fw-sbp2.c 37.8 KB
Newer Older
1 2
/*
 * SBP2 driver (SCSI over IEEE1394)
3
 *
4
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21 22
/*
 * The basic structure of this driver is based on the old storage driver,
23 24 25 26 27 28 29 30
 * drivers/ieee1394/sbp2.c, originally written by
 *     James Goodwin <jamesg@filanet.com>
 * with later contributions and ongoing maintenance from
 *     Ben Collins <bcollins@debian.org>,
 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
 * and many others.
 */

31 32
#include <linux/kernel.h>
#include <linux/module.h>
33
#include <linux/moduleparam.h>
S
Stefan Richter 已提交
34
#include <linux/mod_devicetable.h>
35
#include <linux/device.h>
A
Andrew Morton 已提交
36
#include <linux/scatterlist.h>
37
#include <linux/dma-mapping.h>
38
#include <linux/blkdev.h>
39
#include <linux/string.h>
40
#include <linux/stringify.h>
41
#include <linux/timer.h>
42
#include <linux/workqueue.h>
43
#include <asm/system.h>
44 45 46 47 48 49 50 51 52 53

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"

54 55 56 57 58 59 60 61 62 63 64 65
/*
 * So far only bridges from Oxford Semiconductor are known to support
 * concurrent logins. Depending on firmware, four or two concurrent logins
 * are possible on OXFW911 and newer Oxsemi bridges.
 *
 * Concurrent logins are useful together with cluster filesystems.
 */
static int sbp2_param_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
		 "(default = Y, use N for concurrent initiators)");

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * Flags for firmware oddities
 *
 * - 128kB max transfer
 *   Limit transfer size. Necessary for some old bridges.
 *
 * - 36 byte inquiry
 *   When scsi_mod probes the device, let the inquiry command look like that
 *   from MS Windows.
 *
 * - skip mode page 8
 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
 *
 * - fix capacity
 *   Tell sd_mod to correct the last sector number reported by read_capacity.
 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
 *   Don't use this with devices which don't have this bug.
 *
 * - override internal blacklist
 *   Instead of adding to the built-in blacklist, use only the workarounds
 *   specified in the module load parameter.
 *   Useful if a blacklist entry interfered with a non-broken device.
 */
#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
#define SBP2_WORKAROUND_INQUIRY_36	0x2
#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
#define SBP2_WORKAROUND_OVERRIDE	0x100

static int sbp2_param_workarounds;
module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
	", or a combination)");

106
/* I don't know why the SCSI stack doesn't define something like this... */
107
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
108 109 110

static const char sbp2_driver_name[] = "sbp2";

111 112 113 114 115 116 117 118
/*
 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 * and one struct scsi_device per sbp2_logical_unit.
 */
struct sbp2_logical_unit {
	struct sbp2_target *tgt;
	struct list_head link;
	struct scsi_device *sdev;
119 120
	struct fw_address_handler address_handler;
	struct list_head orb_list;
121

122
	u64 command_block_agent_address;
123
	u16 lun;
124 125
	int login_id;

126
	/*
127 128 129 130
	 * The generation is updated once we've logged in or reconnected
	 * to the logical unit.  Thus, I/O to the device will automatically
	 * fail and get retried if it happens in a window where the device
	 * is not ready, e.g. after a bus reset but before we reconnect.
131
	 */
132
	int generation;
133 134
	int retries;
	struct delayed_work work;
135 136
};

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 * and one struct Scsi_Host per sbp2_target.
 */
struct sbp2_target {
	struct kref kref;
	struct fw_unit *unit;

	u64 management_agent_address;
	int directory_id;
	int node_id;
	int address_high;

	unsigned workarounds;
	struct list_head lu_list;
};

154
#define SBP2_MAX_SG_ELEMENT_LENGTH	0xf000
155
#define SBP2_ORB_TIMEOUT		2000	/* Timeout in ms */
156 157 158 159 160 161
#define SBP2_ORB_NULL			0x80000000

#define SBP2_DIRECTION_TO_MEDIA		0x0
#define SBP2_DIRECTION_FROM_MEDIA	0x1

/* Unit directory keys */
162 163 164
#define SBP2_CSR_FIRMWARE_REVISION	0x3c
#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST		0x0
#define SBP2_QUERY_LOGINS_REQUEST	0x1
#define SBP2_RECONNECT_REQUEST		0x3
#define SBP2_SET_PASSWORD_REQUEST	0x4
#define SBP2_LOGOUT_REQUEST		0x7
#define SBP2_ABORT_TASK_REQUEST		0xb
#define SBP2_ABORT_TASK_SET		0xc
#define SBP2_LOGICAL_UNIT_RESET		0xe
#define SBP2_TARGET_RESET_REQUEST	0xf

/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE		0x00
#define SBP2_AGENT_RESET		0x04
#define SBP2_ORB_POINTER		0x08
#define SBP2_DOORBELL			0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14

/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE	0x0
#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
#define SBP2_STATUS_VENDOR_DEPENDENT	0x3

190 191 192 193 194 195 196 197
#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
#define STATUS_GET_DATA(v)		((v).data)
198 199 200 201 202 203 204 205 206 207 208 209 210 211

struct sbp2_status {
	u32 status;
	u32 orb_low;
	u8 data[24];
};

struct sbp2_pointer {
	u32 high;
	u32 low;
};

struct sbp2_orb {
	struct fw_transaction t;
212
	struct kref kref;
213 214 215
	dma_addr_t request_bus;
	int rcode;
	struct sbp2_pointer pointer;
216
	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
217 218 219
	struct list_head link;
};

220 221 222
#define MANAGEMENT_ORB_LUN(v)			((v))
#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
223
#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
224 225
#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
226

227 228
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

struct sbp2_management_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer password;
		struct sbp2_pointer response;
		u32 misc;
		u32 length;
		struct sbp2_pointer status_fifo;
	} request;
	__be32 response[4];
	dma_addr_t response_bus;
	struct completion done;
	struct sbp2_status status;
};

245 246
#define LOGIN_RESPONSE_GET_LOGIN_ID(v)	((v).misc & 0xffff)
#define LOGIN_RESPONSE_GET_LENGTH(v)	(((v).misc >> 16) & 0xffff)
247 248 249 250 251 252

struct sbp2_login_response {
	u32 misc;
	struct sbp2_pointer command_block_agent;
	u32 reconnect_hold;
};
253 254 255 256 257 258 259 260
#define COMMAND_ORB_DATA_SIZE(v)	((v))
#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
#define COMMAND_ORB_SPEED(v)		((v) << 24)
#define COMMAND_ORB_DIRECTION(v)	((v) << 27)
#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define COMMAND_ORB_NOTIFY		((1) << 31)
261 262 263 264 265 266 267 268 269 270 271

struct sbp2_command_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer next;
		struct sbp2_pointer data_descriptor;
		u32 misc;
		u8 command_block[12];
	} request;
	struct scsi_cmnd *cmd;
	scsi_done_fn_t done;
272
	struct sbp2_logical_unit *lu;
273

274
	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	dma_addr_t page_table_bus;
};

/*
 * List of devices with known bugs.
 *
 * The firmware_revision field, masked with 0xffff00, is the best
 * indicator for the type of bridge chip of a device.  It yields a few
 * false positives but this did not break correctly behaving devices
 * so far.  We use ~0 as a wildcard, since the 24 bit values we get
 * from the config rom can never match that.
 */
static const struct {
	u32 firmware_revision;
	u32 model;
	unsigned workarounds;
} sbp2_workarounds_table[] = {
	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x001010,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
					  SBP2_WORKAROUND_MODE_SENSE_8,
	},
	/* Initio bridges, actually only needed for some older ones */ {
		.firmware_revision	= 0x000200,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
	},
	/* Symbios bridge */ {
		.firmware_revision	= 0xa0b800,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
308 309 310

	/*
	 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
311 312
	 * these iPods do not feature the read_capacity bug according
	 * to one report.  Read_capacity behaviour as well as model_id
313 314 315
	 * could change due to Apple-supplied firmware updates though.
	 */

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	/* iPod 4th generation. */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000021,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000023,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod Photo */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x00007e,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	}
};

333 334 335 336 337 338 339 340
static void
free_orb(struct kref *kref)
{
	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);

	kfree(orb);
}

341 342 343 344 345 346 347
static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
		  int tcode, int destination, int source,
		  int generation, int speed,
		  unsigned long long offset,
		  void *payload, size_t length, void *callback_data)
{
348
	struct sbp2_logical_unit *lu = callback_data;
349 350 351 352 353 354
	struct sbp2_orb *orb;
	struct sbp2_status status;
	size_t header_size;
	unsigned long flags;

	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
355
	    length == 0 || length > sizeof(status)) {
356 357 358 359 360 361 362 363
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	header_size = min(length, 2 * sizeof(u32));
	fw_memcpy_from_be32(&status, payload, header_size);
	if (length > header_size)
		memcpy(status.data, payload + 8, length - header_size);
364
	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
365 366 367 368 369 370 371
		fw_notify("non-orb related status write, not handled\n");
		fw_send_response(card, request, RCODE_COMPLETE);
		return;
	}

	/* Lookup the orb corresponding to this status write. */
	spin_lock_irqsave(&card->lock, flags);
372
	list_for_each_entry(orb, &lu->orb_list, link) {
373
		if (STATUS_GET_ORB_HIGH(status) == 0 &&
374 375
		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
			orb->rcode = RCODE_COMPLETE;
376 377 378 379 380 381
			list_del(&orb->link);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

382
	if (&orb->link != &lu->orb_list)
383 384 385 386
		orb->callback(orb, &status);
	else
		fw_error("status write for unknown orb\n");

387 388
	kref_put(&orb->kref, free_orb);

389 390 391 392 393 394 395 396 397 398
	fw_send_response(card, request, RCODE_COMPLETE);
}

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct sbp2_orb *orb = data;
	unsigned long flags;

399 400 401 402 403 404 405 406 407 408 409 410 411 412
	/*
	 * This is a little tricky.  We can get the status write for
	 * the orb before we get this callback.  The status write
	 * handler above will assume the orb pointer transaction was
	 * successful and set the rcode to RCODE_COMPLETE for the orb.
	 * So this callback only sets the rcode if it hasn't already
	 * been set and only does the cleanup if the transaction
	 * failed and we didn't already get a status write.
	 */
	spin_lock_irqsave(&card->lock, flags);

	if (orb->rcode == -1)
		orb->rcode = rcode;
	if (orb->rcode != RCODE_COMPLETE) {
413
		list_del(&orb->link);
414
		spin_unlock_irqrestore(&card->lock, flags);
415
		orb->callback(orb, NULL);
416 417
	} else {
		spin_unlock_irqrestore(&card->lock, flags);
418
	}
419 420

	kref_put(&orb->kref, free_orb);
421 422 423
}

static void
424
sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
425 426
	      int node_id, int generation, u64 offset)
{
427
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
428 429 430 431
	unsigned long flags;

	orb->pointer.high = 0;
	orb->pointer.low = orb->request_bus;
432
	fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
433 434

	spin_lock_irqsave(&device->card->lock, flags);
435
	list_add_tail(&orb->link, &lu->orb_list);
436 437
	spin_unlock_irqrestore(&device->card->lock, flags);

438 439 440 441
	/* Take a ref for the orb list and for the transaction callback. */
	kref_get(&orb->kref);
	kref_get(&orb->kref);

442
	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
443
			node_id, generation, device->max_speed, offset,
444
			&orb->pointer, sizeof(orb->pointer),
445 446 447
			complete_transaction, orb);
}

448
static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
449
{
450
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
451 452 453
	struct sbp2_orb *orb, *next;
	struct list_head list;
	unsigned long flags;
454
	int retval = -ENOENT;
455 456 457

	INIT_LIST_HEAD(&list);
	spin_lock_irqsave(&device->card->lock, flags);
458
	list_splice_init(&lu->orb_list, &list);
459 460 461
	spin_unlock_irqrestore(&device->card->lock, flags);

	list_for_each_entry_safe(orb, next, &list, link) {
462
		retval = 0;
463 464 465
		if (fw_cancel_transaction(device->card, &orb->t) == 0)
			continue;

466 467 468 469
		orb->rcode = RCODE_CANCELLED;
		orb->callback(orb, NULL);
	}

470
	return retval;
471 472
}

473 474 475 476
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
	struct sbp2_management_orb *orb =
477
		container_of(base_orb, struct sbp2_management_orb, base);
478 479

	if (status)
480
		memcpy(&orb->status, status, sizeof(*status));
481 482 483 484
	complete(&orb->done);
}

static int
485 486 487
sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
			 int generation, int function, int lun_or_login_id,
			 void *response)
488
{
489
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
490 491 492
	struct sbp2_management_orb *orb;
	int retval = -ENOMEM;

493
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
494 495 496
	if (orb == NULL)
		return -ENOMEM;

497
	kref_init(&orb->base.kref);
498 499
	orb->response_bus =
		dma_map_single(device->card->device, &orb->response,
500
			       sizeof(orb->response), DMA_FROM_DEVICE);
501
	if (dma_mapping_error(orb->response_bus))
502
		goto fail_mapping_response;
503 504 505 506 507

	orb->request.response.high    = 0;
	orb->request.response.low     = orb->response_bus;

	orb->request.misc =
508 509
		MANAGEMENT_ORB_NOTIFY |
		MANAGEMENT_ORB_FUNCTION(function) |
510
		MANAGEMENT_ORB_LUN(lun_or_login_id);
511
	orb->request.length =
512
		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
513

514 515
	orb->request.status_fifo.high = lu->address_handler.offset >> 32;
	orb->request.status_fifo.low  = lu->address_handler.offset;
516 517

	if (function == SBP2_LOGIN_REQUEST) {
518
		/* Ask for 2^2 == 4 seconds reconnect grace period */
519
		orb->request.misc |=
520 521
			MANAGEMENT_ORB_RECONNECT(2) |
			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
522 523
	}

524
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
525 526 527

	init_completion(&orb->done);
	orb->base.callback = complete_management_orb;
528

529 530 531 532 533 534
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
		goto fail_mapping_request;

535 536
	sbp2_send_orb(&orb->base, lu, node_id, generation,
		      lu->tgt->management_agent_address);
537

538 539
	wait_for_completion_timeout(&orb->done,
				    msecs_to_jiffies(SBP2_ORB_TIMEOUT));
540 541

	retval = -EIO;
542
	if (sbp2_cancel_orbs(lu) == 0) {
543
		fw_error("orb reply timed out, rcode=0x%02x\n",
544 545 546 547
			 orb->base.rcode);
		goto out;
	}

548 549
	if (orb->base.rcode != RCODE_COMPLETE) {
		fw_error("management write failed, rcode 0x%02x\n",
550 551 552 553
			 orb->base.rcode);
		goto out;
	}

554 555
	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
556
		fw_error("error status: %d:%d\n",
557 558
			 STATUS_GET_RESPONSE(orb->status),
			 STATUS_GET_SBP_STATUS(orb->status));
559 560 561 562 563 564
		goto out;
	}

	retval = 0;
 out:
	dma_unmap_single(device->card->device, orb->base.request_bus,
565
			 sizeof(orb->request), DMA_TO_DEVICE);
566
 fail_mapping_request:
567
	dma_unmap_single(device->card->device, orb->response_bus,
568
			 sizeof(orb->response), DMA_FROM_DEVICE);
569
 fail_mapping_response:
570 571
	if (response)
		fw_memcpy_from_be32(response,
572
				    orb->response, sizeof(orb->response));
573
	kref_put(&orb->base.kref, free_orb);
574 575 576 577 578 579 580 581 582 583 584 585 586

	return retval;
}

static void
complete_agent_reset_write(struct fw_card *card, int rcode,
			   void *payload, size_t length, void *data)
{
	struct fw_transaction *t = data;

	kfree(t);
}

587
static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
588
{
589
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
590 591 592
	struct fw_transaction *t;
	static u32 zero;

593
	t = kzalloc(sizeof(*t), GFP_ATOMIC);
594 595 596 597
	if (t == NULL)
		return -ENOMEM;

	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
598 599
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
600
			&zero, sizeof(zero), complete_agent_reset_write, t);
601 602 603 604

	return 0;
}

605
static void sbp2_release_target(struct kref *kref)
606
{
607 608 609 610
	struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
	struct sbp2_logical_unit *lu, *next;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
611
	struct fw_device *device = fw_device(tgt->unit->device.parent);
612 613 614 615 616

	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
		if (lu->sdev)
			scsi_remove_device(lu->sdev);

617 618 619 620 621
		if (!fw_device_is_shutdown(device))
			sbp2_send_management_orb(lu, tgt->node_id,
					lu->generation, SBP2_LOGOUT_REQUEST,
					lu->login_id, NULL);

622 623 624 625 626 627 628 629 630
		fw_core_remove_address_handler(&lu->address_handler);
		list_del(&lu->link);
		kfree(lu);
	}
	scsi_remove_host(shost);
	fw_notify("released %s\n", tgt->unit->device.bus_id);

	put_device(&tgt->unit->device);
	scsi_host_put(shost);
631 632
}

633 634
static struct workqueue_struct *sbp2_wq;

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
/*
 * Always get the target's kref when scheduling work on one its units.
 * Each workqueue job is responsible to call sbp2_target_put() upon return.
 */
static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
{
	if (queue_delayed_work(sbp2_wq, &lu->work, delay))
		kref_get(&lu->tgt->kref);
}

static void sbp2_target_put(struct sbp2_target *tgt)
{
	kref_put(&tgt->kref, sbp2_release_target);
}

650 651
static void sbp2_reconnect(struct work_struct *work);

652 653
static void sbp2_login(struct work_struct *work)
{
654 655 656 657 658 659 660
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
	struct Scsi_Host *shost =
		container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
	struct scsi_device *sdev;
	struct scsi_lun eight_bytes_lun;
	struct fw_unit *unit = lu->tgt->unit;
661 662
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_login_response response;
663
	int generation, node_id, local_node_id;
664

665
	generation    = device->generation;
666
	smp_rmb();    /* node_id must not be older than generation */
667 668
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
669

670 671
	if (sbp2_send_management_orb(lu, node_id, generation,
				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
672 673 674
		if (lu->retries++ < 5)
			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
		else
675 676
			fw_error("failed to login to %s LUN %04x\n",
				 unit->device.bus_id, lu->lun);
677
		goto out;
678 679
	}

680 681 682
	lu->generation        = generation;
	lu->tgt->node_id      = node_id;
	lu->tgt->address_high = local_node_id << 16;
683 684

	/* Get command block agent offset and login id. */
685
	lu->command_block_agent_address =
686
		((u64) (response.command_block_agent.high & 0xffff) << 32) |
687
		response.command_block_agent.low;
688
	lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
689

690 691
	fw_notify("logged in to %s LUN %04x (%d retries)\n",
		  unit->device.bus_id, lu->lun, lu->retries);
692 693 694 695 696 697

#if 0
	/* FIXME: The linux1394 sbp2 does this last step. */
	sbp2_set_busy_timeout(scsi_id);
#endif

698 699 700 701 702 703
	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
	sbp2_agent_reset(lu);

	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
	eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
	eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
704

705 706 707 708 709
	sdev = __scsi_add_device(shost, 0, 0,
				 scsilun_to_int(&eight_bytes_lun), lu);
	if (IS_ERR(sdev)) {
		sbp2_send_management_orb(lu, node_id, generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
710 711 712 713
		/*
		 * Set this back to sbp2_login so we fall back and
		 * retry login on bus reset.
		 */
714 715 716 717
		PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
	} else {
		lu->sdev = sdev;
		scsi_device_put(sdev);
718
	}
719 720
 out:
	sbp2_target_put(lu->tgt);
721
}
722

723
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
724
{
725
	struct sbp2_logical_unit *lu;
726

727 728 729
	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
	if (!lu)
		return -ENOMEM;
730

731 732 733
	lu->address_handler.length           = 0x100;
	lu->address_handler.address_callback = sbp2_status_write;
	lu->address_handler.callback_data    = lu;
734

735 736 737 738 739
	if (fw_core_add_address_handler(&lu->address_handler,
					&fw_high_memory_region) < 0) {
		kfree(lu);
		return -ENOMEM;
	}
740

741 742 743 744 745 746
	lu->tgt  = tgt;
	lu->sdev = NULL;
	lu->lun  = lun_entry & 0xffff;
	lu->retries = 0;
	INIT_LIST_HEAD(&lu->orb_list);
	INIT_DELAYED_WORK(&lu->work, sbp2_login);
747

748 749 750
	list_add_tail(&lu->link, &tgt->lu_list);
	return 0;
}
751

752 753 754 755
static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
{
	struct fw_csr_iterator ci;
	int key, value;
756

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
		    sbp2_add_logical_unit(tgt, value) < 0)
			return -ENOMEM;
	return 0;
}

static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
			      u32 *model, u32 *firmware_revision)
{
	struct fw_csr_iterator ci;
	int key, value;

	fw_csr_iterator_init(&ci, directory);
772 773
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
774

775
		case CSR_DEPENDENT_INFO | CSR_OFFSET:
776 777
			tgt->management_agent_address =
					CSR_REGISTER_BASE + 4 * value;
778
			break;
779 780 781

		case CSR_DIRECTORY_ID:
			tgt->directory_id = value;
782
			break;
783

784
		case CSR_MODEL:
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
			*model = value;
			break;

		case SBP2_CSR_FIRMWARE_REVISION:
			*firmware_revision = value;
			break;

		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
			if (sbp2_add_logical_unit(tgt, value) < 0)
				return -ENOMEM;
			break;

		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
			if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
				return -ENOMEM;
800 801 802
			break;
		}
	}
803 804 805 806 807 808 809
	return 0;
}

static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
				  u32 firmware_revision)
{
	int i;
810 811 812 813 814 815
	unsigned w = sbp2_param_workarounds;

	if (w)
		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
			  "if you need the workarounds parameter for %s\n",
			  tgt->unit->device.bus_id);
816

817 818
	if (w & SBP2_WORKAROUND_OVERRIDE)
		goto out;
819 820

	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
821

822 823 824
		if (sbp2_workarounds_table[i].firmware_revision !=
		    (firmware_revision & 0xffffff00))
			continue;
825

826 827 828
		if (sbp2_workarounds_table[i].model != model &&
		    sbp2_workarounds_table[i].model != ~0)
			continue;
829

830
		w |= sbp2_workarounds_table[i].workarounds;
831 832
		break;
	}
833 834
 out:
	if (w)
835
		fw_notify("Workarounds for %s: 0x%x "
836
			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
837
			  tgt->unit->device.bus_id,
838 839
			  w, firmware_revision, model);
	tgt->workarounds = w;
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
}

static struct scsi_host_template scsi_driver_template;

static int sbp2_probe(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_target *tgt;
	struct sbp2_logical_unit *lu;
	struct Scsi_Host *shost;
	u32 model, firmware_revision;

	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
	if (shost == NULL)
		return -ENOMEM;

	tgt = (struct sbp2_target *)shost->hostdata;
	unit->device.driver_data = tgt;
	tgt->unit = unit;
	kref_init(&tgt->kref);
	INIT_LIST_HEAD(&tgt->lu_list);

	if (fw_device_enable_phys_dma(device) < 0)
		goto fail_shost_put;

	if (scsi_add_host(shost, &unit->device) < 0)
		goto fail_shost_put;

	/* Initialize to values that won't match anything in our table. */
	firmware_revision = 0xff000000;
	model = 0xff000000;

	/* implicit directory ID */
	tgt->directory_id = ((unit->directory - device->config_rom) * 4
			     + CSR_CONFIG_ROM) & 0xffffff;

	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
			       &firmware_revision) < 0)
		goto fail_tgt_put;

	sbp2_init_workarounds(tgt, model, firmware_revision);
882

883 884
	get_device(&unit->device);

885
	/* Do the login in a workqueue so we can easily reschedule retries. */
886
	list_for_each_entry(lu, &tgt->lu_list, link)
887
		sbp2_queue_work(lu, 0);
888
	return 0;
889

890
 fail_tgt_put:
891
	sbp2_target_put(tgt);
892 893 894 895 896
	return -ENOMEM;

 fail_shost_put:
	scsi_host_put(shost);
	return -ENOMEM;
897 898 899 900 901
}

static int sbp2_remove(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
902
	struct sbp2_target *tgt = unit->device.driver_data;
903

904
	sbp2_target_put(tgt);
905 906 907 908 909
	return 0;
}

static void sbp2_reconnect(struct work_struct *work)
{
910 911 912
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
	struct fw_unit *unit = lu->tgt->unit;
913 914 915
	struct fw_device *device = fw_device(unit->device.parent);
	int generation, node_id, local_node_id;

916
	generation    = device->generation;
917
	smp_rmb();    /* node_id must not be older than generation */
918 919
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
920

921
	if (sbp2_send_management_orb(lu, node_id, generation,
922
				     SBP2_RECONNECT_REQUEST,
923 924
				     lu->login_id, NULL) < 0) {
		if (lu->retries++ >= 5) {
925 926 927
			fw_error("failed to reconnect to %s\n",
				 unit->device.bus_id);
			/* Fall back and try to log in again. */
928 929
			lu->retries = 0;
			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
930
		}
931 932
		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
		goto out;
933
	}
934

935 936 937
	lu->generation        = generation;
	lu->tgt->node_id      = node_id;
	lu->tgt->address_high = local_node_id << 16;
938

939 940 941 942 943
	fw_notify("reconnected to %s LUN %04x (%d retries)\n",
		  unit->device.bus_id, lu->lun, lu->retries);

	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
944 945
 out:
	sbp2_target_put(lu->tgt);
946 947 948 949
}

static void sbp2_update(struct fw_unit *unit)
{
950 951
	struct sbp2_target *tgt = unit->device.driver_data;
	struct sbp2_logical_unit *lu;
952

953 954 955 956 957 958 959 960
	fw_device_enable_phys_dma(fw_device(unit->device.parent));

	/*
	 * Fw-core serializes sbp2_update() against sbp2_remove().
	 * Iteration over tgt->lu_list is therefore safe here.
	 */
	list_for_each_entry(lu, &tgt->lu_list, link) {
		lu->retries = 0;
961
		sbp2_queue_work(lu, 0);
962
	}
963 964 965 966 967
}

#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
#define SBP2_SW_VERSION_ENTRY	0x00010483

968
static const struct fw_device_id sbp2_id_table[] = {
969 970 971
	{
		.match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
972
		.version      = SBP2_SW_VERSION_ENTRY,
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	},
	{ }
};

static struct fw_driver sbp2_driver = {
	.driver   = {
		.owner  = THIS_MODULE,
		.name   = sbp2_driver_name,
		.bus    = &fw_bus_type,
		.probe  = sbp2_probe,
		.remove = sbp2_remove,
	},
	.update   = sbp2_update,
	.id_table = sbp2_id_table,
};

989 990
static unsigned int
sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
991
{
992 993
	int sam_status;

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	sense_data[0] = 0x70;
	sense_data[1] = 0x0;
	sense_data[2] = sbp2_status[1];
	sense_data[3] = sbp2_status[4];
	sense_data[4] = sbp2_status[5];
	sense_data[5] = sbp2_status[6];
	sense_data[6] = sbp2_status[7];
	sense_data[7] = 10;
	sense_data[8] = sbp2_status[8];
	sense_data[9] = sbp2_status[9];
	sense_data[10] = sbp2_status[10];
	sense_data[11] = sbp2_status[11];
	sense_data[12] = sbp2_status[2];
	sense_data[13] = sbp2_status[3];
	sense_data[14] = sbp2_status[12];
	sense_data[15] = sbp2_status[13];

1011
	sam_status = sbp2_status[0] & 0x3f;
1012

1013 1014
	switch (sam_status) {
	case SAM_STAT_GOOD:
1015 1016
	case SAM_STAT_CHECK_CONDITION:
	case SAM_STAT_CONDITION_MET:
1017
	case SAM_STAT_BUSY:
1018 1019
	case SAM_STAT_RESERVATION_CONFLICT:
	case SAM_STAT_COMMAND_TERMINATED:
1020 1021
		return DID_OK << 16 | sam_status;

1022
	default:
1023
		return DID_ERROR << 16;
1024 1025 1026 1027 1028 1029
	}
}

static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
1030 1031
	struct sbp2_command_orb *orb =
		container_of(base_orb, struct sbp2_command_orb, base);
1032
	struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1033 1034 1035
	int result;

	if (status != NULL) {
1036
		if (STATUS_GET_DEAD(*status))
1037
			sbp2_agent_reset(orb->lu);
1038

1039
		switch (STATUS_GET_RESPONSE(*status)) {
1040
		case SBP2_STATUS_REQUEST_COMPLETE:
1041
			result = DID_OK << 16;
1042 1043
			break;
		case SBP2_STATUS_TRANSPORT_FAILURE:
1044
			result = DID_BUS_BUSY << 16;
1045 1046 1047 1048
			break;
		case SBP2_STATUS_ILLEGAL_REQUEST:
		case SBP2_STATUS_VENDOR_DEPENDENT:
		default:
1049
			result = DID_ERROR << 16;
1050 1051 1052
			break;
		}

1053 1054
		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1055 1056
							   orb->cmd->sense_buffer);
	} else {
1057 1058
		/*
		 * If the orb completes with status == NULL, something
1059
		 * went wrong, typically a bus reset happened mid-orb
1060 1061
		 * or when sending the write (less likely).
		 */
1062
		result = DID_BUS_BUSY << 16;
1063 1064 1065
	}

	dma_unmap_single(device->card->device, orb->base.request_bus,
1066
			 sizeof(orb->request), DMA_TO_DEVICE);
1067

1068 1069 1070
	if (scsi_sg_count(orb->cmd) > 0)
		dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
			     scsi_sg_count(orb->cmd),
1071 1072 1073 1074
			     orb->cmd->sc_data_direction);

	if (orb->page_table_bus != 0)
		dma_unmap_single(device->card->device, orb->page_table_bus,
1075
				 sizeof(orb->page_table), DMA_TO_DEVICE);
1076

1077
	orb->cmd->result = result;
1078 1079 1080
	orb->done(orb->cmd);
}

1081 1082 1083
static int
sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
		     struct sbp2_logical_unit *lu)
1084 1085 1086 1087 1088
{
	struct scatterlist *sg;
	int sg_len, l, i, j, count;
	dma_addr_t sg_addr;

1089 1090
	sg = scsi_sglist(orb->cmd);
	count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1091
			   orb->cmd->sc_data_direction);
1092 1093
	if (count == 0)
		goto fail;
1094

1095 1096
	/*
	 * Handle the special case where there is only one element in
1097 1098 1099
	 * the scatter list by converting it to an immediate block
	 * request. This is also a workaround for broken devices such
	 * as the second generation iPod which doesn't support page
1100 1101
	 * tables.
	 */
1102
	if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1103
		orb->request.data_descriptor.high = lu->tgt->address_high;
1104
		orb->request.data_descriptor.low  = sg_dma_address(sg);
1105
		orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1106
		return 0;
1107 1108
	}

1109 1110
	/*
	 * Convert the scatterlist to an sbp2 page table.  If any
1111 1112 1113 1114
	 * scatterlist entries are too big for sbp2, we split them as we
	 * go.  Even if we ask the block I/O layer to not give us sg
	 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
	 * during DMA mapping, and Linux currently doesn't prevent this.
1115
	 */
1116 1117 1118
	for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
		sg_len = sg_dma_len(sg);
		sg_addr = sg_dma_address(sg);
1119
		while (sg_len) {
1120 1121 1122 1123 1124
			/* FIXME: This won't get us out of the pinch. */
			if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
				fw_error("page table overflow\n");
				goto fail_page_table;
			}
1125 1126 1127 1128 1129 1130 1131 1132 1133
			l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
			orb->page_table[j].low = sg_addr;
			orb->page_table[j].high = (l << 16);
			sg_addr += l;
			sg_len -= l;
			j++;
		}
	}

1134 1135 1136 1137 1138 1139 1140
	fw_memcpy_to_be32(orb->page_table, orb->page_table,
			  sizeof(orb->page_table[0]) * j);
	orb->page_table_bus =
		dma_map_single(device->card->device, orb->page_table,
			       sizeof(orb->page_table), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->page_table_bus))
		goto fail_page_table;
1141

1142 1143
	/*
	 * The data_descriptor pointer is the one case where we need
1144 1145 1146
	 * to fill in the node ID part of the address.  All other
	 * pointers assume that the data referenced reside on the
	 * initiator (i.e. us), but data_descriptor can refer to data
1147 1148
	 * on other nodes so we need to put our ID in descriptor.high.
	 */
1149
	orb->request.data_descriptor.high = lu->tgt->address_high;
1150 1151
	orb->request.data_descriptor.low  = orb->page_table_bus;
	orb->request.misc |=
1152 1153
		COMMAND_ORB_PAGE_TABLE_PRESENT |
		COMMAND_ORB_DATA_SIZE(j);
1154

1155 1156 1157
	return 0;

 fail_page_table:
1158
	dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1159 1160 1161
		     orb->cmd->sc_data_direction);
 fail:
	return -ENOMEM;
1162 1163 1164 1165 1166 1167
}

/* SCSI stack integration */

static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
1168 1169
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1170
	struct sbp2_command_orb *orb;
1171
	unsigned max_payload;
1172
	int retval = SCSI_MLQUEUE_HOST_BUSY;
1173

1174 1175 1176 1177
	/*
	 * Bidirectional commands are not yet implemented, and unknown
	 * transfer direction not handled.
	 */
1178
	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1179
		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1180 1181 1182
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
1183 1184
	}

1185
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1186 1187
	if (orb == NULL) {
		fw_notify("failed to alloc orb\n");
1188
		return SCSI_MLQUEUE_HOST_BUSY;
1189 1190
	}

1191 1192
	/* Initialize rcode to something not RCODE_COMPLETE. */
	orb->base.rcode = -1;
1193
	kref_init(&orb->base.kref);
1194

1195
	orb->lu   = lu;
1196 1197 1198 1199 1200
	orb->done = done;
	orb->cmd  = cmd;

	orb->request.next.high   = SBP2_ORB_NULL;
	orb->request.next.low    = 0x0;
1201 1202
	/*
	 * At speed 100 we can do 512 bytes per packet, at speed 200,
1203 1204
	 * 1024 bytes per packet etc.  The SBP-2 max_payload field
	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1205 1206
	 * if we set this to max_speed + 7, we get the right value.
	 */
1207 1208
	max_payload = min(device->max_speed + 7,
			  device->card->max_receive - 1);
1209
	orb->request.misc =
1210
		COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1211
		COMMAND_ORB_SPEED(device->max_speed) |
1212
		COMMAND_ORB_NOTIFY;
1213 1214 1215

	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
		orb->request.misc |=
1216
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1217 1218
	else if (cmd->sc_data_direction == DMA_TO_DEVICE)
		orb->request.misc |=
1219
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1220

1221 1222
	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
		goto out;
1223

1224
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1225 1226

	memset(orb->request.command_block,
1227
	       0, sizeof(orb->request.command_block));
1228 1229 1230
	memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));

	orb->base.callback = complete_command_orb;
1231 1232 1233 1234
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
1235
		goto out;
1236

1237 1238 1239 1240
	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
		      lu->command_block_agent_address + SBP2_ORB_POINTER);
	retval = 0;
 out:
1241
	kref_put(&orb->base.kref, free_orb);
1242
	return retval;
1243 1244
}

1245 1246
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
1247
	struct sbp2_logical_unit *lu = sdev->hostdata;
1248 1249 1250

	sdev->allow_restart = 1;

1251 1252 1253 1254 1255 1256
	/*
	 * Update the dma alignment (minimum alignment requirements for
	 * start and end of DMA transfers) to be a sector
	 */
	blk_queue_update_dma_alignment(sdev->request_queue, 511);

1257
	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1258
		sdev->inquiry_len = 36;
1259

1260 1261 1262
	return 0;
}

1263 1264
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
1265
	struct sbp2_logical_unit *lu = sdev->hostdata;
1266

1267 1268 1269 1270
	sdev->use_10_for_rw = 1;

	if (sdev->type == TYPE_ROM)
		sdev->use_10_for_ms = 1;
1271

1272
	if (sdev->type == TYPE_DISK &&
1273
	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1274
		sdev->skip_ms_page_8 = 1;
1275 1276

	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1277
		sdev->fix_capacity = 1;
1278 1279

	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1280
		blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1281

1282 1283 1284 1285 1286 1287 1288 1289 1290
	return 0;
}

/*
 * Called by scsi stack when something has really gone wrong.  Usually
 * called when a command has timed-out for some reason.
 */
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
1291
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1292 1293

	fw_notify("sbp2_scsi_abort\n");
1294 1295
	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1296 1297 1298 1299

	return SUCCESS;
}

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
/*
 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
 *
 * This is the concatenation of target port identifier and logical unit
 * identifier as per SAM-2...SAM-4 annex A.
 */
static ssize_t
sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct scsi_device *sdev = to_scsi_device(dev);
1312
	struct sbp2_logical_unit *lu;
1313 1314 1315 1316 1317
	struct fw_device *device;

	if (!sdev)
		return 0;

1318 1319
	lu = sdev->hostdata;
	device = fw_device(lu->tgt->unit->device.parent);
1320 1321 1322

	return sprintf(buf, "%08x%08x:%06x:%04x\n",
			device->config_rom[3], device->config_rom[4],
1323
			lu->tgt->directory_id, lu->lun);
1324 1325 1326 1327 1328 1329 1330 1331 1332
}

static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);

static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
	&dev_attr_ieee1394_id,
	NULL
};

1333 1334 1335
static struct scsi_host_template scsi_driver_template = {
	.module			= THIS_MODULE,
	.name			= "SBP-2 IEEE-1394",
1336
	.proc_name		= sbp2_driver_name,
1337
	.queuecommand		= sbp2_scsi_queuecommand,
1338
	.slave_alloc		= sbp2_scsi_slave_alloc,
1339 1340 1341 1342 1343
	.slave_configure	= sbp2_scsi_slave_configure,
	.eh_abort_handler	= sbp2_scsi_abort,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.use_clustering		= ENABLE_CLUSTERING,
1344 1345
	.cmd_per_lun		= 1,
	.can_queue		= 1,
1346
	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1347 1348 1349 1350 1351 1352 1353
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);

1354 1355 1356 1357 1358
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif

1359 1360
static int __init sbp2_init(void)
{
1361 1362 1363 1364
	sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
	if (!sbp2_wq)
		return -ENOMEM;

1365 1366 1367 1368 1369 1370
	return driver_register(&sbp2_driver.driver);
}

static void __exit sbp2_cleanup(void)
{
	driver_unregister(&sbp2_driver.driver);
1371
	destroy_workqueue(sbp2_wq);
1372 1373 1374 1375
}

module_init(sbp2_init);
module_exit(sbp2_cleanup);