rc-main.c 47.0 KB
Newer Older
1
/* rc-main.c - Remote Controller core module
2
 *
3
 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
13 14
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

17
#include <media/rc-core.h>
18 19
#include <linux/spinlock.h>
#include <linux/delay.h>
20
#include <linux/input.h>
21
#include <linux/leds.h>
22
#include <linux/slab.h>
23
#include <linux/idr.h>
24
#include <linux/device.h>
25
#include <linux/module.h>
26
#include "rc-core-priv.h"
27

28 29 30
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
#define IR_TAB_MIN_SIZE	256
#define IR_TAB_MAX_SIZE	8192
31
#define RC_DEV_MAX	256
32

33 34 35
/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
#define IR_KEYPRESS_TIMEOUT 250

36
/* Used to keep track of known keymaps */
37 38
static LIST_HEAD(rc_map_list);
static DEFINE_SPINLOCK(rc_map_lock);
39
static struct led_trigger *led_feedback;
40

41 42 43
/* Used to keep track of rc devices */
static DEFINE_IDA(rc_ida);

44
static struct rc_map_list *seek_rc_map(const char *name)
45
{
46
	struct rc_map_list *map = NULL;
47 48 49 50 51 52 53 54 55 56 57 58 59

	spin_lock(&rc_map_lock);
	list_for_each_entry(map, &rc_map_list, list) {
		if (!strcmp(name, map->map.name)) {
			spin_unlock(&rc_map_lock);
			return map;
		}
	}
	spin_unlock(&rc_map_lock);

	return NULL;
}

60
struct rc_map *rc_map_get(const char *name)
61 62
{

63
	struct rc_map_list *map;
64 65

	map = seek_rc_map(name);
66
#ifdef CONFIG_MODULES
67
	if (!map) {
68
		int rc = request_module("%s", name);
69
		if (rc < 0) {
70
			pr_err("Couldn't load IR keymap %s\n", name);
71 72 73 74 75 76 77 78
			return NULL;
		}
		msleep(20);	/* Give some time for IR to register */

		map = seek_rc_map(name);
	}
#endif
	if (!map) {
79
		pr_err("IR keymap %s not found\n", name);
80 81 82 83 84 85 86
		return NULL;
	}

	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);

	return &map->map;
}
87
EXPORT_SYMBOL_GPL(rc_map_get);
88

89
int rc_map_register(struct rc_map_list *map)
90 91 92 93 94 95
{
	spin_lock(&rc_map_lock);
	list_add_tail(&map->list, &rc_map_list);
	spin_unlock(&rc_map_lock);
	return 0;
}
96
EXPORT_SYMBOL_GPL(rc_map_register);
97

98
void rc_map_unregister(struct rc_map_list *map)
99 100 101 102 103
{
	spin_lock(&rc_map_lock);
	list_del(&map->list);
	spin_unlock(&rc_map_lock);
}
104
EXPORT_SYMBOL_GPL(rc_map_unregister);
105 106


107
static struct rc_map_table empty[] = {
108 109 110
	{ 0x2a, KEY_COFFEE },
};

111
static struct rc_map_list empty_map = {
112 113 114
	.map = {
		.scan    = empty,
		.size    = ARRAY_SIZE(empty),
115
		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
116 117 118 119
		.name    = RC_MAP_EMPTY,
	}
};

120 121
/**
 * ir_create_table() - initializes a scancode table
122
 * @rc_map:	the rc_map to initialize
123
 * @name:	name to assign to the table
124
 * @rc_type:	ir type to assign to the new table
125 126 127
 * @size:	initial size of the table
 * @return:	zero on success or a negative error code
 *
128
 * This routine will initialize the rc_map and will allocate
129
 * memory to hold at least the specified number of elements.
130
 */
131
static int ir_create_table(struct rc_map *rc_map,
132
			   const char *name, u64 rc_type, size_t size)
133
{
134 135 136
	rc_map->name = kstrdup(name, GFP_KERNEL);
	if (!rc_map->name)
		return -ENOMEM;
137
	rc_map->rc_type = rc_type;
138 139
	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
140
	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
141 142 143
	if (!rc_map->scan) {
		kfree(rc_map->name);
		rc_map->name = NULL;
144
		return -ENOMEM;
145
	}
146 147

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
148
		   rc_map->size, rc_map->alloc);
149 150 151 152 153
	return 0;
}

/**
 * ir_free_table() - frees memory allocated by a scancode table
154
 * @rc_map:	the table whose mappings need to be freed
155 156 157 158
 *
 * This routine will free memory alloctaed for key mappings used by given
 * scancode table.
 */
159
static void ir_free_table(struct rc_map *rc_map)
160
{
161
	rc_map->size = 0;
162
	kfree(rc_map->name);
163
	rc_map->name = NULL;
164 165
	kfree(rc_map->scan);
	rc_map->scan = NULL;
166 167
}

168
/**
169
 * ir_resize_table() - resizes a scancode table if necessary
170
 * @rc_map:	the rc_map to resize
171
 * @gfp_flags:	gfp flags to use when allocating memory
172
 * @return:	zero on success or a negative error code
173
 *
174
 * This routine will shrink the rc_map if it has lots of
175
 * unused entries and grow it if it is full.
176
 */
177
static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
178
{
179
	unsigned int oldalloc = rc_map->alloc;
180
	unsigned int newalloc = oldalloc;
181 182
	struct rc_map_table *oldscan = rc_map->scan;
	struct rc_map_table *newscan;
183

184
	if (rc_map->size == rc_map->len) {
185
		/* All entries in use -> grow keytable */
186
		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
187
			return -ENOMEM;
188

189 190 191
		newalloc *= 2;
		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
	}
192

193
	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
194 195 196 197
		/* Less than 1/3 of entries in use -> shrink keytable */
		newalloc /= 2;
		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
	}
198

199 200
	if (newalloc == oldalloc)
		return 0;
201

202
	newscan = kmalloc(newalloc, gfp_flags);
203 204 205 206
	if (!newscan) {
		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
		return -ENOMEM;
	}
207

208
	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
209 210
	rc_map->scan = newscan;
	rc_map->alloc = newalloc;
211
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
212 213
	kfree(oldscan);
	return 0;
214 215
}

216
/**
217
 * ir_update_mapping() - set a keycode in the scancode->keycode table
218
 * @dev:	the struct rc_dev device descriptor
219
 * @rc_map:	scancode table to be adjusted
220 221 222 223
 * @index:	index of the mapping that needs to be updated
 * @keycode:	the desired keycode
 * @return:	previous keycode assigned to the mapping
 *
224
 * This routine is used to update scancode->keycode mapping at given
225 226
 * position.
 */
227
static unsigned int ir_update_mapping(struct rc_dev *dev,
228
				      struct rc_map *rc_map,
229 230 231
				      unsigned int index,
				      unsigned int new_keycode)
{
232
	int old_keycode = rc_map->scan[index].keycode;
233 234 235 236 237
	int i;

	/* Did the user wish to remove the mapping? */
	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
238 239 240
			   index, rc_map->scan[index].scancode);
		rc_map->len--;
		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
241
			(rc_map->len - index) * sizeof(struct rc_map_table));
242 243 244 245
	} else {
		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
			   index,
			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
246 247
			   rc_map->scan[index].scancode, new_keycode);
		rc_map->scan[index].keycode = new_keycode;
248
		__set_bit(new_keycode, dev->input_dev->keybit);
249 250 251 252
	}

	if (old_keycode != KEY_RESERVED) {
		/* A previous mapping was updated... */
253
		__clear_bit(old_keycode, dev->input_dev->keybit);
254
		/* ... but another scancode might use the same keycode */
255 256
		for (i = 0; i < rc_map->len; i++) {
			if (rc_map->scan[i].keycode == old_keycode) {
257
				__set_bit(old_keycode, dev->input_dev->keybit);
258 259 260 261 262
				break;
			}
		}

		/* Possibly shrink the keytable, failure is not a problem */
263
		ir_resize_table(rc_map, GFP_ATOMIC);
264 265 266 267 268 269
	}

	return old_keycode;
}

/**
270
 * ir_establish_scancode() - set a keycode in the scancode->keycode table
271
 * @dev:	the struct rc_dev device descriptor
272
 * @rc_map:	scancode table to be searched
273 274
 * @scancode:	the desired scancode
 * @resize:	controls whether we allowed to resize the table to
L
Lucas De Marchi 已提交
275
 *		accommodate not yet present scancodes
276 277
 * @return:	index of the mapping containing scancode in question
 *		or -1U in case of failure.
278
 *
279
 * This routine is used to locate given scancode in rc_map.
280 281
 * If scancode is not yet present the routine will allocate a new slot
 * for it.
282
 */
283
static unsigned int ir_establish_scancode(struct rc_dev *dev,
284
					  struct rc_map *rc_map,
285 286
					  unsigned int scancode,
					  bool resize)
287
{
288
	unsigned int i;
289 290 291 292 293 294

	/*
	 * Unfortunately, some hardware-based IR decoders don't provide
	 * all bits for the complete IR code. In general, they provide only
	 * the command part of the IR code. Yet, as it is possible to replace
	 * the provided IR with another one, it is needed to allow loading
295 296
	 * IR tables from other remotes. So, we support specifying a mask to
	 * indicate the valid bits of the scancodes.
297
	 */
298 299
	if (dev->scancode_mask)
		scancode &= dev->scancode_mask;
300 301

	/* First check if we already have a mapping for this ir command */
302 303
	for (i = 0; i < rc_map->len; i++) {
		if (rc_map->scan[i].scancode == scancode)
304 305
			return i;

306
		/* Keytable is sorted from lowest to highest scancode */
307
		if (rc_map->scan[i].scancode >= scancode)
308 309
			break;
	}
310

311
	/* No previous mapping found, we might need to grow the table */
312 313
	if (rc_map->size == rc_map->len) {
		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
314 315
			return -1U;
	}
316

317
	/* i is the proper index to insert our new keycode */
318 319
	if (i < rc_map->len)
		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
320
			(rc_map->len - i) * sizeof(struct rc_map_table));
321 322 323
	rc_map->scan[i].scancode = scancode;
	rc_map->scan[i].keycode = KEY_RESERVED;
	rc_map->len++;
324

325
	return i;
326 327
}

328
/**
329
 * ir_setkeycode() - set a keycode in the scancode->keycode table
330
 * @idev:	the struct input_dev device descriptor
331
 * @scancode:	the desired scancode
332 333
 * @keycode:	result
 * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
334
 *
335
 * This routine is used to handle evdev EVIOCSKEY ioctl.
336
 */
337
static int ir_setkeycode(struct input_dev *idev,
338 339
			 const struct input_keymap_entry *ke,
			 unsigned int *old_keycode)
340
{
341
	struct rc_dev *rdev = input_get_drvdata(idev);
342
	struct rc_map *rc_map = &rdev->rc_map;
343 344
	unsigned int index;
	unsigned int scancode;
345
	int retval = 0;
346
	unsigned long flags;
347

348
	spin_lock_irqsave(&rc_map->lock, flags);
349 350 351

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
352
		if (index >= rc_map->len) {
353 354 355 356 357 358 359 360
			retval = -EINVAL;
			goto out;
		}
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

361 362
		index = ir_establish_scancode(rdev, rc_map, scancode, true);
		if (index >= rc_map->len) {
363 364 365 366 367
			retval = -ENOMEM;
			goto out;
		}
	}

368
	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
369 370

out:
371
	spin_unlock_irqrestore(&rc_map->lock, flags);
372
	return retval;
373 374 375
}

/**
376
 * ir_setkeytable() - sets several entries in the scancode->keycode table
377
 * @dev:	the struct rc_dev device descriptor
378 379
 * @to:		the struct rc_map to copy entries to
 * @from:	the struct rc_map to copy entries from
380
 * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
381
 *
382
 * This routine is used to handle table initialization.
383
 */
384
static int ir_setkeytable(struct rc_dev *dev,
385
			  const struct rc_map *from)
386
{
387
	struct rc_map *rc_map = &dev->rc_map;
388 389 390
	unsigned int i, index;
	int rc;

391
	rc = ir_create_table(rc_map, from->name,
392
			     from->rc_type, from->size);
393 394 395 396
	if (rc)
		return rc;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
397
		   rc_map->size, rc_map->alloc);
398

399
	for (i = 0; i < from->size; i++) {
400
		index = ir_establish_scancode(dev, rc_map,
401
					      from->scan[i].scancode, false);
402
		if (index >= rc_map->len) {
403
			rc = -ENOMEM;
404
			break;
405 406
		}

407
		ir_update_mapping(dev, rc_map, index,
408
				  from->scan[i].keycode);
409
	}
410 411

	if (rc)
412
		ir_free_table(rc_map);
413

414
	return rc;
415 416
}

417 418
/**
 * ir_lookup_by_scancode() - locate mapping by scancode
419
 * @rc_map:	the struct rc_map to search
420 421 422 423 424 425
 * @scancode:	scancode to look for in the table
 * @return:	index in the table, -1U if not found
 *
 * This routine performs binary search in RC keykeymap table for
 * given scancode.
 */
426
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
427 428
					  unsigned int scancode)
{
429
	int start = 0;
430
	int end = rc_map->len - 1;
431
	int mid;
432 433 434

	while (start <= end) {
		mid = (start + end) / 2;
435
		if (rc_map->scan[mid].scancode < scancode)
436
			start = mid + 1;
437
		else if (rc_map->scan[mid].scancode > scancode)
438 439 440 441 442 443 444 445
			end = mid - 1;
		else
			return mid;
	}

	return -1U;
}

446
/**
447
 * ir_getkeycode() - get a keycode from the scancode->keycode table
448
 * @idev:	the struct input_dev device descriptor
449
 * @scancode:	the desired scancode
450 451
 * @keycode:	used to return the keycode, if found, or KEY_RESERVED
 * @return:	always returns zero.
452
 *
453
 * This routine is used to handle evdev EVIOCGKEY ioctl.
454
 */
455
static int ir_getkeycode(struct input_dev *idev,
456
			 struct input_keymap_entry *ke)
457
{
458
	struct rc_dev *rdev = input_get_drvdata(idev);
459
	struct rc_map *rc_map = &rdev->rc_map;
460
	struct rc_map_table *entry;
461 462 463 464
	unsigned long flags;
	unsigned int index;
	unsigned int scancode;
	int retval;
465

466
	spin_lock_irqsave(&rc_map->lock, flags);
467 468 469 470 471 472 473 474

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

475
		index = ir_lookup_by_scancode(rc_map, scancode);
476 477
	}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	if (index < rc_map->len) {
		entry = &rc_map->scan[index];

		ke->index = index;
		ke->keycode = entry->keycode;
		ke->len = sizeof(entry->scancode);
		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));

	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
		/*
		 * We do not really know the valid range of scancodes
		 * so let's respond with KEY_RESERVED to anything we
		 * do not have mapping for [yet].
		 */
		ke->index = index;
		ke->keycode = KEY_RESERVED;
	} else {
495 496
		retval = -EINVAL;
		goto out;
497 498
	}

499 500
	retval = 0;

501
out:
502
	spin_unlock_irqrestore(&rc_map->lock, flags);
503
	return retval;
504 505 506
}

/**
507
 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
508 509 510
 * @dev:	the struct rc_dev descriptor of the device
 * @scancode:	the scancode to look for
 * @return:	the corresponding keycode, or KEY_RESERVED
511
 *
512 513 514
 * This routine is used by drivers which need to convert a scancode to a
 * keycode. Normally it should not be used since drivers should have no
 * interest in keycodes.
515
 */
516
u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
517
{
518
	struct rc_map *rc_map = &dev->rc_map;
519 520 521 522
	unsigned int keycode;
	unsigned int index;
	unsigned long flags;

523
	spin_lock_irqsave(&rc_map->lock, flags);
524

525 526 527
	index = ir_lookup_by_scancode(rc_map, scancode);
	keycode = index < rc_map->len ?
			rc_map->scan[index].keycode : KEY_RESERVED;
528

529
	spin_unlock_irqrestore(&rc_map->lock, flags);
530

531 532
	if (keycode != KEY_RESERVED)
		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
533
			   dev->input_name, scancode, keycode);
534

535
	return keycode;
536
}
537
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
538

539
/**
540
 * ir_do_keyup() - internal function to signal the release of a keypress
541
 * @dev:	the struct rc_dev descriptor of the device
542
 * @sync:	whether or not to call input_sync
543
 *
544 545
 * This function is used internally to release a keypress, it must be
 * called with keylock held.
546
 */
547
static void ir_do_keyup(struct rc_dev *dev, bool sync)
548
{
549
	if (!dev->keypressed)
550 551
		return;

552 553
	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
	input_report_key(dev->input_dev, dev->last_keycode, 0);
554
	led_trigger_event(led_feedback, LED_OFF);
555 556
	if (sync)
		input_sync(dev->input_dev);
557
	dev->keypressed = false;
558
}
559 560

/**
561
 * rc_keyup() - signals the release of a keypress
562
 * @dev:	the struct rc_dev descriptor of the device
563 564 565 566
 *
 * This routine is used to signal that a key has been released on the
 * remote control.
 */
567
void rc_keyup(struct rc_dev *dev)
568 569 570
{
	unsigned long flags;

571
	spin_lock_irqsave(&dev->keylock, flags);
572
	ir_do_keyup(dev, true);
573
	spin_unlock_irqrestore(&dev->keylock, flags);
574
}
575
EXPORT_SYMBOL_GPL(rc_keyup);
576 577 578

/**
 * ir_timer_keyup() - generates a keyup event after a timeout
579
 * @cookie:	a pointer to the struct rc_dev for the device
580 581 582
 *
 * This routine will generate a keyup event some time after a keydown event
 * is generated when no further activity has been detected.
583
 */
584
static void ir_timer_keyup(unsigned long cookie)
585
{
586
	struct rc_dev *dev = (struct rc_dev *)cookie;
587 588 589 590 591 592 593 594 595 596 597 598
	unsigned long flags;

	/*
	 * ir->keyup_jiffies is used to prevent a race condition if a
	 * hardware interrupt occurs at this point and the keyup timer
	 * event is moved further into the future as a result.
	 *
	 * The timer will then be reactivated and this function called
	 * again in the future. We need to exit gracefully in that case
	 * to allow the input subsystem to do its auto-repeat magic or
	 * a keyup event might follow immediately after the keydown.
	 */
599 600
	spin_lock_irqsave(&dev->keylock, flags);
	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
601
		ir_do_keyup(dev, true);
602
	spin_unlock_irqrestore(&dev->keylock, flags);
603 604 605
}

/**
606
 * rc_repeat() - signals that a key is still pressed
607
 * @dev:	the struct rc_dev descriptor of the device
608 609 610 611 612
 *
 * This routine is used by IR decoders when a repeat message which does
 * not include the necessary bits to reproduce the scancode has been
 * received.
 */
613
void rc_repeat(struct rc_dev *dev)
614 615
{
	unsigned long flags;
616

617
	spin_lock_irqsave(&dev->keylock, flags);
618

619
	if (!dev->keypressed)
620
		goto out;
621

622 623 624
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
	input_sync(dev->input_dev);

625 626
	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
627 628

out:
629
	spin_unlock_irqrestore(&dev->keylock, flags);
630
}
631
EXPORT_SYMBOL_GPL(rc_repeat);
632 633

/**
634
 * ir_do_keydown() - internal function to process a keypress
635
 * @dev:	the struct rc_dev descriptor of the device
636
 * @protocol:	the protocol of the keypress
637 638 639
 * @scancode:   the scancode of the keypress
 * @keycode:    the keycode of the keypress
 * @toggle:     the toggle value of the keypress
640
 *
641 642
 * This function is used internally to register a keypress, it must be
 * called with keylock held.
643
 */
644 645
static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
			  u32 scancode, u32 keycode, u8 toggle)
646
{
647
	bool new_event = (!dev->keypressed		 ||
648
			  dev->last_protocol != protocol ||
649
			  dev->last_scancode != scancode ||
650
			  dev->last_toggle   != toggle);
651

652 653
	if (new_event && dev->keypressed)
		ir_do_keyup(dev, false);
654

655
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
656

657 658 659
	if (new_event && keycode != KEY_RESERVED) {
		/* Register a keypress */
		dev->keypressed = true;
660
		dev->last_protocol = protocol;
661 662 663 664
		dev->last_scancode = scancode;
		dev->last_toggle = toggle;
		dev->last_keycode = keycode;

665
		IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
666
			   dev->input_name, keycode, protocol, scancode);
667
		input_report_key(dev->input_dev, keycode, 1);
668 669

		led_trigger_event(led_feedback, LED_FULL);
670
	}
671

672
	input_sync(dev->input_dev);
673
}
674

675
/**
676
 * rc_keydown() - generates input event for a key press
677
 * @dev:	the struct rc_dev descriptor of the device
678 679
 * @protocol:	the protocol for the keypress
 * @scancode:	the scancode for the keypress
680 681 682
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
683 684
 * This routine is used to signal that a key has been pressed on the
 * remote control.
685
 */
686
void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
687 688
{
	unsigned long flags;
689
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
690

691
	spin_lock_irqsave(&dev->keylock, flags);
692
	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
693

694 695 696
	if (dev->keypressed) {
		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
697
	}
698
	spin_unlock_irqrestore(&dev->keylock, flags);
699
}
700
EXPORT_SYMBOL_GPL(rc_keydown);
701

702
/**
703
 * rc_keydown_notimeout() - generates input event for a key press without
704
 *                          an automatic keyup event at a later time
705
 * @dev:	the struct rc_dev descriptor of the device
706 707
 * @protocol:	the protocol for the keypress
 * @scancode:	the scancode for the keypress
708 709 710
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
711
 * This routine is used to signal that a key has been pressed on the
712
 * remote control. The driver must manually call rc_keyup() at a later stage.
713
 */
714 715
void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
			  u32 scancode, u8 toggle)
716 717
{
	unsigned long flags;
718
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
719

720
	spin_lock_irqsave(&dev->keylock, flags);
721
	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
722
	spin_unlock_irqrestore(&dev->keylock, flags);
723
}
724
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
725

S
Sean Young 已提交
726 727 728
/**
 * rc_validate_filter() - checks that the scancode and mask are valid and
 *			  provides sensible defaults
729
 * @dev:	the struct rc_dev descriptor of the device
S
Sean Young 已提交
730 731 732
 * @filter:	the scancode and mask
 * @return:	0 or -EINVAL if the filter is not valid
 */
733
static int rc_validate_filter(struct rc_dev *dev,
S
Sean Young 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747
			      struct rc_scancode_filter *filter)
{
	static u32 masks[] = {
		[RC_TYPE_RC5] = 0x1f7f,
		[RC_TYPE_RC5X_20] = 0x1f7f3f,
		[RC_TYPE_RC5_SZ] = 0x2fff,
		[RC_TYPE_SONY12] = 0x1f007f,
		[RC_TYPE_SONY15] = 0xff007f,
		[RC_TYPE_SONY20] = 0x1fff7f,
		[RC_TYPE_JVC] = 0xffff,
		[RC_TYPE_NEC] = 0xffff,
		[RC_TYPE_NECX] = 0xffffff,
		[RC_TYPE_NEC32] = 0xffffffff,
		[RC_TYPE_SANYO] = 0x1fffff,
S
Sean Young 已提交
748 749
		[RC_TYPE_MCIR2_KBD] = 0xffff,
		[RC_TYPE_MCIR2_MSE] = 0x1fffff,
S
Sean Young 已提交
750 751 752 753 754 755 756 757
		[RC_TYPE_RC6_0] = 0xffff,
		[RC_TYPE_RC6_6A_20] = 0xfffff,
		[RC_TYPE_RC6_6A_24] = 0xffffff,
		[RC_TYPE_RC6_6A_32] = 0xffffffff,
		[RC_TYPE_RC6_MCE] = 0xffff7fff,
		[RC_TYPE_SHARP] = 0x1fff,
	};
	u32 s = filter->data;
758
	enum rc_type protocol = dev->wakeup_protocol;
S
Sean Young 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

	switch (protocol) {
	case RC_TYPE_NECX:
		if ((((s >> 16) ^ ~(s >> 8)) & 0xff) == 0)
			return -EINVAL;
		break;
	case RC_TYPE_NEC32:
		if ((((s >> 24) ^ ~(s >> 16)) & 0xff) == 0)
			return -EINVAL;
		break;
	case RC_TYPE_RC6_MCE:
		if ((s & 0xffff0000) != 0x800f0000)
			return -EINVAL;
		break;
	case RC_TYPE_RC6_6A_32:
		if ((s & 0xffff0000) == 0x800f0000)
			return -EINVAL;
		break;
	default:
		break;
	}

	filter->data &= masks[protocol];
	filter->mask &= masks[protocol];

784 785 786 787 788 789 790
	/*
	 * If we have to raw encode the IR for wakeup, we cannot have a mask
	 */
	if (dev->encode_wakeup &&
	    filter->mask != 0 && filter->mask != masks[protocol])
		return -EINVAL;

S
Sean Young 已提交
791 792 793
	return 0;
}

794 795 796 797 798 799 800 801
int rc_open(struct rc_dev *rdev)
{
	int rval = 0;

	if (!rdev)
		return -EINVAL;

	mutex_lock(&rdev->lock);
802

803
	if (!rdev->users++ && rdev->open != NULL)
804 805 806 807 808 809 810 811 812 813 814
		rval = rdev->open(rdev);

	if (rval)
		rdev->users--;

	mutex_unlock(&rdev->lock);

	return rval;
}
EXPORT_SYMBOL_GPL(rc_open);

815
static int ir_open(struct input_dev *idev)
816
{
817
	struct rc_dev *rdev = input_get_drvdata(idev);
818

819 820 821 822 823 824 825 826
	return rc_open(rdev);
}

void rc_close(struct rc_dev *rdev)
{
	if (rdev) {
		mutex_lock(&rdev->lock);

827
		if (!--rdev->users && rdev->close != NULL)
828 829 830 831
			rdev->close(rdev);

		mutex_unlock(&rdev->lock);
	}
832
}
833
EXPORT_SYMBOL_GPL(rc_close);
834

835
static void ir_close(struct input_dev *idev)
836
{
837
	struct rc_dev *rdev = input_get_drvdata(idev);
838
	rc_close(rdev);
839 840
}

841
/* class for /sys/class/rc */
842
static char *rc_devnode(struct device *dev, umode_t *mode)
843 844 845 846
{
	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
}

847
static struct class rc_class = {
848
	.name		= "rc",
849
	.devnode	= rc_devnode,
850 851
};

852 853 854 855 856
/*
 * These are the protocol textual descriptions that are
 * used by the sysfs protocols file. Note that the order
 * of the entries is relevant.
 */
857
static const struct {
858
	u64	type;
859
	const char	*name;
860
	const char	*module_name;
861
} proto_names[] = {
862 863 864
	{ RC_BIT_NONE,		"none",		NULL			},
	{ RC_BIT_OTHER,		"other",	NULL			},
	{ RC_BIT_UNKNOWN,	"unknown",	NULL			},
865
	{ RC_BIT_RC5 |
866
	  RC_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
867 868 869
	{ RC_BIT_NEC |
	  RC_BIT_NECX |
	  RC_BIT_NEC32,		"nec",		"ir-nec-decoder"	},
870 871 872 873
	{ RC_BIT_RC6_0 |
	  RC_BIT_RC6_6A_20 |
	  RC_BIT_RC6_6A_24 |
	  RC_BIT_RC6_6A_32 |
874 875
	  RC_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
	{ RC_BIT_JVC,		"jvc",		"ir-jvc-decoder"	},
876 877
	{ RC_BIT_SONY12 |
	  RC_BIT_SONY15 |
878 879 880 881
	  RC_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
	{ RC_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
	{ RC_BIT_SANYO,		"sanyo",	"ir-sanyo-decoder"	},
	{ RC_BIT_SHARP,		"sharp",	"ir-sharp-decoder"	},
S
Sean Young 已提交
882 883
	{ RC_BIT_MCIR2_KBD |
	  RC_BIT_MCIR2_MSE,	"mce_kbd",	"ir-mce_kbd-decoder"	},
884
	{ RC_BIT_XMP,		"xmp",		"ir-xmp-decoder"	},
885
	{ RC_BIT_CEC,		"cec",		NULL			},
886 887 888
};

/**
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
 * struct rc_filter_attribute - Device attribute relating to a filter type.
 * @attr:	Device attribute.
 * @type:	Filter type.
 * @mask:	false for filter value, true for filter mask.
 */
struct rc_filter_attribute {
	struct device_attribute		attr;
	enum rc_filter_type		type;
	bool				mask;
};
#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)

#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
	struct rc_filter_attribute dev_attr_##_name = {			\
		.attr = __ATTR(_name, _mode, _show, _store),		\
		.type = (_type),					\
		.mask = (_mask),					\
	}

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
static bool lirc_is_present(void)
{
#if defined(CONFIG_LIRC_MODULE)
	struct module *lirc;

	mutex_lock(&module_mutex);
	lirc = find_module("lirc_dev");
	mutex_unlock(&module_mutex);

	return lirc ? true : false;
#elif defined(CONFIG_LIRC)
	return true;
#else
	return false;
#endif
}

925
/**
926
 * show_protocols() - shows the current IR protocol(s)
927
 * @device:	the device descriptor
928
 * @mattr:	the device attribute struct
929 930 931
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine for input read the IR protocol type(s).
932
 * it is trigged by reading /sys/class/rc/rc?/protocols.
933 934
 * It returns the protocol names of supported protocols.
 * Enabled protocols are printed in brackets.
935
 *
936 937
 * dev->lock is taken to guard against races between
 * store_protocols and show_protocols.
938
 */
939
static ssize_t show_protocols(struct device *device,
940 941
			      struct device_attribute *mattr, char *buf)
{
942
	struct rc_dev *dev = to_rc_dev(device);
943 944 945 946
	u64 allowed, enabled;
	char *tmp = buf;
	int i;

947 948
	mutex_lock(&dev->lock);

949 950 951 952
	enabled = dev->enabled_protocols;
	allowed = dev->allowed_protocols;
	if (dev->raw && !allowed)
		allowed = ir_raw_get_allowed_protocols();
953

954 955 956 957
	mutex_unlock(&dev->lock);

	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
		   __func__, (long long)allowed, (long long)enabled);
958 959 960 961 962 963

	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
		if (allowed & enabled & proto_names[i].type)
			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
		else if (allowed & proto_names[i].type)
			tmp += sprintf(tmp, "%s ", proto_names[i].name);
964 965 966

		if (allowed & proto_names[i].type)
			allowed &= ~proto_names[i].type;
967 968
	}

969
	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
970 971
		tmp += sprintf(tmp, "[lirc] ");

972 973 974
	if (tmp != buf)
		tmp--;
	*tmp = '\n';
975

976 977 978 979
	return tmp + 1 - buf;
}

/**
980 981 982
 * parse_protocol_change() - parses a protocol change request
 * @protocols:	pointer to the bitmask of current protocols
 * @buf:	pointer to the buffer with a list of changes
983
 *
984 985
 * Writing "+proto" will add a protocol to the protocol mask.
 * Writing "-proto" will remove a protocol from protocol mask.
986 987
 * Writing "proto" will enable only "proto".
 * Writing "none" will disable all protocols.
988
 * Returns the number of changes performed or a negative error code.
989
 */
990
static int parse_protocol_change(u64 *protocols, const char *buf)
991 992
{
	const char *tmp;
993 994
	unsigned count = 0;
	bool enable, disable;
995
	u64 mask;
996
	int i;
997

998
	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		if (!*tmp)
			break;

		if (*tmp == '+') {
			enable = true;
			disable = false;
			tmp++;
		} else if (*tmp == '-') {
			enable = false;
			disable = true;
			tmp++;
		} else {
			enable = false;
			disable = false;
		}

1015 1016 1017 1018
		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
			if (!strcasecmp(tmp, proto_names[i].name)) {
				mask = proto_names[i].type;
				break;
1019 1020 1021
			}
		}

1022
		if (i == ARRAY_SIZE(proto_names)) {
1023 1024 1025 1026 1027 1028
			if (!strcasecmp(tmp, "lirc"))
				mask = 0;
			else {
				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
				return -EINVAL;
			}
1029 1030 1031 1032
		}

		count++;

1033
		if (enable)
1034
			*protocols |= mask;
1035
		else if (disable)
1036
			*protocols &= ~mask;
1037
		else
1038
			*protocols = mask;
1039 1040 1041 1042
	}

	if (!count) {
		IR_dprintk(1, "Protocol not specified\n");
1043 1044 1045 1046 1047 1048
		return -EINVAL;
	}

	return count;
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
static void ir_raw_load_modules(u64 *protocols)
{
	u64 available;
	int i, ret;

	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
		if (proto_names[i].type == RC_BIT_NONE ||
		    proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
			continue;

		available = ir_raw_get_allowed_protocols();
		if (!(*protocols & proto_names[i].type & ~available))
			continue;

		if (!proto_names[i].module_name) {
			pr_err("Can't enable IR protocol %s\n",
			       proto_names[i].name);
			*protocols &= ~proto_names[i].type;
			continue;
		}

		ret = request_module("%s", proto_names[i].module_name);
		if (ret < 0) {
			pr_err("Couldn't load IR protocol module %s\n",
			       proto_names[i].module_name);
			*protocols &= ~proto_names[i].type;
			continue;
		}
		msleep(20);
		available = ir_raw_get_allowed_protocols();
		if (!(*protocols & proto_names[i].type & ~available))
			continue;

1082
		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1083 1084 1085 1086 1087 1088
		       proto_names[i].module_name,
		       proto_names[i].name);
		*protocols &= ~proto_names[i].type;
	}
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/**
 * store_protocols() - changes the current/wakeup IR protocol(s)
 * @device:	the device descriptor
 * @mattr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing the IR protocol type.
 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
 * See parse_protocol_change() for the valid commands.
 * Returns @len on success or a negative error code.
 *
1101 1102
 * dev->lock is taken to guard against races between
 * store_protocols and show_protocols.
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
 */
static ssize_t store_protocols(struct device *device,
			       struct device_attribute *mattr,
			       const char *buf, size_t len)
{
	struct rc_dev *dev = to_rc_dev(device);
	u64 *current_protocols;
	struct rc_scancode_filter *filter;
	u64 old_protocols, new_protocols;
	ssize_t rc;

1114 1115 1116
	IR_dprintk(1, "Normal protocol change requested\n");
	current_protocols = &dev->enabled_protocols;
	filter = &dev->scancode_filter;
1117

1118
	if (!dev->change_protocol) {
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
		IR_dprintk(1, "Protocol switching not supported\n");
		return -EINVAL;
	}

	mutex_lock(&dev->lock);

	old_protocols = *current_protocols;
	new_protocols = old_protocols;
	rc = parse_protocol_change(&new_protocols, buf);
	if (rc < 0)
		goto out;

1131
	rc = dev->change_protocol(dev, &new_protocols);
1132 1133 1134
	if (rc < 0) {
		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
			   (long long)new_protocols);
1135
		goto out;
1136 1137
	}

1138 1139 1140
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_load_modules(&new_protocols);

1141 1142 1143 1144
	if (new_protocols != old_protocols) {
		*current_protocols = new_protocols;
		IR_dprintk(1, "Protocols changed to 0x%llx\n",
			   (long long)new_protocols);
1145 1146
	}

1147
	/*
1148 1149 1150
	 * If a protocol change was attempted the filter may need updating, even
	 * if the actual protocol mask hasn't changed (since the driver may have
	 * cleared the filter).
1151 1152 1153
	 * Try setting the same filter with the new protocol (if any).
	 * Fall back to clearing the filter.
	 */
1154
	if (dev->s_filter && filter->mask) {
1155
		if (new_protocols)
1156
			rc = dev->s_filter(dev, filter);
1157 1158
		else
			rc = -1;
1159

1160 1161 1162
		if (rc < 0) {
			filter->data = 0;
			filter->mask = 0;
1163
			dev->s_filter(dev, filter);
1164
		}
1165 1166
	}

1167
	rc = len;
1168 1169 1170

out:
	mutex_unlock(&dev->lock);
1171
	return rc;
1172 1173
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
/**
 * show_filter() - shows the current scancode filter value or mask
 * @device:	the device descriptor
 * @attr:	the device attribute struct
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine to read a scancode filter value or mask.
 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
 * It prints the current scancode filter value or mask of the appropriate filter
 * type in hexadecimal into @buf and returns the size of the buffer.
 *
 * Bits of the filter value corresponding to set bits in the filter mask are
 * compared against input scancodes and non-matching scancodes are discarded.
 *
1188
 * dev->lock is taken to guard against races between
1189 1190 1191 1192 1193 1194 1195 1196
 * store_filter and show_filter.
 */
static ssize_t show_filter(struct device *device,
			   struct device_attribute *attr,
			   char *buf)
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1197
	struct rc_scancode_filter *filter;
1198 1199
	u32 val;

1200 1201
	mutex_lock(&dev->lock);

1202
	if (fattr->type == RC_FILTER_NORMAL)
1203
		filter = &dev->scancode_filter;
1204
	else
1205
		filter = &dev->scancode_wakeup_filter;
1206 1207 1208

	if (fattr->mask)
		val = filter->mask;
1209
	else
1210
		val = filter->data;
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	mutex_unlock(&dev->lock);

	return sprintf(buf, "%#x\n", val);
}

/**
 * store_filter() - changes the scancode filter value
 * @device:	the device descriptor
 * @attr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing a scancode filter value or mask.
 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
 * Returns -EINVAL if an invalid filter value for the current protocol was
 * specified or if scancode filtering is not supported by the driver, otherwise
 * returns @len.
 *
 * Bits of the filter value corresponding to set bits in the filter mask are
 * compared against input scancodes and non-matching scancodes are discarded.
 *
1232
 * dev->lock is taken to guard against races between
1233 1234 1235 1236
 * store_filter and show_filter.
 */
static ssize_t store_filter(struct device *device,
			    struct device_attribute *attr,
1237
			    const char *buf, size_t len)
1238 1239 1240
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1241
	struct rc_scancode_filter new_filter, *filter;
1242 1243
	int ret;
	unsigned long val;
1244
	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1245 1246 1247 1248 1249

	ret = kstrtoul(buf, 0, &val);
	if (ret < 0)
		return ret;

1250 1251
	if (fattr->type == RC_FILTER_NORMAL) {
		set_filter = dev->s_filter;
1252
		filter = &dev->scancode_filter;
1253 1254
	} else {
		set_filter = dev->s_wakeup_filter;
1255
		filter = &dev->scancode_wakeup_filter;
1256 1257
	}

1258 1259
	if (!set_filter)
		return -EINVAL;
1260 1261 1262

	mutex_lock(&dev->lock);

1263
	new_filter = *filter;
1264
	if (fattr->mask)
1265
		new_filter.mask = val;
1266
	else
1267
		new_filter.data = val;
1268

1269
	if (fattr->type == RC_FILTER_WAKEUP) {
S
Sean Young 已提交
1270 1271 1272 1273 1274
		/*
		 * Refuse to set a filter unless a protocol is enabled
		 * and the filter is valid for that protocol
		 */
		if (dev->wakeup_protocol != RC_TYPE_UNKNOWN)
1275
			ret = rc_validate_filter(dev, &new_filter);
S
Sean Young 已提交
1276
		else
1277
			ret = -EINVAL;
S
Sean Young 已提交
1278 1279

		if (ret != 0)
1280 1281 1282 1283 1284
			goto unlock;
	}

	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
	    val) {
1285 1286 1287 1288
		/* refuse to set a filter unless a protocol is enabled */
		ret = -EINVAL;
		goto unlock;
	}
1289

1290
	ret = set_filter(dev, &new_filter);
1291 1292
	if (ret < 0)
		goto unlock;
1293

1294
	*filter = new_filter;
1295 1296 1297

unlock:
	mutex_unlock(&dev->lock);
1298
	return (ret < 0) ? ret : len;
1299 1300
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/*
 * This is the list of all variants of all protocols, which is used by
 * the wakeup_protocols sysfs entry. In the protocols sysfs entry some
 * some protocols are grouped together (e.g. nec = nec + necx + nec32).
 *
 * For wakeup we need to know the exact protocol variant so the hardware
 * can be programmed exactly what to expect.
 */
static const char * const proto_variant_names[] = {
	[RC_TYPE_UNKNOWN] = "unknown",
	[RC_TYPE_OTHER] = "other",
	[RC_TYPE_RC5] = "rc-5",
	[RC_TYPE_RC5X_20] = "rc-5x-20",
	[RC_TYPE_RC5_SZ] = "rc-5-sz",
	[RC_TYPE_JVC] = "jvc",
	[RC_TYPE_SONY12] = "sony-12",
	[RC_TYPE_SONY15] = "sony-15",
	[RC_TYPE_SONY20] = "sony-20",
	[RC_TYPE_NEC] = "nec",
	[RC_TYPE_NECX] = "nec-x",
	[RC_TYPE_NEC32] = "nec-32",
	[RC_TYPE_SANYO] = "sanyo",
S
Sean Young 已提交
1323 1324
	[RC_TYPE_MCIR2_KBD] = "mcir2-kbd",
	[RC_TYPE_MCIR2_MSE] = "mcir2-mse",
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	[RC_TYPE_RC6_0] = "rc-6-0",
	[RC_TYPE_RC6_6A_20] = "rc-6-6a-20",
	[RC_TYPE_RC6_6A_24] = "rc-6-6a-24",
	[RC_TYPE_RC6_6A_32] = "rc-6-6a-32",
	[RC_TYPE_RC6_MCE] = "rc-6-mce",
	[RC_TYPE_SHARP] = "sharp",
	[RC_TYPE_XMP] = "xmp",
	[RC_TYPE_CEC] = "cec",
};

/**
 * show_wakeup_protocols() - shows the wakeup IR protocol
 * @device:	the device descriptor
 * @mattr:	the device attribute struct
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine for input read the IR protocol type(s).
 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
 * It returns the protocol names of supported protocols.
 * The enabled protocols are printed in brackets.
 *
1346 1347
 * dev->lock is taken to guard against races between
 * store_wakeup_protocols and show_wakeup_protocols.
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
 */
static ssize_t show_wakeup_protocols(struct device *device,
				     struct device_attribute *mattr,
				     char *buf)
{
	struct rc_dev *dev = to_rc_dev(device);
	u64 allowed;
	enum rc_type enabled;
	char *tmp = buf;
	int i;

	mutex_lock(&dev->lock);

	allowed = dev->allowed_wakeup_protocols;
	enabled = dev->wakeup_protocol;

	mutex_unlock(&dev->lock);

	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
		   __func__, (long long)allowed, enabled);

	for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
		if (allowed & (1ULL << i)) {
			if (i == enabled)
				tmp += sprintf(tmp, "[%s] ",
						proto_variant_names[i]);
			else
				tmp += sprintf(tmp, "%s ",
						proto_variant_names[i]);
		}
	}

	if (tmp != buf)
		tmp--;
	*tmp = '\n';

	return tmp + 1 - buf;
}

/**
 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
 * @device:	the device descriptor
 * @mattr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing the IR protocol type.
 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
 * Returns @len on success or a negative error code.
 *
1398 1399
 * dev->lock is taken to guard against races between
 * store_wakeup_protocols and show_wakeup_protocols.
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
 */
static ssize_t store_wakeup_protocols(struct device *device,
				      struct device_attribute *mattr,
				      const char *buf, size_t len)
{
	struct rc_dev *dev = to_rc_dev(device);
	enum rc_type protocol;
	ssize_t rc;
	u64 allowed;
	int i;

	mutex_lock(&dev->lock);

	allowed = dev->allowed_wakeup_protocols;

	if (sysfs_streq(buf, "none")) {
		protocol = RC_TYPE_UNKNOWN;
	} else {
		for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
			if ((allowed & (1ULL << i)) &&
			    sysfs_streq(buf, proto_variant_names[i])) {
				protocol = i;
				break;
			}
		}

		if (i == ARRAY_SIZE(proto_variant_names)) {
			rc = -EINVAL;
			goto out;
		}
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

		if (dev->encode_wakeup) {
			u64 mask = 1ULL << protocol;

			ir_raw_load_modules(&mask);
			if (!mask) {
				rc = -EINVAL;
				goto out;
			}
		}
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	}

	if (dev->wakeup_protocol != protocol) {
		dev->wakeup_protocol = protocol;
		IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);

		if (protocol == RC_TYPE_RC6_MCE)
			dev->scancode_wakeup_filter.data = 0x800f0000;
		else
			dev->scancode_wakeup_filter.data = 0;
		dev->scancode_wakeup_filter.mask = 0;

		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
		if (rc == 0)
			rc = len;
	} else {
		rc = len;
	}

out:
	mutex_unlock(&dev->lock);
	return rc;
}

1464 1465
static void rc_dev_release(struct device *device)
{
1466 1467 1468
	struct rc_dev *dev = to_rc_dev(device);

	kfree(dev);
1469 1470
}

1471 1472 1473 1474 1475 1476 1477 1478 1479
#define ADD_HOTPLUG_VAR(fmt, val...)					\
	do {								\
		int err = add_uevent_var(env, fmt, val);		\
		if (err)						\
			return err;					\
	} while (0)

static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
{
1480
	struct rc_dev *dev = to_rc_dev(device);
1481

1482 1483
	if (dev->rc_map.name)
		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1484 1485
	if (dev->driver_name)
		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1486 1487 1488 1489 1490 1491 1492

	return 0;
}

/*
 * Static device attribute struct with the sysfs attributes for IR's
 */
1493 1494 1495
static DEVICE_ATTR(protocols, 0644, show_protocols, store_protocols);
static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
		   store_wakeup_protocols);
1496 1497 1498 1499 1500 1501 1502 1503
static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_NORMAL, false);
static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_NORMAL, true);
static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1504

1505
static struct attribute *rc_dev_protocol_attrs[] = {
1506
	&dev_attr_protocols.attr,
1507 1508 1509 1510 1511 1512 1513 1514
	NULL,
};

static struct attribute_group rc_dev_protocol_attr_grp = {
	.attrs	= rc_dev_protocol_attrs,
};

static struct attribute *rc_dev_filter_attrs[] = {
1515 1516
	&dev_attr_filter.attr.attr,
	&dev_attr_filter_mask.attr.attr,
1517 1518 1519
	NULL,
};

1520 1521
static struct attribute_group rc_dev_filter_attr_grp = {
	.attrs	= rc_dev_filter_attrs,
1522 1523
};

1524 1525 1526
static struct attribute *rc_dev_wakeup_filter_attrs[] = {
	&dev_attr_wakeup_filter.attr.attr,
	&dev_attr_wakeup_filter_mask.attr.attr,
1527
	&dev_attr_wakeup_protocols.attr,
1528 1529 1530 1531 1532
	NULL,
};

static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
	.attrs	= rc_dev_wakeup_filter_attrs,
1533 1534 1535
};

static struct device_type rc_dev_type = {
1536
	.release	= rc_dev_release,
1537 1538 1539
	.uevent		= rc_dev_uevent,
};

1540
struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1541
{
1542
	struct rc_dev *dev;
1543

1544 1545 1546 1547
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return NULL;

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	if (type != RC_DRIVER_IR_RAW_TX) {
		dev->input_dev = input_allocate_device();
		if (!dev->input_dev) {
			kfree(dev);
			return NULL;
		}

		dev->input_dev->getkeycode = ir_getkeycode;
		dev->input_dev->setkeycode = ir_setkeycode;
		input_set_drvdata(dev->input_dev, dev);
1558

1559 1560
		setup_timer(&dev->timer_keyup, ir_timer_keyup,
			    (unsigned long)dev);
1561

1562 1563 1564
		spin_lock_init(&dev->rc_map.lock);
		spin_lock_init(&dev->keylock);
	}
1565
	mutex_init(&dev->lock);
1566

1567
	dev->dev.type = &rc_dev_type;
1568
	dev->dev.class = &rc_class;
1569 1570
	device_initialize(&dev->dev);

1571 1572
	dev->driver_type = type;

1573 1574 1575 1576 1577 1578
	__module_get(THIS_MODULE);
	return dev;
}
EXPORT_SYMBOL_GPL(rc_allocate_device);

void rc_free_device(struct rc_dev *dev)
1579
{
1580 1581 1582
	if (!dev)
		return;

1583
	input_free_device(dev->input_dev);
1584 1585 1586

	put_device(&dev->dev);

1587 1588 1589
	/* kfree(dev) will be called by the callback function
	   rc_dev_release() */

1590
	module_put(THIS_MODULE);
1591 1592 1593
}
EXPORT_SYMBOL_GPL(rc_free_device);

1594 1595 1596 1597 1598
static void devm_rc_alloc_release(struct device *dev, void *res)
{
	rc_free_device(*(struct rc_dev **)res);
}

1599 1600
struct rc_dev *devm_rc_allocate_device(struct device *dev,
				       enum rc_driver_type type)
1601 1602 1603 1604 1605 1606 1607
{
	struct rc_dev **dr, *rc;

	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
	if (!dr)
		return NULL;

1608
	rc = rc_allocate_device(type);
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	if (!rc) {
		devres_free(dr);
		return NULL;
	}

	rc->dev.parent = dev;
	rc->managed_alloc = true;
	*dr = rc;
	devres_add(dev, dr);

	return rc;
}
EXPORT_SYMBOL_GPL(devm_rc_allocate_device);

1623
static int rc_prepare_rx_device(struct rc_dev *dev)
1624
{
1625
	int rc;
1626
	struct rc_map *rc_map;
1627
	u64 rc_type;
1628

1629
	if (!dev->map_name)
1630
		return -EINVAL;
1631

1632
	rc_map = rc_map_get(dev->map_name);
1633
	if (!rc_map)
1634
		rc_map = rc_map_get(RC_MAP_EMPTY);
1635
	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1636 1637
		return -EINVAL;

1638 1639 1640 1641
	rc = ir_setkeytable(dev, rc_map);
	if (rc)
		return rc;

1642
	rc_type = BIT_ULL(rc_map->rc_type);
1643

1644
	if (dev->change_protocol) {
1645 1646 1647 1648 1649 1650
		rc = dev->change_protocol(dev, &rc_type);
		if (rc < 0)
			goto out_table;
		dev->enabled_protocols = rc_type;
	}

1651 1652 1653
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_load_modules(&rc_type);

1654 1655 1656 1657 1658 1659 1660 1661 1662
	set_bit(EV_KEY, dev->input_dev->evbit);
	set_bit(EV_REP, dev->input_dev->evbit);
	set_bit(EV_MSC, dev->input_dev->evbit);
	set_bit(MSC_SCAN, dev->input_dev->mscbit);
	if (dev->open)
		dev->input_dev->open = ir_open;
	if (dev->close)
		dev->input_dev->close = ir_close;

1663 1664 1665 1666 1667
	dev->input_dev->dev.parent = &dev->dev;
	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
	dev->input_dev->phys = dev->input_phys;
	dev->input_dev->name = dev->input_name;

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	return 0;

out_table:
	ir_free_table(&dev->rc_map);

	return rc;
}

static int rc_setup_rx_device(struct rc_dev *dev)
{
	int rc;

1680 1681 1682
	/* rc_open will be called here */
	rc = input_register_device(dev->input_dev);
	if (rc)
1683
		return rc;
1684

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	/*
	 * Default delay of 250ms is too short for some protocols, especially
	 * since the timeout is currently set to 250ms. Increase it to 500ms,
	 * to avoid wrong repetition of the keycodes. Note that this must be
	 * set after the call to input_register_device().
	 */
	dev->input_dev->rep[REP_DELAY] = 500;

	/*
	 * As a repeat event on protocols like RC-5 and NEC take as long as
	 * 110/114ms, using 33ms as a repeat period is not the right thing
	 * to do.
	 */
	dev->input_dev->rep[REP_PERIOD] = 125;

	return 0;
}

static void rc_free_rx_device(struct rc_dev *dev)
{
1705
	if (!dev)
1706 1707
		return;

1708 1709 1710 1711
	if (dev->input_dev) {
		input_unregister_device(dev->input_dev);
		dev->input_dev = NULL;
	}
1712

1713
	ir_free_table(&dev->rc_map);
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
}

int rc_register_device(struct rc_dev *dev)
{
	const char *path;
	int attr = 0;
	int minor;
	int rc;

	if (!dev)
		return -EINVAL;

1726 1727 1728 1729 1730 1731 1732
	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
	if (minor < 0)
		return minor;

	dev->minor = minor;
	dev_set_name(&dev->dev, "rc%u", dev->minor);
	dev_set_drvdata(&dev->dev, dev);
1733

1734
	dev->dev.groups = dev->sysfs_groups;
1735 1736
	if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
		dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1737
	if (dev->s_filter)
1738
		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1739 1740 1741 1742
	if (dev->s_wakeup_filter)
		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
	dev->sysfs_groups[attr++] = NULL;

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	if (dev->driver_type == RC_DRIVER_IR_RAW ||
	    dev->driver_type == RC_DRIVER_IR_RAW_TX) {
		rc = ir_raw_event_prepare(dev);
		if (rc < 0)
			goto out_minor;
	}

	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
		rc = rc_prepare_rx_device(dev);
		if (rc)
			goto out_raw;
	}

1756 1757
	rc = device_add(&dev->dev);
	if (rc)
1758
		goto out_rx_free;
1759

1760
	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1761 1762
	dev_info(&dev->dev, "%s as %s\n",
		dev->input_name ?: "Unspecified device", path ?: "N/A");
1763 1764
	kfree(path);

1765 1766 1767 1768 1769 1770
	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
		rc = rc_setup_rx_device(dev);
		if (rc)
			goto out_dev;
	}

1771 1772
	if (dev->driver_type == RC_DRIVER_IR_RAW ||
	    dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1773 1774
		rc = ir_raw_event_register(dev);
		if (rc < 0)
1775
			goto out_rx;
1776 1777
	}

1778
	IR_dprintk(1, "Registered rc%u (driver: %s)\n",
1779
		   dev->minor,
1780
		   dev->driver_name ? dev->driver_name : "unknown");
1781

1782
	return 0;
1783

1784 1785
out_rx:
	rc_free_rx_device(dev);
1786 1787
out_dev:
	device_del(&dev->dev);
1788 1789 1790 1791 1792
out_rx_free:
	ir_free_table(&dev->rc_map);
out_raw:
	ir_raw_event_free(dev);
out_minor:
1793
	ida_simple_remove(&rc_ida, minor);
1794
	return rc;
1795
}
1796
EXPORT_SYMBOL_GPL(rc_register_device);
1797

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
static void devm_rc_release(struct device *dev, void *res)
{
	rc_unregister_device(*(struct rc_dev **)res);
}

int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
{
	struct rc_dev **dr;
	int ret;

	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
	if (!dr)
		return -ENOMEM;

	ret = rc_register_device(dev);
	if (ret) {
		devres_free(dr);
		return ret;
	}

	*dr = dev;
	devres_add(parent, dr);

	return 0;
}
EXPORT_SYMBOL_GPL(devm_rc_register_device);

1825
void rc_unregister_device(struct rc_dev *dev)
1826
{
1827 1828
	if (!dev)
		return;
1829

1830
	del_timer_sync(&dev->timer_keyup);
1831

1832 1833 1834
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);

1835
	rc_free_rx_device(dev);
1836

1837
	device_del(&dev->dev);
1838

1839 1840
	ida_simple_remove(&rc_ida, dev->minor);

1841 1842
	if (!dev->managed_alloc)
		rc_free_device(dev);
1843
}
1844

1845
EXPORT_SYMBOL_GPL(rc_unregister_device);
1846 1847 1848 1849 1850

/*
 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
 */

1851
static int __init rc_core_init(void)
1852
{
1853
	int rc = class_register(&rc_class);
1854
	if (rc) {
1855
		pr_err("rc_core: unable to register rc class\n");
1856 1857 1858
		return rc;
	}

1859
	led_trigger_register_simple("rc-feedback", &led_feedback);
1860
	rc_map_register(&empty_map);
1861 1862 1863 1864

	return 0;
}

1865
static void __exit rc_core_exit(void)
1866
{
1867
	class_unregister(&rc_class);
1868
	led_trigger_unregister_simple(led_feedback);
1869
	rc_map_unregister(&empty_map);
1870 1871
}

1872
subsys_initcall(rc_core_init);
1873
module_exit(rc_core_exit);
1874

1875 1876 1877
int rc_core_debug;    /* ir_debug level (0,1,2) */
EXPORT_SYMBOL_GPL(rc_core_debug);
module_param_named(debug, rc_core_debug, int, 0644);
1878

1879
MODULE_AUTHOR("Mauro Carvalho Chehab");
1880
MODULE_LICENSE("GPL");