fw-sbp2.c 39.6 KB
Newer Older
1 2
/*
 * SBP2 driver (SCSI over IEEE1394)
3
 *
4
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21 22
/*
 * The basic structure of this driver is based on the old storage driver,
23 24 25 26 27 28 29 30
 * drivers/ieee1394/sbp2.c, originally written by
 *     James Goodwin <jamesg@filanet.com>
 * with later contributions and ongoing maintenance from
 *     Ben Collins <bcollins@debian.org>,
 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
 * and many others.
 */

31 32
#include <linux/kernel.h>
#include <linux/module.h>
33
#include <linux/moduleparam.h>
S
Stefan Richter 已提交
34
#include <linux/mod_devicetable.h>
35
#include <linux/delay.h>
36
#include <linux/device.h>
A
Andrew Morton 已提交
37
#include <linux/scatterlist.h>
38
#include <linux/dma-mapping.h>
39
#include <linux/blkdev.h>
40
#include <linux/string.h>
41
#include <linux/stringify.h>
42
#include <linux/timer.h>
43
#include <linux/workqueue.h>
44
#include <asm/system.h>
45 46 47 48 49 50 51 52 53 54

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"

55 56 57 58 59 60 61 62 63 64 65 66
/*
 * So far only bridges from Oxford Semiconductor are known to support
 * concurrent logins. Depending on firmware, four or two concurrent logins
 * are possible on OXFW911 and newer Oxsemi bridges.
 *
 * Concurrent logins are useful together with cluster filesystems.
 */
static int sbp2_param_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
		 "(default = Y, use N for concurrent initiators)");

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/*
 * Flags for firmware oddities
 *
 * - 128kB max transfer
 *   Limit transfer size. Necessary for some old bridges.
 *
 * - 36 byte inquiry
 *   When scsi_mod probes the device, let the inquiry command look like that
 *   from MS Windows.
 *
 * - skip mode page 8
 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
 *
 * - fix capacity
 *   Tell sd_mod to correct the last sector number reported by read_capacity.
 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
 *   Don't use this with devices which don't have this bug.
 *
86 87 88
 * - delay inquiry
 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
 *
89 90 91 92 93 94 95 96 97
 * - override internal blacklist
 *   Instead of adding to the built-in blacklist, use only the workarounds
 *   specified in the module load parameter.
 *   Useful if a blacklist entry interfered with a non-broken device.
 */
#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
#define SBP2_WORKAROUND_INQUIRY_36	0x2
#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
98 99
#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
#define SBP2_INQUIRY_DELAY		12
100 101 102 103 104 105 106 107 108
#define SBP2_WORKAROUND_OVERRIDE	0x100

static int sbp2_param_workarounds;
module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109
	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110 111 112
	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
	", or a combination)");

113
/* I don't know why the SCSI stack doesn't define something like this... */
114
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
115 116 117

static const char sbp2_driver_name[] = "sbp2";

118 119 120 121 122 123 124 125
/*
 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 * and one struct scsi_device per sbp2_logical_unit.
 */
struct sbp2_logical_unit {
	struct sbp2_target *tgt;
	struct list_head link;
	struct scsi_device *sdev;
126 127
	struct fw_address_handler address_handler;
	struct list_head orb_list;
128

129
	u64 command_block_agent_address;
130
	u16 lun;
131 132
	int login_id;

133
	/*
134 135 136 137
	 * The generation is updated once we've logged in or reconnected
	 * to the logical unit.  Thus, I/O to the device will automatically
	 * fail and get retried if it happens in a window where the device
	 * is not ready, e.g. after a bus reset but before we reconnect.
138
	 */
139
	int generation;
140 141
	int retries;
	struct delayed_work work;
142 143
};

144 145 146 147 148 149 150
/*
 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 * and one struct Scsi_Host per sbp2_target.
 */
struct sbp2_target {
	struct kref kref;
	struct fw_unit *unit;
151
	struct list_head lu_list;
152 153 154 155 156

	u64 management_agent_address;
	int directory_id;
	int node_id;
	int address_high;
157
	unsigned int workarounds;
158
	unsigned int mgt_orb_timeout;
159 160
};

161 162
/*
 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
163 164
 * provided in the config rom. Most devices do provide a value, which
 * we'll use for login management orbs, but with some sane limits.
165
 */
166 167
#define SBP2_MIN_LOGIN_ORB_TIMEOUT	5000U	/* Timeout in ms */
#define SBP2_MAX_LOGIN_ORB_TIMEOUT	40000U	/* Timeout in ms */
168
#define SBP2_ORB_TIMEOUT		2000U	/* Timeout in ms */
169
#define SBP2_ORB_NULL			0x80000000
170
#define SBP2_MAX_SG_ELEMENT_LENGTH	0xf000
171 172 173 174 175

#define SBP2_DIRECTION_TO_MEDIA		0x0
#define SBP2_DIRECTION_FROM_MEDIA	0x1

/* Unit directory keys */
176
#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
177 178 179
#define SBP2_CSR_FIRMWARE_REVISION	0x3c
#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST		0x0
#define SBP2_QUERY_LOGINS_REQUEST	0x1
#define SBP2_RECONNECT_REQUEST		0x3
#define SBP2_SET_PASSWORD_REQUEST	0x4
#define SBP2_LOGOUT_REQUEST		0x7
#define SBP2_ABORT_TASK_REQUEST		0xb
#define SBP2_ABORT_TASK_SET		0xc
#define SBP2_LOGICAL_UNIT_RESET		0xe
#define SBP2_TARGET_RESET_REQUEST	0xf

/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE		0x00
#define SBP2_AGENT_RESET		0x04
#define SBP2_ORB_POINTER		0x08
#define SBP2_DOORBELL			0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14

/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE	0x0
#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
#define SBP2_STATUS_VENDOR_DEPENDENT	0x3

205 206 207 208 209 210 211 212
#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
#define STATUS_GET_DATA(v)		((v).data)
213 214 215 216 217 218 219 220 221 222 223 224 225 226

struct sbp2_status {
	u32 status;
	u32 orb_low;
	u8 data[24];
};

struct sbp2_pointer {
	u32 high;
	u32 low;
};

struct sbp2_orb {
	struct fw_transaction t;
227
	struct kref kref;
228 229 230
	dma_addr_t request_bus;
	int rcode;
	struct sbp2_pointer pointer;
231
	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
232 233 234
	struct list_head link;
};

235 236 237
#define MANAGEMENT_ORB_LUN(v)			((v))
#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
238
#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
239 240
#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
241

242 243
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

struct sbp2_management_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer password;
		struct sbp2_pointer response;
		u32 misc;
		u32 length;
		struct sbp2_pointer status_fifo;
	} request;
	__be32 response[4];
	dma_addr_t response_bus;
	struct completion done;
	struct sbp2_status status;
};

260 261
#define LOGIN_RESPONSE_GET_LOGIN_ID(v)	((v).misc & 0xffff)
#define LOGIN_RESPONSE_GET_LENGTH(v)	(((v).misc >> 16) & 0xffff)
262 263 264 265 266 267

struct sbp2_login_response {
	u32 misc;
	struct sbp2_pointer command_block_agent;
	u32 reconnect_hold;
};
268 269 270 271 272 273 274 275
#define COMMAND_ORB_DATA_SIZE(v)	((v))
#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
#define COMMAND_ORB_SPEED(v)		((v) << 24)
#define COMMAND_ORB_DIRECTION(v)	((v) << 27)
#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define COMMAND_ORB_NOTIFY		((1) << 31)
276 277 278 279 280 281 282 283 284 285 286

struct sbp2_command_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer next;
		struct sbp2_pointer data_descriptor;
		u32 misc;
		u8 command_block[12];
	} request;
	struct scsi_cmnd *cmd;
	scsi_done_fn_t done;
287
	struct sbp2_logical_unit *lu;
288

289
	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	dma_addr_t page_table_bus;
};

/*
 * List of devices with known bugs.
 *
 * The firmware_revision field, masked with 0xffff00, is the best
 * indicator for the type of bridge chip of a device.  It yields a few
 * false positives but this did not break correctly behaving devices
 * so far.  We use ~0 as a wildcard, since the 24 bit values we get
 * from the config rom can never match that.
 */
static const struct {
	u32 firmware_revision;
	u32 model;
305
	unsigned int workarounds;
306 307 308 309 310 311 312
} sbp2_workarounds_table[] = {
	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x001010,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
					  SBP2_WORKAROUND_MODE_SENSE_8,
	},
313 314 315 316 317
	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x000000,
		.workarounds		= SBP2_WORKAROUND_DELAY_INQUIRY,
	},
318 319 320 321 322 323 324 325 326 327
	/* Initio bridges, actually only needed for some older ones */ {
		.firmware_revision	= 0x000200,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
	},
	/* Symbios bridge */ {
		.firmware_revision	= 0xa0b800,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
328 329 330

	/*
	 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
331 332
	 * these iPods do not feature the read_capacity bug according
	 * to one report.  Read_capacity behaviour as well as model_id
333 334 335
	 * could change due to Apple-supplied firmware updates though.
	 */

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
	/* iPod 4th generation. */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000021,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000023,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod Photo */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x00007e,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	}
};

353 354 355 356 357 358 359 360
static void
free_orb(struct kref *kref)
{
	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);

	kfree(orb);
}

361 362 363 364 365 366 367
static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
		  int tcode, int destination, int source,
		  int generation, int speed,
		  unsigned long long offset,
		  void *payload, size_t length, void *callback_data)
{
368
	struct sbp2_logical_unit *lu = callback_data;
369 370 371 372 373 374
	struct sbp2_orb *orb;
	struct sbp2_status status;
	size_t header_size;
	unsigned long flags;

	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
375
	    length == 0 || length > sizeof(status)) {
376 377 378 379 380 381 382 383
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	header_size = min(length, 2 * sizeof(u32));
	fw_memcpy_from_be32(&status, payload, header_size);
	if (length > header_size)
		memcpy(status.data, payload + 8, length - header_size);
384
	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
385 386 387 388 389 390 391
		fw_notify("non-orb related status write, not handled\n");
		fw_send_response(card, request, RCODE_COMPLETE);
		return;
	}

	/* Lookup the orb corresponding to this status write. */
	spin_lock_irqsave(&card->lock, flags);
392
	list_for_each_entry(orb, &lu->orb_list, link) {
393
		if (STATUS_GET_ORB_HIGH(status) == 0 &&
394 395
		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
			orb->rcode = RCODE_COMPLETE;
396 397 398 399 400 401
			list_del(&orb->link);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

402
	if (&orb->link != &lu->orb_list)
403 404 405 406
		orb->callback(orb, &status);
	else
		fw_error("status write for unknown orb\n");

407 408
	kref_put(&orb->kref, free_orb);

409 410 411 412 413 414 415 416 417 418
	fw_send_response(card, request, RCODE_COMPLETE);
}

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct sbp2_orb *orb = data;
	unsigned long flags;

419 420 421 422 423 424 425 426 427 428 429 430 431 432
	/*
	 * This is a little tricky.  We can get the status write for
	 * the orb before we get this callback.  The status write
	 * handler above will assume the orb pointer transaction was
	 * successful and set the rcode to RCODE_COMPLETE for the orb.
	 * So this callback only sets the rcode if it hasn't already
	 * been set and only does the cleanup if the transaction
	 * failed and we didn't already get a status write.
	 */
	spin_lock_irqsave(&card->lock, flags);

	if (orb->rcode == -1)
		orb->rcode = rcode;
	if (orb->rcode != RCODE_COMPLETE) {
433
		list_del(&orb->link);
434
		spin_unlock_irqrestore(&card->lock, flags);
435
		orb->callback(orb, NULL);
436 437
	} else {
		spin_unlock_irqrestore(&card->lock, flags);
438
	}
439 440

	kref_put(&orb->kref, free_orb);
441 442 443
}

static void
444
sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
445 446
	      int node_id, int generation, u64 offset)
{
447
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
448 449 450 451
	unsigned long flags;

	orb->pointer.high = 0;
	orb->pointer.low = orb->request_bus;
452
	fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
453 454

	spin_lock_irqsave(&device->card->lock, flags);
455
	list_add_tail(&orb->link, &lu->orb_list);
456 457
	spin_unlock_irqrestore(&device->card->lock, flags);

458 459 460 461
	/* Take a ref for the orb list and for the transaction callback. */
	kref_get(&orb->kref);
	kref_get(&orb->kref);

462
	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
463
			node_id, generation, device->max_speed, offset,
464
			&orb->pointer, sizeof(orb->pointer),
465 466 467
			complete_transaction, orb);
}

468
static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
469
{
470
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
471 472 473
	struct sbp2_orb *orb, *next;
	struct list_head list;
	unsigned long flags;
474
	int retval = -ENOENT;
475 476 477

	INIT_LIST_HEAD(&list);
	spin_lock_irqsave(&device->card->lock, flags);
478
	list_splice_init(&lu->orb_list, &list);
479 480 481
	spin_unlock_irqrestore(&device->card->lock, flags);

	list_for_each_entry_safe(orb, next, &list, link) {
482
		retval = 0;
483 484 485
		if (fw_cancel_transaction(device->card, &orb->t) == 0)
			continue;

486 487 488 489
		orb->rcode = RCODE_CANCELLED;
		orb->callback(orb, NULL);
	}

490
	return retval;
491 492
}

493 494 495 496
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
	struct sbp2_management_orb *orb =
497
		container_of(base_orb, struct sbp2_management_orb, base);
498 499

	if (status)
500
		memcpy(&orb->status, status, sizeof(*status));
501 502 503 504
	complete(&orb->done);
}

static int
505 506 507
sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
			 int generation, int function, int lun_or_login_id,
			 void *response)
508
{
509
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
510
	struct sbp2_management_orb *orb;
511
	unsigned int timeout;
512 513
	int retval = -ENOMEM;

514 515 516
	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
		return 0;

517
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
518 519 520
	if (orb == NULL)
		return -ENOMEM;

521
	kref_init(&orb->base.kref);
522 523
	orb->response_bus =
		dma_map_single(device->card->device, &orb->response,
524
			       sizeof(orb->response), DMA_FROM_DEVICE);
525
	if (dma_mapping_error(orb->response_bus))
526
		goto fail_mapping_response;
527 528 529 530 531

	orb->request.response.high    = 0;
	orb->request.response.low     = orb->response_bus;

	orb->request.misc =
532 533
		MANAGEMENT_ORB_NOTIFY |
		MANAGEMENT_ORB_FUNCTION(function) |
534
		MANAGEMENT_ORB_LUN(lun_or_login_id);
535
	orb->request.length =
536
		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
537

538 539
	orb->request.status_fifo.high = lu->address_handler.offset >> 32;
	orb->request.status_fifo.low  = lu->address_handler.offset;
540 541

	if (function == SBP2_LOGIN_REQUEST) {
542
		/* Ask for 2^2 == 4 seconds reconnect grace period */
543
		orb->request.misc |=
544 545
			MANAGEMENT_ORB_RECONNECT(2) |
			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
546
		timeout = lu->tgt->mgt_orb_timeout;
547 548
	} else {
		timeout = SBP2_ORB_TIMEOUT;
549 550
	}

551
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
552 553 554

	init_completion(&orb->done);
	orb->base.callback = complete_management_orb;
555

556 557 558 559 560 561
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
		goto fail_mapping_request;

562 563
	sbp2_send_orb(&orb->base, lu, node_id, generation,
		      lu->tgt->management_agent_address);
564

565
	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
566 567

	retval = -EIO;
568
	if (sbp2_cancel_orbs(lu) == 0) {
569
		fw_error("orb reply timed out, rcode=0x%02x\n",
570 571 572 573
			 orb->base.rcode);
		goto out;
	}

574 575
	if (orb->base.rcode != RCODE_COMPLETE) {
		fw_error("management write failed, rcode 0x%02x\n",
576 577 578 579
			 orb->base.rcode);
		goto out;
	}

580 581
	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
582
		fw_error("error status: %d:%d\n",
583 584
			 STATUS_GET_RESPONSE(orb->status),
			 STATUS_GET_SBP_STATUS(orb->status));
585 586 587 588 589 590
		goto out;
	}

	retval = 0;
 out:
	dma_unmap_single(device->card->device, orb->base.request_bus,
591
			 sizeof(orb->request), DMA_TO_DEVICE);
592
 fail_mapping_request:
593
	dma_unmap_single(device->card->device, orb->response_bus,
594
			 sizeof(orb->response), DMA_FROM_DEVICE);
595
 fail_mapping_response:
596 597
	if (response)
		fw_memcpy_from_be32(response,
598
				    orb->response, sizeof(orb->response));
599
	kref_put(&orb->base.kref, free_orb);
600 601 602 603 604 605 606 607 608 609 610 611 612

	return retval;
}

static void
complete_agent_reset_write(struct fw_card *card, int rcode,
			   void *payload, size_t length, void *data)
{
	struct fw_transaction *t = data;

	kfree(t);
}

613
static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
614
{
615
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
616 617 618
	struct fw_transaction *t;
	static u32 zero;

619
	t = kzalloc(sizeof(*t), GFP_ATOMIC);
620 621 622 623
	if (t == NULL)
		return -ENOMEM;

	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
624 625
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
626
			&zero, sizeof(zero), complete_agent_reset_write, t);
627 628 629 630

	return 0;
}

631
static void sbp2_release_target(struct kref *kref)
632
{
633 634 635 636 637 638 639 640 641
	struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
	struct sbp2_logical_unit *lu, *next;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);

	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
		if (lu->sdev)
			scsi_remove_device(lu->sdev);

642 643
		sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
644

645 646 647 648 649 650 651 652 653
		fw_core_remove_address_handler(&lu->address_handler);
		list_del(&lu->link);
		kfree(lu);
	}
	scsi_remove_host(shost);
	fw_notify("released %s\n", tgt->unit->device.bus_id);

	put_device(&tgt->unit->device);
	scsi_host_put(shost);
654 655
}

656 657
static struct workqueue_struct *sbp2_wq;

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/*
 * Always get the target's kref when scheduling work on one its units.
 * Each workqueue job is responsible to call sbp2_target_put() upon return.
 */
static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
{
	if (queue_delayed_work(sbp2_wq, &lu->work, delay))
		kref_get(&lu->tgt->kref);
}

static void sbp2_target_put(struct sbp2_target *tgt)
{
	kref_put(&tgt->kref, sbp2_release_target);
}

673 674
static void sbp2_reconnect(struct work_struct *work);

675 676
static void sbp2_login(struct work_struct *work)
{
677 678 679 680 681 682 683
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
	struct Scsi_Host *shost =
		container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
	struct scsi_device *sdev;
	struct scsi_lun eight_bytes_lun;
	struct fw_unit *unit = lu->tgt->unit;
684 685
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_login_response response;
686
	int generation, node_id, local_node_id;
687

688 689 690
	if (fw_device_is_shutdown(device))
		goto out;

691
	generation    = device->generation;
692
	smp_rmb();    /* node_id must not be older than generation */
693 694
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
695

696 697
	if (sbp2_send_management_orb(lu, node_id, generation,
				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
698 699 700
		if (lu->retries++ < 5)
			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
		else
701 702
			fw_error("failed to login to %s LUN %04x\n",
				 unit->device.bus_id, lu->lun);
703
		goto out;
704 705
	}

706 707 708
	lu->generation        = generation;
	lu->tgt->node_id      = node_id;
	lu->tgt->address_high = local_node_id << 16;
709 710

	/* Get command block agent offset and login id. */
711
	lu->command_block_agent_address =
712
		((u64) (response.command_block_agent.high & 0xffff) << 32) |
713
		response.command_block_agent.low;
714
	lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
715

716 717
	fw_notify("logged in to %s LUN %04x (%d retries)\n",
		  unit->device.bus_id, lu->lun, lu->retries);
718 719 720 721 722 723

#if 0
	/* FIXME: The linux1394 sbp2 does this last step. */
	sbp2_set_busy_timeout(scsi_id);
#endif

724 725 726
	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
	sbp2_agent_reset(lu);

727 728 729
	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
		ssleep(SBP2_INQUIRY_DELAY);

730 731 732
	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
	eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
	eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
733

734 735 736
	sdev = __scsi_add_device(shost, 0, 0,
				 scsilun_to_int(&eight_bytes_lun), lu);
	if (IS_ERR(sdev)) {
737 738 739 740 741
		smp_rmb(); /* generation may have changed */
		generation = device->generation;
		smp_rmb(); /* node_id must not be older than generation */

		sbp2_send_management_orb(lu, device->node_id, generation,
742
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
743 744 745 746
		/*
		 * Set this back to sbp2_login so we fall back and
		 * retry login on bus reset.
		 */
747 748 749 750
		PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
	} else {
		lu->sdev = sdev;
		scsi_device_put(sdev);
751
	}
752 753
 out:
	sbp2_target_put(lu->tgt);
754
}
755

756
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
757
{
758
	struct sbp2_logical_unit *lu;
759

760 761 762
	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
	if (!lu)
		return -ENOMEM;
763

764 765 766
	lu->address_handler.length           = 0x100;
	lu->address_handler.address_callback = sbp2_status_write;
	lu->address_handler.callback_data    = lu;
767

768 769 770 771 772
	if (fw_core_add_address_handler(&lu->address_handler,
					&fw_high_memory_region) < 0) {
		kfree(lu);
		return -ENOMEM;
	}
773

774 775 776 777 778 779
	lu->tgt  = tgt;
	lu->sdev = NULL;
	lu->lun  = lun_entry & 0xffff;
	lu->retries = 0;
	INIT_LIST_HEAD(&lu->orb_list);
	INIT_DELAYED_WORK(&lu->work, sbp2_login);
780

781 782 783
	list_add_tail(&lu->link, &tgt->lu_list);
	return 0;
}
784

785 786 787 788
static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
{
	struct fw_csr_iterator ci;
	int key, value;
789

790 791 792 793 794 795 796 797 798 799 800 801 802
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
		    sbp2_add_logical_unit(tgt, value) < 0)
			return -ENOMEM;
	return 0;
}

static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
			      u32 *model, u32 *firmware_revision)
{
	struct fw_csr_iterator ci;
	int key, value;
803
	unsigned int timeout;
804 805

	fw_csr_iterator_init(&ci, directory);
806 807
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
808

809
		case CSR_DEPENDENT_INFO | CSR_OFFSET:
810 811
			tgt->management_agent_address =
					CSR_REGISTER_BASE + 4 * value;
812
			break;
813 814 815

		case CSR_DIRECTORY_ID:
			tgt->directory_id = value;
816
			break;
817

818
		case CSR_MODEL:
819 820 821 822 823 824 825
			*model = value;
			break;

		case SBP2_CSR_FIRMWARE_REVISION:
			*firmware_revision = value;
			break;

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
		case SBP2_CSR_UNIT_CHARACTERISTICS:
			/* the timeout value is stored in 500ms units */
			timeout = ((unsigned int) value >> 8 & 0xff) * 500;
			timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
			tgt->mgt_orb_timeout =
				  min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);

			if (timeout > tgt->mgt_orb_timeout)
				fw_notify("%s: config rom contains %ds "
					  "management ORB timeout, limiting "
					  "to %ds\n", tgt->unit->device.bus_id,
					  timeout / 1000,
					  tgt->mgt_orb_timeout / 1000);
			break;

841 842 843 844 845 846 847 848
		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
			if (sbp2_add_logical_unit(tgt, value) < 0)
				return -ENOMEM;
			break;

		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
			if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
				return -ENOMEM;
849 850 851
			break;
		}
	}
852 853 854 855 856 857 858
	return 0;
}

static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
				  u32 firmware_revision)
{
	int i;
859
	unsigned int w = sbp2_param_workarounds;
860 861 862 863 864

	if (w)
		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
			  "if you need the workarounds parameter for %s\n",
			  tgt->unit->device.bus_id);
865

866 867
	if (w & SBP2_WORKAROUND_OVERRIDE)
		goto out;
868 869

	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
870

871 872 873
		if (sbp2_workarounds_table[i].firmware_revision !=
		    (firmware_revision & 0xffffff00))
			continue;
874

875 876 877
		if (sbp2_workarounds_table[i].model != model &&
		    sbp2_workarounds_table[i].model != ~0)
			continue;
878

879
		w |= sbp2_workarounds_table[i].workarounds;
880 881
		break;
	}
882 883
 out:
	if (w)
884
		fw_notify("Workarounds for %s: 0x%x "
885
			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
886
			  tgt->unit->device.bus_id,
887 888
			  w, firmware_revision, model);
	tgt->workarounds = w;
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
}

static struct scsi_host_template scsi_driver_template;

static int sbp2_probe(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_target *tgt;
	struct sbp2_logical_unit *lu;
	struct Scsi_Host *shost;
	u32 model, firmware_revision;

	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
	if (shost == NULL)
		return -ENOMEM;

	tgt = (struct sbp2_target *)shost->hostdata;
	unit->device.driver_data = tgt;
	tgt->unit = unit;
	kref_init(&tgt->kref);
	INIT_LIST_HEAD(&tgt->lu_list);

	if (fw_device_enable_phys_dma(device) < 0)
		goto fail_shost_put;

	if (scsi_add_host(shost, &unit->device) < 0)
		goto fail_shost_put;

	/* Initialize to values that won't match anything in our table. */
	firmware_revision = 0xff000000;
	model = 0xff000000;

	/* implicit directory ID */
	tgt->directory_id = ((unit->directory - device->config_rom) * 4
			     + CSR_CONFIG_ROM) & 0xffffff;

	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
			       &firmware_revision) < 0)
		goto fail_tgt_put;

	sbp2_init_workarounds(tgt, model, firmware_revision);
931

932 933
	get_device(&unit->device);

934
	/* Do the login in a workqueue so we can easily reschedule retries. */
935
	list_for_each_entry(lu, &tgt->lu_list, link)
936
		sbp2_queue_work(lu, 0);
937
	return 0;
938

939
 fail_tgt_put:
940
	sbp2_target_put(tgt);
941 942 943 944 945
	return -ENOMEM;

 fail_shost_put:
	scsi_host_put(shost);
	return -ENOMEM;
946 947 948 949 950
}

static int sbp2_remove(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
951
	struct sbp2_target *tgt = unit->device.driver_data;
952

953
	sbp2_target_put(tgt);
954 955 956 957 958
	return 0;
}

static void sbp2_reconnect(struct work_struct *work)
{
959 960 961
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
	struct fw_unit *unit = lu->tgt->unit;
962 963 964
	struct fw_device *device = fw_device(unit->device.parent);
	int generation, node_id, local_node_id;

965 966 967
	if (fw_device_is_shutdown(device))
		goto out;

968
	generation    = device->generation;
969
	smp_rmb();    /* node_id must not be older than generation */
970 971
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
972

973
	if (sbp2_send_management_orb(lu, node_id, generation,
974
				     SBP2_RECONNECT_REQUEST,
975 976
				     lu->login_id, NULL) < 0) {
		if (lu->retries++ >= 5) {
977 978 979
			fw_error("failed to reconnect to %s\n",
				 unit->device.bus_id);
			/* Fall back and try to log in again. */
980 981
			lu->retries = 0;
			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
982
		}
983 984
		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
		goto out;
985
	}
986

987 988 989
	lu->generation        = generation;
	lu->tgt->node_id      = node_id;
	lu->tgt->address_high = local_node_id << 16;
990

991 992 993 994 995
	fw_notify("reconnected to %s LUN %04x (%d retries)\n",
		  unit->device.bus_id, lu->lun, lu->retries);

	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
996 997
 out:
	sbp2_target_put(lu->tgt);
998 999 1000 1001
}

static void sbp2_update(struct fw_unit *unit)
{
1002 1003
	struct sbp2_target *tgt = unit->device.driver_data;
	struct sbp2_logical_unit *lu;
1004

1005 1006 1007 1008 1009 1010 1011 1012
	fw_device_enable_phys_dma(fw_device(unit->device.parent));

	/*
	 * Fw-core serializes sbp2_update() against sbp2_remove().
	 * Iteration over tgt->lu_list is therefore safe here.
	 */
	list_for_each_entry(lu, &tgt->lu_list, link) {
		lu->retries = 0;
1013
		sbp2_queue_work(lu, 0);
1014
	}
1015 1016 1017 1018 1019
}

#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
#define SBP2_SW_VERSION_ENTRY	0x00010483

1020
static const struct fw_device_id sbp2_id_table[] = {
1021 1022 1023
	{
		.match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1024
		.version      = SBP2_SW_VERSION_ENTRY,
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	},
	{ }
};

static struct fw_driver sbp2_driver = {
	.driver   = {
		.owner  = THIS_MODULE,
		.name   = sbp2_driver_name,
		.bus    = &fw_bus_type,
		.probe  = sbp2_probe,
		.remove = sbp2_remove,
	},
	.update   = sbp2_update,
	.id_table = sbp2_id_table,
};

1041 1042
static unsigned int
sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1043
{
1044 1045
	int sam_status;

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	sense_data[0] = 0x70;
	sense_data[1] = 0x0;
	sense_data[2] = sbp2_status[1];
	sense_data[3] = sbp2_status[4];
	sense_data[4] = sbp2_status[5];
	sense_data[5] = sbp2_status[6];
	sense_data[6] = sbp2_status[7];
	sense_data[7] = 10;
	sense_data[8] = sbp2_status[8];
	sense_data[9] = sbp2_status[9];
	sense_data[10] = sbp2_status[10];
	sense_data[11] = sbp2_status[11];
	sense_data[12] = sbp2_status[2];
	sense_data[13] = sbp2_status[3];
	sense_data[14] = sbp2_status[12];
	sense_data[15] = sbp2_status[13];

1063
	sam_status = sbp2_status[0] & 0x3f;
1064

1065 1066
	switch (sam_status) {
	case SAM_STAT_GOOD:
1067 1068
	case SAM_STAT_CHECK_CONDITION:
	case SAM_STAT_CONDITION_MET:
1069
	case SAM_STAT_BUSY:
1070 1071
	case SAM_STAT_RESERVATION_CONFLICT:
	case SAM_STAT_COMMAND_TERMINATED:
1072 1073
		return DID_OK << 16 | sam_status;

1074
	default:
1075
		return DID_ERROR << 16;
1076 1077 1078 1079 1080 1081
	}
}

static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
1082 1083
	struct sbp2_command_orb *orb =
		container_of(base_orb, struct sbp2_command_orb, base);
1084
	struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1085 1086 1087
	int result;

	if (status != NULL) {
1088
		if (STATUS_GET_DEAD(*status))
1089
			sbp2_agent_reset(orb->lu);
1090

1091
		switch (STATUS_GET_RESPONSE(*status)) {
1092
		case SBP2_STATUS_REQUEST_COMPLETE:
1093
			result = DID_OK << 16;
1094 1095
			break;
		case SBP2_STATUS_TRANSPORT_FAILURE:
1096
			result = DID_BUS_BUSY << 16;
1097 1098 1099 1100
			break;
		case SBP2_STATUS_ILLEGAL_REQUEST:
		case SBP2_STATUS_VENDOR_DEPENDENT:
		default:
1101
			result = DID_ERROR << 16;
1102 1103 1104
			break;
		}

1105 1106
		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1107 1108
							   orb->cmd->sense_buffer);
	} else {
1109 1110
		/*
		 * If the orb completes with status == NULL, something
1111
		 * went wrong, typically a bus reset happened mid-orb
1112 1113
		 * or when sending the write (less likely).
		 */
1114
		result = DID_BUS_BUSY << 16;
1115 1116 1117
	}

	dma_unmap_single(device->card->device, orb->base.request_bus,
1118
			 sizeof(orb->request), DMA_TO_DEVICE);
1119

1120 1121 1122
	if (scsi_sg_count(orb->cmd) > 0)
		dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
			     scsi_sg_count(orb->cmd),
1123 1124 1125 1126
			     orb->cmd->sc_data_direction);

	if (orb->page_table_bus != 0)
		dma_unmap_single(device->card->device, orb->page_table_bus,
1127
				 sizeof(orb->page_table), DMA_TO_DEVICE);
1128

1129
	orb->cmd->result = result;
1130 1131 1132
	orb->done(orb->cmd);
}

1133 1134 1135
static int
sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
		     struct sbp2_logical_unit *lu)
1136 1137 1138 1139 1140
{
	struct scatterlist *sg;
	int sg_len, l, i, j, count;
	dma_addr_t sg_addr;

1141 1142
	sg = scsi_sglist(orb->cmd);
	count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1143
			   orb->cmd->sc_data_direction);
1144 1145
	if (count == 0)
		goto fail;
1146

1147 1148
	/*
	 * Handle the special case where there is only one element in
1149 1150 1151
	 * the scatter list by converting it to an immediate block
	 * request. This is also a workaround for broken devices such
	 * as the second generation iPod which doesn't support page
1152 1153
	 * tables.
	 */
1154
	if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1155
		orb->request.data_descriptor.high = lu->tgt->address_high;
1156
		orb->request.data_descriptor.low  = sg_dma_address(sg);
1157
		orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1158
		return 0;
1159 1160
	}

1161 1162
	/*
	 * Convert the scatterlist to an sbp2 page table.  If any
1163 1164 1165 1166
	 * scatterlist entries are too big for sbp2, we split them as we
	 * go.  Even if we ask the block I/O layer to not give us sg
	 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
	 * during DMA mapping, and Linux currently doesn't prevent this.
1167
	 */
1168 1169 1170
	for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
		sg_len = sg_dma_len(sg);
		sg_addr = sg_dma_address(sg);
1171
		while (sg_len) {
1172 1173 1174 1175 1176
			/* FIXME: This won't get us out of the pinch. */
			if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
				fw_error("page table overflow\n");
				goto fail_page_table;
			}
1177 1178 1179 1180 1181 1182 1183 1184 1185
			l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
			orb->page_table[j].low = sg_addr;
			orb->page_table[j].high = (l << 16);
			sg_addr += l;
			sg_len -= l;
			j++;
		}
	}

1186 1187 1188 1189 1190 1191 1192
	fw_memcpy_to_be32(orb->page_table, orb->page_table,
			  sizeof(orb->page_table[0]) * j);
	orb->page_table_bus =
		dma_map_single(device->card->device, orb->page_table,
			       sizeof(orb->page_table), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->page_table_bus))
		goto fail_page_table;
1193

1194 1195
	/*
	 * The data_descriptor pointer is the one case where we need
1196 1197 1198
	 * to fill in the node ID part of the address.  All other
	 * pointers assume that the data referenced reside on the
	 * initiator (i.e. us), but data_descriptor can refer to data
1199 1200
	 * on other nodes so we need to put our ID in descriptor.high.
	 */
1201
	orb->request.data_descriptor.high = lu->tgt->address_high;
1202 1203
	orb->request.data_descriptor.low  = orb->page_table_bus;
	orb->request.misc |=
1204 1205
		COMMAND_ORB_PAGE_TABLE_PRESENT |
		COMMAND_ORB_DATA_SIZE(j);
1206

1207 1208 1209
	return 0;

 fail_page_table:
1210
	dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1211 1212 1213
		     orb->cmd->sc_data_direction);
 fail:
	return -ENOMEM;
1214 1215 1216 1217 1218 1219
}

/* SCSI stack integration */

static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
1220 1221
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1222
	struct sbp2_command_orb *orb;
1223
	unsigned int max_payload;
1224
	int retval = SCSI_MLQUEUE_HOST_BUSY;
1225

1226 1227 1228 1229
	/*
	 * Bidirectional commands are not yet implemented, and unknown
	 * transfer direction not handled.
	 */
1230
	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1231
		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1232 1233 1234
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
1235 1236
	}

1237
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1238 1239
	if (orb == NULL) {
		fw_notify("failed to alloc orb\n");
1240
		return SCSI_MLQUEUE_HOST_BUSY;
1241 1242
	}

1243 1244
	/* Initialize rcode to something not RCODE_COMPLETE. */
	orb->base.rcode = -1;
1245
	kref_init(&orb->base.kref);
1246

1247
	orb->lu   = lu;
1248 1249 1250 1251 1252
	orb->done = done;
	orb->cmd  = cmd;

	orb->request.next.high   = SBP2_ORB_NULL;
	orb->request.next.low    = 0x0;
1253 1254
	/*
	 * At speed 100 we can do 512 bytes per packet, at speed 200,
1255 1256
	 * 1024 bytes per packet etc.  The SBP-2 max_payload field
	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1257 1258
	 * if we set this to max_speed + 7, we get the right value.
	 */
1259 1260
	max_payload = min(device->max_speed + 7,
			  device->card->max_receive - 1);
1261
	orb->request.misc =
1262
		COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1263
		COMMAND_ORB_SPEED(device->max_speed) |
1264
		COMMAND_ORB_NOTIFY;
1265 1266 1267

	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
		orb->request.misc |=
1268
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1269 1270
	else if (cmd->sc_data_direction == DMA_TO_DEVICE)
		orb->request.misc |=
1271
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1272

1273 1274
	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
		goto out;
1275

1276
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1277 1278

	memset(orb->request.command_block,
1279
	       0, sizeof(orb->request.command_block));
1280 1281 1282
	memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));

	orb->base.callback = complete_command_orb;
1283 1284 1285 1286
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
1287
		goto out;
1288

1289 1290 1291 1292
	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
		      lu->command_block_agent_address + SBP2_ORB_POINTER);
	retval = 0;
 out:
1293
	kref_put(&orb->base.kref, free_orb);
1294
	return retval;
1295 1296
}

1297 1298
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
1299
	struct sbp2_logical_unit *lu = sdev->hostdata;
1300 1301 1302

	sdev->allow_restart = 1;

1303 1304 1305 1306 1307 1308
	/*
	 * Update the dma alignment (minimum alignment requirements for
	 * start and end of DMA transfers) to be a sector
	 */
	blk_queue_update_dma_alignment(sdev->request_queue, 511);

1309
	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1310
		sdev->inquiry_len = 36;
1311

1312 1313 1314
	return 0;
}

1315 1316
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
1317
	struct sbp2_logical_unit *lu = sdev->hostdata;
1318

1319 1320 1321 1322
	sdev->use_10_for_rw = 1;

	if (sdev->type == TYPE_ROM)
		sdev->use_10_for_ms = 1;
1323

1324
	if (sdev->type == TYPE_DISK &&
1325
	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1326
		sdev->skip_ms_page_8 = 1;
1327 1328

	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1329
		sdev->fix_capacity = 1;
1330 1331

	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1332
		blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342
	return 0;
}

/*
 * Called by scsi stack when something has really gone wrong.  Usually
 * called when a command has timed-out for some reason.
 */
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
1343
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1344 1345

	fw_notify("sbp2_scsi_abort\n");
1346 1347
	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1348 1349 1350 1351

	return SUCCESS;
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
/*
 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
 *
 * This is the concatenation of target port identifier and logical unit
 * identifier as per SAM-2...SAM-4 annex A.
 */
static ssize_t
sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct scsi_device *sdev = to_scsi_device(dev);
1364
	struct sbp2_logical_unit *lu;
1365 1366 1367 1368 1369
	struct fw_device *device;

	if (!sdev)
		return 0;

1370 1371
	lu = sdev->hostdata;
	device = fw_device(lu->tgt->unit->device.parent);
1372 1373 1374

	return sprintf(buf, "%08x%08x:%06x:%04x\n",
			device->config_rom[3], device->config_rom[4],
1375
			lu->tgt->directory_id, lu->lun);
1376 1377 1378 1379 1380 1381 1382 1383 1384
}

static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);

static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
	&dev_attr_ieee1394_id,
	NULL
};

1385 1386 1387
static struct scsi_host_template scsi_driver_template = {
	.module			= THIS_MODULE,
	.name			= "SBP-2 IEEE-1394",
1388
	.proc_name		= sbp2_driver_name,
1389
	.queuecommand		= sbp2_scsi_queuecommand,
1390
	.slave_alloc		= sbp2_scsi_slave_alloc,
1391 1392 1393 1394 1395
	.slave_configure	= sbp2_scsi_slave_configure,
	.eh_abort_handler	= sbp2_scsi_abort,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.use_clustering		= ENABLE_CLUSTERING,
1396 1397
	.cmd_per_lun		= 1,
	.can_queue		= 1,
1398
	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1399 1400 1401 1402 1403 1404 1405
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);

1406 1407 1408 1409 1410
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif

1411 1412
static int __init sbp2_init(void)
{
1413 1414 1415 1416
	sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
	if (!sbp2_wq)
		return -ENOMEM;

1417 1418 1419 1420 1421 1422
	return driver_register(&sbp2_driver.driver);
}

static void __exit sbp2_cleanup(void)
{
	driver_unregister(&sbp2_driver.driver);
1423
	destroy_workqueue(sbp2_wq);
1424 1425 1426 1427
}

module_init(sbp2_init);
module_exit(sbp2_cleanup);