fw-sbp2.c 37.6 KB
Newer Older
1 2
/*
 * SBP2 driver (SCSI over IEEE1394)
3
 *
4
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21 22
/*
 * The basic structure of this driver is based on the old storage driver,
23 24 25 26 27 28 29 30
 * drivers/ieee1394/sbp2.c, originally written by
 *     James Goodwin <jamesg@filanet.com>
 * with later contributions and ongoing maintenance from
 *     Ben Collins <bcollins@debian.org>,
 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
 * and many others.
 */

31 32
#include <linux/kernel.h>
#include <linux/module.h>
33
#include <linux/moduleparam.h>
S
Stefan Richter 已提交
34
#include <linux/mod_devicetable.h>
35
#include <linux/device.h>
A
Andrew Morton 已提交
36
#include <linux/scatterlist.h>
37
#include <linux/dma-mapping.h>
38
#include <linux/blkdev.h>
39
#include <linux/string.h>
40
#include <linux/stringify.h>
41
#include <linux/timer.h>
42
#include <linux/workqueue.h>
43 44 45 46 47 48 49 50 51 52

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * So far only bridges from Oxford Semiconductor are known to support
 * concurrent logins. Depending on firmware, four or two concurrent logins
 * are possible on OXFW911 and newer Oxsemi bridges.
 *
 * Concurrent logins are useful together with cluster filesystems.
 */
static int sbp2_param_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
		 "(default = Y, use N for concurrent initiators)");

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/*
 * Flags for firmware oddities
 *
 * - 128kB max transfer
 *   Limit transfer size. Necessary for some old bridges.
 *
 * - 36 byte inquiry
 *   When scsi_mod probes the device, let the inquiry command look like that
 *   from MS Windows.
 *
 * - skip mode page 8
 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
 *
 * - fix capacity
 *   Tell sd_mod to correct the last sector number reported by read_capacity.
 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
 *   Don't use this with devices which don't have this bug.
 *
 * - override internal blacklist
 *   Instead of adding to the built-in blacklist, use only the workarounds
 *   specified in the module load parameter.
 *   Useful if a blacklist entry interfered with a non-broken device.
 */
#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
#define SBP2_WORKAROUND_INQUIRY_36	0x2
#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
#define SBP2_WORKAROUND_OVERRIDE	0x100

static int sbp2_param_workarounds;
module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
	", or a combination)");

105
/* I don't know why the SCSI stack doesn't define something like this... */
106
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
107 108 109

static const char sbp2_driver_name[] = "sbp2";

110 111 112 113 114 115 116 117
/*
 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 * and one struct scsi_device per sbp2_logical_unit.
 */
struct sbp2_logical_unit {
	struct sbp2_target *tgt;
	struct list_head link;
	struct scsi_device *sdev;
118 119
	struct fw_address_handler address_handler;
	struct list_head orb_list;
120

121
	u64 command_block_agent_address;
122
	u16 lun;
123 124
	int login_id;

125
	/*
126 127 128 129
	 * The generation is updated once we've logged in or reconnected
	 * to the logical unit.  Thus, I/O to the device will automatically
	 * fail and get retried if it happens in a window where the device
	 * is not ready, e.g. after a bus reset but before we reconnect.
130
	 */
131
	int generation;
132 133
	int retries;
	struct delayed_work work;
134 135
};

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 * and one struct Scsi_Host per sbp2_target.
 */
struct sbp2_target {
	struct kref kref;
	struct fw_unit *unit;

	u64 management_agent_address;
	int directory_id;
	int node_id;
	int address_high;

	unsigned workarounds;
	struct list_head lu_list;
};

153 154
#define SBP2_MAX_SG_ELEMENT_LENGTH	0xf000
#define SBP2_MAX_SECTORS		255	/* Max sectors supported */
155
#define SBP2_ORB_TIMEOUT		2000	/* Timeout in ms */
156 157 158 159 160 161 162

#define SBP2_ORB_NULL			0x80000000

#define SBP2_DIRECTION_TO_MEDIA		0x0
#define SBP2_DIRECTION_FROM_MEDIA	0x1

/* Unit directory keys */
163 164 165
#define SBP2_CSR_FIRMWARE_REVISION	0x3c
#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST		0x0
#define SBP2_QUERY_LOGINS_REQUEST	0x1
#define SBP2_RECONNECT_REQUEST		0x3
#define SBP2_SET_PASSWORD_REQUEST	0x4
#define SBP2_LOGOUT_REQUEST		0x7
#define SBP2_ABORT_TASK_REQUEST		0xb
#define SBP2_ABORT_TASK_SET		0xc
#define SBP2_LOGICAL_UNIT_RESET		0xe
#define SBP2_TARGET_RESET_REQUEST	0xf

/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE		0x00
#define SBP2_AGENT_RESET		0x04
#define SBP2_ORB_POINTER		0x08
#define SBP2_DOORBELL			0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14

/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE	0x0
#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
#define SBP2_STATUS_VENDOR_DEPENDENT	0x3

191 192 193 194 195 196 197 198
#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
#define STATUS_GET_DATA(v)		((v).data)
199 200 201 202 203 204 205 206 207 208 209 210 211 212

struct sbp2_status {
	u32 status;
	u32 orb_low;
	u8 data[24];
};

struct sbp2_pointer {
	u32 high;
	u32 low;
};

struct sbp2_orb {
	struct fw_transaction t;
213
	struct kref kref;
214 215 216
	dma_addr_t request_bus;
	int rcode;
	struct sbp2_pointer pointer;
217
	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
218 219 220
	struct list_head link;
};

221 222 223
#define MANAGEMENT_ORB_LUN(v)			((v))
#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
224
#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
225 226
#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
227

228 229
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

struct sbp2_management_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer password;
		struct sbp2_pointer response;
		u32 misc;
		u32 length;
		struct sbp2_pointer status_fifo;
	} request;
	__be32 response[4];
	dma_addr_t response_bus;
	struct completion done;
	struct sbp2_status status;
};

246 247
#define LOGIN_RESPONSE_GET_LOGIN_ID(v)	((v).misc & 0xffff)
#define LOGIN_RESPONSE_GET_LENGTH(v)	(((v).misc >> 16) & 0xffff)
248 249 250 251 252 253

struct sbp2_login_response {
	u32 misc;
	struct sbp2_pointer command_block_agent;
	u32 reconnect_hold;
};
254 255 256 257 258 259 260 261
#define COMMAND_ORB_DATA_SIZE(v)	((v))
#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
#define COMMAND_ORB_SPEED(v)		((v) << 24)
#define COMMAND_ORB_DIRECTION(v)	((v) << 27)
#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define COMMAND_ORB_NOTIFY		((1) << 31)
262 263 264 265 266 267 268 269 270 271 272

struct sbp2_command_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer next;
		struct sbp2_pointer data_descriptor;
		u32 misc;
		u8 command_block[12];
	} request;
	struct scsi_cmnd *cmd;
	scsi_done_fn_t done;
273
	struct sbp2_logical_unit *lu;
274

275
	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	dma_addr_t page_table_bus;
};

/*
 * List of devices with known bugs.
 *
 * The firmware_revision field, masked with 0xffff00, is the best
 * indicator for the type of bridge chip of a device.  It yields a few
 * false positives but this did not break correctly behaving devices
 * so far.  We use ~0 as a wildcard, since the 24 bit values we get
 * from the config rom can never match that.
 */
static const struct {
	u32 firmware_revision;
	u32 model;
	unsigned workarounds;
} sbp2_workarounds_table[] = {
	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x001010,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
					  SBP2_WORKAROUND_MODE_SENSE_8,
	},
	/* Initio bridges, actually only needed for some older ones */ {
		.firmware_revision	= 0x000200,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
	},
	/* Symbios bridge */ {
		.firmware_revision	= 0xa0b800,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
309 310 311

	/*
	 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
312 313
	 * these iPods do not feature the read_capacity bug according
	 * to one report.  Read_capacity behaviour as well as model_id
314 315 316
	 * could change due to Apple-supplied firmware updates though.
	 */

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	/* iPod 4th generation. */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000021,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000023,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod Photo */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x00007e,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	}
};

334 335 336 337 338 339 340 341
static void
free_orb(struct kref *kref)
{
	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);

	kfree(orb);
}

342 343 344 345 346 347 348
static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
		  int tcode, int destination, int source,
		  int generation, int speed,
		  unsigned long long offset,
		  void *payload, size_t length, void *callback_data)
{
349
	struct sbp2_logical_unit *lu = callback_data;
350 351 352 353 354 355
	struct sbp2_orb *orb;
	struct sbp2_status status;
	size_t header_size;
	unsigned long flags;

	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
356
	    length == 0 || length > sizeof(status)) {
357 358 359 360 361 362 363 364
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	header_size = min(length, 2 * sizeof(u32));
	fw_memcpy_from_be32(&status, payload, header_size);
	if (length > header_size)
		memcpy(status.data, payload + 8, length - header_size);
365
	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
366 367 368 369 370 371 372
		fw_notify("non-orb related status write, not handled\n");
		fw_send_response(card, request, RCODE_COMPLETE);
		return;
	}

	/* Lookup the orb corresponding to this status write. */
	spin_lock_irqsave(&card->lock, flags);
373
	list_for_each_entry(orb, &lu->orb_list, link) {
374
		if (STATUS_GET_ORB_HIGH(status) == 0 &&
375 376
		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
			orb->rcode = RCODE_COMPLETE;
377 378 379 380 381 382
			list_del(&orb->link);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

383
	if (&orb->link != &lu->orb_list)
384 385 386 387
		orb->callback(orb, &status);
	else
		fw_error("status write for unknown orb\n");

388 389
	kref_put(&orb->kref, free_orb);

390 391 392 393 394 395 396 397 398 399
	fw_send_response(card, request, RCODE_COMPLETE);
}

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct sbp2_orb *orb = data;
	unsigned long flags;

400 401 402 403 404 405 406 407 408 409 410 411 412 413
	/*
	 * This is a little tricky.  We can get the status write for
	 * the orb before we get this callback.  The status write
	 * handler above will assume the orb pointer transaction was
	 * successful and set the rcode to RCODE_COMPLETE for the orb.
	 * So this callback only sets the rcode if it hasn't already
	 * been set and only does the cleanup if the transaction
	 * failed and we didn't already get a status write.
	 */
	spin_lock_irqsave(&card->lock, flags);

	if (orb->rcode == -1)
		orb->rcode = rcode;
	if (orb->rcode != RCODE_COMPLETE) {
414
		list_del(&orb->link);
415
		spin_unlock_irqrestore(&card->lock, flags);
416
		orb->callback(orb, NULL);
417 418
	} else {
		spin_unlock_irqrestore(&card->lock, flags);
419
	}
420 421

	kref_put(&orb->kref, free_orb);
422 423 424
}

static void
425
sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
426 427
	      int node_id, int generation, u64 offset)
{
428
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
429 430 431 432
	unsigned long flags;

	orb->pointer.high = 0;
	orb->pointer.low = orb->request_bus;
433
	fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
434 435

	spin_lock_irqsave(&device->card->lock, flags);
436
	list_add_tail(&orb->link, &lu->orb_list);
437 438
	spin_unlock_irqrestore(&device->card->lock, flags);

439 440 441 442
	/* Take a ref for the orb list and for the transaction callback. */
	kref_get(&orb->kref);
	kref_get(&orb->kref);

443
	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
444
			node_id, generation, device->max_speed, offset,
445
			&orb->pointer, sizeof(orb->pointer),
446 447 448
			complete_transaction, orb);
}

449
static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
450
{
451
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
452 453 454
	struct sbp2_orb *orb, *next;
	struct list_head list;
	unsigned long flags;
455
	int retval = -ENOENT;
456 457 458

	INIT_LIST_HEAD(&list);
	spin_lock_irqsave(&device->card->lock, flags);
459
	list_splice_init(&lu->orb_list, &list);
460 461 462
	spin_unlock_irqrestore(&device->card->lock, flags);

	list_for_each_entry_safe(orb, next, &list, link) {
463
		retval = 0;
464 465 466
		if (fw_cancel_transaction(device->card, &orb->t) == 0)
			continue;

467 468 469 470
		orb->rcode = RCODE_CANCELLED;
		orb->callback(orb, NULL);
	}

471
	return retval;
472 473
}

474 475 476 477
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
	struct sbp2_management_orb *orb =
478
		container_of(base_orb, struct sbp2_management_orb, base);
479 480

	if (status)
481
		memcpy(&orb->status, status, sizeof(*status));
482 483 484 485
	complete(&orb->done);
}

static int
486 487 488
sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
			 int generation, int function, int lun_or_login_id,
			 void *response)
489
{
490
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
491 492 493
	struct sbp2_management_orb *orb;
	int retval = -ENOMEM;

494
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
495 496 497
	if (orb == NULL)
		return -ENOMEM;

498
	kref_init(&orb->base.kref);
499 500
	orb->response_bus =
		dma_map_single(device->card->device, &orb->response,
501
			       sizeof(orb->response), DMA_FROM_DEVICE);
502
	if (dma_mapping_error(orb->response_bus))
503
		goto fail_mapping_response;
504 505 506 507 508

	orb->request.response.high    = 0;
	orb->request.response.low     = orb->response_bus;

	orb->request.misc =
509 510
		MANAGEMENT_ORB_NOTIFY |
		MANAGEMENT_ORB_FUNCTION(function) |
511
		MANAGEMENT_ORB_LUN(lun_or_login_id);
512
	orb->request.length =
513
		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
514

515 516
	orb->request.status_fifo.high = lu->address_handler.offset >> 32;
	orb->request.status_fifo.low  = lu->address_handler.offset;
517 518 519

	if (function == SBP2_LOGIN_REQUEST) {
		orb->request.misc |=
520
			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
521
			MANAGEMENT_ORB_RECONNECT(0);
522 523
	}

524
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
525 526 527

	init_completion(&orb->done);
	orb->base.callback = complete_management_orb;
528

529 530 531 532 533 534
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
		goto fail_mapping_request;

535 536
	sbp2_send_orb(&orb->base, lu, node_id, generation,
		      lu->tgt->management_agent_address);
537

538 539
	wait_for_completion_timeout(&orb->done,
				    msecs_to_jiffies(SBP2_ORB_TIMEOUT));
540 541

	retval = -EIO;
542
	if (sbp2_cancel_orbs(lu) == 0) {
543
		fw_error("orb reply timed out, rcode=0x%02x\n",
544 545 546 547
			 orb->base.rcode);
		goto out;
	}

548 549
	if (orb->base.rcode != RCODE_COMPLETE) {
		fw_error("management write failed, rcode 0x%02x\n",
550 551 552 553
			 orb->base.rcode);
		goto out;
	}

554 555
	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
556
		fw_error("error status: %d:%d\n",
557 558
			 STATUS_GET_RESPONSE(orb->status),
			 STATUS_GET_SBP_STATUS(orb->status));
559 560 561 562 563 564
		goto out;
	}

	retval = 0;
 out:
	dma_unmap_single(device->card->device, orb->base.request_bus,
565
			 sizeof(orb->request), DMA_TO_DEVICE);
566
 fail_mapping_request:
567
	dma_unmap_single(device->card->device, orb->response_bus,
568
			 sizeof(orb->response), DMA_FROM_DEVICE);
569
 fail_mapping_response:
570 571
	if (response)
		fw_memcpy_from_be32(response,
572
				    orb->response, sizeof(orb->response));
573
	kref_put(&orb->base.kref, free_orb);
574 575 576 577 578 579 580 581 582 583 584 585 586

	return retval;
}

static void
complete_agent_reset_write(struct fw_card *card, int rcode,
			   void *payload, size_t length, void *data)
{
	struct fw_transaction *t = data;

	kfree(t);
}

587
static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
588
{
589
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
590 591 592
	struct fw_transaction *t;
	static u32 zero;

593
	t = kzalloc(sizeof(*t), GFP_ATOMIC);
594 595 596 597
	if (t == NULL)
		return -ENOMEM;

	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
598 599
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
600
			&zero, sizeof(zero), complete_agent_reset_write, t);
601 602 603 604

	return 0;
}

605
static void sbp2_release_target(struct kref *kref)
606
{
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
	struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
	struct sbp2_logical_unit *lu, *next;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);

	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
		if (lu->sdev)
			scsi_remove_device(lu->sdev);

		sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
		fw_core_remove_address_handler(&lu->address_handler);
		list_del(&lu->link);
		kfree(lu);
	}
	scsi_remove_host(shost);
	fw_notify("released %s\n", tgt->unit->device.bus_id);

	put_device(&tgt->unit->device);
	scsi_host_put(shost);
627 628
}

629 630
static struct workqueue_struct *sbp2_wq;

631 632
static void sbp2_reconnect(struct work_struct *work);

633 634
static void sbp2_login(struct work_struct *work)
{
635 636 637 638 639 640 641
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
	struct Scsi_Host *shost =
		container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
	struct scsi_device *sdev;
	struct scsi_lun eight_bytes_lun;
	struct fw_unit *unit = lu->tgt->unit;
642 643
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_login_response response;
644
	int generation, node_id, local_node_id;
645 646 647 648 649

	generation    = device->card->generation;
	node_id       = device->node->node_id;
	local_node_id = device->card->local_node->node_id;

650 651 652
	if (sbp2_send_management_orb(lu, node_id, generation,
				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
		if (lu->retries++ < 5) {
653 654 655
			if (queue_delayed_work(sbp2_wq, &lu->work,
					       DIV_ROUND_UP(HZ, 5)))
				kref_get(&lu->tgt->kref);
656
		} else {
657 658
			fw_error("failed to login to %s LUN %04x\n",
				 unit->device.bus_id, lu->lun);
659
		}
660
		kref_put(&lu->tgt->kref, sbp2_release_target);
661 662 663
		return;
	}

664 665 666
	lu->generation        = generation;
	lu->tgt->node_id      = node_id;
	lu->tgt->address_high = local_node_id << 16;
667 668

	/* Get command block agent offset and login id. */
669
	lu->command_block_agent_address =
670
		((u64) (response.command_block_agent.high & 0xffff) << 32) |
671
		response.command_block_agent.low;
672
	lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
673

674 675
	fw_notify("logged in to %s LUN %04x (%d retries)\n",
		  unit->device.bus_id, lu->lun, lu->retries);
676 677 678 679 680 681

#if 0
	/* FIXME: The linux1394 sbp2 does this last step. */
	sbp2_set_busy_timeout(scsi_id);
#endif

682 683 684 685 686 687
	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
	sbp2_agent_reset(lu);

	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
	eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
	eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
688

689 690 691 692 693
	sdev = __scsi_add_device(shost, 0, 0,
				 scsilun_to_int(&eight_bytes_lun), lu);
	if (IS_ERR(sdev)) {
		sbp2_send_management_orb(lu, node_id, generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
694 695 696 697
		/*
		 * Set this back to sbp2_login so we fall back and
		 * retry login on bus reset.
		 */
698 699 700 701
		PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
	} else {
		lu->sdev = sdev;
		scsi_device_put(sdev);
702
	}
703
	kref_put(&lu->tgt->kref, sbp2_release_target);
704
}
705

706
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
707
{
708
	struct sbp2_logical_unit *lu;
709

710 711 712
	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
	if (!lu)
		return -ENOMEM;
713

714 715 716
	lu->address_handler.length           = 0x100;
	lu->address_handler.address_callback = sbp2_status_write;
	lu->address_handler.callback_data    = lu;
717

718 719 720 721 722
	if (fw_core_add_address_handler(&lu->address_handler,
					&fw_high_memory_region) < 0) {
		kfree(lu);
		return -ENOMEM;
	}
723

724 725 726 727 728 729
	lu->tgt  = tgt;
	lu->sdev = NULL;
	lu->lun  = lun_entry & 0xffff;
	lu->retries = 0;
	INIT_LIST_HEAD(&lu->orb_list);
	INIT_DELAYED_WORK(&lu->work, sbp2_login);
730

731 732 733
	list_add_tail(&lu->link, &tgt->lu_list);
	return 0;
}
734

735 736 737 738
static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
{
	struct fw_csr_iterator ci;
	int key, value;
739

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
		    sbp2_add_logical_unit(tgt, value) < 0)
			return -ENOMEM;
	return 0;
}

static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
			      u32 *model, u32 *firmware_revision)
{
	struct fw_csr_iterator ci;
	int key, value;

	fw_csr_iterator_init(&ci, directory);
755 756
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
757

758
		case CSR_DEPENDENT_INFO | CSR_OFFSET:
759 760
			tgt->management_agent_address =
					CSR_REGISTER_BASE + 4 * value;
761
			break;
762 763 764

		case CSR_DIRECTORY_ID:
			tgt->directory_id = value;
765
			break;
766

767
		case CSR_MODEL:
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
			*model = value;
			break;

		case SBP2_CSR_FIRMWARE_REVISION:
			*firmware_revision = value;
			break;

		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
			if (sbp2_add_logical_unit(tgt, value) < 0)
				return -ENOMEM;
			break;

		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
			if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
				return -ENOMEM;
783 784 785
			break;
		}
	}
786 787 788 789 790 791 792
	return 0;
}

static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
				  u32 firmware_revision)
{
	int i;
793 794 795 796 797 798
	unsigned w = sbp2_param_workarounds;

	if (w)
		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
			  "if you need the workarounds parameter for %s\n",
			  tgt->unit->device.bus_id);
799

800 801
	if (w & SBP2_WORKAROUND_OVERRIDE)
		goto out;
802 803

	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
804

805 806 807
		if (sbp2_workarounds_table[i].firmware_revision !=
		    (firmware_revision & 0xffffff00))
			continue;
808

809 810 811
		if (sbp2_workarounds_table[i].model != model &&
		    sbp2_workarounds_table[i].model != ~0)
			continue;
812

813
		w |= sbp2_workarounds_table[i].workarounds;
814 815
		break;
	}
816 817
 out:
	if (w)
818
		fw_notify("Workarounds for %s: 0x%x "
819
			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
820
			  tgt->unit->device.bus_id,
821 822
			  w, firmware_revision, model);
	tgt->workarounds = w;
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
}

static struct scsi_host_template scsi_driver_template;

static int sbp2_probe(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_target *tgt;
	struct sbp2_logical_unit *lu;
	struct Scsi_Host *shost;
	u32 model, firmware_revision;

	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
	if (shost == NULL)
		return -ENOMEM;

	tgt = (struct sbp2_target *)shost->hostdata;
	unit->device.driver_data = tgt;
	tgt->unit = unit;
	kref_init(&tgt->kref);
	INIT_LIST_HEAD(&tgt->lu_list);

	if (fw_device_enable_phys_dma(device) < 0)
		goto fail_shost_put;

	if (scsi_add_host(shost, &unit->device) < 0)
		goto fail_shost_put;

	/* Initialize to values that won't match anything in our table. */
	firmware_revision = 0xff000000;
	model = 0xff000000;

	/* implicit directory ID */
	tgt->directory_id = ((unit->directory - device->config_rom) * 4
			     + CSR_CONFIG_ROM) & 0xffffff;

	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
			       &firmware_revision) < 0)
		goto fail_tgt_put;

	sbp2_init_workarounds(tgt, model, firmware_revision);
865

866 867
	get_device(&unit->device);

868 869
	/*
	 * We schedule work to do the login so we can easily
870
	 * reschedule retries. Always get the ref before scheduling
871 872
	 * work.
	 */
873
	list_for_each_entry(lu, &tgt->lu_list, link)
874
		if (queue_delayed_work(sbp2_wq, &lu->work, 0))
875
			kref_get(&tgt->kref);
876
	return 0;
877

878 879 880 881 882 883 884
 fail_tgt_put:
	kref_put(&tgt->kref, sbp2_release_target);
	return -ENOMEM;

 fail_shost_put:
	scsi_host_put(shost);
	return -ENOMEM;
885 886 887 888 889
}

static int sbp2_remove(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
890
	struct sbp2_target *tgt = unit->device.driver_data;
891

892
	kref_put(&tgt->kref, sbp2_release_target);
893 894 895 896 897
	return 0;
}

static void sbp2_reconnect(struct work_struct *work)
{
898 899 900
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
	struct fw_unit *unit = lu->tgt->unit;
901 902 903 904 905 906 907
	struct fw_device *device = fw_device(unit->device.parent);
	int generation, node_id, local_node_id;

	generation    = device->card->generation;
	node_id       = device->node->node_id;
	local_node_id = device->card->local_node->node_id;

908
	if (sbp2_send_management_orb(lu, node_id, generation,
909
				     SBP2_RECONNECT_REQUEST,
910 911
				     lu->login_id, NULL) < 0) {
		if (lu->retries++ >= 5) {
912 913 914
			fw_error("failed to reconnect to %s\n",
				 unit->device.bus_id);
			/* Fall back and try to log in again. */
915 916
			lu->retries = 0;
			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
917
		}
918 919 920
		if (queue_delayed_work(sbp2_wq, &lu->work, DIV_ROUND_UP(HZ, 5)))
			kref_get(&lu->tgt->kref);
		kref_put(&lu->tgt->kref, sbp2_release_target);
921 922
		return;
	}
923

924 925 926
	lu->generation        = generation;
	lu->tgt->node_id      = node_id;
	lu->tgt->address_high = local_node_id << 16;
927

928 929 930 931 932 933 934
	fw_notify("reconnected to %s LUN %04x (%d retries)\n",
		  unit->device.bus_id, lu->lun, lu->retries);

	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);

	kref_put(&lu->tgt->kref, sbp2_release_target);
935 936 937 938
}

static void sbp2_update(struct fw_unit *unit)
{
939 940
	struct sbp2_target *tgt = unit->device.driver_data;
	struct sbp2_logical_unit *lu;
941

942 943 944 945 946 947 948 949
	fw_device_enable_phys_dma(fw_device(unit->device.parent));

	/*
	 * Fw-core serializes sbp2_update() against sbp2_remove().
	 * Iteration over tgt->lu_list is therefore safe here.
	 */
	list_for_each_entry(lu, &tgt->lu_list, link) {
		lu->retries = 0;
950
		if (queue_delayed_work(sbp2_wq, &lu->work, 0))
951 952
			kref_get(&tgt->kref);
	}
953 954 955 956 957
}

#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
#define SBP2_SW_VERSION_ENTRY	0x00010483

958
static const struct fw_device_id sbp2_id_table[] = {
959 960 961
	{
		.match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
962
		.version      = SBP2_SW_VERSION_ENTRY,
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	},
	{ }
};

static struct fw_driver sbp2_driver = {
	.driver   = {
		.owner  = THIS_MODULE,
		.name   = sbp2_driver_name,
		.bus    = &fw_bus_type,
		.probe  = sbp2_probe,
		.remove = sbp2_remove,
	},
	.update   = sbp2_update,
	.id_table = sbp2_id_table,
};

979 980
static unsigned int
sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
981
{
982 983
	int sam_status;

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	sense_data[0] = 0x70;
	sense_data[1] = 0x0;
	sense_data[2] = sbp2_status[1];
	sense_data[3] = sbp2_status[4];
	sense_data[4] = sbp2_status[5];
	sense_data[5] = sbp2_status[6];
	sense_data[6] = sbp2_status[7];
	sense_data[7] = 10;
	sense_data[8] = sbp2_status[8];
	sense_data[9] = sbp2_status[9];
	sense_data[10] = sbp2_status[10];
	sense_data[11] = sbp2_status[11];
	sense_data[12] = sbp2_status[2];
	sense_data[13] = sbp2_status[3];
	sense_data[14] = sbp2_status[12];
	sense_data[15] = sbp2_status[13];

1001
	sam_status = sbp2_status[0] & 0x3f;
1002

1003 1004
	switch (sam_status) {
	case SAM_STAT_GOOD:
1005 1006
	case SAM_STAT_CHECK_CONDITION:
	case SAM_STAT_CONDITION_MET:
1007
	case SAM_STAT_BUSY:
1008 1009
	case SAM_STAT_RESERVATION_CONFLICT:
	case SAM_STAT_COMMAND_TERMINATED:
1010 1011
		return DID_OK << 16 | sam_status;

1012
	default:
1013
		return DID_ERROR << 16;
1014 1015 1016 1017 1018 1019
	}
}

static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
1020 1021
	struct sbp2_command_orb *orb =
		container_of(base_orb, struct sbp2_command_orb, base);
1022
	struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1023 1024 1025
	int result;

	if (status != NULL) {
1026
		if (STATUS_GET_DEAD(*status))
1027
			sbp2_agent_reset(orb->lu);
1028

1029
		switch (STATUS_GET_RESPONSE(*status)) {
1030
		case SBP2_STATUS_REQUEST_COMPLETE:
1031
			result = DID_OK << 16;
1032 1033
			break;
		case SBP2_STATUS_TRANSPORT_FAILURE:
1034
			result = DID_BUS_BUSY << 16;
1035 1036 1037 1038
			break;
		case SBP2_STATUS_ILLEGAL_REQUEST:
		case SBP2_STATUS_VENDOR_DEPENDENT:
		default:
1039
			result = DID_ERROR << 16;
1040 1041 1042
			break;
		}

1043 1044
		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1045 1046
							   orb->cmd->sense_buffer);
	} else {
1047 1048
		/*
		 * If the orb completes with status == NULL, something
1049
		 * went wrong, typically a bus reset happened mid-orb
1050 1051
		 * or when sending the write (less likely).
		 */
1052
		result = DID_BUS_BUSY << 16;
1053 1054 1055
	}

	dma_unmap_single(device->card->device, orb->base.request_bus,
1056
			 sizeof(orb->request), DMA_TO_DEVICE);
1057

1058 1059 1060
	if (scsi_sg_count(orb->cmd) > 0)
		dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
			     scsi_sg_count(orb->cmd),
1061 1062 1063 1064
			     orb->cmd->sc_data_direction);

	if (orb->page_table_bus != 0)
		dma_unmap_single(device->card->device, orb->page_table_bus,
1065
				 sizeof(orb->page_table), DMA_TO_DEVICE);
1066

1067
	orb->cmd->result = result;
1068 1069 1070
	orb->done(orb->cmd);
}

1071 1072 1073
static int
sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
		     struct sbp2_logical_unit *lu)
1074 1075 1076 1077 1078
{
	struct scatterlist *sg;
	int sg_len, l, i, j, count;
	dma_addr_t sg_addr;

1079 1080
	sg = scsi_sglist(orb->cmd);
	count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1081
			   orb->cmd->sc_data_direction);
1082 1083
	if (count == 0)
		goto fail;
1084

1085 1086
	/*
	 * Handle the special case where there is only one element in
1087 1088 1089
	 * the scatter list by converting it to an immediate block
	 * request. This is also a workaround for broken devices such
	 * as the second generation iPod which doesn't support page
1090 1091
	 * tables.
	 */
1092
	if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1093
		orb->request.data_descriptor.high = lu->tgt->address_high;
1094
		orb->request.data_descriptor.low  = sg_dma_address(sg);
1095
		orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1096
		return 0;
1097 1098
	}

1099 1100
	/*
	 * Convert the scatterlist to an sbp2 page table.  If any
1101 1102 1103 1104
	 * scatterlist entries are too big for sbp2, we split them as we
	 * go.  Even if we ask the block I/O layer to not give us sg
	 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
	 * during DMA mapping, and Linux currently doesn't prevent this.
1105
	 */
1106 1107 1108 1109
	for (i = 0, j = 0; i < count; i++) {
		sg_len = sg_dma_len(sg + i);
		sg_addr = sg_dma_address(sg + i);
		while (sg_len) {
1110 1111 1112 1113 1114
			/* FIXME: This won't get us out of the pinch. */
			if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
				fw_error("page table overflow\n");
				goto fail_page_table;
			}
1115 1116 1117 1118 1119 1120 1121 1122 1123
			l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
			orb->page_table[j].low = sg_addr;
			orb->page_table[j].high = (l << 16);
			sg_addr += l;
			sg_len -= l;
			j++;
		}
	}

1124 1125 1126 1127 1128 1129 1130
	fw_memcpy_to_be32(orb->page_table, orb->page_table,
			  sizeof(orb->page_table[0]) * j);
	orb->page_table_bus =
		dma_map_single(device->card->device, orb->page_table,
			       sizeof(orb->page_table), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->page_table_bus))
		goto fail_page_table;
1131

1132 1133
	/*
	 * The data_descriptor pointer is the one case where we need
1134 1135 1136
	 * to fill in the node ID part of the address.  All other
	 * pointers assume that the data referenced reside on the
	 * initiator (i.e. us), but data_descriptor can refer to data
1137 1138
	 * on other nodes so we need to put our ID in descriptor.high.
	 */
1139
	orb->request.data_descriptor.high = lu->tgt->address_high;
1140 1141
	orb->request.data_descriptor.low  = orb->page_table_bus;
	orb->request.misc |=
1142 1143
		COMMAND_ORB_PAGE_TABLE_PRESENT |
		COMMAND_ORB_DATA_SIZE(j);
1144

1145 1146 1147
	return 0;

 fail_page_table:
1148
	dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1149 1150 1151
		     orb->cmd->sc_data_direction);
 fail:
	return -ENOMEM;
1152 1153 1154 1155 1156 1157
}

/* SCSI stack integration */

static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
1158 1159
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1160
	struct sbp2_command_orb *orb;
1161
	unsigned max_payload;
1162
	int retval = SCSI_MLQUEUE_HOST_BUSY;
1163

1164 1165 1166 1167
	/*
	 * Bidirectional commands are not yet implemented, and unknown
	 * transfer direction not handled.
	 */
1168
	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1169
		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1170 1171 1172
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
1173 1174
	}

1175
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1176 1177
	if (orb == NULL) {
		fw_notify("failed to alloc orb\n");
1178
		return SCSI_MLQUEUE_HOST_BUSY;
1179 1180
	}

1181 1182
	/* Initialize rcode to something not RCODE_COMPLETE. */
	orb->base.rcode = -1;
1183
	kref_init(&orb->base.kref);
1184

1185
	orb->lu   = lu;
1186 1187 1188 1189 1190
	orb->done = done;
	orb->cmd  = cmd;

	orb->request.next.high   = SBP2_ORB_NULL;
	orb->request.next.low    = 0x0;
1191 1192
	/*
	 * At speed 100 we can do 512 bytes per packet, at speed 200,
1193 1194
	 * 1024 bytes per packet etc.  The SBP-2 max_payload field
	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1195 1196
	 * if we set this to max_speed + 7, we get the right value.
	 */
1197 1198
	max_payload = min(device->max_speed + 7,
			  device->card->max_receive - 1);
1199
	orb->request.misc =
1200
		COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1201
		COMMAND_ORB_SPEED(device->max_speed) |
1202
		COMMAND_ORB_NOTIFY;
1203 1204 1205

	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
		orb->request.misc |=
1206
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1207 1208
	else if (cmd->sc_data_direction == DMA_TO_DEVICE)
		orb->request.misc |=
1209
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1210

1211 1212
	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
		goto out;
1213

1214
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1215 1216

	memset(orb->request.command_block,
1217
	       0, sizeof(orb->request.command_block));
1218 1219 1220
	memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));

	orb->base.callback = complete_command_orb;
1221 1222 1223 1224
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
1225
		goto out;
1226

1227 1228 1229 1230
	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
		      lu->command_block_agent_address + SBP2_ORB_POINTER);
	retval = 0;
 out:
1231
	kref_put(&orb->base.kref, free_orb);
1232
	return retval;
1233 1234
}

1235 1236
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
1237
	struct sbp2_logical_unit *lu = sdev->hostdata;
1238 1239 1240

	sdev->allow_restart = 1;

1241 1242 1243 1244 1245 1246
	/*
	 * Update the dma alignment (minimum alignment requirements for
	 * start and end of DMA transfers) to be a sector
	 */
	blk_queue_update_dma_alignment(sdev->request_queue, 511);

1247
	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1248
		sdev->inquiry_len = 36;
1249

1250 1251 1252
	return 0;
}

1253 1254
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
1255
	struct sbp2_logical_unit *lu = sdev->hostdata;
1256

1257 1258 1259 1260
	sdev->use_10_for_rw = 1;

	if (sdev->type == TYPE_ROM)
		sdev->use_10_for_ms = 1;
1261

1262
	if (sdev->type == TYPE_DISK &&
1263
	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1264
		sdev->skip_ms_page_8 = 1;
1265 1266

	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1267
		sdev->fix_capacity = 1;
1268 1269

	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1270
		blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1271

1272 1273 1274 1275 1276 1277 1278 1279 1280
	return 0;
}

/*
 * Called by scsi stack when something has really gone wrong.  Usually
 * called when a command has timed-out for some reason.
 */
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
1281
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1282 1283

	fw_notify("sbp2_scsi_abort\n");
1284 1285
	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1286 1287 1288 1289

	return SUCCESS;
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
/*
 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
 *
 * This is the concatenation of target port identifier and logical unit
 * identifier as per SAM-2...SAM-4 annex A.
 */
static ssize_t
sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct scsi_device *sdev = to_scsi_device(dev);
1302
	struct sbp2_logical_unit *lu;
1303 1304 1305 1306 1307
	struct fw_device *device;

	if (!sdev)
		return 0;

1308 1309
	lu = sdev->hostdata;
	device = fw_device(lu->tgt->unit->device.parent);
1310 1311 1312

	return sprintf(buf, "%08x%08x:%06x:%04x\n",
			device->config_rom[3], device->config_rom[4],
1313
			lu->tgt->directory_id, lu->lun);
1314 1315 1316 1317 1318 1319 1320 1321 1322
}

static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);

static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
	&dev_attr_ieee1394_id,
	NULL
};

1323 1324 1325
static struct scsi_host_template scsi_driver_template = {
	.module			= THIS_MODULE,
	.name			= "SBP-2 IEEE-1394",
1326
	.proc_name		= sbp2_driver_name,
1327
	.queuecommand		= sbp2_scsi_queuecommand,
1328
	.slave_alloc		= sbp2_scsi_slave_alloc,
1329 1330 1331 1332 1333
	.slave_configure	= sbp2_scsi_slave_configure,
	.eh_abort_handler	= sbp2_scsi_abort,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.use_clustering		= ENABLE_CLUSTERING,
1334 1335
	.cmd_per_lun		= 1,
	.can_queue		= 1,
1336
	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1337 1338 1339 1340 1341 1342 1343
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);

1344 1345 1346 1347 1348
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif

1349 1350
static int __init sbp2_init(void)
{
1351 1352 1353 1354
	sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
	if (!sbp2_wq)
		return -ENOMEM;

1355 1356 1357 1358 1359 1360
	return driver_register(&sbp2_driver.driver);
}

static void __exit sbp2_cleanup(void)
{
	driver_unregister(&sbp2_driver.driver);
1361
	destroy_workqueue(sbp2_wq);
1362 1363 1364 1365
}

module_init(sbp2_init);
module_exit(sbp2_cleanup);