ov7670.c 39.5 KB
Newer Older
1 2 3 4 5 6 7
/*
 * A V4L2 driver for OmniVision OV7670 cameras.
 *
 * Copyright 2006 One Laptop Per Child Association, Inc.  Written
 * by Jonathan Corbet with substantial inspiration from Mark
 * McClelland's ovcamchip code.
 *
8 9
 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
 *
10 11 12 13 14
 * This file may be distributed under the terms of the GNU General
 * Public License, version 2.
 */
#include <linux/init.h>
#include <linux/module.h>
15
#include <linux/slab.h>
16
#include <linux/i2c.h>
17
#include <linux/delay.h>
18
#include <linux/videodev2.h>
19
#include <media/v4l2-device.h>
20
#include <media/v4l2-chip-ident.h>
21
#include <media/v4l2-mediabus.h>
22 23


D
Dave Jones 已提交
24
MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
25 26 27
MODULE_DESCRIPTION("A low-level driver for OmniVision ov7670 sensors");
MODULE_LICENSE("GPL");

28 29 30 31
static int debug;
module_param(debug, bool, 0644);
MODULE_PARM_DESC(debug, "Debug level (0-1)");

32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * Basic window sizes.  These probably belong somewhere more globally
 * useful.
 */
#define VGA_WIDTH	640
#define VGA_HEIGHT	480
#define QVGA_WIDTH	320
#define QVGA_HEIGHT	240
#define CIF_WIDTH	352
#define CIF_HEIGHT	288
#define QCIF_WIDTH	176
#define	QCIF_HEIGHT	144

45 46 47 48 49
/*
 * Our nominal (default) frame rate.
 */
#define OV7670_FRAME_RATE 30

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * The 7670 sits on i2c with ID 0x42
 */
#define OV7670_I2C_ADDR 0x42

/* Registers */
#define REG_GAIN	0x00	/* Gain lower 8 bits (rest in vref) */
#define REG_BLUE	0x01	/* blue gain */
#define REG_RED		0x02	/* red gain */
#define REG_VREF	0x03	/* Pieces of GAIN, VSTART, VSTOP */
#define REG_COM1	0x04	/* Control 1 */
#define  COM1_CCIR656	  0x40  /* CCIR656 enable */
#define REG_BAVE	0x05	/* U/B Average level */
#define REG_GbAVE	0x06	/* Y/Gb Average level */
#define REG_AECHH	0x07	/* AEC MS 5 bits */
#define REG_RAVE	0x08	/* V/R Average level */
#define REG_COM2	0x09	/* Control 2 */
#define  COM2_SSLEEP	  0x10	/* Soft sleep mode */
#define REG_PID		0x0a	/* Product ID MSB */
#define REG_VER		0x0b	/* Product ID LSB */
#define REG_COM3	0x0c	/* Control 3 */
#define  COM3_SWAP	  0x40	  /* Byte swap */
#define  COM3_SCALEEN	  0x08	  /* Enable scaling */
#define  COM3_DCWEN	  0x04	  /* Enable downsamp/crop/window */
#define REG_COM4	0x0d	/* Control 4 */
#define REG_COM5	0x0e	/* All "reserved" */
#define REG_COM6	0x0f	/* Control 6 */
#define REG_AECH	0x10	/* More bits of AEC value */
#define REG_CLKRC	0x11	/* Clocl control */
#define   CLK_EXT	  0x40	  /* Use external clock directly */
#define   CLK_SCALE	  0x3f	  /* Mask for internal clock scale */
#define REG_COM7	0x12	/* Control 7 */
#define   COM7_RESET	  0x80	  /* Register reset */
#define   COM7_FMT_MASK	  0x38
#define   COM7_FMT_VGA	  0x00
#define	  COM7_FMT_CIF	  0x20	  /* CIF format */
#define   COM7_FMT_QVGA	  0x10	  /* QVGA format */
#define   COM7_FMT_QCIF	  0x08	  /* QCIF format */
#define	  COM7_RGB	  0x04	  /* bits 0 and 2 - RGB format */
#define	  COM7_YUV	  0x00	  /* YUV */
#define	  COM7_BAYER	  0x01	  /* Bayer format */
#define	  COM7_PBAYER	  0x05	  /* "Processed bayer" */
#define REG_COM8	0x13	/* Control 8 */
#define   COM8_FASTAEC	  0x80	  /* Enable fast AGC/AEC */
#define   COM8_AECSTEP	  0x40	  /* Unlimited AEC step size */
#define   COM8_BFILT	  0x20	  /* Band filter enable */
#define   COM8_AGC	  0x04	  /* Auto gain enable */
#define   COM8_AWB	  0x02	  /* White balance enable */
#define   COM8_AEC	  0x01	  /* Auto exposure enable */
#define REG_COM9	0x14	/* Control 9  - gain ceiling */
#define REG_COM10	0x15	/* Control 10 */
#define   COM10_HSYNC	  0x40	  /* HSYNC instead of HREF */
#define   COM10_PCLK_HB	  0x20	  /* Suppress PCLK on horiz blank */
#define   COM10_HREF_REV  0x08	  /* Reverse HREF */
#define   COM10_VS_LEAD	  0x04	  /* VSYNC on clock leading edge */
#define   COM10_VS_NEG	  0x02	  /* VSYNC negative */
#define   COM10_HS_NEG	  0x01	  /* HSYNC negative */
#define REG_HSTART	0x17	/* Horiz start high bits */
#define REG_HSTOP	0x18	/* Horiz stop high bits */
#define REG_VSTART	0x19	/* Vert start high bits */
#define REG_VSTOP	0x1a	/* Vert stop high bits */
#define REG_PSHFT	0x1b	/* Pixel delay after HREF */
#define REG_MIDH	0x1c	/* Manuf. ID high */
#define REG_MIDL	0x1d	/* Manuf. ID low */
#define REG_MVFP	0x1e	/* Mirror / vflip */
#define   MVFP_MIRROR	  0x20	  /* Mirror image */
#define   MVFP_FLIP	  0x10	  /* Vertical flip */

#define REG_AEW		0x24	/* AGC upper limit */
#define REG_AEB		0x25	/* AGC lower limit */
#define REG_VPT		0x26	/* AGC/AEC fast mode op region */
#define REG_HSYST	0x30	/* HSYNC rising edge delay */
#define REG_HSYEN	0x31	/* HSYNC falling edge delay */
#define REG_HREF	0x32	/* HREF pieces */
#define REG_TSLB	0x3a	/* lots of stuff */
#define   TSLB_YLAST	  0x04	  /* UYVY or VYUY - see com13 */
#define REG_COM11	0x3b	/* Control 11 */
#define   COM11_NIGHT	  0x80	  /* NIght mode enable */
#define   COM11_NMFR	  0x60	  /* Two bit NM frame rate */
#define   COM11_HZAUTO	  0x10	  /* Auto detect 50/60 Hz */
#define	  COM11_50HZ	  0x08	  /* Manual 50Hz select */
#define   COM11_EXP	  0x02
#define REG_COM12	0x3c	/* Control 12 */
#define   COM12_HREF	  0x80	  /* HREF always */
#define REG_COM13	0x3d	/* Control 13 */
#define   COM13_GAMMA	  0x80	  /* Gamma enable */
#define	  COM13_UVSAT	  0x40	  /* UV saturation auto adjustment */
#define   COM13_UVSWAP	  0x01	  /* V before U - w/TSLB */
#define REG_COM14	0x3e	/* Control 14 */
#define   COM14_DCWEN	  0x10	  /* DCW/PCLK-scale enable */
#define REG_EDGE	0x3f	/* Edge enhancement factor */
#define REG_COM15	0x40	/* Control 15 */
#define   COM15_R10F0	  0x00	  /* Data range 10 to F0 */
#define	  COM15_R01FE	  0x80	  /*            01 to FE */
#define   COM15_R00FF	  0xc0	  /*            00 to FF */
#define   COM15_RGB565	  0x10	  /* RGB565 output */
#define   COM15_RGB555	  0x30	  /* RGB555 output */
#define REG_COM16	0x41	/* Control 16 */
#define   COM16_AWBGAIN   0x08	  /* AWB gain enable */
#define REG_COM17	0x42	/* Control 17 */
#define   COM17_AECWIN	  0xc0	  /* AEC window - must match COM4 */
#define   COM17_CBAR	  0x08	  /* DSP Color bar */

153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * This matrix defines how the colors are generated, must be
 * tweaked to adjust hue and saturation.
 *
 * Order: v-red, v-green, v-blue, u-red, u-green, u-blue
 *
 * They are nine-bit signed quantities, with the sign bit
 * stored in 0x58.  Sign for v-red is bit 0, and up from there.
 */
#define	REG_CMATRIX_BASE 0x4f
#define   CMATRIX_LEN 6
#define REG_CMATRIX_SIGN 0x58


167 168 169 170 171
#define REG_BRIGHT	0x55	/* Brightness */
#define REG_CONTRAS	0x56	/* Contrast control */

#define REG_GFIX	0x69	/* Fix gain control */

172 173 174 175
#define REG_REG76	0x76	/* OV's name */
#define   R76_BLKPCOR	  0x80	  /* Black pixel correction enable */
#define   R76_WHTPCOR	  0x40	  /* White pixel correction enable */

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#define REG_RGB444	0x8c	/* RGB 444 control */
#define   R444_ENABLE	  0x02	  /* Turn on RGB444, overrides 5x5 */
#define   R444_RGBX	  0x01	  /* Empty nibble at end */

#define REG_HAECC1	0x9f	/* Hist AEC/AGC control 1 */
#define REG_HAECC2	0xa0	/* Hist AEC/AGC control 2 */

#define REG_BD50MAX	0xa5	/* 50hz banding step limit */
#define REG_HAECC3	0xa6	/* Hist AEC/AGC control 3 */
#define REG_HAECC4	0xa7	/* Hist AEC/AGC control 4 */
#define REG_HAECC5	0xa8	/* Hist AEC/AGC control 5 */
#define REG_HAECC6	0xa9	/* Hist AEC/AGC control 6 */
#define REG_HAECC7	0xaa	/* Hist AEC/AGC control 7 */
#define REG_BD60MAX	0xab	/* 60hz banding step limit */


192 193 194 195 196
/*
 * Information we maintain about a known sensor.
 */
struct ov7670_format_struct;  /* coming later */
struct ov7670_info {
197
	struct v4l2_subdev sd;
198 199 200
	struct ov7670_format_struct *fmt;  /* Current format */
	unsigned char sat;		/* Saturation value */
	int hue;			/* Hue value */
201
	u8 clkrc;			/* Clock divider value */
202 203
};

204 205 206 207
static inline struct ov7670_info *to_state(struct v4l2_subdev *sd)
{
	return container_of(sd, struct ov7670_info, sd);
}
208 209 210



211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/*
 * The default register settings, as obtained from OmniVision.  There
 * is really no making sense of most of these - lots of "reserved" values
 * and such.
 *
 * These settings give VGA YUYV.
 */

struct regval_list {
	unsigned char reg_num;
	unsigned char value;
};

static struct regval_list ov7670_default_regs[] = {
	{ REG_COM7, COM7_RESET },
/*
 * Clock scale: 3 = 15fps
 *              2 = 20fps
 *              1 = 30fps
 */
231
	{ REG_CLKRC, 0x1 },	/* OV: clock scale (30 fps) */
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	{ REG_TSLB,  0x04 },	/* OV */
	{ REG_COM7, 0 },	/* VGA */
	/*
	 * Set the hardware window.  These values from OV don't entirely
	 * make sense - hstop is less than hstart.  But they work...
	 */
	{ REG_HSTART, 0x13 },	{ REG_HSTOP, 0x01 },
	{ REG_HREF, 0xb6 },	{ REG_VSTART, 0x02 },
	{ REG_VSTOP, 0x7a },	{ REG_VREF, 0x0a },

	{ REG_COM3, 0 },	{ REG_COM14, 0 },
	/* Mystery scaling numbers */
	{ 0x70, 0x3a },		{ 0x71, 0x35 },
	{ 0x72, 0x11 },		{ 0x73, 0xf0 },
	{ 0xa2, 0x02 },		{ REG_COM10, 0x0 },

	/* Gamma curve values */
	{ 0x7a, 0x20 },		{ 0x7b, 0x10 },
	{ 0x7c, 0x1e },		{ 0x7d, 0x35 },
	{ 0x7e, 0x5a },		{ 0x7f, 0x69 },
	{ 0x80, 0x76 },		{ 0x81, 0x80 },
	{ 0x82, 0x88 },		{ 0x83, 0x8f },
	{ 0x84, 0x96 },		{ 0x85, 0xa3 },
	{ 0x86, 0xaf },		{ 0x87, 0xc4 },
	{ 0x88, 0xd7 },		{ 0x89, 0xe8 },

	/* AGC and AEC parameters.  Note we start by disabling those features,
	   then turn them only after tweaking the values. */
	{ REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_BFILT },
	{ REG_GAIN, 0 },	{ REG_AECH, 0 },
	{ REG_COM4, 0x40 }, /* magic reserved bit */
	{ REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
	{ REG_BD50MAX, 0x05 },	{ REG_BD60MAX, 0x07 },
	{ REG_AEW, 0x95 },	{ REG_AEB, 0x33 },
	{ REG_VPT, 0xe3 },	{ REG_HAECC1, 0x78 },
	{ REG_HAECC2, 0x68 },	{ 0xa1, 0x03 }, /* magic */
	{ REG_HAECC3, 0xd8 },	{ REG_HAECC4, 0xd8 },
	{ REG_HAECC5, 0xf0 },	{ REG_HAECC6, 0x90 },
	{ REG_HAECC7, 0x94 },
	{ REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC },

	/* Almost all of these are magic "reserved" values.  */
	{ REG_COM5, 0x61 },	{ REG_COM6, 0x4b },
275
	{ 0x16, 0x02 },		{ REG_MVFP, 0x07 },
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	{ 0x21, 0x02 },		{ 0x22, 0x91 },
	{ 0x29, 0x07 },		{ 0x33, 0x0b },
	{ 0x35, 0x0b },		{ 0x37, 0x1d },
	{ 0x38, 0x71 },		{ 0x39, 0x2a },
	{ REG_COM12, 0x78 },	{ 0x4d, 0x40 },
	{ 0x4e, 0x20 },		{ REG_GFIX, 0 },
	{ 0x6b, 0x4a },		{ 0x74, 0x10 },
	{ 0x8d, 0x4f },		{ 0x8e, 0 },
	{ 0x8f, 0 },		{ 0x90, 0 },
	{ 0x91, 0 },		{ 0x96, 0 },
	{ 0x9a, 0 },		{ 0xb0, 0x84 },
	{ 0xb1, 0x0c },		{ 0xb2, 0x0e },
	{ 0xb3, 0x82 },		{ 0xb8, 0x0a },

	/* More reserved magic, some of which tweaks white balance */
	{ 0x43, 0x0a },		{ 0x44, 0xf0 },
	{ 0x45, 0x34 },		{ 0x46, 0x58 },
	{ 0x47, 0x28 },		{ 0x48, 0x3a },
	{ 0x59, 0x88 },		{ 0x5a, 0x88 },
	{ 0x5b, 0x44 },		{ 0x5c, 0x67 },
	{ 0x5d, 0x49 },		{ 0x5e, 0x0e },
	{ 0x6c, 0x0a },		{ 0x6d, 0x55 },
	{ 0x6e, 0x11 },		{ 0x6f, 0x9f }, /* "9e for advance AWB" */
	{ 0x6a, 0x40 },		{ REG_BLUE, 0x40 },
	{ REG_RED, 0x60 },
	{ REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC|COM8_AWB },

	/* Matrix coefficients */
	{ 0x4f, 0x80 },		{ 0x50, 0x80 },
	{ 0x51, 0 },		{ 0x52, 0x22 },
	{ 0x53, 0x5e },		{ 0x54, 0x80 },
	{ 0x58, 0x9e },

	{ REG_COM16, COM16_AWBGAIN },	{ REG_EDGE, 0 },
	{ 0x75, 0x05 },		{ 0x76, 0xe1 },
	{ 0x4c, 0 },		{ 0x77, 0x01 },
	{ REG_COM13, 0xc3 },	{ 0x4b, 0x09 },
	{ 0xc9, 0x60 },		{ REG_COM16, 0x38 },
	{ 0x56, 0x40 },

316
	{ 0x34, 0x11 },		{ REG_COM11, COM11_EXP|COM11_HZAUTO },
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	{ 0xa4, 0x88 },		{ 0x96, 0 },
	{ 0x97, 0x30 },		{ 0x98, 0x20 },
	{ 0x99, 0x30 },		{ 0x9a, 0x84 },
	{ 0x9b, 0x29 },		{ 0x9c, 0x03 },
	{ 0x9d, 0x4c },		{ 0x9e, 0x3f },
	{ 0x78, 0x04 },

	/* Extra-weird stuff.  Some sort of multiplexor register */
	{ 0x79, 0x01 },		{ 0xc8, 0xf0 },
	{ 0x79, 0x0f },		{ 0xc8, 0x00 },
	{ 0x79, 0x10 },		{ 0xc8, 0x7e },
	{ 0x79, 0x0a },		{ 0xc8, 0x80 },
	{ 0x79, 0x0b },		{ 0xc8, 0x01 },
	{ 0x79, 0x0c },		{ 0xc8, 0x0f },
	{ 0x79, 0x0d },		{ 0xc8, 0x20 },
	{ 0x79, 0x09 },		{ 0xc8, 0x80 },
	{ 0x79, 0x02 },		{ 0xc8, 0xc0 },
	{ 0x79, 0x03 },		{ 0xc8, 0x40 },
	{ 0x79, 0x05 },		{ 0xc8, 0x30 },
	{ 0x79, 0x26 },

	{ 0xff, 0xff },	/* END MARKER */
};


/*
 * Here we'll try to encapsulate the changes for just the output
 * video format.
 *
 * RGB656 and YUV422 come from OV; RGB444 is homebrewed.
 *
 * IMPORTANT RULE: the first entry must be for COM7, see ov7670_s_fmt for why.
 */


static struct regval_list ov7670_fmt_yuv422[] = {
	{ REG_COM7, 0x0 },  /* Selects YUV mode */
	{ REG_RGB444, 0 },	/* No RGB444 please */
355
	{ REG_COM1, 0 },	/* CCIR601 */
356 357 358 359
	{ REG_COM15, COM15_R00FF },
	{ REG_COM9, 0x18 }, /* 4x gain ceiling; 0x8 is reserved bit */
	{ 0x4f, 0x80 }, 	/* "matrix coefficient 1" */
	{ 0x50, 0x80 }, 	/* "matrix coefficient 2" */
360
	{ 0x51, 0    },		/* vb */
361 362 363 364 365 366 367 368 369 370
	{ 0x52, 0x22 }, 	/* "matrix coefficient 4" */
	{ 0x53, 0x5e }, 	/* "matrix coefficient 5" */
	{ 0x54, 0x80 }, 	/* "matrix coefficient 6" */
	{ REG_COM13, COM13_GAMMA|COM13_UVSAT },
	{ 0xff, 0xff },
};

static struct regval_list ov7670_fmt_rgb565[] = {
	{ REG_COM7, COM7_RGB },	/* Selects RGB mode */
	{ REG_RGB444, 0 },	/* No RGB444 please */
371
	{ REG_COM1, 0x0 },	/* CCIR601 */
372 373 374 375
	{ REG_COM15, COM15_RGB565 },
	{ REG_COM9, 0x38 }, 	/* 16x gain ceiling; 0x8 is reserved bit */
	{ 0x4f, 0xb3 }, 	/* "matrix coefficient 1" */
	{ 0x50, 0xb3 }, 	/* "matrix coefficient 2" */
376
	{ 0x51, 0    },		/* vb */
377 378 379 380 381 382 383 384 385 386
	{ 0x52, 0x3d }, 	/* "matrix coefficient 4" */
	{ 0x53, 0xa7 }, 	/* "matrix coefficient 5" */
	{ 0x54, 0xe4 }, 	/* "matrix coefficient 6" */
	{ REG_COM13, COM13_GAMMA|COM13_UVSAT },
	{ 0xff, 0xff },
};

static struct regval_list ov7670_fmt_rgb444[] = {
	{ REG_COM7, COM7_RGB },	/* Selects RGB mode */
	{ REG_RGB444, R444_ENABLE },	/* Enable xxxxrrrr ggggbbbb */
387
	{ REG_COM1, 0x0 },	/* CCIR601 */
388 389 390 391
	{ REG_COM15, COM15_R01FE|COM15_RGB565 }, /* Data range needed? */
	{ REG_COM9, 0x38 }, 	/* 16x gain ceiling; 0x8 is reserved bit */
	{ 0x4f, 0xb3 }, 	/* "matrix coefficient 1" */
	{ 0x50, 0xb3 }, 	/* "matrix coefficient 2" */
392
	{ 0x51, 0    },		/* vb */
393 394 395 396 397 398 399
	{ 0x52, 0x3d }, 	/* "matrix coefficient 4" */
	{ 0x53, 0xa7 }, 	/* "matrix coefficient 5" */
	{ 0x54, 0xe4 }, 	/* "matrix coefficient 6" */
	{ REG_COM13, COM13_GAMMA|COM13_UVSAT|0x2 },  /* Magic rsvd bit */
	{ 0xff, 0xff },
};

400 401 402 403 404 405 406
static struct regval_list ov7670_fmt_raw[] = {
	{ REG_COM7, COM7_BAYER },
	{ REG_COM13, 0x08 }, /* No gamma, magic rsvd bit */
	{ REG_COM16, 0x3d }, /* Edge enhancement, denoise */
	{ REG_REG76, 0xe1 }, /* Pix correction, magic rsvd */
	{ 0xff, 0xff },
};
407 408 409 410 411



/*
 * Low-level register I/O.
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
 *
 * Note that there are two versions of these.  On the XO 1, the
 * i2c controller only does SMBUS, so that's what we use.  The
 * ov7670 is not really an SMBUS device, though, so the communication
 * is not always entirely reliable.
 */
#ifdef CONFIG_OLPC_XO_1
static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg,
		unsigned char *value)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret;

	ret = i2c_smbus_read_byte_data(client, reg);
	if (ret >= 0) {
		*value = (unsigned char)ret;
		ret = 0;
	}
	return ret;
}


static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg,
		unsigned char value)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret = i2c_smbus_write_byte_data(client, reg, value);

	if (reg == REG_COM7 && (value & COM7_RESET))
		msleep(5);  /* Wait for reset to run */
	return ret;
}

#else /* ! CONFIG_OLPC_XO_1 */
/*
 * On most platforms, we'd rather do straight i2c I/O.
448
 */
449
static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg,
450 451
		unsigned char *value)
{
452
	struct i2c_client *client = v4l2_get_subdevdata(sd);
453 454
	u8 data = reg;
	struct i2c_msg msg;
455 456
	int ret;

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	/*
	 * Send out the register address...
	 */
	msg.addr = client->addr;
	msg.flags = 0;
	msg.len = 1;
	msg.buf = &data;
	ret = i2c_transfer(client->adapter, &msg, 1);
	if (ret < 0) {
		printk(KERN_ERR "Error %d on register write\n", ret);
		return ret;
	}
	/*
	 * ...then read back the result.
	 */
	msg.flags = I2C_M_RD;
	ret = i2c_transfer(client->adapter, &msg, 1);
474
	if (ret >= 0) {
475
		*value = data;
476 477
		ret = 0;
	}
478 479 480 481
	return ret;
}


482
static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg,
483 484
		unsigned char value)
{
485
	struct i2c_client *client = v4l2_get_subdevdata(sd);
486 487 488
	struct i2c_msg msg;
	unsigned char data[2] = { reg, value };
	int ret;
489

490 491 492 493 494 495 496
	msg.addr = client->addr;
	msg.flags = 0;
	msg.len = 2;
	msg.buf = data;
	ret = i2c_transfer(client->adapter, &msg, 1);
	if (ret > 0)
		ret = 0;
497
	if (reg == REG_COM7 && (value & COM7_RESET))
498
		msleep(5);  /* Wait for reset to run */
499
	return ret;
500
}
501
#endif /* CONFIG_OLPC_XO_1 */
502 503 504 505 506


/*
 * Write a list of register settings; ff/ff stops the process.
 */
507
static int ov7670_write_array(struct v4l2_subdev *sd, struct regval_list *vals)
508 509
{
	while (vals->reg_num != 0xff || vals->value != 0xff) {
510
		int ret = ov7670_write(sd, vals->reg_num, vals->value);
511 512 513 514 515 516 517 518 519 520 521
		if (ret < 0)
			return ret;
		vals++;
	}
	return 0;
}


/*
 * Stuff that knows about the sensor.
 */
522
static int ov7670_reset(struct v4l2_subdev *sd, u32 val)
523
{
524
	ov7670_write(sd, REG_COM7, COM7_RESET);
525
	msleep(1);
526
	return 0;
527 528 529
}


530
static int ov7670_init(struct v4l2_subdev *sd, u32 val)
531
{
532
	return ov7670_write_array(sd, ov7670_default_regs);
533 534 535 536
}



537
static int ov7670_detect(struct v4l2_subdev *sd)
538 539 540 541
{
	unsigned char v;
	int ret;

542
	ret = ov7670_init(sd, 0);
543 544
	if (ret < 0)
		return ret;
545
	ret = ov7670_read(sd, REG_MIDH, &v);
546 547 548 549
	if (ret < 0)
		return ret;
	if (v != 0x7f) /* OV manuf. id. */
		return -ENODEV;
550
	ret = ov7670_read(sd, REG_MIDL, &v);
551 552 553 554 555 556 557
	if (ret < 0)
		return ret;
	if (v != 0xa2)
		return -ENODEV;
	/*
	 * OK, we know we have an OmniVision chip...but which one?
	 */
558
	ret = ov7670_read(sd, REG_PID, &v);
559 560 561 562
	if (ret < 0)
		return ret;
	if (v != 0x76)  /* PID + VER = 0x76 / 0x73 */
		return -ENODEV;
563
	ret = ov7670_read(sd, REG_VER, &v);
564 565 566 567 568 569 570 571
	if (ret < 0)
		return ret;
	if (v != 0x73)  /* PID + VER = 0x76 / 0x73 */
		return -ENODEV;
	return 0;
}


572 573 574
/*
 * Store information about the video data format.  The color matrix
 * is deeply tied into the format, so keep the relevant values here.
575
 * The magic matrix numbers come from OmniVision.
576
 */
577
static struct ov7670_format_struct {
578 579
	enum v4l2_mbus_pixelcode mbus_code;
	enum v4l2_colorspace colorspace;
580
	struct regval_list *regs;
581
	int cmatrix[CMATRIX_LEN];
582 583
} ov7670_formats[] = {
	{
584 585
		.mbus_code	= V4L2_MBUS_FMT_YUYV8_2X8,
		.colorspace	= V4L2_COLORSPACE_JPEG,
586
		.regs 		= ov7670_fmt_yuv422,
587
		.cmatrix	= { 128, -128, 0, -34, -94, 128 },
588 589
	},
	{
590 591
		.mbus_code	= V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE,
		.colorspace	= V4L2_COLORSPACE_SRGB,
592
		.regs		= ov7670_fmt_rgb444,
593
		.cmatrix	= { 179, -179, 0, -61, -176, 228 },
594 595
	},
	{
596 597
		.mbus_code	= V4L2_MBUS_FMT_RGB565_2X8_LE,
		.colorspace	= V4L2_COLORSPACE_SRGB,
598
		.regs		= ov7670_fmt_rgb565,
599
		.cmatrix	= { 179, -179, 0, -61, -176, 228 },
600 601
	},
	{
602 603
		.mbus_code	= V4L2_MBUS_FMT_SBGGR8_1X8,
		.colorspace	= V4L2_COLORSPACE_SRGB,
604 605
		.regs 		= ov7670_fmt_raw,
		.cmatrix	= { 0, 0, 0, 0, 0, 0 },
606 607
	},
};
608
#define N_OV7670_FMTS ARRAY_SIZE(ov7670_formats)
609 610 611 612 613


/*
 * Then there is the issue of window sizes.  Try to capture the info here.
 */
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

/*
 * QCIF mode is done (by OV) in a very strange way - it actually looks like
 * VGA with weird scaling options - they do *not* use the canned QCIF mode
 * which is allegedly provided by the sensor.  So here's the weird register
 * settings.
 */
static struct regval_list ov7670_qcif_regs[] = {
	{ REG_COM3, COM3_SCALEEN|COM3_DCWEN },
	{ REG_COM3, COM3_DCWEN },
	{ REG_COM14, COM14_DCWEN | 0x01},
	{ 0x73, 0xf1 },
	{ 0xa2, 0x52 },
	{ 0x7b, 0x1c },
	{ 0x7c, 0x28 },
	{ 0x7d, 0x3c },
	{ 0x7f, 0x69 },
	{ REG_COM9, 0x38 },
	{ 0xa1, 0x0b },
	{ 0x74, 0x19 },
	{ 0x9a, 0x80 },
	{ 0x43, 0x14 },
	{ REG_COM13, 0xc0 },
	{ 0xff, 0xff },
};

640 641 642 643 644 645 646 647
static struct ov7670_win_size {
	int	width;
	int	height;
	unsigned char com7_bit;
	int	hstart;		/* Start/stop values for the camera.  Note */
	int	hstop;		/* that they do not always make complete */
	int	vstart;		/* sense to humans, but evidently the sensor */
	int	vstop;		/* will do the right thing... */
648
	struct regval_list *regs; /* Regs to tweak */
649 650 651 652 653 654 655 656 657 658 659
/* h/vref stuff */
} ov7670_win_sizes[] = {
	/* VGA */
	{
		.width		= VGA_WIDTH,
		.height		= VGA_HEIGHT,
		.com7_bit	= COM7_FMT_VGA,
		.hstart		= 158,		/* These values from */
		.hstop		=  14,		/* Omnivision */
		.vstart		=  10,
		.vstop		= 490,
660
		.regs 		= NULL,
661 662 663 664 665 666 667 668 669 670
	},
	/* CIF */
	{
		.width		= CIF_WIDTH,
		.height		= CIF_HEIGHT,
		.com7_bit	= COM7_FMT_CIF,
		.hstart		= 170,		/* Empirically determined */
		.hstop		=  90,
		.vstart		=  14,
		.vstop		= 494,
671
		.regs 		= NULL,
672 673 674 675 676 677 678 679 680 681
	},
	/* QVGA */
	{
		.width		= QVGA_WIDTH,
		.height		= QVGA_HEIGHT,
		.com7_bit	= COM7_FMT_QVGA,
		.hstart		= 164,		/* Empirically determined */
		.hstop		=  20,
		.vstart		=  14,
		.vstop		= 494,
682 683 684 685 686 687 688 689 690 691 692 693
		.regs 		= NULL,
	},
	/* QCIF */
	{
		.width		= QCIF_WIDTH,
		.height		= QCIF_HEIGHT,
		.com7_bit	= COM7_FMT_VGA, /* see comment above */
		.hstart		= 456,		/* Empirically determined */
		.hstop		=  24,
		.vstart		=  14,
		.vstop		= 494,
		.regs 		= ov7670_qcif_regs,
694 695 696
	},
};

697
#define N_WIN_SIZES (ARRAY_SIZE(ov7670_win_sizes))
698 699 700 701 702


/*
 * Store a set of start/stop values into the camera.
 */
703
static int ov7670_set_hw(struct v4l2_subdev *sd, int hstart, int hstop,
704 705 706 707 708 709 710 711 712
		int vstart, int vstop)
{
	int ret;
	unsigned char v;
/*
 * Horizontal: 11 bits, top 8 live in hstart and hstop.  Bottom 3 of
 * hstart are in href[2:0], bottom 3 of hstop in href[5:3].  There is
 * a mystery "edge offset" value in the top two bits of href.
 */
713 714 715
	ret =  ov7670_write(sd, REG_HSTART, (hstart >> 3) & 0xff);
	ret += ov7670_write(sd, REG_HSTOP, (hstop >> 3) & 0xff);
	ret += ov7670_read(sd, REG_HREF, &v);
716 717
	v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x7);
	msleep(10);
718
	ret += ov7670_write(sd, REG_HREF, v);
719 720 721
/*
 * Vertical: similar arrangement, but only 10 bits.
 */
722 723 724
	ret += ov7670_write(sd, REG_VSTART, (vstart >> 2) & 0xff);
	ret += ov7670_write(sd, REG_VSTOP, (vstop >> 2) & 0xff);
	ret += ov7670_read(sd, REG_VREF, &v);
725 726
	v = (v & 0xf0) | ((vstop & 0x3) << 2) | (vstart & 0x3);
	msleep(10);
727
	ret += ov7670_write(sd, REG_VREF, v);
728 729 730 731
	return ret;
}


732 733 734 735 736 737 738 739 740
static int ov7670_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned index,
					enum v4l2_mbus_pixelcode *code)
{
	if (index >= N_OV7670_FMTS)
		return -EINVAL;

	*code = ov7670_formats[index].mbus_code;
	return 0;
}
741

742
static int ov7670_try_fmt_internal(struct v4l2_subdev *sd,
743
		struct v4l2_mbus_framefmt *fmt,
744 745 746 747 748 749 750
		struct ov7670_format_struct **ret_fmt,
		struct ov7670_win_size **ret_wsize)
{
	int index;
	struct ov7670_win_size *wsize;

	for (index = 0; index < N_OV7670_FMTS; index++)
751
		if (ov7670_formats[index].mbus_code == fmt->code)
752
			break;
753 754 755
	if (index >= N_OV7670_FMTS) {
		/* default to first format */
		index = 0;
756
		fmt->code = ov7670_formats[0].mbus_code;
757
	}
758 759 760 761 762
	if (ret_fmt != NULL)
		*ret_fmt = ov7670_formats + index;
	/*
	 * Fields: the OV devices claim to be progressive.
	 */
763
	fmt->field = V4L2_FIELD_NONE;
764 765 766 767 768 769
	/*
	 * Round requested image size down to the nearest
	 * we support, but not below the smallest.
	 */
	for (wsize = ov7670_win_sizes; wsize < ov7670_win_sizes + N_WIN_SIZES;
	     wsize++)
770
		if (fmt->width >= wsize->width && fmt->height >= wsize->height)
771
			break;
772
	if (wsize >= ov7670_win_sizes + N_WIN_SIZES)
773 774 775 776 777 778
		wsize--;   /* Take the smallest one */
	if (ret_wsize != NULL)
		*ret_wsize = wsize;
	/*
	 * Note the size we'll actually handle.
	 */
779 780 781
	fmt->width = wsize->width;
	fmt->height = wsize->height;
	fmt->colorspace = ov7670_formats[index].colorspace;
782 783 784
	return 0;
}

785 786
static int ov7670_try_mbus_fmt(struct v4l2_subdev *sd,
			    struct v4l2_mbus_framefmt *fmt)
787 788 789 790
{
	return ov7670_try_fmt_internal(sd, fmt, NULL, NULL);
}

791 792 793
/*
 * Set a format.
 */
794 795
static int ov7670_s_mbus_fmt(struct v4l2_subdev *sd,
			  struct v4l2_mbus_framefmt *fmt)
796 797 798
{
	struct ov7670_format_struct *ovfmt;
	struct ov7670_win_size *wsize;
799
	struct ov7670_info *info = to_state(sd);
800
	unsigned char com7;
801
	int ret;
802

803
	ret = ov7670_try_fmt_internal(sd, fmt, &ovfmt, &wsize);
804

805 806 807 808 809 810 811 812 813 814
	if (ret)
		return ret;
	/*
	 * COM7 is a pain in the ass, it doesn't like to be read then
	 * quickly written afterward.  But we have everything we need
	 * to set it absolutely here, as long as the format-specific
	 * register sets list it first.
	 */
	com7 = ovfmt->regs[0].value;
	com7 |= wsize->com7_bit;
815
	ov7670_write(sd, REG_COM7, com7);
816 817 818
	/*
	 * Now write the rest of the array.  Also store start/stops
	 */
819 820
	ov7670_write_array(sd, ovfmt->regs + 1);
	ov7670_set_hw(sd, wsize->hstart, wsize->hstop, wsize->vstart,
821
			wsize->vstop);
822 823
	ret = 0;
	if (wsize->regs)
824
		ret = ov7670_write_array(sd, wsize->regs);
825
	info->fmt = ovfmt;
826

827 828 829 830 831
	/*
	 * If we're running RGB565, we must rewrite clkrc after setting
	 * the other parameters or the image looks poor.  If we're *not*
	 * doing RGB565, we must not rewrite clkrc or the image looks
	 * *really* poor.
832 833 834 835
	 *
	 * (Update) Now that we retain clkrc state, we should be able
	 * to write it unconditionally, and that will make the frame
	 * rate persistent too.
836
	 */
837
	if (ret == 0)
838
		ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
839 840 841
	return 0;
}

842 843 844 845
/*
 * Implement G/S_PARM.  There is a "high quality" mode we could try
 * to do someday; for now, we just do the frame rate tweak.
 */
846
static int ov7670_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
847 848
{
	struct v4l2_captureparm *cp = &parms->parm.capture;
849
	struct ov7670_info *info = to_state(sd);
850 851 852

	if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
		return -EINVAL;
853

854 855 856 857
	memset(cp, 0, sizeof(struct v4l2_captureparm));
	cp->capability = V4L2_CAP_TIMEPERFRAME;
	cp->timeperframe.numerator = 1;
	cp->timeperframe.denominator = OV7670_FRAME_RATE;
858 859
	if ((info->clkrc & CLK_EXT) == 0 && (info->clkrc & CLK_SCALE) > 1)
		cp->timeperframe.denominator /= (info->clkrc & CLK_SCALE);
860 861 862
	return 0;
}

863
static int ov7670_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
864 865 866
{
	struct v4l2_captureparm *cp = &parms->parm.capture;
	struct v4l2_fract *tpf = &cp->timeperframe;
867
	struct ov7670_info *info = to_state(sd);
868
	int div;
869 870 871 872 873

	if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
		return -EINVAL;
	if (cp->extendedmode != 0)
		return -EINVAL;
874

875 876 877 878 879 880 881 882
	if (tpf->numerator == 0 || tpf->denominator == 0)
		div = 1;  /* Reset to full rate */
	else
		div = (tpf->numerator*OV7670_FRAME_RATE)/tpf->denominator;
	if (div == 0)
		div = 1;
	else if (div > CLK_SCALE)
		div = CLK_SCALE;
883
	info->clkrc = (info->clkrc & 0x80) | div;
884 885
	tpf->numerator = 1;
	tpf->denominator = OV7670_FRAME_RATE/div;
886
	return ov7670_write(sd, REG_CLKRC, info->clkrc);
887 888 889 890
}



891 892 893 894
/*
 * Code for dealing with controls.
 */

895 896 897 898




899
static int ov7670_store_cmatrix(struct v4l2_subdev *sd,
900 901 902
		int matrix[CMATRIX_LEN])
{
	int i, ret;
903
	unsigned char signbits = 0;
904 905 906 907 908

	/*
	 * Weird crap seems to exist in the upper part of
	 * the sign bits register, so let's preserve it.
	 */
909
	ret = ov7670_read(sd, REG_CMATRIX_SIGN, &signbits);
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	signbits &= 0xc0;

	for (i = 0; i < CMATRIX_LEN; i++) {
		unsigned char raw;

		if (matrix[i] < 0) {
			signbits |= (1 << i);
			if (matrix[i] < -255)
				raw = 0xff;
			else
				raw = (-1 * matrix[i]) & 0xff;
		}
		else {
			if (matrix[i] > 255)
				raw = 0xff;
			else
				raw = matrix[i] & 0xff;
		}
928
		ret += ov7670_write(sd, REG_CMATRIX_BASE + i, raw);
929
	}
930
	ret += ov7670_write(sd, REG_CMATRIX_SIGN, signbits);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	return ret;
}


/*
 * Hue also requires messing with the color matrix.  It also requires
 * trig functions, which tend not to be well supported in the kernel.
 * So here is a simple table of sine values, 0-90 degrees, in steps
 * of five degrees.  Values are multiplied by 1000.
 *
 * The following naive approximate trig functions require an argument
 * carefully limited to -180 <= theta <= 180.
 */
#define SIN_STEP 5
static const int ov7670_sin_table[] = {
	   0,	 87,   173,   258,   342,   422,
	 499,	573,   642,   707,   766,   819,
	 866,	906,   939,   965,   984,   996,
	1000
};

static int ov7670_sine(int theta)
{
	int chs = 1;
	int sine;

	if (theta < 0) {
		theta = -theta;
		chs = -1;
	}
	if (theta <= 90)
		sine = ov7670_sin_table[theta/SIN_STEP];
	else {
		theta -= 90;
		sine = 1000 - ov7670_sin_table[theta/SIN_STEP];
	}
	return sine*chs;
}

static int ov7670_cosine(int theta)
{
	theta = 90 - theta;
	if (theta > 180)
		theta -= 360;
	else if (theta < -180)
		theta += 360;
	return ov7670_sine(theta);
}




static void ov7670_calc_cmatrix(struct ov7670_info *info,
		int matrix[CMATRIX_LEN])
{
	int i;
	/*
	 * Apply the current saturation setting first.
	 */
	for (i = 0; i < CMATRIX_LEN; i++)
		matrix[i] = (info->fmt->cmatrix[i]*info->sat) >> 7;
	/*
	 * Then, if need be, rotate the hue value.
	 */
	if (info->hue != 0) {
		int sinth, costh, tmpmatrix[CMATRIX_LEN];

		memcpy(tmpmatrix, matrix, CMATRIX_LEN*sizeof(int));
		sinth = ov7670_sine(info->hue);
		costh = ov7670_cosine(info->hue);

		matrix[0] = (matrix[3]*sinth + matrix[0]*costh)/1000;
		matrix[1] = (matrix[4]*sinth + matrix[1]*costh)/1000;
		matrix[2] = (matrix[5]*sinth + matrix[2]*costh)/1000;
		matrix[3] = (matrix[3]*costh - matrix[0]*sinth)/1000;
		matrix[4] = (matrix[4]*costh - matrix[1]*sinth)/1000;
		matrix[5] = (matrix[5]*costh - matrix[2]*sinth)/1000;
	}
}



1013
static int ov7670_s_sat(struct v4l2_subdev *sd, int value)
1014
{
1015
	struct ov7670_info *info = to_state(sd);
1016 1017 1018 1019 1020
	int matrix[CMATRIX_LEN];
	int ret;

	info->sat = value;
	ov7670_calc_cmatrix(info, matrix);
1021
	ret = ov7670_store_cmatrix(sd, matrix);
1022 1023 1024
	return ret;
}

1025
static int ov7670_g_sat(struct v4l2_subdev *sd, __s32 *value)
1026
{
1027
	struct ov7670_info *info = to_state(sd);
1028 1029 1030 1031 1032

	*value = info->sat;
	return 0;
}

1033
static int ov7670_s_hue(struct v4l2_subdev *sd, int value)
1034
{
1035
	struct ov7670_info *info = to_state(sd);
1036 1037 1038 1039 1040 1041 1042
	int matrix[CMATRIX_LEN];
	int ret;

	if (value < -180 || value > 180)
		return -EINVAL;
	info->hue = value;
	ov7670_calc_cmatrix(info, matrix);
1043
	ret = ov7670_store_cmatrix(sd, matrix);
1044 1045 1046 1047
	return ret;
}


1048
static int ov7670_g_hue(struct v4l2_subdev *sd, __s32 *value)
1049
{
1050
	struct ov7670_info *info = to_state(sd);
1051 1052 1053 1054 1055 1056

	*value = info->hue;
	return 0;
}


1057 1058 1059 1060 1061 1062 1063
/*
 * Some weird registers seem to store values in a sign/magnitude format!
 */
static unsigned char ov7670_sm_to_abs(unsigned char v)
{
	if ((v & 0x80) == 0)
		return v + 128;
1064
	return 128 - (v & 0x7f);
1065 1066 1067 1068 1069 1070 1071
}


static unsigned char ov7670_abs_to_sm(unsigned char v)
{
	if (v > 127)
		return v & 0x7f;
1072
	return (128 - v) | 0x80;
1073 1074
}

1075
static int ov7670_s_brightness(struct v4l2_subdev *sd, int value)
1076
{
1077
	unsigned char com8 = 0, v;
1078 1079
	int ret;

1080
	ov7670_read(sd, REG_COM8, &com8);
1081
	com8 &= ~COM8_AEC;
1082
	ov7670_write(sd, REG_COM8, com8);
1083
	v = ov7670_abs_to_sm(value);
1084
	ret = ov7670_write(sd, REG_BRIGHT, v);
1085 1086 1087
	return ret;
}

1088
static int ov7670_g_brightness(struct v4l2_subdev *sd, __s32 *value)
1089
{
1090
	unsigned char v = 0;
1091
	int ret = ov7670_read(sd, REG_BRIGHT, &v);
1092 1093

	*value = ov7670_sm_to_abs(v);
1094 1095 1096
	return ret;
}

1097
static int ov7670_s_contrast(struct v4l2_subdev *sd, int value)
1098
{
1099
	return ov7670_write(sd, REG_CONTRAS, (unsigned char) value);
1100 1101
}

1102
static int ov7670_g_contrast(struct v4l2_subdev *sd, __s32 *value)
1103
{
1104
	unsigned char v = 0;
1105
	int ret = ov7670_read(sd, REG_CONTRAS, &v);
1106 1107 1108

	*value = v;
	return ret;
1109 1110
}

1111
static int ov7670_g_hflip(struct v4l2_subdev *sd, __s32 *value)
1112 1113
{
	int ret;
1114
	unsigned char v = 0;
1115

1116
	ret = ov7670_read(sd, REG_MVFP, &v);
1117 1118 1119 1120 1121
	*value = (v & MVFP_MIRROR) == MVFP_MIRROR;
	return ret;
}


1122
static int ov7670_s_hflip(struct v4l2_subdev *sd, int value)
1123
{
1124
	unsigned char v = 0;
1125 1126
	int ret;

1127
	ret = ov7670_read(sd, REG_MVFP, &v);
1128 1129 1130 1131 1132
	if (value)
		v |= MVFP_MIRROR;
	else
		v &= ~MVFP_MIRROR;
	msleep(10);  /* FIXME */
1133
	ret += ov7670_write(sd, REG_MVFP, v);
1134 1135 1136 1137 1138
	return ret;
}



1139
static int ov7670_g_vflip(struct v4l2_subdev *sd, __s32 *value)
1140 1141
{
	int ret;
1142
	unsigned char v = 0;
1143

1144
	ret = ov7670_read(sd, REG_MVFP, &v);
1145 1146 1147 1148 1149
	*value = (v & MVFP_FLIP) == MVFP_FLIP;
	return ret;
}


1150
static int ov7670_s_vflip(struct v4l2_subdev *sd, int value)
1151
{
1152
	unsigned char v = 0;
1153 1154
	int ret;

1155
	ret = ov7670_read(sd, REG_MVFP, &v);
1156 1157 1158 1159 1160
	if (value)
		v |= MVFP_FLIP;
	else
		v &= ~MVFP_FLIP;
	msleep(10);  /* FIXME */
1161
	ret += ov7670_write(sd, REG_MVFP, v);
1162 1163 1164
	return ret;
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
/*
 * GAIN is split between REG_GAIN and REG_VREF[7:6].  If one believes
 * the data sheet, the VREF parts should be the most significant, but
 * experience shows otherwise.  There seems to be little value in
 * messing with the VREF bits, so we leave them alone.
 */
static int ov7670_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
	int ret;
	unsigned char gain;

	ret = ov7670_read(sd, REG_GAIN, &gain);
	*value = gain;
	return ret;
}

static int ov7670_s_gain(struct v4l2_subdev *sd, int value)
{
	int ret;
	unsigned char com8;

	ret = ov7670_write(sd, REG_GAIN, value & 0xff);
	/* Have to turn off AGC as well */
	if (ret == 0) {
		ret = ov7670_read(sd, REG_COM8, &com8);
		ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AGC);
	}
	return ret;
}

/*
 * Tweak autogain.
 */
static int ov7670_g_autogain(struct v4l2_subdev *sd, __s32 *value)
{
	int ret;
	unsigned char com8;

	ret = ov7670_read(sd, REG_COM8, &com8);
	*value = (com8 & COM8_AGC) != 0;
	return ret;
}

static int ov7670_s_autogain(struct v4l2_subdev *sd, int value)
{
	int ret;
	unsigned char com8;

	ret = ov7670_read(sd, REG_COM8, &com8);
	if (ret == 0) {
		if (value)
			com8 |= COM8_AGC;
		else
			com8 &= ~COM8_AGC;
		ret = ov7670_write(sd, REG_COM8, com8);
	}
	return ret;
}

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
/*
 * Exposure is spread all over the place: top 6 bits in AECHH, middle
 * 8 in AECH, and two stashed in COM1 just for the hell of it.
 */
static int ov7670_g_exp(struct v4l2_subdev *sd, __s32 *value)
{
	int ret;
	unsigned char com1, aech, aechh;

	ret = ov7670_read(sd, REG_COM1, &com1) +
		ov7670_read(sd, REG_AECH, &aech) +
		ov7670_read(sd, REG_AECHH, &aechh);
	*value = ((aechh & 0x3f) << 10) | (aech << 2) | (com1 & 0x03);
	return ret;
}

static int ov7670_s_exp(struct v4l2_subdev *sd, int value)
{
	int ret;
	unsigned char com1, com8, aech, aechh;

	ret = ov7670_read(sd, REG_COM1, &com1) +
		ov7670_read(sd, REG_COM8, &com8);
		ov7670_read(sd, REG_AECHH, &aechh);
	if (ret)
		return ret;

	com1 = (com1 & 0xfc) | (value & 0x03);
	aech = (value >> 2) & 0xff;
	aechh = (aechh & 0xc0) | ((value >> 10) & 0x3f);
	ret = ov7670_write(sd, REG_COM1, com1) +
		ov7670_write(sd, REG_AECH, aech) +
		ov7670_write(sd, REG_AECHH, aechh);
	/* Have to turn off AEC as well */
	if (ret == 0)
		ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AEC);
	return ret;
}

/*
 * Tweak autoexposure.
 */
static int ov7670_g_autoexp(struct v4l2_subdev *sd, __s32 *value)
{
	int ret;
	unsigned char com8;
	enum v4l2_exposure_auto_type *atype = (enum v4l2_exposure_auto_type *) value;

	ret = ov7670_read(sd, REG_COM8, &com8);
	if (com8 & COM8_AEC)
1274
		*atype = V4L2_EXPOSURE_AUTO;
1275
	else
1276
		*atype = V4L2_EXPOSURE_MANUAL;
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	return ret;
}

static int ov7670_s_autoexp(struct v4l2_subdev *sd,
		enum v4l2_exposure_auto_type value)
{
	int ret;
	unsigned char com8;

	ret = ov7670_read(sd, REG_COM8, &com8);
	if (ret == 0) {
		if (value == V4L2_EXPOSURE_AUTO)
			com8 |= COM8_AEC;
		else
			com8 &= ~COM8_AEC;
		ret = ov7670_write(sd, REG_COM8, com8);
	}
	return ret;
}

1297 1298


1299
static int ov7670_queryctrl(struct v4l2_subdev *sd,
1300 1301
		struct v4l2_queryctrl *qc)
{
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	/* Fill in min, max, step and default value for these controls. */
	switch (qc->id) {
	case V4L2_CID_BRIGHTNESS:
		return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
	case V4L2_CID_CONTRAST:
		return v4l2_ctrl_query_fill(qc, 0, 127, 1, 64);
	case V4L2_CID_VFLIP:
	case V4L2_CID_HFLIP:
		return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
	case V4L2_CID_SATURATION:
		return v4l2_ctrl_query_fill(qc, 0, 256, 1, 128);
	case V4L2_CID_HUE:
		return v4l2_ctrl_query_fill(qc, -180, 180, 5, 0);
1315 1316 1317 1318
	case V4L2_CID_GAIN:
		return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
	case V4L2_CID_AUTOGAIN:
		return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1);
1319 1320 1321 1322
	case V4L2_CID_EXPOSURE:
		return v4l2_ctrl_query_fill(qc, 0, 65535, 1, 500);
	case V4L2_CID_EXPOSURE_AUTO:
		return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
1323 1324
	}
	return -EINVAL;
1325 1326
}

1327
static int ov7670_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
1328
{
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		return ov7670_g_brightness(sd, &ctrl->value);
	case V4L2_CID_CONTRAST:
		return ov7670_g_contrast(sd, &ctrl->value);
	case V4L2_CID_SATURATION:
		return ov7670_g_sat(sd, &ctrl->value);
	case V4L2_CID_HUE:
		return ov7670_g_hue(sd, &ctrl->value);
	case V4L2_CID_VFLIP:
		return ov7670_g_vflip(sd, &ctrl->value);
	case V4L2_CID_HFLIP:
		return ov7670_g_hflip(sd, &ctrl->value);
1342 1343 1344 1345
	case V4L2_CID_GAIN:
		return ov7670_g_gain(sd, &ctrl->value);
	case V4L2_CID_AUTOGAIN:
		return ov7670_g_autogain(sd, &ctrl->value);
1346 1347 1348 1349
	case V4L2_CID_EXPOSURE:
		return ov7670_g_exp(sd, &ctrl->value);
	case V4L2_CID_EXPOSURE_AUTO:
		return ov7670_g_autoexp(sd, &ctrl->value);
1350 1351
	}
	return -EINVAL;
1352 1353
}

1354
static int ov7670_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
1355
{
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		return ov7670_s_brightness(sd, ctrl->value);
	case V4L2_CID_CONTRAST:
		return ov7670_s_contrast(sd, ctrl->value);
	case V4L2_CID_SATURATION:
		return ov7670_s_sat(sd, ctrl->value);
	case V4L2_CID_HUE:
		return ov7670_s_hue(sd, ctrl->value);
	case V4L2_CID_VFLIP:
		return ov7670_s_vflip(sd, ctrl->value);
	case V4L2_CID_HFLIP:
		return ov7670_s_hflip(sd, ctrl->value);
1369 1370 1371 1372
	case V4L2_CID_GAIN:
		return ov7670_s_gain(sd, ctrl->value);
	case V4L2_CID_AUTOGAIN:
		return ov7670_s_autogain(sd, ctrl->value);
1373 1374 1375 1376 1377
	case V4L2_CID_EXPOSURE:
		return ov7670_s_exp(sd, ctrl->value);
	case V4L2_CID_EXPOSURE_AUTO:
		return ov7670_s_autoexp(sd,
				(enum v4l2_exposure_auto_type) ctrl->value);
1378 1379
	}
	return -EINVAL;
1380 1381
}

1382 1383 1384 1385 1386 1387 1388 1389
static int ov7670_g_chip_ident(struct v4l2_subdev *sd,
		struct v4l2_dbg_chip_ident *chip)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_OV7670, 0);
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int ov7670_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	unsigned char val = 0;
	int ret;

	if (!v4l2_chip_match_i2c_client(client, &reg->match))
		return -EINVAL;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	ret = ov7670_read(sd, reg->reg & 0xff, &val);
	reg->val = val;
	reg->size = 1;
	return ret;
}

static int ov7670_s_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	if (!v4l2_chip_match_i2c_client(client, &reg->match))
		return -EINVAL;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	ov7670_write(sd, reg->reg & 0xff, reg->val & 0xff);
	return 0;
}
#endif

1420
/* ----------------------------------------------------------------------- */
1421

1422 1423 1424 1425 1426 1427 1428
static const struct v4l2_subdev_core_ops ov7670_core_ops = {
	.g_chip_ident = ov7670_g_chip_ident,
	.g_ctrl = ov7670_g_ctrl,
	.s_ctrl = ov7670_s_ctrl,
	.queryctrl = ov7670_queryctrl,
	.reset = ov7670_reset,
	.init = ov7670_init,
1429 1430 1431 1432
#ifdef CONFIG_VIDEO_ADV_DEBUG
	.g_register = ov7670_g_register,
	.s_register = ov7670_s_register,
#endif
1433
};
1434

1435
static const struct v4l2_subdev_video_ops ov7670_video_ops = {
1436 1437 1438
	.enum_mbus_fmt = ov7670_enum_mbus_fmt,
	.try_mbus_fmt = ov7670_try_mbus_fmt,
	.s_mbus_fmt = ov7670_s_mbus_fmt,
1439 1440 1441
	.s_parm = ov7670_s_parm,
	.g_parm = ov7670_g_parm,
};
1442

1443 1444 1445 1446
static const struct v4l2_subdev_ops ov7670_ops = {
	.core = &ov7670_core_ops,
	.video = &ov7670_video_ops,
};
1447

1448
/* ----------------------------------------------------------------------- */
1449

1450 1451
static int ov7670_probe(struct i2c_client *client,
			const struct i2c_device_id *id)
1452
{
1453
	struct v4l2_subdev *sd;
1454
	struct ov7670_info *info;
1455
	int ret;
1456

1457 1458
	info = kzalloc(sizeof(struct ov7670_info), GFP_KERNEL);
	if (info == NULL)
1459
		return -ENOMEM;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	sd = &info->sd;
	v4l2_i2c_subdev_init(sd, client, &ov7670_ops);

	/* Make sure it's an ov7670 */
	ret = ov7670_detect(sd);
	if (ret) {
		v4l_dbg(1, debug, client,
			"chip found @ 0x%x (%s) is not an ov7670 chip.\n",
			client->addr << 1, client->adapter->name);
		kfree(info);
		return ret;
1471
	}
1472 1473 1474
	v4l_info(client, "chip found @ 0x%02x (%s)\n",
			client->addr << 1, client->adapter->name);

1475 1476
	info->fmt = &ov7670_formats[0];
	info->sat = 128;	/* Review this */
1477
	info->clkrc = 1;	/* 30fps */
1478 1479 1480 1481 1482

	return 0;
}


1483
static int ov7670_remove(struct i2c_client *client)
1484
{
1485
	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1486

1487 1488 1489
	v4l2_device_unregister_subdev(sd);
	kfree(to_state(sd));
	return 0;
1490 1491
}

1492 1493 1494 1495 1496 1497
static const struct i2c_device_id ov7670_id[] = {
	{ "ov7670", 0 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, ov7670_id);

1498 1499 1500 1501 1502 1503 1504 1505
static struct i2c_driver ov7670_driver = {
	.driver = {
		.owner	= THIS_MODULE,
		.name	= "ov7670",
	},
	.probe		= ov7670_probe,
	.remove		= ov7670_remove,
	.id_table	= ov7670_id,
1506
};
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

static __init int init_ov7670(void)
{
	return i2c_add_driver(&ov7670_driver);
}

static __exit void exit_ov7670(void)
{
	i2c_del_driver(&ov7670_driver);
}

module_init(init_ov7670);
module_exit(exit_ov7670);