memory-failure.c 49.4 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * This software may be redistributed and/or modified under the terms of
 * the GNU General Public License ("GPL") version 2 only as published by the
 * Free Software Foundation.
 *
 * High level machine check handler. Handles pages reported by the
10
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11
 * failure.
12 13 14
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
15 16
 *
 * Handles page cache pages in various states.	The tricky part
17 18 19 20 21 22
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
23 24 25 26 27 28 29 30
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
31 32 33 34 35 36 37
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
38 39 40 41
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
42
#include <linux/kernel-page-flags.h>
43
#include <linux/sched/signal.h>
44
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
45
#include <linux/ksm.h>
46
#include <linux/rmap.h>
47
#include <linux/export.h>
48 49 50
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
51 52 53
#include <linux/migrate.h>
#include <linux/page-isolation.h>
#include <linux/suspend.h>
54
#include <linux/slab.h>
55
#include <linux/swapops.h>
56
#include <linux/hugetlb.h>
57
#include <linux/memory_hotplug.h>
58
#include <linux/mm_inline.h>
59
#include <linux/kfifo.h>
60
#include <linux/ratelimit.h>
61
#include "internal.h"
62
#include "ras/ras_event.h"
63 64 65 66 67

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

68
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69

70 71
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

72
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
73 74
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
75 76
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
77
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
78 79
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
80 81
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
82 83 84 85 86 87 88 89 90 91 92

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
93
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
113 114 115 116 117 118 119 120 121 122 123 124
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
125 126 127 128 129 130 131 132 133 134
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
135
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
136 137 138 139 140 141 142
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

143
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
144 145 146 147 148 149 150 151
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
152 153
int hwpoison_filter(struct page *p)
{
154 155 156
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
157 158 159
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
160 161 162
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
163 164 165
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
166 167
	return 0;
}
168 169 170 171 172 173 174
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
175 176
EXPORT_SYMBOL_GPL(hwpoison_filter);

177
/*
178 179 180
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
181
 */
182 183
static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
			unsigned long pfn, struct page *page, int flags)
184 185 186 187
{
	struct siginfo si;
	int ret;

188 189
	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
		pfn, t->comm, t->pid);
190 191 192 193 194 195
	si.si_signo = SIGBUS;
	si.si_errno = 0;
	si.si_addr = (void *)addr;
#ifdef __ARCH_SI_TRAPNO
	si.si_trapno = trapno;
#endif
196
	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
197

198
	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
199
		si.si_code = BUS_MCEERR_AR;
200
		ret = force_sig_info(SIGBUS, &si, current);
201 202 203 204 205 206 207 208 209 210
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
		si.si_code = BUS_MCEERR_AO;
		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
	}
211
	if (ret < 0)
212
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
213
			t->comm, t->pid, ret);
214 215 216
	return ret;
}

217 218 219 220
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
221
void shake_page(struct page *p, int access)
222
{
223 224 225
	if (PageHuge(p))
		return;

226 227 228 229
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
230
		drain_all_pages(page_zone(p));
231 232 233
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
234

235
	/*
236 237
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
238
	 */
239 240
	if (access)
		drop_slab_node(page_to_nid(p));
241 242 243
}
EXPORT_SYMBOL_GPL(shake_page);

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
270
	char addr_valid;
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
};

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 * TBD would GFP_NOIO be enough?
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
		       struct list_head *to_kill,
		       struct to_kill **tkc)
{
	struct to_kill *tk;

	if (*tkc) {
		tk = *tkc;
		*tkc = NULL;
	} else {
		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
		if (!tk) {
296
			pr_err("Memory failure: Out of memory while machine check handling\n");
297 298 299 300 301 302 303 304 305 306 307 308 309
			return;
		}
	}
	tk->addr = page_address_in_vma(p, vma);
	tk->addr_valid = 1;

	/*
	 * In theory we don't have to kill when the page was
	 * munmaped. But it could be also a mremap. Since that's
	 * likely very rare kill anyways just out of paranoia, but use
	 * a SIGKILL because the error is not contained anymore.
	 */
	if (tk->addr == -EFAULT) {
310
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
			page_to_pfn(p), tsk->comm);
		tk->addr_valid = 0;
	}
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
327
static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
M
Minchan Kim 已提交
328
			  bool fail, struct page *page, unsigned long pfn,
329
			  int flags)
330 331 332 333
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
334
		if (forcekill) {
335
			/*
336
			 * In case something went wrong with munmapping
337 338 339 340
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
			if (fail || tk->addr_valid == 0) {
341
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
342
				       pfn, tk->tsk->comm, tk->tsk->pid);
343 344 345 346 347 348 349 350 351
				force_sig(SIGKILL, tk->tsk);
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
352 353
			else if (kill_proc(tk->tsk, tk->addr, trapno,
					      pfn, page, flags) < 0)
354
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
355
				       pfn, tk->tsk->comm, tk->tsk->pid);
356 357 358 359 360 361
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

362 363 364 365 366 367 368 369 370
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
371
{
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	struct task_struct *t;

	for_each_thread(tsk, t)
		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
			return t;
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
	struct task_struct *t;
390
	if (!tsk->mm)
391
		return NULL;
392
	if (force_early)
393 394 395 396 397 398 399
		return tsk;
	t = find_early_kill_thread(tsk);
	if (t)
		return t;
	if (sysctl_memory_failure_early_kill)
		return tsk;
	return NULL;
400 401 402 403 404 405
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
406
			      struct to_kill **tkc, int force_early)
407 408 409 410
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
411
	pgoff_t pgoff;
412

413
	av = page_lock_anon_vma_read(page);
414
	if (av == NULL)	/* Not actually mapped anymore */
415 416
		return;

417
	pgoff = page_to_pgoff(page);
418
	read_lock(&tasklist_lock);
419
	for_each_process (tsk) {
420
		struct anon_vma_chain *vmac;
421
		struct task_struct *t = task_early_kill(tsk, force_early);
422

423
		if (!t)
424
			continue;
425 426
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
427
			vma = vmac->vma;
428 429
			if (!page_mapped_in_vma(page, vma))
				continue;
430 431
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
432 433 434
		}
	}
	read_unlock(&tasklist_lock);
435
	page_unlock_anon_vma_read(av);
436 437 438 439 440 441
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
442
			      struct to_kill **tkc, int force_early)
443 444 445 446 447
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;

448
	i_mmap_lock_read(mapping);
449
	read_lock(&tasklist_lock);
450
	for_each_process(tsk) {
451
		pgoff_t pgoff = page_to_pgoff(page);
452
		struct task_struct *t = task_early_kill(tsk, force_early);
453

454
		if (!t)
455
			continue;
456
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
457 458 459 460 461 462 463 464
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
465 466
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
467 468 469
		}
	}
	read_unlock(&tasklist_lock);
470
	i_mmap_unlock_read(mapping);
471 472 473 474 475 476 477 478
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 * This is done in two steps for locking reasons.
 * First preallocate one tokill structure outside the spin locks,
 * so that we can kill at least one process reasonably reliable.
 */
479 480
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
481 482 483 484 485 486 487 488 489 490
{
	struct to_kill *tk;

	if (!page->mapping)
		return;

	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
	if (!tk)
		return;
	if (PageAnon(page))
491
		collect_procs_anon(page, tokill, &tk, force_early);
492
	else
493
		collect_procs_file(page, tokill, &tk, force_early);
494 495 496 497
	kfree(tk);
}

static const char *action_name[] = {
498 499 500 501
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
502 503 504
};

static const char * const action_page_types[] = {
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
	[MF_MSG_UNKNOWN]		= "unknown page",
525 526
};

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
545
		put_page(p);
546 547 548 549 550
		return 0;
	}
	return -EIO;
}

551 552 553 554 555 556 557
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
558
	return MF_IGNORED;
559 560 561 562 563 564 565
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
566
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
567
	return MF_FAILED;
568 569 570 571 572 573 574 575
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	int err;
576
	int ret = MF_FAILED;
577 578
	struct address_space *mapping;

579 580
	delete_from_lru_cache(p);

581 582 583 584 585
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
586
		return MF_RECOVERED;
587 588 589 590 591 592 593 594 595 596 597 598 599

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
600
		return MF_FAILED;
601 602 603 604 605 606 607 608 609 610
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
	if (mapping->a_ops->error_remove_page) {
		err = mapping->a_ops->error_remove_page(mapping, p);
		if (err != 0) {
611
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
612
				pfn, err);
613 614
		} else if (page_has_private(p) &&
				!try_to_release_page(p, GFP_NOIO)) {
615 616
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
617
		} else {
618
			ret = MF_RECOVERED;
619 620 621 622 623 624 625
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
626
			ret = MF_RECOVERED;
627
		else
628 629
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
630 631 632 633 634
	}
	return ret;
}

/*
635
 * Dirty pagecache page
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
668
		 * and the page is dropped between then the error
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
		mapping_set_error(mapping, EIO);
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

711
	if (!delete_from_lru_cache(p))
712
		return MF_DELAYED;
713
	else
714
		return MF_FAILED;
715 716 717 718 719
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
720

721
	if (!delete_from_lru_cache(p))
722
		return MF_RECOVERED;
723
	else
724
		return MF_FAILED;
725 726 727 728 729
}

/*
 * Huge pages. Needs work.
 * Issues:
730 731
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
732 733 734
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
735
	int res = 0;
736
	struct page *hpage = compound_head(p);
737 738 739 740

	if (!PageHuge(hpage))
		return MF_DELAYED;

741 742 743 744 745 746 747 748 749
	/*
	 * We can safely recover from error on free or reserved (i.e.
	 * not in-use) hugepage by dequeuing it from freelist.
	 * To check whether a hugepage is in-use or not, we can't use
	 * page->lru because it can be used in other hugepage operations,
	 * such as __unmap_hugepage_range() and gather_surplus_pages().
	 * So instead we use page_mapping() and PageAnon().
	 */
	if (!(page_mapping(hpage) || PageAnon(hpage))) {
750 751
		res = dequeue_hwpoisoned_huge_page(hpage);
		if (!res)
752
			return MF_RECOVERED;
753
	}
754
	return MF_DELAYED;
755 756 757 758 759 760 761 762 763
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
764
 * in its live cycle, so all accesses have to be extremely careful.
765 766 767 768 769 770
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
771
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
772 773 774 775 776 777 778 779 780 781 782
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define writeback	(1UL << PG_writeback)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
783
	enum mf_action_page_type type;
784 785
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
786
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
787 788 789 790
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
791 792 793 794 795 796

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
797
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
798

799
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
800

801 802
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
803

804 805
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
806

807 808
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
809

810 811
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
812 813 814 815

	/*
	 * Catchall entry: must be at end.
	 */
816
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
817 818
};

819 820 821 822 823 824 825 826 827 828
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef writeback
#undef lru
#undef head
#undef slab
#undef reserved

829 830 831 832
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
833 834
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
835
{
836 837
	trace_memory_failure_event(pfn, type, result);

838
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
839
		pfn, action_page_types[type], action_name[result]);
840 841 842
}

static int page_action(struct page_state *ps, struct page *p,
843
			unsigned long pfn)
844 845
{
	int result;
846
	int count;
847 848

	result = ps->action(p, pfn);
849

850
	count = page_count(p) - 1;
851
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
852 853
		count--;
	if (count != 0) {
854
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
855
		       pfn, action_page_types[ps->type], count);
856
		result = MF_FAILED;
857
	}
858
	action_result(pfn, ps->type, result);
859 860 861 862 863 864

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

865
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
866 867
}

868 869 870 871 872 873 874 875 876 877 878
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
int get_hwpoison_page(struct page *page)
{
	struct page *head = compound_head(page);

879
	if (!PageHuge(head) && PageTransHuge(head)) {
880 881 882 883 884 885 886
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
887
			pr_err("Memory failure: %#lx: non anonymous thp\n",
888 889 890
				page_to_pfn(page));
			return 0;
		}
891 892
	}

893 894 895 896
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

897 898
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
899 900 901 902
		put_page(head);
	}

	return 0;
903 904 905
}
EXPORT_SYMBOL_GPL(get_hwpoison_page);

906 907 908 909
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
910
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
911
				  int trapno, int flags, struct page **hpagep)
912
{
S
Shaohua Li 已提交
913
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
914 915
	struct address_space *mapping;
	LIST_HEAD(tokill);
M
Minchan Kim 已提交
916
	bool unmap_success;
917
	int kill = 1, forcekill;
918
	struct page *hpage = *hpagep;
919
	bool mlocked = PageMlocked(hpage);
920

921 922 923 924 925
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
926
		return true;
927
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
928
		return true;
929 930 931 932 933

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
934
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
935
		return true;
W
Wu Fengguang 已提交
936

937
	if (PageKsm(p)) {
938
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
939
		return false;
940
	}
941 942

	if (PageSwapCache(p)) {
943 944
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
945 946 947 948 949 950
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
951 952
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
953
	 */
954
	mapping = page_mapping(hpage);
955
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
956 957 958
	    mapping_cap_writeback_dirty(mapping)) {
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
959 960 961
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
962
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
963 964 965 966 967 968 969 970 971 972 973 974 975
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
976
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
977

M
Minchan Kim 已提交
978 979
	unmap_success = try_to_unmap(hpage, ttu);
	if (!unmap_success)
980
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
981
		       pfn, page_mapcount(hpage));
982

983 984 985 986 987 988 989
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

990 991 992 993
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
994 995
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
996 997 998 999
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1000
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
M
Minchan Kim 已提交
1001
	kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
W
Wu Fengguang 已提交
1002

M
Minchan Kim 已提交
1003
	return unmap_success;
1004 1005
}

1006 1007 1008
static void set_page_hwpoison_huge_page(struct page *hpage)
{
	int i;
1009
	int nr_pages = 1 << compound_order(hpage);
1010 1011 1012 1013 1014 1015 1016
	for (i = 0; i < nr_pages; i++)
		SetPageHWPoison(hpage + i);
}

static void clear_page_hwpoison_huge_page(struct page *hpage)
{
	int i;
1017
	int nr_pages = 1 << compound_order(hpage);
1018 1019 1020 1021
	for (i = 0; i < nr_pages; i++)
		ClearPageHWPoison(hpage + i);
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @trapno: Trap number reported in the signal to user space.
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
int memory_failure(unsigned long pfn, int trapno, int flags)
1041 1042 1043
{
	struct page_state *ps;
	struct page *p;
1044
	struct page *hpage;
1045
	struct page *orig_head;
1046
	int res;
1047
	unsigned int nr_pages;
1048
	unsigned long page_flags;
1049 1050 1051 1052 1053

	if (!sysctl_memory_failure_recovery)
		panic("Memory failure from trap %d on page %lx", trapno, pfn);

	if (!pfn_valid(pfn)) {
1054 1055
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1056
		return -ENXIO;
1057 1058 1059
	}

	p = pfn_to_page(pfn);
1060
	orig_head = hpage = compound_head(p);
1061
	if (TestSetPageHWPoison(p)) {
1062 1063
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1064 1065 1066
		return 0;
	}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	/*
	 * Currently errors on hugetlbfs pages are measured in hugepage units,
	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
	 * transparent hugepages, they are supposed to be split and error
	 * measurement is done in normal page units.  So nr_pages should be one
	 * in this case.
	 */
	if (PageHuge(p))
		nr_pages = 1 << compound_order(hpage);
	else /* normal page or thp */
		nr_pages = 1;
1078
	num_poisoned_pages_add(nr_pages);
1079 1080 1081 1082 1083

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1084 1085 1086 1087
	 * 2) it's a free hugepage, which is also safe:
	 *    an affected hugepage will be dequeued from hugepage freelist,
	 *    so there's no concern about reusing it ever after.
	 * 3) it's part of a non-compound high order page.
1088 1089 1090 1091 1092 1093
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
	 */
1094
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1095
		if (is_free_buddy_page(p)) {
1096
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1097
			return 0;
1098 1099
		} else if (PageHuge(hpage)) {
			/*
1100
			 * Check "filter hit" and "race with other subpage."
1101
			 */
J
Jens Axboe 已提交
1102
			lock_page(hpage);
1103 1104 1105
			if (PageHWPoison(hpage)) {
				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1106
					num_poisoned_pages_sub(nr_pages);
1107 1108 1109
					unlock_page(hpage);
					return 0;
				}
1110 1111 1112
			}
			set_page_hwpoison_huge_page(hpage);
			res = dequeue_hwpoisoned_huge_page(hpage);
1113 1114
			action_result(pfn, MF_MSG_FREE_HUGE,
				      res ? MF_IGNORED : MF_DELAYED);
1115 1116
			unlock_page(hpage);
			return res;
1117
		} else {
1118
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1119 1120
			return -EBUSY;
		}
1121 1122
	}

1123
	if (!PageHuge(p) && PageTransHuge(hpage)) {
1124 1125 1126 1127
		lock_page(p);
		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
			unlock_page(p);
			if (!PageAnon(p))
1128 1129
				pr_err("Memory failure: %#lx: non anonymous thp\n",
					pfn);
1130
			else
1131 1132
				pr_err("Memory failure: %#lx: thp split failed\n",
					pfn);
1133
			if (TestClearPageHWPoison(p))
1134
				num_poisoned_pages_sub(nr_pages);
1135
			put_hwpoison_page(p);
1136 1137
			return -EBUSY;
		}
1138
		unlock_page(p);
1139 1140 1141 1142
		VM_BUG_ON_PAGE(!page_count(p), p);
		hpage = compound_head(p);
	}

1143 1144 1145
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1146
	 * - to avoid races with __SetPageLocked()
1147 1148 1149 1150
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1151 1152 1153 1154 1155 1156 1157 1158
	shake_page(p, 0);
	/* shake_page could have turned it free. */
	if (!PageLRU(p) && is_free_buddy_page(p)) {
		if (flags & MF_COUNT_INCREASED)
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
		else
			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
		return 0;
1159 1160
	}

J
Jens Axboe 已提交
1161
	lock_page(hpage);
W
Wu Fengguang 已提交
1162

1163 1164 1165 1166
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1167
	if (PageCompound(p) && compound_head(p) != orig_head) {
1168
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1169 1170 1171 1172
		res = -EBUSY;
		goto out;
	}

1173 1174 1175 1176 1177 1178 1179 1180 1181
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
	page_flags = p->flags;

W
Wu Fengguang 已提交
1182 1183 1184 1185
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1186
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1187
		num_poisoned_pages_sub(nr_pages);
1188
		unlock_page(hpage);
1189
		put_hwpoison_page(hpage);
1190
		return 0;
W
Wu Fengguang 已提交
1191
	}
W
Wu Fengguang 已提交
1192 1193
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1194
			num_poisoned_pages_sub(nr_pages);
1195
		unlock_page(hpage);
1196
		put_hwpoison_page(hpage);
W
Wu Fengguang 已提交
1197 1198
		return 0;
	}
W
Wu Fengguang 已提交
1199

1200 1201 1202
	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
		goto identify_page_state;

1203 1204 1205 1206
	/*
	 * For error on the tail page, we should set PG_hwpoison
	 * on the head page to show that the hugepage is hwpoisoned
	 */
1207
	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1208
		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1209
		unlock_page(hpage);
1210
		put_hwpoison_page(hpage);
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		return 0;
	}
	/*
	 * Set PG_hwpoison on all pages in an error hugepage,
	 * because containment is done in hugepage unit for now.
	 * Since we have done TestSetPageHWPoison() for the head page with
	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
	 */
	if (PageHuge(p))
		set_page_hwpoison_huge_page(hpage);

1222 1223 1224 1225
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1226 1227 1228 1229
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1230
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1231 1232 1233
	 *
	 * When the raw error page is thp tail page, hpage points to the raw
	 * page after thp split.
1234
	 */
M
Minchan Kim 已提交
1235
	if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
1236
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1237 1238 1239
		res = -EBUSY;
		goto out;
	}
1240 1241 1242 1243

	/*
	 * Torn down by someone else?
	 */
1244
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1245
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1246
		res = -EBUSY;
1247 1248 1249
		goto out;
	}

1250
identify_page_state:
1251
	res = -EBUSY;
1252 1253 1254 1255 1256 1257 1258
	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flagss is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
1259
			break;
1260 1261 1262

	page_flags |= (p->flags & (1UL << PG_dirty));

1263 1264 1265 1266 1267
	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	res = page_action(ps, p, pfn);
1268
out:
1269
	unlock_page(hpage);
1270 1271
	return res;
}
1272
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1273

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int trapno;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @trapno: Trap number reported in the signal to user space.
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
void memory_failure_queue(unsigned long pfn, int trapno, int flags)
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.trapno =	trapno,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1321
	if (kfifo_put(&mf_cpu->fifo, entry))
1322 1323
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1324
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1338
	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1339 1340 1341 1342 1343 1344
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1345 1346 1347 1348
		if (entry.flags & MF_SOFT_OFFLINE)
			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
		else
			memory_failure(entry.pfn, entry.trapno, entry.flags);
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	}
}

static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1368 1369 1370 1371 1372 1373
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1391
	unsigned int nr_pages;
1392 1393
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1394 1395 1396 1397 1398 1399 1400 1401

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1402
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1403
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1404 1405 1406
		return 0;
	}

1407
	if (page_count(page) > 1) {
1408
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1409
				 pfn, &unpoison_rs);
1410 1411 1412 1413
		return 0;
	}

	if (page_mapped(page)) {
1414
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1415
				 pfn, &unpoison_rs);
1416 1417 1418 1419
		return 0;
	}

	if (page_mapping(page)) {
1420
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1421
				 pfn, &unpoison_rs);
1422 1423 1424
		return 0;
	}

1425 1426 1427 1428 1429
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1430
	if (!PageHuge(page) && PageTransHuge(page)) {
1431
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1432
				 pfn, &unpoison_rs);
1433
		return 0;
1434 1435
	}

1436
	nr_pages = 1 << compound_order(page);
1437

1438
	if (!get_hwpoison_page(p)) {
1439 1440 1441 1442 1443 1444 1445
		/*
		 * Since HWPoisoned hugepage should have non-zero refcount,
		 * race between memory failure and unpoison seems to happen.
		 * In such case unpoison fails and memory failure runs
		 * to the end.
		 */
		if (PageHuge(page)) {
1446
			unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1447
					 pfn, &unpoison_rs);
1448 1449
			return 0;
		}
W
Wu Fengguang 已提交
1450
		if (TestClearPageHWPoison(p))
1451
			num_poisoned_pages_dec();
1452
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1453
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1454 1455 1456
		return 0;
	}

J
Jens Axboe 已提交
1457
	lock_page(page);
W
Wu Fengguang 已提交
1458 1459 1460 1461 1462 1463
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1464
	if (TestClearPageHWPoison(page)) {
1465
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1466
				 pfn, &unpoison_rs);
1467
		num_poisoned_pages_sub(nr_pages);
W
Wu Fengguang 已提交
1468
		freeit = 1;
1469 1470
		if (PageHuge(page))
			clear_page_hwpoison_huge_page(page);
W
Wu Fengguang 已提交
1471 1472 1473
	}
	unlock_page(page);

1474
	put_hwpoison_page(page);
1475
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1476
		put_hwpoison_page(page);
W
Wu Fengguang 已提交
1477 1478 1479 1480

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1481 1482 1483

static struct page *new_page(struct page *p, unsigned long private, int **x)
{
1484
	int nid = page_to_nid(p);
1485 1486 1487 1488
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
						   nid);
	else
1489
		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1490 1491 1492 1493 1494 1495 1496 1497
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1498
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1499 1500 1501 1502 1503 1504
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1505 1506 1507 1508
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1509
	if (!get_hwpoison_page(p)) {
1510
		if (PageHuge(p)) {
1511
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1512
			ret = 0;
1513
		} else if (is_free_buddy_page(p)) {
1514
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1515 1516
			ret = 0;
		} else {
1517 1518
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1519 1520 1521 1522 1523 1524 1525 1526 1527
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1528 1529 1530 1531
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

1532 1533
	if (ret == 1 && !PageHuge(page) &&
	    !PageLRU(page) && !__PageMovable(page)) {
1534 1535 1536
		/*
		 * Try to free it.
		 */
1537
		put_hwpoison_page(page);
1538 1539 1540 1541 1542 1543
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
1544
		if (ret == 1 && !PageLRU(page)) {
1545
			/* Drop page reference which is from __get_any_page() */
1546
			put_hwpoison_page(page);
1547 1548
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
				pfn, page->flags, &page->flags);
1549 1550 1551 1552 1553 1554
			return -EIO;
		}
	}
	return ret;
}

1555 1556 1557 1558 1559
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1560
	LIST_HEAD(pagelist);
1561

1562 1563 1564 1565 1566
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1567
	if (PageHWPoison(hpage)) {
1568
		unlock_page(hpage);
1569
		put_hwpoison_page(hpage);
1570
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1571
		return -EBUSY;
1572
	}
1573
	unlock_page(hpage);
1574

1575
	ret = isolate_huge_page(hpage, &pagelist);
1576 1577 1578 1579
	/*
	 * get_any_page() and isolate_huge_page() takes a refcount each,
	 * so need to drop one here.
	 */
1580
	put_hwpoison_page(hpage);
1581
	if (!ret) {
1582 1583 1584 1585
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1586
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1587
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1588
	if (ret) {
1589 1590
		pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
			pfn, ret, page->flags, &page->flags);
1591 1592 1593 1594 1595 1596 1597 1598
		/*
		 * We know that soft_offline_huge_page() tries to migrate
		 * only one hugepage pointed to by hpage, so we need not
		 * run through the pagelist here.
		 */
		putback_active_hugepage(hpage);
		if (ret > 0)
			ret = -EIO;
1599
	} else {
1600 1601 1602 1603
		/* overcommit hugetlb page will be freed to buddy */
		if (PageHuge(page)) {
			set_page_hwpoison_huge_page(hpage);
			dequeue_hwpoisoned_huge_page(hpage);
1604
			num_poisoned_pages_add(1 << compound_order(hpage));
1605 1606
		} else {
			SetPageHWPoison(page);
1607
			num_poisoned_pages_inc();
1608
		}
1609 1610 1611 1612
	}
	return ret;
}

1613 1614 1615 1616
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1617 1618

	/*
1619 1620 1621 1622
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1623
	 */
1624 1625
	lock_page(page);
	wait_on_page_writeback(page);
1626 1627
	if (PageHWPoison(page)) {
		unlock_page(page);
1628
		put_hwpoison_page(page);
1629 1630 1631
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1643
		put_hwpoison_page(page);
1644
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1645
		SetPageHWPoison(page);
1646
		num_poisoned_pages_inc();
1647
		return 0;
1648 1649 1650 1651 1652 1653 1654
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
1655 1656 1657 1658
	if (PageLRU(page))
		ret = isolate_lru_page(page);
	else
		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1659 1660 1661 1662
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
1663
	put_hwpoison_page(page);
1664 1665
	if (!ret) {
		LIST_HEAD(pagelist);
1666 1667 1668 1669 1670 1671 1672 1673
		/*
		 * After isolated lru page, the PageLRU will be cleared,
		 * so use !__PageMovable instead for LRU page's mapping
		 * cannot have PAGE_MAPPING_MOVABLE.
		 */
		if (!__PageMovable(page))
			inc_node_page_state(page, NR_ISOLATED_ANON +
						page_is_file_cache(page));
1674
		list_add(&page->lru, &pagelist);
1675
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1676
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1677
		if (ret) {
1678 1679
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1680

1681 1682
			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
				pfn, ret, page->flags, &page->flags);
1683 1684 1685 1686
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1687 1688
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
			pfn, ret, page_count(page), page->flags, &page->flags);
1689 1690 1691
	}
	return ret;
}
1692

1693 1694 1695 1696 1697 1698 1699
static int soft_offline_in_use_page(struct page *page, int flags)
{
	int ret;
	struct page *hpage = compound_head(page);

	if (!PageHuge(page) && PageTransHuge(hpage)) {
		lock_page(hpage);
1700 1701 1702 1703 1704 1705 1706
		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
			unlock_page(hpage);
			if (!PageAnon(hpage))
				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
			else
				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
			put_hwpoison_page(hpage);
1707 1708
			return -EBUSY;
		}
1709
		unlock_page(hpage);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
		get_hwpoison_page(page);
		put_hwpoison_page(hpage);
	}

	if (PageHuge(page))
		ret = soft_offline_huge_page(page, flags);
	else
		ret = __soft_offline_page(page, flags);

	return ret;
}

static void soft_offline_free_page(struct page *page)
{
	if (PageHuge(page)) {
		struct page *hpage = compound_head(page);

		set_page_hwpoison_huge_page(hpage);
		if (!dequeue_hwpoisoned_huge_page(hpage))
			num_poisoned_pages_add(1 << compound_order(hpage));
	} else {
		if (!TestSetPageHWPoison(page))
			num_poisoned_pages_inc();
	}
}

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
/**
 * soft_offline_page - Soft offline a page.
 * @page: page to offline
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
int soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);

	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1765
		if (flags & MF_COUNT_INCREASED)
1766
			put_hwpoison_page(page);
1767 1768 1769
		return -EBUSY;
	}

1770
	get_online_mems();
1771
	ret = get_any_page(page, pfn, flags);
1772
	put_online_mems();
1773

1774 1775 1776 1777
	if (ret > 0)
		ret = soft_offline_in_use_page(page, flags);
	else if (ret == 0)
		soft_offline_free_page(page);
1778

1779 1780
	return ret;
}