
 *	function.  In other words, if kernel A is hibernated and different
 *	kernel B is used for loading the hibernation image into memory, the
 *	kernel A's __save_processor_state() function must save all registers
 *	needed by kernel A, so that it can operate correctly after the resume
 *	regardless of what kernel B does in the meantime.
 */
76
static void __save_processor_state(struct saved_context *ctxt)
L
Linus Torvalds 已提交
77
{
78 79 80
#ifdef CONFIG_X86_32
	mtrr_save_fixed_ranges(NULL);
#endif
L
Linus Torvalds 已提交
81 82 83 84 85
	kernel_fpu_begin();

	/*
	 * descriptor tables
	 */
86
	store_idt(&ctxt->idt);
87

88 89 90 91 92 93 94
	/*
	 * We save it here, but restore it only in the hibernate case.
	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
	 * mode in "secondary_startup_64". In 32-bit mode it is done via
	 * 'pmode_gdt' in wakeup_start.
	 */
	ctxt->gdt_desc.size = GDT_SIZE - 1;
95
	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
96

97
	store_tr(ctxt->tr);
L
Linus Torvalds 已提交
98 99 100 101 102

	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
	/*
	 * segment registers
	 */
103
#ifdef CONFIG_X86_32_LAZY_GS
104
	savesegment(gs, ctxt->gs);
105 106 107 108 109 110
#endif
#ifdef CONFIG_X86_64
	savesegment(gs, ctxt->gs);
	savesegment(fs, ctxt->fs);
	savesegment(ds, ctxt->ds);
	savesegment(es, ctxt->es);
L
Linus Torvalds 已提交
111 112

	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
113 114
	rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
115
	mtrr_save_fixed_ranges(NULL);
L
Linus Torvalds 已提交
116

117 118 119
	rdmsrl(MSR_EFER, ctxt->efer);
#endif

L
Linus Torvalds 已提交
120
	/*
121
	 * control registers
L
Linus Torvalds 已提交
122
	 */
123 124
	ctxt->cr0 = read_cr0();
	ctxt->cr2 = read_cr2();
125
	ctxt->cr3 = __read_cr3();
126
	ctxt->cr4 = __read_cr4();
127
#ifdef CONFIG_X86_64
128
	ctxt->cr8 = read_cr8();
129
#endif
130 131
	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
					       &ctxt->misc_enable);
132
	msr_save_context(ctxt);
L
Linus Torvalds 已提交
133 134
}

135
/* Needed by apm.c */
L
Linus Torvalds 已提交
136 137 138
void save_processor_state(void)
{
	__save_processor_state(&saved_context);
139
	x86_platform.save_sched_clock_state();
L
Linus Torvalds 已提交
140
}
141 142 143
#ifdef CONFIG_X86_32
EXPORT_SYMBOL(save_processor_state);
#endif
L
Linus Torvalds 已提交
144

145
static void do_fpu_end(void)
L
Linus Torvalds 已提交
146
{
147
	/*
148
	 * Restore FPU regs if necessary.
149 150
	 */
	kernel_fpu_end();
L
Linus Torvalds 已提交
151 152
}

153 154 155
static void fix_processor_context(void)
{
	int cpu = smp_processor_id();
156
#ifdef CONFIG_X86_64
157
	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
158 159
	tss_desc tss;
#endif
160 161

	/*
162 163 164 165 166
	 * We need to reload TR, which requires that we change the
	 * GDT entry to indicate "available" first.
	 *
	 * XXX: This could probably all be replaced by a call to
	 * force_reload_TR().
167
	 */
168
	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
169 170

#ifdef CONFIG_X86_64
171 172 173
	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
174 175

	syscall_init();				/* This sets MSR_*STAR and related */
176 177 178
#else
	if (boot_cpu_has(X86_FEATURE_SEP))
		enable_sep_cpu();
179 180
#endif
	load_TR_desc();				/* This does ltr */
181
	load_mm_ldt(current->active_mm);	/* This does lldt */
182
	initialize_tlbstate_and_flush();
183 184

	fpu__resume_cpu();
185 186 187

	/* The processor is back on the direct GDT, load back the fixmap */
	load_fixmap_gdt(cpu);
188 189
}

190
/**
191 192 193 194 195 196
 * __restore_processor_state - restore the contents of CPU registers saved
 *                             by __save_processor_state()
 * @ctxt - structure to load the registers contents from
 *
 * The asm code that gets us here will have restored a usable GDT, although
 * it will be pointing to the wrong alias.
197
 */
198
static void notrace __restore_processor_state(struct saved_context *ctxt)
L
Linus Torvalds 已提交
199
{
200 201
	if (ctxt->misc_enable_saved)
		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
L
Linus Torvalds 已提交
202 203 204
	/*
	 * control registers
	 */
205 206 207
	/* cr4 was introduced in the Pentium CPU */
#ifdef CONFIG_X86_32
	if (ctxt->cr4)
208
		__write_cr4(ctxt->cr4);
209 210
#else
/* CONFIG X86_64 */
211
	wrmsrl(MSR_EFER, ctxt->efer);
212
	write_cr8(ctxt->cr8);
213
	__write_cr4(ctxt->cr4);
214
#endif
215 216 217
	write_cr3(ctxt->cr3);
	write_cr2(ctxt->cr2);
	write_cr0(ctxt->cr0);
L
Linus Torvalds 已提交
218

219 220 221
	/* Restore the IDT. */
	load_idt(&ctxt->idt);

222
	/*
223 224
	 * Just in case the asm code got us here with the SS, DS, or ES
	 * out of sync with the GDT, update them.
225
	 */
226 227 228
	loadsegment(ss, __KERNEL_DS);
	loadsegment(ds, __USER_DS);
	loadsegment(es, __USER_DS);
229

L
Linus Torvalds 已提交
230
	/*
231 232
	 * Restore percpu access.  Percpu access can happen in exception
	 * handlers or in complicated helpers like load_gs_index().
233
	 */
234 235 236 237 238
#ifdef CONFIG_X86_64
	wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
#else
	loadsegment(fs, __KERNEL_PERCPU);
	loadsegment(gs, __KERNEL_STACK_CANARY);
239 240
#endif

241
	/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
242 243 244
	fix_processor_context();

	/*
245 246
	 * Now that we have descriptor tables fully restored and working
	 * exception handling, restore the usermode segments.
L
Linus Torvalds 已提交
247
	 */
248 249
#ifdef CONFIG_X86_64
	loadsegment(ds, ctxt->es);
250 251
	loadsegment(es, ctxt->es);
	loadsegment(fs, ctxt->fs);
L
Linus Torvalds 已提交
252 253
	load_gs_index(ctxt->gs);

254
	/*
255 256 257
	 * Restore FSBASE and GSBASE after restoring the selectors, since
	 * restoring the selectors clobbers the bases.  Keep in mind
	 * that MSR_KERNEL_GS_BASE is horribly misnamed.
258
	 */
L
Linus Torvalds 已提交
259
	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
260 261 262
	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
#elif defined(CONFIG_X86_32_LAZY_GS)
	loadsegment(gs, ctxt->gs);
263
#endif
L
Linus Torvalds 已提交
264 265

	do_fpu_end();
266
	tsc_verify_tsc_adjust(true);
267
	x86_platform.restore_sched_clock_state();
268
	mtrr_bp_restore();
269
	perf_restore_debug_store();
270
	msr_restore_context(ctxt);
L
Linus Torvalds 已提交
271 272
}

273
/* Needed by apm.c */
274
void notrace restore_processor_state(void)
L
Linus Torvalds 已提交
275 276 277
{
	__restore_processor_state(&saved_context);
}
278 279 280
#ifdef CONFIG_X86_32
EXPORT_SYMBOL(restore_processor_state);
#endif
281

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
#if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
static void resume_play_dead(void)
{
	play_dead_common();
	tboot_shutdown(TB_SHUTDOWN_WFS);
	hlt_play_dead();
}

int hibernate_resume_nonboot_cpu_disable(void)
{
	void (*play_dead)(void) = smp_ops.play_dead;
	int ret;

	/*
	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
	 * during hibernate image restoration, because it is likely that the
	 * monitored address will be actually written to at that time and then
	 * the "dead" CPU will attempt to execute instructions again, but the
	 * address in its instruction pointer may not be possible to resolve
	 * any more at that point (the page tables used by it previously may
	 * have been overwritten by hibernate image data).
303 304 305 306 307 308 309
	 *
	 * First, make sure that we wake up all the potentially disabled SMT
	 * threads which have been initially brought up and then put into
	 * mwait/cpuidle sleep.
	 * Those will be put to proper (not interfering with hibernation
	 * resume) sleep afterwards, and the resumed kernel will decide itself
	 * what to do with them.
310
	 */
311 312 313
	ret = cpuhp_smt_enable();
	if (ret)
		return ret;
314 315 316 317 318 319 320
	smp_ops.play_dead = resume_play_dead;
	ret = disable_nonboot_cpus();
	smp_ops.play_dead = play_dead;
	return ret;
}
#endif

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
/*
 * When bsp_check() is called in hibernate and suspend, cpu hotplug
 * is disabled already. So it's unnessary to handle race condition between
 * cpumask query and cpu hotplug.
 */
static int bsp_check(void)
{
	if (cpumask_first(cpu_online_mask) != 0) {
		pr_warn("CPU0 is offline.\n");
		return -ENODEV;
	}

	return 0;
}

static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
			   void *ptr)
{
	int ret = 0;

	switch (action) {
	case PM_SUSPEND_PREPARE:
	case PM_HIBERNATION_PREPARE:
		ret = bsp_check();
		break;
F
Fenghua Yu 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
	case PM_RESTORE_PREPARE:
		/*
		 * When system resumes from hibernation, online CPU0 because
		 * 1. it's required for resume and
		 * 2. the CPU was online before hibernation
		 */
		if (!cpu_online(0))
			_debug_hotplug_cpu(0, 1);
		break;
	case PM_POST_RESTORE:
		/*
		 * When a resume really happens, this code won't be called.
		 *
		 * This code is called only when user space hibernation software
		 * prepares for snapshot device during boot time. So we just
		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
		 * preparing the snapshot device.
		 *
		 * This works for normal boot case in our CPU0 hotplug debug
		 * mode, i.e. CPU0 is offline and user mode hibernation
		 * software initializes during boot time.
		 *
		 * If CPU0 is online and user application accesses snapshot
		 * device after boot time, this will offline CPU0 and user may
		 * see different CPU0 state before and after accessing
		 * the snapshot device. But hopefully this is not a case when
		 * user debugging CPU0 hotplug. Even if users hit this case,
		 * they can easily online CPU0 back.
		 *
		 * To simplify this debug code, we only consider normal boot
		 * case. Otherwise we need to remember CPU0's state and restore
		 * to that state and resolve racy conditions etc.
		 */
		_debug_hotplug_cpu(0, 0);
		break;
#endif
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	default:
		break;
	}
	return notifier_from_errno(ret);
}

static int __init bsp_pm_check_init(void)
{
	/*
	 * Set this bsp_pm_callback as lower priority than
	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
	 * earlier to disable cpu hotplug before bsp online check.
	 */
	pm_notifier(bsp_pm_callback, -INT_MAX);
	return 0;
}

core_initcall(bsp_pm_check_init);
401

402
static int msr_build_context(const u32 *msr_id, const int num)
403
{
404
	struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
405
	struct saved_msr *msr_array;
406 407
	int total_num;
	int i, j;
408

409
	total_num = saved_msrs->num + num;
410 411 412 413 414 415 416

	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
	if (!msr_array) {
		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
		return -ENOMEM;
	}

417 418 419 420 421 422 423 424 425 426 427 428 429
	if (saved_msrs->array) {
		/*
		 * Multiple callbacks can invoke this function, so copy any
		 * MSR save requests from previous invocations.
		 */
		memcpy(msr_array, saved_msrs->array,
		       sizeof(struct saved_msr) * saved_msrs->num);

		kfree(saved_msrs->array);
	}

	for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
		msr_array[i].info.msr_no	= msr_id[j];
430 431 432
		msr_array[i].valid		= false;
		msr_array[i].info.reg.q		= 0;
	}
433 434
	saved_msrs->num   = total_num;
	saved_msrs->array = msr_array;
435 436 437 438 439

	return 0;
}

/*
440
 * The following sections are a quirk framework for problematic BIOSen:
441 442 443 444 445 446 447 448 449 450 451 452 453 454
 * Sometimes MSRs are modified by the BIOSen after suspended to
 * RAM, this might cause unexpected behavior after wakeup.
 * Thus we save/restore these specified MSRs across suspend/resume
 * in order to work around it.
 *
 * For any further problematic BIOSen/platforms,
 * please add your own function similar to msr_initialize_bdw.
 */
static int msr_initialize_bdw(const struct dmi_system_id *d)
{
	/* Add any extra MSR ids into this array. */
	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };

	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
455
	return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
456 457
}

458
static const struct dmi_system_id msr_save_dmi_table[] = {
459 460 461 462 463 464 465 466 467 468 469
	{
	 .callback = msr_initialize_bdw,
	 .ident = "BROADWELL BDX_EP",
	 .matches = {
		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
		},
	},
	{}
};

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
static int msr_save_cpuid_features(const struct x86_cpu_id *c)
{
	u32 cpuid_msr_id[] = {
		MSR_AMD64_CPUID_FN_1,
	};

	pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
		c->family);

	return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
}

static const struct x86_cpu_id msr_save_cpu_table[] = {
	{
		.vendor = X86_VENDOR_AMD,
		.family = 0x15,
		.model = X86_MODEL_ANY,
		.feature = X86_FEATURE_ANY,
		.driver_data = (kernel_ulong_t)msr_save_cpuid_features,
	},
	{
		.vendor = X86_VENDOR_AMD,
		.family = 0x16,
		.model = X86_MODEL_ANY,
		.feature = X86_FEATURE_ANY,
		.driver_data = (kernel_ulong_t)msr_save_cpuid_features,
	},
	{}
};

typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
static int pm_cpu_check(const struct x86_cpu_id *c)
{
	const struct x86_cpu_id *m;
	int ret = 0;

	m = x86_match_cpu(msr_save_cpu_table);
	if (m) {
		pm_cpu_match_t fn;

		fn = (pm_cpu_match_t)m->driver_data;
		ret = fn(m);
	}

	return ret;
}

517 518 519
static int pm_check_save_msr(void)
{
	dmi_check_system(msr_save_dmi_table);
520 521
	pm_cpu_check(msr_save_cpu_table);

522 523 524 525
	return 0;
}

device_initcall(pm_check_save_msr);