cpu.c 12.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * Suspend support specific for i386/x86-64.
L
Linus Torvalds 已提交
3 4 5
 *
 * Distribute under GPLv2
 *
6
 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
P
Pavel Machek 已提交
7
 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
L
Linus Torvalds 已提交
8 9 10 11
 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
 */

#include <linux/suspend.h>
12
#include <linux/export.h>
13
#include <linux/smp.h>
14
#include <linux/perf_event.h>
15
#include <linux/tboot.h>
16

17
#include <asm/pgtable.h>
18
#include <asm/proto.h>
19
#include <asm/mtrr.h>
20 21
#include <asm/page.h>
#include <asm/mce.h>
22
#include <asm/suspend.h>
23
#include <asm/fpu/internal.h>
24
#include <asm/debugreg.h>
F
Fenghua Yu 已提交
25
#include <asm/cpu.h>
26
#include <asm/mmu_context.h>
27
#include <linux/dmi.h>
L
Linus Torvalds 已提交
28

29
#ifdef CONFIG_X86_32
30 31 32 33
__visible unsigned long saved_context_ebx;
__visible unsigned long saved_context_esp, saved_context_ebp;
__visible unsigned long saved_context_esi, saved_context_edi;
__visible unsigned long saved_context_eflags;
34
#endif
35
struct saved_context saved_context;
L
Linus Torvalds 已提交
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
static void msr_save_context(struct saved_context *ctxt)
{
	struct saved_msr *msr = ctxt->saved_msrs.array;
	struct saved_msr *end = msr + ctxt->saved_msrs.num;

	while (msr < end) {
		msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
		msr++;
	}
}

static void msr_restore_context(struct saved_context *ctxt)
{
	struct saved_msr *msr = ctxt->saved_msrs.array;
	struct saved_msr *end = msr + ctxt->saved_msrs.num;

	while (msr < end) {
		if (msr->valid)
			wrmsrl(msr->info.msr_no, msr->info.reg.q);
		msr++;
	}
}

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/**
 *	__save_processor_state - save CPU registers before creating a
 *		hibernation image and before restoring the memory state from it
 *	@ctxt - structure to store the registers contents in
 *
 *	NOTE: If there is a CPU register the modification of which by the
 *	boot kernel (ie. the kernel used for loading the hibernation image)
 *	might affect the operations of the restored target kernel (ie. the one
 *	saved in the hibernation image), then its contents must be saved by this
 *	function.  In other words, if kernel A is hibernated and different
 *	kernel B is used for loading the hibernation image into memory, the
 *	kernel A's __save_processor_state() function must save all registers
 *	needed by kernel A, so that it can operate correctly after the resume
 *	regardless of what kernel B does in the meantime.
 */
75
static void __save_processor_state(struct saved_context *ctxt)
L
Linus Torvalds 已提交
76
{
77 78 79
#ifdef CONFIG_X86_32
	mtrr_save_fixed_ranges(NULL);
#endif
L
Linus Torvalds 已提交
80 81 82 83 84
	kernel_fpu_begin();

	/*
	 * descriptor tables
	 */
85
	store_idt(&ctxt->idt);
86

87 88 89 90 91 92 93
	/*
	 * We save it here, but restore it only in the hibernate case.
	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
	 * mode in "secondary_startup_64". In 32-bit mode it is done via
	 * 'pmode_gdt' in wakeup_start.
	 */
	ctxt->gdt_desc.size = GDT_SIZE - 1;
94
	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
95

96
	store_tr(ctxt->tr);
L
Linus Torvalds 已提交
97 98 99 100 101

	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
	/*
	 * segment registers
	 */
102 103 104 105 106 107 108
#ifdef CONFIG_X86_32
	savesegment(es, ctxt->es);
	savesegment(fs, ctxt->fs);
	savesegment(gs, ctxt->gs);
	savesegment(ss, ctxt->ss);
#else
/* CONFIG_X86_64 */
L
Linus Torvalds 已提交
109 110 111 112 113 114 115 116 117
	asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
	asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
	asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
	asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
	asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));

	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
	rdmsrl(MSR_GS_BASE, ctxt->gs_base);
	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
118
	mtrr_save_fixed_ranges(NULL);
L
Linus Torvalds 已提交
119

120 121 122
	rdmsrl(MSR_EFER, ctxt->efer);
#endif

L
Linus Torvalds 已提交
123
	/*
124
	 * control registers
L
Linus Torvalds 已提交
125
	 */
126 127
	ctxt->cr0 = read_cr0();
	ctxt->cr2 = read_cr2();
128
	ctxt->cr3 = __read_cr3();
129
	ctxt->cr4 = __read_cr4();
130
#ifdef CONFIG_X86_64
131
	ctxt->cr8 = read_cr8();
132
#endif
133 134
	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
					       &ctxt->misc_enable);
135
	msr_save_context(ctxt);
L
Linus Torvalds 已提交
136 137
}

138
/* Needed by apm.c */
L
Linus Torvalds 已提交
139 140 141
void save_processor_state(void)
{
	__save_processor_state(&saved_context);
142
	x86_platform.save_sched_clock_state();
L
Linus Torvalds 已提交
143
}
144 145 146
#ifdef CONFIG_X86_32
EXPORT_SYMBOL(save_processor_state);
#endif
L
Linus Torvalds 已提交
147

148
static void do_fpu_end(void)
L
Linus Torvalds 已提交
149
{
150
	/*
151
	 * Restore FPU regs if necessary.
152 153
	 */
	kernel_fpu_end();
L
Linus Torvalds 已提交
154 155
}

156 157 158
static void fix_processor_context(void)
{
	int cpu = smp_processor_id();
159
	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
160
#ifdef CONFIG_X86_64
161
	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
162 163
	tss_desc tss;
#endif
164 165 166 167 168 169 170 171
	set_tss_desc(cpu, t);	/*
				 * This just modifies memory; should not be
				 * necessary. But... This is necessary, because
				 * 386 hardware has concept of busy TSS or some
				 * similar stupidity.
				 */

#ifdef CONFIG_X86_64
172 173 174
	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
175 176

	syscall_init();				/* This sets MSR_*STAR and related */
177 178 179
#else
	if (boot_cpu_has(X86_FEATURE_SEP))
		enable_sep_cpu();
180 181
#endif
	load_TR_desc();				/* This does ltr */
182
	load_mm_ldt(current->active_mm);	/* This does lldt */
183
	initialize_tlbstate_and_flush();
184 185

	fpu__resume_cpu();
186 187 188

	/* The processor is back on the direct GDT, load back the fixmap */
	load_fixmap_gdt(cpu);
189 190
}

191 192 193 194 195
/**
 *	__restore_processor_state - restore the contents of CPU registers saved
 *		by __save_processor_state()
 *	@ctxt - structure to load the registers contents from
 */
196
static void notrace __restore_processor_state(struct saved_context *ctxt)
L
Linus Torvalds 已提交
197
{
198 199
	if (ctxt->misc_enable_saved)
		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
L
Linus Torvalds 已提交
200 201 202
	/*
	 * control registers
	 */
203 204 205
	/* cr4 was introduced in the Pentium CPU */
#ifdef CONFIG_X86_32
	if (ctxt->cr4)
206
		__write_cr4(ctxt->cr4);
207 208
#else
/* CONFIG X86_64 */
209
	wrmsrl(MSR_EFER, ctxt->efer);
210
	write_cr8(ctxt->cr8);
211
	__write_cr4(ctxt->cr4);
212
#endif
213 214 215
	write_cr3(ctxt->cr3);
	write_cr2(ctxt->cr2);
	write_cr0(ctxt->cr0);
L
Linus Torvalds 已提交
216

217 218 219 220
	/*
	 * now restore the descriptor tables to their proper values
	 * ltr is done i fix_processor_context().
	 */
221
	load_idt(&ctxt->idt);
222

223
#ifdef CONFIG_X86_64
L
Linus Torvalds 已提交
224
	/*
225 226 227 228 229 230 231 232 233 234 235 236
	 * We need GSBASE restored before percpu access can work.
	 * percpu access can happen in exception handlers or in complicated
	 * helpers like load_gs_index().
	 */
	wrmsrl(MSR_GS_BASE, ctxt->gs_base);
#endif

	fix_processor_context();

	/*
	 * Restore segment registers.  This happens after restoring the GDT
	 * and LDT, which happen in fix_processor_context().
L
Linus Torvalds 已提交
237
	 */
238 239 240 241 242 243 244
#ifdef CONFIG_X86_32
	loadsegment(es, ctxt->es);
	loadsegment(fs, ctxt->fs);
	loadsegment(gs, ctxt->gs);
	loadsegment(ss, ctxt->ss);
#else
/* CONFIG_X86_64 */
L
Linus Torvalds 已提交
245 246 247 248 249 250
	asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
	asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
	asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
	load_gs_index(ctxt->gs);
	asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));

251 252 253 254
	/*
	 * Restore FSBASE and user GSBASE after reloading the respective
	 * segment selectors.
	 */
L
Linus Torvalds 已提交
255 256
	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
257
#endif
L
Linus Torvalds 已提交
258 259

	do_fpu_end();
260
	tsc_verify_tsc_adjust(true);
261
	x86_platform.restore_sched_clock_state();
262
	mtrr_bp_restore();
263
	perf_restore_debug_store();
264
	msr_restore_context(ctxt);
L
Linus Torvalds 已提交
265 266
}

267
/* Needed by apm.c */
268
void notrace restore_processor_state(void)
L
Linus Torvalds 已提交
269 270 271
{
	__restore_processor_state(&saved_context);
}
272 273 274
#ifdef CONFIG_X86_32
EXPORT_SYMBOL(restore_processor_state);
#endif
275

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
#if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
static void resume_play_dead(void)
{
	play_dead_common();
	tboot_shutdown(TB_SHUTDOWN_WFS);
	hlt_play_dead();
}

int hibernate_resume_nonboot_cpu_disable(void)
{
	void (*play_dead)(void) = smp_ops.play_dead;
	int ret;

	/*
	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
	 * during hibernate image restoration, because it is likely that the
	 * monitored address will be actually written to at that time and then
	 * the "dead" CPU will attempt to execute instructions again, but the
	 * address in its instruction pointer may not be possible to resolve
	 * any more at that point (the page tables used by it previously may
	 * have been overwritten by hibernate image data).
	 */
	smp_ops.play_dead = resume_play_dead;
	ret = disable_nonboot_cpus();
	smp_ops.play_dead = play_dead;
	return ret;
}
#endif

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
/*
 * When bsp_check() is called in hibernate and suspend, cpu hotplug
 * is disabled already. So it's unnessary to handle race condition between
 * cpumask query and cpu hotplug.
 */
static int bsp_check(void)
{
	if (cpumask_first(cpu_online_mask) != 0) {
		pr_warn("CPU0 is offline.\n");
		return -ENODEV;
	}

	return 0;
}

static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
			   void *ptr)
{
	int ret = 0;

	switch (action) {
	case PM_SUSPEND_PREPARE:
	case PM_HIBERNATION_PREPARE:
		ret = bsp_check();
		break;
F
Fenghua Yu 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
	case PM_RESTORE_PREPARE:
		/*
		 * When system resumes from hibernation, online CPU0 because
		 * 1. it's required for resume and
		 * 2. the CPU was online before hibernation
		 */
		if (!cpu_online(0))
			_debug_hotplug_cpu(0, 1);
		break;
	case PM_POST_RESTORE:
		/*
		 * When a resume really happens, this code won't be called.
		 *
		 * This code is called only when user space hibernation software
		 * prepares for snapshot device during boot time. So we just
		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
		 * preparing the snapshot device.
		 *
		 * This works for normal boot case in our CPU0 hotplug debug
		 * mode, i.e. CPU0 is offline and user mode hibernation
		 * software initializes during boot time.
		 *
		 * If CPU0 is online and user application accesses snapshot
		 * device after boot time, this will offline CPU0 and user may
		 * see different CPU0 state before and after accessing
		 * the snapshot device. But hopefully this is not a case when
		 * user debugging CPU0 hotplug. Even if users hit this case,
		 * they can easily online CPU0 back.
		 *
		 * To simplify this debug code, we only consider normal boot
		 * case. Otherwise we need to remember CPU0's state and restore
		 * to that state and resolve racy conditions etc.
		 */
		_debug_hotplug_cpu(0, 0);
		break;
#endif
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	default:
		break;
	}
	return notifier_from_errno(ret);
}

static int __init bsp_pm_check_init(void)
{
	/*
	 * Set this bsp_pm_callback as lower priority than
	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
	 * earlier to disable cpu hotplug before bsp online check.
	 */
	pm_notifier(bsp_pm_callback, -INT_MAX);
	return 0;
}

core_initcall(bsp_pm_check_init);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

static int msr_init_context(const u32 *msr_id, const int total_num)
{
	int i = 0;
	struct saved_msr *msr_array;

	if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
		pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
		return -EINVAL;
	}

	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
	if (!msr_array) {
		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
		return -ENOMEM;
	}

	for (i = 0; i < total_num; i++) {
		msr_array[i].info.msr_no	= msr_id[i];
		msr_array[i].valid		= false;
		msr_array[i].info.reg.q		= 0;
	}
	saved_context.saved_msrs.num	= total_num;
	saved_context.saved_msrs.array	= msr_array;

	return 0;
}

/*
 * The following section is a quirk framework for problematic BIOSen:
 * Sometimes MSRs are modified by the BIOSen after suspended to
 * RAM, this might cause unexpected behavior after wakeup.
 * Thus we save/restore these specified MSRs across suspend/resume
 * in order to work around it.
 *
 * For any further problematic BIOSen/platforms,
 * please add your own function similar to msr_initialize_bdw.
 */
static int msr_initialize_bdw(const struct dmi_system_id *d)
{
	/* Add any extra MSR ids into this array. */
	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };

	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
	return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
}

432
static const struct dmi_system_id msr_save_dmi_table[] = {
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	{
	 .callback = msr_initialize_bdw,
	 .ident = "BROADWELL BDX_EP",
	 .matches = {
		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
		},
	},
	{}
};

static int pm_check_save_msr(void)
{
	dmi_check_system(msr_save_dmi_table);
	return 0;
}

device_initcall(pm_check_save_msr);