memory-failure.c 52.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * This software may be redistributed and/or modified under the terms of
 * the GNU General Public License ("GPL") version 2 only as published by the
 * Free Software Foundation.
 *
 * High level machine check handler. Handles pages reported by the
10
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11
 * failure.
12 13 14
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
15 16
 *
 * Handles page cache pages in various states.	The tricky part
17 18 19 20 21 22
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
23 24 25 26 27 28 29 30
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
31 32 33 34 35 36 37
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
38 39 40 41
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
42
#include <linux/kernel-page-flags.h>
43
#include <linux/sched/signal.h>
44
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
45
#include <linux/ksm.h>
46
#include <linux/rmap.h>
47
#include <linux/export.h>
48 49 50
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
51 52
#include <linux/migrate.h>
#include <linux/suspend.h>
53
#include <linux/slab.h>
54
#include <linux/swapops.h>
55
#include <linux/hugetlb.h>
56
#include <linux/memory_hotplug.h>
57
#include <linux/mm_inline.h>
58
#include <linux/memremap.h>
59
#include <linux/kfifo.h>
60
#include <linux/ratelimit.h>
61
#include <linux/page-isolation.h>
62
#include "internal.h"
63
#include "ras/ras_event.h"
64 65 66 67 68

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

69
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
70

71 72
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

73
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
74 75
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
76 77
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
78
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
79 80
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
81 82
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
83 84 85 86 87 88 89 90 91 92 93

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
94
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
114 115 116 117 118 119 120 121 122 123 124 125
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
126 127 128 129 130 131 132 133 134 135
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
136
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
137 138 139 140 141 142 143
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

144
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
145 146 147 148 149 150 151 152
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
153 154
int hwpoison_filter(struct page *p)
{
155 156 157
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
158 159 160
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
161 162 163
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
164 165 166
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
167 168
	return 0;
}
169 170 171 172 173 174 175
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
176 177
EXPORT_SYMBOL_GPL(hwpoison_filter);

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
};

207
/*
208 209 210
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
211
 */
212
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
213
{
214 215
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
216
	int ret = 0;
217

218 219 220
	if ((t->mm == current->mm) || !(flags & MF_ACTION_REQUIRED))
		pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
			pfn, t->comm, t->pid);
221

222 223 224 225 226
	if (flags & MF_ACTION_REQUIRED) {
		if (t->mm == current->mm)
			ret = force_sig_mceerr(BUS_MCEERR_AR,
					 (void __user *)tk->addr, addr_lsb, current);
		/* send no signal to non-current processes */
227 228 229 230 231 232 233
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
234
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
235
				      addr_lsb, t);  /* synchronous? */
236
	}
237
	if (ret < 0)
238
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
239
			t->comm, t->pid, ret);
240 241 242
	return ret;
}

243 244 245 246
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
247
void shake_page(struct page *p, int access)
248
{
249 250 251
	if (PageHuge(p))
		return;

252 253 254 255
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
256
		drain_all_pages(page_zone(p));
257 258 259
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
260

261
	/*
262 263
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
264
	 */
265 266
	if (access)
		drop_slab_node(page_to_nid(p));
267 268 269
}
EXPORT_SYMBOL_GPL(shake_page);

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
	if (!pte_present(*pte))
		return 0;
	if (pte_devmap(*pte))
		return PAGE_SHIFT;
	return 0;
}
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 * TBD would GFP_NOIO be enough?
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
		       struct list_head *to_kill,
		       struct to_kill **tkc)
{
	struct to_kill *tk;

	if (*tkc) {
		tk = *tkc;
		*tkc = NULL;
	} else {
		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
		if (!tk) {
327
			pr_err("Memory failure: Out of memory while machine check handling\n");
328 329 330 331
			return;
		}
	}
	tk->addr = page_address_in_vma(p, vma);
332 333 334 335
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
		tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
336 337

	/*
338 339 340 341 342 343 344 345
	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
	 * so "tk->size_shift == 0" effectively checks no mapping on
	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
	 * to a process' address space, it's possible not all N VMAs
	 * contain mappings for the page, but at least one VMA does.
	 * Only deliver SIGBUS with payload derived from the VMA that
	 * has a mapping for the page.
346
	 */
347
	if (tk->addr == -EFAULT) {
348
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
349
			page_to_pfn(p), tsk->comm);
350 351 352
	} else if (tk->size_shift == 0) {
		kfree(tk);
		return;
353 354 355 356 357 358 359 360 361 362 363 364 365 366
	}
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
367 368
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
369 370 371 372
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
373
		if (forcekill) {
374
			/*
375
			 * In case something went wrong with munmapping
376 377 378
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
379
			if (fail || tk->addr == -EFAULT) {
380
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
381
				       pfn, tk->tsk->comm, tk->tsk->pid);
382 383
				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
						 tk->tsk, PIDTYPE_PID);
384 385 386 387 388 389 390 391
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
392
			else if (kill_proc(tk, pfn, flags) < 0)
393
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
394
				       pfn, tk->tsk->comm, tk->tsk->pid);
395 396 397 398 399 400
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

401 402 403 404 405 406 407 408 409
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
410
{
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	struct task_struct *t;

	for_each_thread(tsk, t)
		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
			return t;
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
	struct task_struct *t;
429
	if (!tsk->mm)
430
		return NULL;
431
	if (force_early)
432 433 434 435 436 437 438
		return tsk;
	t = find_early_kill_thread(tsk);
	if (t)
		return t;
	if (sysctl_memory_failure_early_kill)
		return tsk;
	return NULL;
439 440 441 442 443 444
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
445
			      struct to_kill **tkc, int force_early)
446 447 448 449
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
450
	pgoff_t pgoff;
451

452
	av = page_lock_anon_vma_read(page);
453
	if (av == NULL)	/* Not actually mapped anymore */
454 455
		return;

456
	pgoff = page_to_pgoff(page);
457
	read_lock(&tasklist_lock);
458
	for_each_process (tsk) {
459
		struct anon_vma_chain *vmac;
460
		struct task_struct *t = task_early_kill(tsk, force_early);
461

462
		if (!t)
463
			continue;
464 465
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
466
			vma = vmac->vma;
467 468
			if (!page_mapped_in_vma(page, vma))
				continue;
469 470
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
471 472 473
		}
	}
	read_unlock(&tasklist_lock);
474
	page_unlock_anon_vma_read(av);
475 476 477 478 479 480
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
481
			      struct to_kill **tkc, int force_early)
482 483 484 485 486
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;

487
	i_mmap_lock_read(mapping);
488
	read_lock(&tasklist_lock);
489
	for_each_process(tsk) {
490
		pgoff_t pgoff = page_to_pgoff(page);
491
		struct task_struct *t = task_early_kill(tsk, force_early);
492

493
		if (!t)
494
			continue;
495
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
496 497 498 499 500 501 502 503
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
504 505
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
506 507 508
		}
	}
	read_unlock(&tasklist_lock);
509
	i_mmap_unlock_read(mapping);
510 511 512 513 514 515 516 517
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 * This is done in two steps for locking reasons.
 * First preallocate one tokill structure outside the spin locks,
 * so that we can kill at least one process reasonably reliable.
 */
518 519
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
520 521 522 523 524 525 526 527 528 529
{
	struct to_kill *tk;

	if (!page->mapping)
		return;

	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
	if (!tk)
		return;
	if (PageAnon(page))
530
		collect_procs_anon(page, tokill, &tk, force_early);
531
	else
532
		collect_procs_file(page, tokill, &tk, force_early);
533 534 535 536
	kfree(tk);
}

static const char *action_name[] = {
537 538 539 540
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
541 542 543
};

static const char * const action_page_types[] = {
544 545 546 547 548 549 550
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
551
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
552 553 554 555 556 557 558 559 560 561 562 563
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
564
	[MF_MSG_DAX]			= "dax page",
565
	[MF_MSG_UNKNOWN]		= "unknown page",
566 567
};

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
583 584 585 586 587 588 589

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

590 591 592
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
593
		put_page(p);
594 595 596 597 598
		return 0;
	}
	return -EIO;
}

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

632 633 634 635 636 637 638
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
639
	return MF_IGNORED;
640 641 642 643 644 645 646
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
647
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
648
	return MF_FAILED;
649 650 651 652 653 654 655 656 657
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	struct address_space *mapping;

658 659
	delete_from_lru_cache(p);

660 661 662 663 664
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
665
		return MF_RECOVERED;
666 667 668 669 670 671 672 673 674 675 676 677 678

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
679
		return MF_FAILED;
680 681 682 683 684 685 686
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
687
	return truncate_error_page(p, pfn, mapping);
688 689 690
}

/*
691
 * Dirty pagecache page
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
724
		 * and the page is dropped between then the error
725 726 727 728 729 730 731 732 733 734 735
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
736
		mapping_set_error(mapping, -EIO);
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

767
	if (!delete_from_lru_cache(p))
768
		return MF_DELAYED;
769
	else
770
		return MF_FAILED;
771 772 773 774 775
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
776

777
	if (!delete_from_lru_cache(p))
778
		return MF_RECOVERED;
779
	else
780
		return MF_FAILED;
781 782 783 784 785
}

/*
 * Huge pages. Needs work.
 * Issues:
786 787
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
788 789 790
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
791
	int res = 0;
792
	struct page *hpage = compound_head(p);
793
	struct address_space *mapping;
794 795 796 797

	if (!PageHuge(hpage))
		return MF_DELAYED;

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
	mapping = page_mapping(hpage);
	if (mapping) {
		res = truncate_error_page(hpage, pfn, mapping);
	} else {
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
		dissolve_free_huge_page(p);
		res = MF_RECOVERED;
		lock_page(hpage);
813
	}
814 815

	return res;
816 817 818 819 820 821 822 823 824
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
825
 * in its live cycle, so all accesses have to be extremely careful.
826 827 828 829 830 831
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
832
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
833 834 835 836 837 838 839 840 841 842 843
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define writeback	(1UL << PG_writeback)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
844
	enum mf_action_page_type type;
845 846
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
847
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
848 849 850 851
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
852 853 854 855 856 857

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
858
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
859

860
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
861

862 863
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
864

865 866
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
867

868 869
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
870

871 872
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
873 874 875 876

	/*
	 * Catchall entry: must be at end.
	 */
877
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
878 879
};

880 881 882 883 884 885 886 887 888 889
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef writeback
#undef lru
#undef head
#undef slab
#undef reserved

890 891 892 893
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
894 895
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
896
{
897 898
	trace_memory_failure_event(pfn, type, result);

899
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
900
		pfn, action_page_types[type], action_name[result]);
901 902 903
}

static int page_action(struct page_state *ps, struct page *p,
904
			unsigned long pfn)
905 906
{
	int result;
907
	int count;
908 909

	result = ps->action(p, pfn);
910

911
	count = page_count(p) - 1;
912
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
913
		count--;
914
	if (count > 0) {
915
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
916
		       pfn, action_page_types[ps->type], count);
917
		result = MF_FAILED;
918
	}
919
	action_result(pfn, ps->type, result);
920 921 922 923 924 925

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

926
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
927 928
}

929 930 931 932 933 934 935 936 937 938 939
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
int get_hwpoison_page(struct page *page)
{
	struct page *head = compound_head(page);

940
	if (!PageHuge(head) && PageTransHuge(head)) {
941 942 943 944 945 946 947
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
948
			pr_err("Memory failure: %#lx: non anonymous thp\n",
949 950 951
				page_to_pfn(page));
			return 0;
		}
952 953
	}

954 955 956 957
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

958 959
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
960 961 962 963
		put_page(head);
	}

	return 0;
964 965 966
}
EXPORT_SYMBOL_GPL(get_hwpoison_page);

967 968 969 970
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
971
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
972
				  int flags, struct page **hpagep)
973
{
S
Shaohua Li 已提交
974
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
975 976
	struct address_space *mapping;
	LIST_HEAD(tokill);
M
Minchan Kim 已提交
977
	bool unmap_success;
978
	int kill = 1, forcekill;
979
	struct page *hpage = *hpagep;
980
	bool mlocked = PageMlocked(hpage);
981

982 983 984 985 986
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
987
		return true;
988
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
989
		return true;
990 991 992 993 994

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
995
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
996
		return true;
W
Wu Fengguang 已提交
997

998
	if (PageKsm(p)) {
999
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
1000
		return false;
1001
	}
1002 1003

	if (PageSwapCache(p)) {
1004 1005
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
1006 1007 1008 1009 1010 1011
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
1012 1013
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
1014
	 */
1015
	mapping = page_mapping(hpage);
1016
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1017 1018 1019
	    mapping_cap_writeback_dirty(mapping)) {
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1020 1021 1022
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1023
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1037
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1038

M
Minchan Kim 已提交
1039 1040
	unmap_success = try_to_unmap(hpage, ttu);
	if (!unmap_success)
1041
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1042
		       pfn, page_mapcount(hpage));
1043

1044 1045 1046 1047 1048 1049 1050
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

1051 1052 1053 1054
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1055 1056
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1057 1058 1059 1060
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1061
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1062
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1063

M
Minchan Kim 已提交
1064
	return unmap_success;
1065 1066
}

1067 1068
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1069 1070
{
	struct page_state *ps;
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1090
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1091
{
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
		return 0;
	}

	num_poisoned_pages_inc();

	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
		/*
		 * Check "filter hit" and "race with other subpage."
		 */
		lock_page(head);
		if (PageHWPoison(head)) {
			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
			    || (p != head && TestSetPageHWPoison(head))) {
				num_poisoned_pages_dec();
				unlock_page(head);
				return 0;
			}
		}
		unlock_page(head);
		dissolve_free_huge_page(p);
		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
		return 0;
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
		put_hwpoison_page(head);
		return 0;
	}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1150
	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1151 1152 1153 1154 1155
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1156
	res = identify_page_state(pfn, p, page_flags);
1157 1158 1159 1160 1161
out:
	unlock_page(head);
	return res;
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	const bool unmap_success = true;
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;

	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
	if (!dax_lock_mapping_entry(page))
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

	switch (pgmap->type) {
	case MEMORY_DEVICE_PRIVATE:
	case MEMORY_DEVICE_PUBLIC:
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	default:
		break;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
		unmap_mapping_range(page->mapping, start, start + size, 0);
	}
	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
	rc = 0;
unlock:
	dax_unlock_mapping_entry(page);
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1256
int memory_failure(unsigned long pfn, int flags)
1257 1258
{
	struct page *p;
1259
	struct page *hpage;
1260
	struct page *orig_head;
1261
	struct dev_pagemap *pgmap;
1262
	int res;
1263
	unsigned long page_flags;
1264 1265

	if (!sysctl_memory_failure_recovery)
1266
		panic("Memory failure on page %lx", pfn);
1267

1268 1269 1270 1271 1272 1273 1274 1275
	p = pfn_to_online_page(pfn);
	if (!p) {
		if (pfn_valid(pfn)) {
			pgmap = get_dev_pagemap(pfn, NULL);
			if (pgmap)
				return memory_failure_dev_pagemap(pfn, flags,
								  pgmap);
		}
1276 1277
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1278
		return -ENXIO;
1279 1280
	}

1281
	if (PageHuge(p))
1282
		return memory_failure_hugetlb(pfn, flags);
1283
	if (TestSetPageHWPoison(p)) {
1284 1285
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1286 1287 1288
		return 0;
	}

1289
	orig_head = hpage = compound_head(p);
1290
	num_poisoned_pages_inc();
1291 1292 1293 1294 1295

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1296
	 * 2) it's part of a non-compound high order page.
1297 1298 1299 1300
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1301
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1302
	 */
1303
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1304
		if (is_free_buddy_page(p)) {
1305
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1306 1307
			return 0;
		} else {
1308
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1309 1310
			return -EBUSY;
		}
1311 1312
	}

1313
	if (PageTransHuge(hpage)) {
1314 1315 1316 1317
		lock_page(p);
		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
			unlock_page(p);
			if (!PageAnon(p))
1318 1319
				pr_err("Memory failure: %#lx: non anonymous thp\n",
					pfn);
1320
			else
1321 1322
				pr_err("Memory failure: %#lx: thp split failed\n",
					pfn);
1323
			if (TestClearPageHWPoison(p))
1324
				num_poisoned_pages_dec();
1325
			put_hwpoison_page(p);
1326 1327
			return -EBUSY;
		}
1328
		unlock_page(p);
1329 1330 1331 1332
		VM_BUG_ON_PAGE(!page_count(p), p);
		hpage = compound_head(p);
	}

1333 1334 1335
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1336
	 * - to avoid races with __SetPageLocked()
1337 1338 1339 1340
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1341 1342 1343 1344 1345 1346 1347 1348
	shake_page(p, 0);
	/* shake_page could have turned it free. */
	if (!PageLRU(p) && is_free_buddy_page(p)) {
		if (flags & MF_COUNT_INCREASED)
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
		else
			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
		return 0;
1349 1350
	}

1351
	lock_page(p);
W
Wu Fengguang 已提交
1352

1353 1354 1355 1356
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1357
	if (PageCompound(p) && compound_head(p) != orig_head) {
1358
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1359 1360 1361 1362
		res = -EBUSY;
		goto out;
	}

1363 1364 1365 1366 1367 1368 1369
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1370 1371 1372 1373
	if (PageHuge(p))
		page_flags = hpage->flags;
	else
		page_flags = p->flags;
1374

W
Wu Fengguang 已提交
1375 1376 1377 1378
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1379
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1380
		num_poisoned_pages_dec();
1381 1382
		unlock_page(p);
		put_hwpoison_page(p);
1383
		return 0;
W
Wu Fengguang 已提交
1384
	}
W
Wu Fengguang 已提交
1385 1386
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1387
			num_poisoned_pages_dec();
1388 1389
		unlock_page(p);
		put_hwpoison_page(p);
W
Wu Fengguang 已提交
1390 1391
		return 0;
	}
W
Wu Fengguang 已提交
1392

1393
	if (!PageTransTail(p) && !PageLRU(p))
1394 1395
		goto identify_page_state;

1396 1397 1398 1399
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1400 1401 1402 1403
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1404
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1405 1406 1407
	 *
	 * When the raw error page is thp tail page, hpage points to the raw
	 * page after thp split.
1408
	 */
1409
	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1410
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1411 1412 1413
		res = -EBUSY;
		goto out;
	}
1414 1415 1416 1417

	/*
	 * Torn down by someone else?
	 */
1418
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1419
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1420
		res = -EBUSY;
1421 1422 1423
		goto out;
	}

1424
identify_page_state:
1425
	res = identify_page_state(pfn, p, page_flags);
1426
out:
1427
	unlock_page(p);
1428 1429
	return res;
}
1430
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1465
void memory_failure_queue(unsigned long pfn, int flags)
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1476
	if (kfifo_put(&mf_cpu->fifo, entry))
1477 1478
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1479
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1493
	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1494 1495 1496 1497 1498 1499
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1500 1501 1502
		if (entry.flags & MF_SOFT_OFFLINE)
			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
		else
1503
			memory_failure(entry.pfn, entry.flags);
1504 1505 1506
	}
}

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
/*
 * Process memory_failure work queued on the specified CPU.
 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
 */
void memory_failure_queue_kick(int cpu)
{
	struct memory_failure_cpu *mf_cpu;

	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
	cancel_work_sync(&mf_cpu->work);
	memory_failure_work_func(&mf_cpu->work);
}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1536 1537 1538 1539 1540 1541
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1559 1560
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1561 1562 1563 1564 1565 1566 1567 1568

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1569
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1570
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1571 1572 1573
		return 0;
	}

1574
	if (page_count(page) > 1) {
1575
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1576
				 pfn, &unpoison_rs);
1577 1578 1579 1580
		return 0;
	}

	if (page_mapped(page)) {
1581
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1582
				 pfn, &unpoison_rs);
1583 1584 1585 1586
		return 0;
	}

	if (page_mapping(page)) {
1587
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1588
				 pfn, &unpoison_rs);
1589 1590 1591
		return 0;
	}

1592 1593 1594 1595 1596
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1597
	if (!PageHuge(page) && PageTransHuge(page)) {
1598
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1599
				 pfn, &unpoison_rs);
1600
		return 0;
1601 1602
	}

1603
	if (!get_hwpoison_page(p)) {
W
Wu Fengguang 已提交
1604
		if (TestClearPageHWPoison(p))
1605
			num_poisoned_pages_dec();
1606
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1607
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1608 1609 1610
		return 0;
	}

J
Jens Axboe 已提交
1611
	lock_page(page);
W
Wu Fengguang 已提交
1612 1613 1614 1615 1616 1617
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1618
	if (TestClearPageHWPoison(page)) {
1619
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1620
				 pfn, &unpoison_rs);
1621
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
1622 1623 1624 1625
		freeit = 1;
	}
	unlock_page(page);

1626
	put_hwpoison_page(page);
1627
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1628
		put_hwpoison_page(page);
W
Wu Fengguang 已提交
1629 1630 1631 1632

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1633

1634
static struct page *new_page(struct page *p, unsigned long private)
1635
{
1636
	int nid = page_to_nid(p);
1637

1638
	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1639 1640 1641 1642 1643 1644 1645 1646
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1647
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1648 1649 1650 1651 1652 1653
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1654 1655 1656 1657
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1658
	if (!get_hwpoison_page(p)) {
1659
		if (PageHuge(p)) {
1660
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1661
			ret = 0;
1662
		} else if (is_free_buddy_page(p)) {
1663
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1664 1665
			ret = 0;
		} else {
1666 1667
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1668 1669 1670 1671 1672 1673 1674 1675 1676
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1677 1678 1679 1680
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

1681 1682
	if (ret == 1 && !PageHuge(page) &&
	    !PageLRU(page) && !__PageMovable(page)) {
1683 1684 1685
		/*
		 * Try to free it.
		 */
1686
		put_hwpoison_page(page);
1687 1688 1689 1690 1691 1692
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
1693
		if (ret == 1 && !PageLRU(page)) {
1694
			/* Drop page reference which is from __get_any_page() */
1695
			put_hwpoison_page(page);
1696 1697
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
				pfn, page->flags, &page->flags);
1698 1699 1700 1701 1702 1703
			return -EIO;
		}
	}
	return ret;
}

1704 1705 1706 1707 1708
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1709
	LIST_HEAD(pagelist);
1710

1711 1712 1713 1714 1715
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1716
	if (PageHWPoison(hpage)) {
1717
		unlock_page(hpage);
1718
		put_hwpoison_page(hpage);
1719
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1720
		return -EBUSY;
1721
	}
1722
	unlock_page(hpage);
1723

1724
	ret = isolate_huge_page(hpage, &pagelist);
1725 1726 1727 1728
	/*
	 * get_any_page() and isolate_huge_page() takes a refcount each,
	 * so need to drop one here.
	 */
1729
	put_hwpoison_page(hpage);
1730
	if (!ret) {
1731 1732 1733 1734
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1735
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1736
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1737
	if (ret) {
1738
		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1739
			pfn, ret, page->flags, &page->flags);
1740 1741
		if (!list_empty(&pagelist))
			putback_movable_pages(&pagelist);
1742 1743
		if (ret > 0)
			ret = -EIO;
1744
	} else {
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
		/*
		 * We set PG_hwpoison only when the migration source hugepage
		 * was successfully dissolved, because otherwise hwpoisoned
		 * hugepage remains on free hugepage list, then userspace will
		 * find it as SIGBUS by allocation failure. That's not expected
		 * in soft-offlining.
		 */
		ret = dissolve_free_huge_page(page);
		if (!ret) {
			if (set_hwpoison_free_buddy_page(page))
				num_poisoned_pages_inc();
1756 1757
			else
				ret = -EBUSY;
1758
		}
1759 1760 1761 1762
	}
	return ret;
}

1763 1764 1765 1766
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1767 1768

	/*
1769 1770 1771 1772
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1773
	 */
1774 1775
	lock_page(page);
	wait_on_page_writeback(page);
1776 1777
	if (PageHWPoison(page)) {
		unlock_page(page);
1778
		put_hwpoison_page(page);
1779 1780 1781
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1793
		put_hwpoison_page(page);
1794
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1795
		SetPageHWPoison(page);
1796
		num_poisoned_pages_inc();
1797
		return 0;
1798 1799 1800 1801 1802 1803 1804
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
1805 1806 1807 1808
	if (PageLRU(page))
		ret = isolate_lru_page(page);
	else
		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1809 1810 1811 1812
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
1813
	put_hwpoison_page(page);
1814 1815
	if (!ret) {
		LIST_HEAD(pagelist);
1816 1817 1818 1819 1820 1821 1822 1823
		/*
		 * After isolated lru page, the PageLRU will be cleared,
		 * so use !__PageMovable instead for LRU page's mapping
		 * cannot have PAGE_MAPPING_MOVABLE.
		 */
		if (!__PageMovable(page))
			inc_node_page_state(page, NR_ISOLATED_ANON +
						page_is_file_cache(page));
1824
		list_add(&page->lru, &pagelist);
1825
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1826
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1827
		if (ret) {
1828 1829
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1830

1831 1832
			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
				pfn, ret, page->flags, &page->flags);
1833 1834 1835 1836
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1837 1838
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
			pfn, ret, page_count(page), page->flags, &page->flags);
1839 1840 1841
	}
	return ret;
}
1842

1843 1844 1845
static int soft_offline_in_use_page(struct page *page, int flags)
{
	int ret;
1846
	int mt;
1847 1848 1849
	struct page *hpage = compound_head(page);

	if (!PageHuge(page) && PageTransHuge(hpage)) {
1850 1851 1852 1853
		lock_page(page);
		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
			unlock_page(page);
			if (!PageAnon(page))
1854 1855 1856
				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
			else
				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1857
			put_hwpoison_page(page);
1858 1859
			return -EBUSY;
		}
1860
		unlock_page(page);
1861 1862
	}

1863 1864 1865 1866 1867 1868 1869 1870 1871
	/*
	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
	 * to free list immediately (not via pcplist) when released after
	 * successful page migration. Otherwise we can't guarantee that the
	 * page is really free after put_page() returns, so
	 * set_hwpoison_free_buddy_page() highly likely fails.
	 */
	mt = get_pageblock_migratetype(page);
	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1872 1873 1874 1875
	if (PageHuge(page))
		ret = soft_offline_huge_page(page, flags);
	else
		ret = __soft_offline_page(page, flags);
1876
	set_pageblock_migratetype(page, mt);
1877 1878 1879
	return ret;
}

1880
static int soft_offline_free_page(struct page *page)
1881
{
1882
	int rc = dissolve_free_huge_page(page);
1883

1884 1885 1886 1887 1888 1889 1890
	if (!rc) {
		if (set_hwpoison_free_buddy_page(page))
			num_poisoned_pages_inc();
		else
			rc = -EBUSY;
	}
	return rc;
1891 1892
}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
/**
 * soft_offline_page - Soft offline a page.
 * @page: page to offline
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
int soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);

1920 1921 1922 1923 1924 1925 1926 1927
	if (is_zone_device_page(page)) {
		pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
				pfn);
		if (flags & MF_COUNT_INCREASED)
			put_page(page);
		return -EIO;
	}

1928 1929
	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1930
		if (flags & MF_COUNT_INCREASED)
1931
			put_hwpoison_page(page);
1932 1933 1934
		return -EBUSY;
	}

1935
	get_online_mems();
1936
	ret = get_any_page(page, pfn, flags);
1937
	put_online_mems();
1938

1939 1940 1941
	if (ret > 0)
		ret = soft_offline_in_use_page(page, flags);
	else if (ret == 0)
1942
		ret = soft_offline_free_page(page);
1943

1944 1945
	return ret;
}