memory-failure.c 48.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * This software may be redistributed and/or modified under the terms of
 * the GNU General Public License ("GPL") version 2 only as published by the
 * Free Software Foundation.
 *
 * High level machine check handler. Handles pages reported by the
10
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11
 * failure.
12 13 14
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
15 16
 *
 * Handles page cache pages in various states.	The tricky part
17 18 19 20 21 22
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
23 24 25 26 27 28 29 30
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
31 32 33 34 35 36 37
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
38 39 40 41
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
42
#include <linux/kernel-page-flags.h>
43
#include <linux/sched.h>
H
Hugh Dickins 已提交
44
#include <linux/ksm.h>
45
#include <linux/rmap.h>
46
#include <linux/export.h>
47 48 49
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
50 51 52
#include <linux/migrate.h>
#include <linux/page-isolation.h>
#include <linux/suspend.h>
53
#include <linux/slab.h>
54
#include <linux/swapops.h>
55
#include <linux/hugetlb.h>
56
#include <linux/memory_hotplug.h>
57
#include <linux/mm_inline.h>
58
#include <linux/kfifo.h>
59
#include "internal.h"
60
#include "ras/ras_event.h"
61 62 63 64 65

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

66
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67

68 69
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

70
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
71 72
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
73 74
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
75
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
76 77
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
78 79
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
80 81 82 83 84 85 86 87 88 89 90

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
91
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
111 112 113 114 115 116 117 118 119 120 121 122
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
123 124 125 126 127 128 129 130 131 132
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
A
Andrew Morton 已提交
133
#ifdef	CONFIG_MEMCG_SWAP
A
Andi Kleen 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	struct mem_cgroup *mem;
	struct cgroup_subsys_state *css;
	unsigned long ino;

	if (!hwpoison_filter_memcg)
		return 0;

	mem = try_get_mem_cgroup_from_page(p);
	if (!mem)
		return -EINVAL;

	css = mem_cgroup_css(mem);
T
Tejun Heo 已提交
150
	ino = cgroup_ino(css->cgroup);
A
Andi Kleen 已提交
151 152
	css_put(css);

153
	if (ino != hwpoison_filter_memcg)
A
Andi Kleen 已提交
154 155 156 157 158 159 160 161
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
162 163
int hwpoison_filter(struct page *p)
{
164 165 166
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
167 168 169
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
170 171 172
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
173 174 175
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
176 177
	return 0;
}
178 179 180 181 182 183 184
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
185 186
EXPORT_SYMBOL_GPL(hwpoison_filter);

187
/*
188 189 190
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
191
 */
192 193
static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
			unsigned long pfn, struct page *page, int flags)
194 195 196 197 198
{
	struct siginfo si;
	int ret;

	printk(KERN_ERR
199
		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
200 201 202 203 204 205 206
		pfn, t->comm, t->pid);
	si.si_signo = SIGBUS;
	si.si_errno = 0;
	si.si_addr = (void *)addr;
#ifdef __ARCH_SI_TRAPNO
	si.si_trapno = trapno;
#endif
207
	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
208

209
	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
210
		si.si_code = BUS_MCEERR_AR;
211
		ret = force_sig_info(SIGBUS, &si, current);
212 213 214 215 216 217 218 219 220 221
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
		si.si_code = BUS_MCEERR_AO;
		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
	}
222 223 224 225 226 227
	if (ret < 0)
		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
		       t->comm, t->pid, ret);
	return ret;
}

228 229 230 231
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
232
void shake_page(struct page *p, int access)
233 234 235 236 237
{
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
238
		drain_all_pages(page_zone(p));
239 240 241
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
242

243
	/*
244 245
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
246
	 */
247 248
	if (access)
		drop_slab_node(page_to_nid(p));
249 250 251
}
EXPORT_SYMBOL_GPL(shake_page);

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
278
	char addr_valid;
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
};

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 * TBD would GFP_NOIO be enough?
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
		       struct list_head *to_kill,
		       struct to_kill **tkc)
{
	struct to_kill *tk;

	if (*tkc) {
		tk = *tkc;
		*tkc = NULL;
	} else {
		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
		if (!tk) {
			printk(KERN_ERR
		"MCE: Out of memory while machine check handling\n");
			return;
		}
	}
	tk->addr = page_address_in_vma(p, vma);
	tk->addr_valid = 1;

	/*
	 * In theory we don't have to kill when the page was
	 * munmaped. But it could be also a mremap. Since that's
	 * likely very rare kill anyways just out of paranoia, but use
	 * a SIGKILL because the error is not contained anymore.
	 */
	if (tk->addr == -EFAULT) {
319
		pr_info("MCE: Unable to find user space address %lx in %s\n",
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
			page_to_pfn(p), tsk->comm);
		tk->addr_valid = 0;
	}
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
336
static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
337 338
			  int fail, struct page *page, unsigned long pfn,
			  int flags)
339 340 341 342
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
343
		if (forcekill) {
344
			/*
345
			 * In case something went wrong with munmapping
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
			if (fail || tk->addr_valid == 0) {
				printk(KERN_ERR
		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
					pfn, tk->tsk->comm, tk->tsk->pid);
				force_sig(SIGKILL, tk->tsk);
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
362 363
			else if (kill_proc(tk->tsk, tk->addr, trapno,
					      pfn, page, flags) < 0)
364 365 366 367 368 369 370 371 372
				printk(KERN_ERR
		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
					pfn, tk->tsk->comm, tk->tsk->pid);
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

373 374 375 376 377 378 379 380 381
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
382
{
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	struct task_struct *t;

	for_each_thread(tsk, t)
		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
			return t;
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
	struct task_struct *t;
401
	if (!tsk->mm)
402
		return NULL;
403
	if (force_early)
404 405 406 407 408 409 410
		return tsk;
	t = find_early_kill_thread(tsk);
	if (t)
		return t;
	if (sysctl_memory_failure_early_kill)
		return tsk;
	return NULL;
411 412 413 414 415 416
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
417
			      struct to_kill **tkc, int force_early)
418 419 420 421
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
422
	pgoff_t pgoff;
423

424
	av = page_lock_anon_vma_read(page);
425
	if (av == NULL)	/* Not actually mapped anymore */
426 427
		return;

428
	pgoff = page_to_pgoff(page);
429
	read_lock(&tasklist_lock);
430
	for_each_process (tsk) {
431
		struct anon_vma_chain *vmac;
432
		struct task_struct *t = task_early_kill(tsk, force_early);
433

434
		if (!t)
435
			continue;
436 437
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
438
			vma = vmac->vma;
439 440
			if (!page_mapped_in_vma(page, vma))
				continue;
441 442
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
443 444 445
		}
	}
	read_unlock(&tasklist_lock);
446
	page_unlock_anon_vma_read(av);
447 448 449 450 451 452
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
453
			      struct to_kill **tkc, int force_early)
454 455 456 457 458
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;

459
	i_mmap_lock_read(mapping);
460
	read_lock(&tasklist_lock);
461
	for_each_process(tsk) {
462
		pgoff_t pgoff = page_to_pgoff(page);
463
		struct task_struct *t = task_early_kill(tsk, force_early);
464

465
		if (!t)
466
			continue;
467
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
468 469 470 471 472 473 474 475
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
476 477
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
478 479 480
		}
	}
	read_unlock(&tasklist_lock);
481
	i_mmap_unlock_read(mapping);
482 483 484 485 486 487 488 489
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 * This is done in two steps for locking reasons.
 * First preallocate one tokill structure outside the spin locks,
 * so that we can kill at least one process reasonably reliable.
 */
490 491
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
492 493 494 495 496 497 498 499 500 501
{
	struct to_kill *tk;

	if (!page->mapping)
		return;

	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
	if (!tk)
		return;
	if (PageAnon(page))
502
		collect_procs_anon(page, tokill, &tk, force_early);
503
	else
504
		collect_procs_file(page, tokill, &tk, force_early);
505 506 507 508
	kfree(tk);
}

static const char *action_name[] = {
509 510 511 512
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
513 514 515
};

static const char * const action_page_types[] = {
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
	[MF_MSG_UNKNOWN]		= "unknown page",
536 537
};

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
		page_cache_release(p);
		return 0;
	}
	return -EIO;
}

562 563 564 565 566 567 568
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
569
	return MF_IGNORED;
570 571 572 573 574 575 576 577
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
578
	return MF_FAILED;
579 580 581 582 583 584 585 586
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	int err;
587
	int ret = MF_FAILED;
588 589
	struct address_space *mapping;

590 591
	delete_from_lru_cache(p);

592 593 594 595 596
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
597
		return MF_RECOVERED;
598 599 600 601 602 603 604 605 606 607 608 609 610

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
611
		return MF_FAILED;
612 613 614 615 616 617 618 619 620 621 622 623 624 625
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
	if (mapping->a_ops->error_remove_page) {
		err = mapping->a_ops->error_remove_page(mapping, p);
		if (err != 0) {
			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
					pfn, err);
		} else if (page_has_private(p) &&
				!try_to_release_page(p, GFP_NOIO)) {
626
			pr_info("MCE %#lx: failed to release buffers\n", pfn);
627
		} else {
628
			ret = MF_RECOVERED;
629 630 631 632 633 634 635
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
636
			ret = MF_RECOVERED;
637 638 639 640 641 642 643 644
		else
			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
				pfn);
	}
	return ret;
}

/*
645
 * Dirty pagecache page
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
678
		 * and the page is dropped between then the error
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
		mapping_set_error(mapping, EIO);
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

721
	if (!delete_from_lru_cache(p))
722
		return MF_DELAYED;
723
	else
724
		return MF_FAILED;
725 726 727 728 729
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
730

731
	if (!delete_from_lru_cache(p))
732
		return MF_RECOVERED;
733
	else
734
		return MF_FAILED;
735 736 737 738 739
}

/*
 * Huge pages. Needs work.
 * Issues:
740 741
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
742 743 744
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
745
	int res = 0;
746
	struct page *hpage = compound_head(p);
747 748 749 750

	if (!PageHuge(hpage))
		return MF_DELAYED;

751 752 753 754 755 756 757 758 759 760 761
	/*
	 * We can safely recover from error on free or reserved (i.e.
	 * not in-use) hugepage by dequeuing it from freelist.
	 * To check whether a hugepage is in-use or not, we can't use
	 * page->lru because it can be used in other hugepage operations,
	 * such as __unmap_hugepage_range() and gather_surplus_pages().
	 * So instead we use page_mapping() and PageAnon().
	 * We assume that this function is called with page lock held,
	 * so there is no race between isolation and mapping/unmapping.
	 */
	if (!(page_mapping(hpage) || PageAnon(hpage))) {
762 763
		res = dequeue_hwpoisoned_huge_page(hpage);
		if (!res)
764
			return MF_RECOVERED;
765
	}
766
	return MF_DELAYED;
767 768 769 770 771 772 773 774 775
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
776
 * in its live cycle, so all accesses have to be extremely careful.
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
#define sc		(1UL << PG_swapcache)
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define writeback	(1UL << PG_writeback)
#define lru		(1UL << PG_lru)
#define swapbacked	(1UL << PG_swapbacked)
#define head		(1UL << PG_head)
#define tail		(1UL << PG_tail)
#define compound	(1UL << PG_compound)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
798
	enum mf_action_page_type type;
799 800
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
801
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
802 803 804 805
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
806 807 808 809 810 811

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
812
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
813 814

#ifdef CONFIG_PAGEFLAGS_EXTENDED
815 816
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
	{ tail,		tail,		MF_MSG_HUGE,		me_huge_page },
817
#else
818
	{ compound,	compound,	MF_MSG_HUGE,		me_huge_page },
819 820
#endif

821 822
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
823

824 825
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
826

827 828
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
829

830 831
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
832 833 834 835

	/*
	 * Catchall entry: must be at end.
	 */
836
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
837 838
};

839 840 841 842 843 844 845 846 847 848 849 850 851
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef writeback
#undef lru
#undef swapbacked
#undef head
#undef tail
#undef compound
#undef slab
#undef reserved

852 853 854 855
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
856 857
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
858
{
859 860
	trace_memory_failure_event(pfn, type, result);

861 862
	pr_err("MCE %#lx: recovery action for %s: %s\n",
		pfn, action_page_types[type], action_name[result]);
863 864 865
}

static int page_action(struct page_state *ps, struct page *p,
866
			unsigned long pfn)
867 868
{
	int result;
869
	int count;
870 871

	result = ps->action(p, pfn);
872

873
	count = page_count(p) - 1;
874
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
875 876
		count--;
	if (count != 0) {
877
		printk(KERN_ERR
878 879
		       "MCE %#lx: %s still referenced by %d users\n",
		       pfn, action_page_types[ps->type], count);
880
		result = MF_FAILED;
881
	}
882
	action_result(pfn, ps->type, result);
883 884 885 886 887 888

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

889
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
890 891
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
int get_hwpoison_page(struct page *page)
{
	struct page *head = compound_head(page);

	if (PageHuge(head))
		return get_page_unless_zero(head);

	/*
	 * Thp tail page has special refcounting rule (refcount of tail pages
	 * is stored in ->_mapcount,) so we can't call get_page_unless_zero()
	 * directly for tail pages.
	 */
	if (PageTransHuge(head)) {
		if (get_page_unless_zero(head)) {
			if (PageTail(page))
				get_page(page);
			return 1;
		} else {
			return 0;
		}
	}

	return get_page_unless_zero(page);
}
EXPORT_SYMBOL_GPL(get_hwpoison_page);

925 926 927 928
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
W
Wu Fengguang 已提交
929
static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
930
				  int trapno, int flags, struct page **hpagep)
931 932 933 934 935
{
	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
	struct address_space *mapping;
	LIST_HEAD(tokill);
	int ret;
936
	int kill = 1, forcekill;
937
	struct page *hpage = *hpagep;
938

939 940 941 942 943 944 945
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
		return SWAP_SUCCESS;
	if (!(PageLRU(hpage) || PageHuge(p)))
W
Wu Fengguang 已提交
946
		return SWAP_SUCCESS;
947 948 949 950 951

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
952
	if (!page_mapped(hpage))
W
Wu Fengguang 已提交
953 954
		return SWAP_SUCCESS;

955 956
	if (PageKsm(p)) {
		pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
W
Wu Fengguang 已提交
957
		return SWAP_FAIL;
958
	}
959 960 961 962 963 964 965 966 967 968

	if (PageSwapCache(p)) {
		printk(KERN_ERR
		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
969 970
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
971
	 */
972
	mapping = page_mapping(hpage);
973
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
974 975 976
	    mapping_cap_writeback_dirty(mapping)) {
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
			printk(KERN_INFO
	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
995
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
996

997
	ret = try_to_unmap(hpage, ttu);
998 999
	if (ret != SWAP_SUCCESS)
		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1000
				pfn, page_mapcount(hpage));
1001

1002 1003 1004 1005
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1006 1007
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1008 1009 1010 1011
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1012
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1013
	kill_procs(&tokill, forcekill, trapno,
1014
		      ret != SWAP_SUCCESS, p, pfn, flags);
W
Wu Fengguang 已提交
1015 1016

	return ret;
1017 1018
}

1019 1020 1021
static void set_page_hwpoison_huge_page(struct page *hpage)
{
	int i;
1022
	int nr_pages = 1 << compound_order(hpage);
1023 1024 1025 1026 1027 1028 1029
	for (i = 0; i < nr_pages; i++)
		SetPageHWPoison(hpage + i);
}

static void clear_page_hwpoison_huge_page(struct page *hpage)
{
	int i;
1030
	int nr_pages = 1 << compound_order(hpage);
1031 1032 1033 1034
	for (i = 0; i < nr_pages; i++)
		ClearPageHWPoison(hpage + i);
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @trapno: Trap number reported in the signal to user space.
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
int memory_failure(unsigned long pfn, int trapno, int flags)
1054 1055 1056
{
	struct page_state *ps;
	struct page *p;
1057
	struct page *hpage;
1058
	struct page *orig_head;
1059
	int res;
1060
	unsigned int nr_pages;
1061
	unsigned long page_flags;
1062 1063 1064 1065 1066

	if (!sysctl_memory_failure_recovery)
		panic("Memory failure from trap %d on page %lx", trapno, pfn);

	if (!pfn_valid(pfn)) {
1067 1068 1069 1070
		printk(KERN_ERR
		       "MCE %#lx: memory outside kernel control\n",
		       pfn);
		return -ENXIO;
1071 1072 1073
	}

	p = pfn_to_page(pfn);
1074
	orig_head = hpage = compound_head(p);
1075
	if (TestSetPageHWPoison(p)) {
1076
		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1077 1078 1079
		return 0;
	}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	/*
	 * Currently errors on hugetlbfs pages are measured in hugepage units,
	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
	 * transparent hugepages, they are supposed to be split and error
	 * measurement is done in normal page units.  So nr_pages should be one
	 * in this case.
	 */
	if (PageHuge(p))
		nr_pages = 1 << compound_order(hpage);
	else /* normal page or thp */
		nr_pages = 1;
1091
	atomic_long_add(nr_pages, &num_poisoned_pages);
1092 1093 1094 1095 1096

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1097 1098 1099 1100
	 * 2) it's a free hugepage, which is also safe:
	 *    an affected hugepage will be dequeued from hugepage freelist,
	 *    so there's no concern about reusing it ever after.
	 * 3) it's part of a non-compound high order page.
1101 1102 1103 1104 1105 1106
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
	 */
1107
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1108
		if (is_free_buddy_page(p)) {
1109
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1110
			return 0;
1111 1112
		} else if (PageHuge(hpage)) {
			/*
1113
			 * Check "filter hit" and "race with other subpage."
1114
			 */
J
Jens Axboe 已提交
1115
			lock_page(hpage);
1116 1117 1118 1119 1120 1121 1122
			if (PageHWPoison(hpage)) {
				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
				    || (p != hpage && TestSetPageHWPoison(hpage))) {
					atomic_long_sub(nr_pages, &num_poisoned_pages);
					unlock_page(hpage);
					return 0;
				}
1123 1124 1125
			}
			set_page_hwpoison_huge_page(hpage);
			res = dequeue_hwpoisoned_huge_page(hpage);
1126 1127
			action_result(pfn, MF_MSG_FREE_HUGE,
				      res ? MF_IGNORED : MF_DELAYED);
1128 1129
			unlock_page(hpage);
			return res;
1130
		} else {
1131
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1132 1133
			return -EBUSY;
		}
1134 1135
	}

1136 1137 1138
	if (!PageHuge(p) && PageTransHuge(hpage)) {
		if (!PageAnon(hpage)) {
			pr_err("MCE: %#lx: non anonymous thp\n", pfn);
1139 1140
			if (TestClearPageHWPoison(p))
				atomic_long_sub(nr_pages, &num_poisoned_pages);
1141
			put_page(p);
1142 1143
			if (p != hpage)
				put_page(hpage);
1144 1145 1146 1147
			return -EBUSY;
		}
		if (unlikely(split_huge_page(hpage))) {
			pr_err("MCE: %#lx: thp split failed\n", pfn);
1148 1149
			if (TestClearPageHWPoison(p))
				atomic_long_sub(nr_pages, &num_poisoned_pages);
1150
			put_page(p);
1151 1152
			if (p != hpage)
				put_page(hpage);
1153 1154 1155 1156 1157 1158
			return -EBUSY;
		}
		VM_BUG_ON_PAGE(!page_count(p), p);
		hpage = compound_head(p);
	}

1159 1160 1161 1162 1163 1164 1165 1166
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
	 * - to avoid races with __set_page_locked()
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1167
	if (!PageHuge(p)) {
1168 1169 1170
		if (!PageLRU(p))
			shake_page(p, 0);
		if (!PageLRU(p)) {
1171 1172 1173 1174
			/*
			 * shake_page could have turned it free.
			 */
			if (is_free_buddy_page(p)) {
1175
				if (flags & MF_COUNT_INCREASED)
1176
					action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1177
				else
1178 1179
					action_result(pfn, MF_MSG_BUDDY_2ND,
						      MF_DELAYED);
1180 1181
				return 0;
			}
1182
		}
1183 1184
	}

J
Jens Axboe 已提交
1185
	lock_page(hpage);
W
Wu Fengguang 已提交
1186

1187 1188 1189 1190
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1191
	if (PageCompound(p) && compound_head(p) != orig_head) {
1192
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1193 1194 1195 1196
		res = -EBUSY;
		goto out;
	}

1197 1198 1199 1200 1201 1202 1203 1204 1205
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
	page_flags = p->flags;

W
Wu Fengguang 已提交
1206 1207 1208 1209
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1210
		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1211
		atomic_long_sub(nr_pages, &num_poisoned_pages);
1212
		unlock_page(hpage);
1213
		put_page(hpage);
1214
		return 0;
W
Wu Fengguang 已提交
1215
	}
W
Wu Fengguang 已提交
1216 1217
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1218
			atomic_long_sub(nr_pages, &num_poisoned_pages);
1219 1220
		unlock_page(hpage);
		put_page(hpage);
W
Wu Fengguang 已提交
1221 1222
		return 0;
	}
W
Wu Fengguang 已提交
1223

1224 1225 1226
	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
		goto identify_page_state;

1227 1228 1229 1230
	/*
	 * For error on the tail page, we should set PG_hwpoison
	 * on the head page to show that the hugepage is hwpoisoned
	 */
1231
	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1232
		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		unlock_page(hpage);
		put_page(hpage);
		return 0;
	}
	/*
	 * Set PG_hwpoison on all pages in an error hugepage,
	 * because containment is done in hugepage unit for now.
	 * Since we have done TestSetPageHWPoison() for the head page with
	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
	 */
	if (PageHuge(p))
		set_page_hwpoison_huge_page(hpage);

1246 1247 1248 1249
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1250 1251 1252 1253
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1254
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1255 1256 1257
	 *
	 * When the raw error page is thp tail page, hpage points to the raw
	 * page after thp split.
1258
	 */
1259 1260
	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
	    != SWAP_SUCCESS) {
1261
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1262 1263 1264
		res = -EBUSY;
		goto out;
	}
1265 1266 1267 1268

	/*
	 * Torn down by someone else?
	 */
1269
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1270
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1271
		res = -EBUSY;
1272 1273 1274
		goto out;
	}

1275
identify_page_state:
1276
	res = -EBUSY;
1277 1278 1279 1280 1281 1282 1283
	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flagss is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
1284
			break;
1285 1286 1287

	page_flags |= (p->flags & (1UL << PG_dirty));

1288 1289 1290 1291 1292
	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	res = page_action(ps, p, pfn);
1293
out:
1294
	unlock_page(hpage);
1295 1296
	return res;
}
1297
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1298

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int trapno;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @trapno: Trap number reported in the signal to user space.
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
void memory_failure_queue(unsigned long pfn, int trapno, int flags)
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.trapno =	trapno,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1346
	if (kfifo_put(&mf_cpu->fifo, entry))
1347 1348
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1349
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1363
	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1364 1365 1366 1367 1368 1369
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1370 1371 1372 1373
		if (entry.flags & MF_SOFT_OFFLINE)
			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
		else
			memory_failure(entry.pfn, entry.trapno, entry.flags);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	}
}

static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

W
Wu Fengguang 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1410
	unsigned int nr_pages;
W
Wu Fengguang 已提交
1411 1412 1413 1414 1415 1416 1417 1418

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1419
		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
W
Wu Fengguang 已提交
1420 1421 1422
		return 0;
	}

1423 1424 1425 1426 1427
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1428
	if (!PageHuge(page) && PageTransHuge(page)) {
1429
		pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1430
		return 0;
1431 1432
	}

1433
	nr_pages = 1 << compound_order(page);
1434

1435
	if (!get_hwpoison_page(p)) {
1436 1437 1438 1439 1440 1441 1442
		/*
		 * Since HWPoisoned hugepage should have non-zero refcount,
		 * race between memory failure and unpoison seems to happen.
		 * In such case unpoison fails and memory failure runs
		 * to the end.
		 */
		if (PageHuge(page)) {
1443
			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1444 1445
			return 0;
		}
W
Wu Fengguang 已提交
1446
		if (TestClearPageHWPoison(p))
1447
			atomic_long_dec(&num_poisoned_pages);
1448
		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
W
Wu Fengguang 已提交
1449 1450 1451
		return 0;
	}

J
Jens Axboe 已提交
1452
	lock_page(page);
W
Wu Fengguang 已提交
1453 1454 1455 1456 1457 1458
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1459
	if (TestClearPageHWPoison(page)) {
1460
		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1461
		atomic_long_sub(nr_pages, &num_poisoned_pages);
W
Wu Fengguang 已提交
1462
		freeit = 1;
1463 1464
		if (PageHuge(page))
			clear_page_hwpoison_huge_page(page);
W
Wu Fengguang 已提交
1465 1466 1467 1468
	}
	unlock_page(page);

	put_page(page);
1469
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
W
Wu Fengguang 已提交
1470 1471 1472 1473 1474
		put_page(page);

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1475 1476 1477

static struct page *new_page(struct page *p, unsigned long private, int **x)
{
1478
	int nid = page_to_nid(p);
1479 1480 1481 1482 1483
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
						   nid);
	else
		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1484 1485 1486 1487 1488 1489 1490 1491
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1492
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1493 1494 1495 1496 1497 1498
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1499 1500 1501 1502
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1503
	if (!get_hwpoison_page(p)) {
1504
		if (PageHuge(p)) {
1505
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1506
			ret = 0;
1507
		} else if (is_free_buddy_page(p)) {
1508
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1509 1510
			ret = 0;
		} else {
1511 1512
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1513 1514 1515 1516 1517 1518 1519 1520 1521
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
		/*
		 * Try to free it.
		 */
		put_page(page);
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
		if (!PageLRU(page)) {
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
				pfn, page->flags);
			return -EIO;
		}
	}
	return ret;
}

1546 1547 1548 1549 1550
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1551
	LIST_HEAD(pagelist);
1552

1553 1554 1555 1556 1557
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1558
	if (PageHWPoison(hpage)) {
1559 1560
		unlock_page(hpage);
		put_page(hpage);
1561
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1562
		return -EBUSY;
1563
	}
1564
	unlock_page(hpage);
1565

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	ret = isolate_huge_page(hpage, &pagelist);
	if (ret) {
		/*
		 * get_any_page() and isolate_huge_page() takes a refcount each,
		 * so need to drop one here.
		 */
		put_page(hpage);
	} else {
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1578
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1579
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1580
	if (ret) {
1581 1582
		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
			pfn, ret, page->flags);
1583 1584 1585 1586 1587 1588 1589 1590
		/*
		 * We know that soft_offline_huge_page() tries to migrate
		 * only one hugepage pointed to by hpage, so we need not
		 * run through the pagelist here.
		 */
		putback_active_hugepage(hpage);
		if (ret > 0)
			ret = -EIO;
1591
	} else {
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
		/* overcommit hugetlb page will be freed to buddy */
		if (PageHuge(page)) {
			set_page_hwpoison_huge_page(hpage);
			dequeue_hwpoisoned_huge_page(hpage);
			atomic_long_add(1 << compound_order(hpage),
					&num_poisoned_pages);
		} else {
			SetPageHWPoison(page);
			atomic_long_inc(&num_poisoned_pages);
		}
1602 1603 1604 1605
	}
	return ret;
}

1606 1607 1608 1609
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1610 1611

	/*
1612 1613 1614 1615
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1616
	 */
1617 1618
	lock_page(page);
	wait_on_page_writeback(page);
1619 1620 1621 1622 1623 1624
	if (PageHWPoison(page)) {
		unlock_page(page);
		put_page(page);
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1636
		put_page(page);
1637
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1638 1639 1640
		SetPageHWPoison(page);
		atomic_long_inc(&num_poisoned_pages);
		return 0;
1641 1642 1643 1644 1645 1646 1647 1648
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
	ret = isolate_lru_page(page);
1649 1650 1651 1652 1653
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
	put_page(page);
1654 1655
	if (!ret) {
		LIST_HEAD(pagelist);
1656
		inc_zone_page_state(page, NR_ISOLATED_ANON +
1657
					page_is_file_cache(page));
1658
		list_add(&page->lru, &pagelist);
1659
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1660
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1661
		if (ret) {
1662 1663 1664 1665 1666 1667 1668
			if (!list_empty(&pagelist)) {
				list_del(&page->lru);
				dec_zone_page_state(page, NR_ISOLATED_ANON +
						page_is_file_cache(page));
				putback_lru_page(page);
			}

1669
			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1670 1671 1672
				pfn, ret, page->flags);
			if (ret > 0)
				ret = -EIO;
1673
		} else {
1674 1675
			if (!TestSetPageHWPoison(page))
				atomic_long_inc(&num_poisoned_pages);
1676 1677
		}
	} else {
1678
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1679
			pfn, ret, page_count(page), page->flags);
1680 1681 1682
	}
	return ret;
}
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

/**
 * soft_offline_page - Soft offline a page.
 * @page: page to offline
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
int soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
D
David Rientjes 已提交
1710
	struct page *hpage = compound_head(page);
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
	if (!PageHuge(page) && PageTransHuge(hpage)) {
		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
			pr_info("soft offline: %#lx: failed to split THP\n",
				pfn);
			return -EBUSY;
		}
	}

1724
	get_online_mems();
1725

1726
	ret = get_any_page(page, pfn, flags);
1727
	put_online_mems();
1728
	if (ret > 0) { /* for in-use pages */
1729 1730 1731 1732
		if (PageHuge(page))
			ret = soft_offline_huge_page(page, flags);
		else
			ret = __soft_offline_page(page, flags);
1733
	} else if (ret == 0) { /* for free pages */
1734 1735
		if (PageHuge(page)) {
			set_page_hwpoison_huge_page(hpage);
1736 1737
			if (!dequeue_hwpoisoned_huge_page(hpage))
				atomic_long_add(1 << compound_order(hpage),
1738 1739
					&num_poisoned_pages);
		} else {
1740 1741
			if (!TestSetPageHWPoison(page))
				atomic_long_inc(&num_poisoned_pages);
1742 1743 1744 1745
		}
	}
	return ret;
}