cik.c 200.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright 2012 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Alex Deucher
 */
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/module.h>
#include "drmP.h"
#include "radeon.h"
29
#include "radeon_asic.h"
30 31
#include "cikd.h"
#include "atom.h"
32
#include "cik_blit_shaders.h"
33

34 35 36 37 38 39 40 41 42 43 44 45
/* GFX */
#define CIK_PFP_UCODE_SIZE 2144
#define CIK_ME_UCODE_SIZE 2144
#define CIK_CE_UCODE_SIZE 2144
/* compute */
#define CIK_MEC_UCODE_SIZE 4192
/* interrupts */
#define BONAIRE_RLC_UCODE_SIZE 2048
#define KB_RLC_UCODE_SIZE 2560
#define KV_RLC_UCODE_SIZE 2560
/* gddr controller */
#define CIK_MC_UCODE_SIZE 7866
46 47 48
/* sdma */
#define CIK_SDMA_UCODE_SIZE 1050
#define CIK_SDMA_UCODE_VERSION 64
49 50 51 52 53 54 55

MODULE_FIRMWARE("radeon/BONAIRE_pfp.bin");
MODULE_FIRMWARE("radeon/BONAIRE_me.bin");
MODULE_FIRMWARE("radeon/BONAIRE_ce.bin");
MODULE_FIRMWARE("radeon/BONAIRE_mec.bin");
MODULE_FIRMWARE("radeon/BONAIRE_mc.bin");
MODULE_FIRMWARE("radeon/BONAIRE_rlc.bin");
56
MODULE_FIRMWARE("radeon/BONAIRE_sdma.bin");
57 58 59 60 61
MODULE_FIRMWARE("radeon/KAVERI_pfp.bin");
MODULE_FIRMWARE("radeon/KAVERI_me.bin");
MODULE_FIRMWARE("radeon/KAVERI_ce.bin");
MODULE_FIRMWARE("radeon/KAVERI_mec.bin");
MODULE_FIRMWARE("radeon/KAVERI_rlc.bin");
62
MODULE_FIRMWARE("radeon/KAVERI_sdma.bin");
63 64 65 66 67
MODULE_FIRMWARE("radeon/KABINI_pfp.bin");
MODULE_FIRMWARE("radeon/KABINI_me.bin");
MODULE_FIRMWARE("radeon/KABINI_ce.bin");
MODULE_FIRMWARE("radeon/KABINI_mec.bin");
MODULE_FIRMWARE("radeon/KABINI_rlc.bin");
68
MODULE_FIRMWARE("radeon/KABINI_sdma.bin");
69

70 71
extern int r600_ih_ring_alloc(struct radeon_device *rdev);
extern void r600_ih_ring_fini(struct radeon_device *rdev);
72 73
extern void evergreen_mc_stop(struct radeon_device *rdev, struct evergreen_mc_save *save);
extern void evergreen_mc_resume(struct radeon_device *rdev, struct evergreen_mc_save *save);
A
Alex Deucher 已提交
74
extern bool evergreen_is_display_hung(struct radeon_device *rdev);
75
extern void si_vram_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc);
76 77
extern void si_rlc_fini(struct radeon_device *rdev);
extern int si_rlc_init(struct radeon_device *rdev);
A
Alex Deucher 已提交
78
static void cik_rlc_stop(struct radeon_device *rdev);
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Indirect registers accessor
 */
u32 cik_pciep_rreg(struct radeon_device *rdev, u32 reg)
{
	u32 r;

	WREG32(PCIE_INDEX, reg);
	(void)RREG32(PCIE_INDEX);
	r = RREG32(PCIE_DATA);
	return r;
}

void cik_pciep_wreg(struct radeon_device *rdev, u32 reg, u32 v)
{
	WREG32(PCIE_INDEX, reg);
	(void)RREG32(PCIE_INDEX);
	WREG32(PCIE_DATA, v);
	(void)RREG32(PCIE_DATA);
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static const u32 bonaire_golden_spm_registers[] =
{
	0x30800, 0xe0ffffff, 0xe0000000
};

static const u32 bonaire_golden_common_registers[] =
{
	0xc770, 0xffffffff, 0x00000800,
	0xc774, 0xffffffff, 0x00000800,
	0xc798, 0xffffffff, 0x00007fbf,
	0xc79c, 0xffffffff, 0x00007faf
};

static const u32 bonaire_golden_registers[] =
{
	0x3354, 0x00000333, 0x00000333,
	0x3350, 0x000c0fc0, 0x00040200,
	0x9a10, 0x00010000, 0x00058208,
	0x3c000, 0xffff1fff, 0x00140000,
	0x3c200, 0xfdfc0fff, 0x00000100,
	0x3c234, 0x40000000, 0x40000200,
	0x9830, 0xffffffff, 0x00000000,
	0x9834, 0xf00fffff, 0x00000400,
	0x9838, 0x0002021c, 0x00020200,
	0xc78, 0x00000080, 0x00000000,
	0x5bb0, 0x000000f0, 0x00000070,
	0x5bc0, 0xf0311fff, 0x80300000,
	0x98f8, 0x73773777, 0x12010001,
	0x350c, 0x00810000, 0x408af000,
	0x7030, 0x31000111, 0x00000011,
	0x2f48, 0x73773777, 0x12010001,
	0x220c, 0x00007fb6, 0x0021a1b1,
	0x2210, 0x00007fb6, 0x002021b1,
	0x2180, 0x00007fb6, 0x00002191,
	0x2218, 0x00007fb6, 0x002121b1,
	0x221c, 0x00007fb6, 0x002021b1,
	0x21dc, 0x00007fb6, 0x00002191,
	0x21e0, 0x00007fb6, 0x00002191,
	0x3628, 0x0000003f, 0x0000000a,
	0x362c, 0x0000003f, 0x0000000a,
	0x2ae4, 0x00073ffe, 0x000022a2,
	0x240c, 0x000007ff, 0x00000000,
	0x8a14, 0xf000003f, 0x00000007,
	0x8bf0, 0x00002001, 0x00000001,
	0x8b24, 0xffffffff, 0x00ffffff,
	0x30a04, 0x0000ff0f, 0x00000000,
	0x28a4c, 0x07ffffff, 0x06000000,
	0x4d8, 0x00000fff, 0x00000100,
	0x3e78, 0x00000001, 0x00000002,
	0x9100, 0x03000000, 0x0362c688,
	0x8c00, 0x000000ff, 0x00000001,
	0xe40, 0x00001fff, 0x00001fff,
	0x9060, 0x0000007f, 0x00000020,
	0x9508, 0x00010000, 0x00010000,
	0xac14, 0x000003ff, 0x000000f3,
	0xac0c, 0xffffffff, 0x00001032
};

static const u32 bonaire_mgcg_cgcg_init[] =
{
	0xc420, 0xffffffff, 0xfffffffc,
	0x30800, 0xffffffff, 0xe0000000,
	0x3c2a0, 0xffffffff, 0x00000100,
	0x3c208, 0xffffffff, 0x00000100,
	0x3c2c0, 0xffffffff, 0xc0000100,
	0x3c2c8, 0xffffffff, 0xc0000100,
	0x3c2c4, 0xffffffff, 0xc0000100,
	0x55e4, 0xffffffff, 0x00600100,
	0x3c280, 0xffffffff, 0x00000100,
	0x3c214, 0xffffffff, 0x06000100,
	0x3c220, 0xffffffff, 0x00000100,
	0x3c218, 0xffffffff, 0x06000100,
	0x3c204, 0xffffffff, 0x00000100,
	0x3c2e0, 0xffffffff, 0x00000100,
	0x3c224, 0xffffffff, 0x00000100,
	0x3c200, 0xffffffff, 0x00000100,
	0x3c230, 0xffffffff, 0x00000100,
	0x3c234, 0xffffffff, 0x00000100,
	0x3c250, 0xffffffff, 0x00000100,
	0x3c254, 0xffffffff, 0x00000100,
	0x3c258, 0xffffffff, 0x00000100,
	0x3c25c, 0xffffffff, 0x00000100,
	0x3c260, 0xffffffff, 0x00000100,
	0x3c27c, 0xffffffff, 0x00000100,
	0x3c278, 0xffffffff, 0x00000100,
	0x3c210, 0xffffffff, 0x06000100,
	0x3c290, 0xffffffff, 0x00000100,
	0x3c274, 0xffffffff, 0x00000100,
	0x3c2b4, 0xffffffff, 0x00000100,
	0x3c2b0, 0xffffffff, 0x00000100,
	0x3c270, 0xffffffff, 0x00000100,
	0x30800, 0xffffffff, 0xe0000000,
	0x3c020, 0xffffffff, 0x00010000,
	0x3c024, 0xffffffff, 0x00030002,
	0x3c028, 0xffffffff, 0x00040007,
	0x3c02c, 0xffffffff, 0x00060005,
	0x3c030, 0xffffffff, 0x00090008,
	0x3c034, 0xffffffff, 0x00010000,
	0x3c038, 0xffffffff, 0x00030002,
	0x3c03c, 0xffffffff, 0x00040007,
	0x3c040, 0xffffffff, 0x00060005,
	0x3c044, 0xffffffff, 0x00090008,
	0x3c048, 0xffffffff, 0x00010000,
	0x3c04c, 0xffffffff, 0x00030002,
	0x3c050, 0xffffffff, 0x00040007,
	0x3c054, 0xffffffff, 0x00060005,
	0x3c058, 0xffffffff, 0x00090008,
	0x3c05c, 0xffffffff, 0x00010000,
	0x3c060, 0xffffffff, 0x00030002,
	0x3c064, 0xffffffff, 0x00040007,
	0x3c068, 0xffffffff, 0x00060005,
	0x3c06c, 0xffffffff, 0x00090008,
	0x3c070, 0xffffffff, 0x00010000,
	0x3c074, 0xffffffff, 0x00030002,
	0x3c078, 0xffffffff, 0x00040007,
	0x3c07c, 0xffffffff, 0x00060005,
	0x3c080, 0xffffffff, 0x00090008,
	0x3c084, 0xffffffff, 0x00010000,
	0x3c088, 0xffffffff, 0x00030002,
	0x3c08c, 0xffffffff, 0x00040007,
	0x3c090, 0xffffffff, 0x00060005,
	0x3c094, 0xffffffff, 0x00090008,
	0x3c098, 0xffffffff, 0x00010000,
	0x3c09c, 0xffffffff, 0x00030002,
	0x3c0a0, 0xffffffff, 0x00040007,
	0x3c0a4, 0xffffffff, 0x00060005,
	0x3c0a8, 0xffffffff, 0x00090008,
	0x3c000, 0xffffffff, 0x96e00200,
	0x8708, 0xffffffff, 0x00900100,
	0xc424, 0xffffffff, 0x0020003f,
	0x38, 0xffffffff, 0x0140001c,
	0x3c, 0x000f0000, 0x000f0000,
	0x220, 0xffffffff, 0xC060000C,
	0x224, 0xc0000fff, 0x00000100,
	0xf90, 0xffffffff, 0x00000100,
	0xf98, 0x00000101, 0x00000000,
	0x20a8, 0xffffffff, 0x00000104,
	0x55e4, 0xff000fff, 0x00000100,
	0x30cc, 0xc0000fff, 0x00000104,
	0xc1e4, 0x00000001, 0x00000001,
	0xd00c, 0xff000ff0, 0x00000100,
	0xd80c, 0xff000ff0, 0x00000100
};

static const u32 spectre_golden_spm_registers[] =
{
	0x30800, 0xe0ffffff, 0xe0000000
};

static const u32 spectre_golden_common_registers[] =
{
	0xc770, 0xffffffff, 0x00000800,
	0xc774, 0xffffffff, 0x00000800,
	0xc798, 0xffffffff, 0x00007fbf,
	0xc79c, 0xffffffff, 0x00007faf
};

static const u32 spectre_golden_registers[] =
{
	0x3c000, 0xffff1fff, 0x96940200,
	0x3c00c, 0xffff0001, 0xff000000,
	0x3c200, 0xfffc0fff, 0x00000100,
	0x6ed8, 0x00010101, 0x00010000,
	0x9834, 0xf00fffff, 0x00000400,
	0x9838, 0xfffffffc, 0x00020200,
	0x5bb0, 0x000000f0, 0x00000070,
	0x5bc0, 0xf0311fff, 0x80300000,
	0x98f8, 0x73773777, 0x12010001,
	0x9b7c, 0x00ff0000, 0x00fc0000,
	0x2f48, 0x73773777, 0x12010001,
	0x8a14, 0xf000003f, 0x00000007,
	0x8b24, 0xffffffff, 0x00ffffff,
	0x28350, 0x3f3f3fff, 0x00000082,
	0x28355, 0x0000003f, 0x00000000,
	0x3e78, 0x00000001, 0x00000002,
	0x913c, 0xffff03df, 0x00000004,
	0xc768, 0x00000008, 0x00000008,
	0x8c00, 0x000008ff, 0x00000800,
	0x9508, 0x00010000, 0x00010000,
	0xac0c, 0xffffffff, 0x54763210,
	0x214f8, 0x01ff01ff, 0x00000002,
	0x21498, 0x007ff800, 0x00200000,
	0x2015c, 0xffffffff, 0x00000f40,
	0x30934, 0xffffffff, 0x00000001
};

static const u32 spectre_mgcg_cgcg_init[] =
{
	0xc420, 0xffffffff, 0xfffffffc,
	0x30800, 0xffffffff, 0xe0000000,
	0x3c2a0, 0xffffffff, 0x00000100,
	0x3c208, 0xffffffff, 0x00000100,
	0x3c2c0, 0xffffffff, 0x00000100,
	0x3c2c8, 0xffffffff, 0x00000100,
	0x3c2c4, 0xffffffff, 0x00000100,
	0x55e4, 0xffffffff, 0x00600100,
	0x3c280, 0xffffffff, 0x00000100,
	0x3c214, 0xffffffff, 0x06000100,
	0x3c220, 0xffffffff, 0x00000100,
	0x3c218, 0xffffffff, 0x06000100,
	0x3c204, 0xffffffff, 0x00000100,
	0x3c2e0, 0xffffffff, 0x00000100,
	0x3c224, 0xffffffff, 0x00000100,
	0x3c200, 0xffffffff, 0x00000100,
	0x3c230, 0xffffffff, 0x00000100,
	0x3c234, 0xffffffff, 0x00000100,
	0x3c250, 0xffffffff, 0x00000100,
	0x3c254, 0xffffffff, 0x00000100,
	0x3c258, 0xffffffff, 0x00000100,
	0x3c25c, 0xffffffff, 0x00000100,
	0x3c260, 0xffffffff, 0x00000100,
	0x3c27c, 0xffffffff, 0x00000100,
	0x3c278, 0xffffffff, 0x00000100,
	0x3c210, 0xffffffff, 0x06000100,
	0x3c290, 0xffffffff, 0x00000100,
	0x3c274, 0xffffffff, 0x00000100,
	0x3c2b4, 0xffffffff, 0x00000100,
	0x3c2b0, 0xffffffff, 0x00000100,
	0x3c270, 0xffffffff, 0x00000100,
	0x30800, 0xffffffff, 0xe0000000,
	0x3c020, 0xffffffff, 0x00010000,
	0x3c024, 0xffffffff, 0x00030002,
	0x3c028, 0xffffffff, 0x00040007,
	0x3c02c, 0xffffffff, 0x00060005,
	0x3c030, 0xffffffff, 0x00090008,
	0x3c034, 0xffffffff, 0x00010000,
	0x3c038, 0xffffffff, 0x00030002,
	0x3c03c, 0xffffffff, 0x00040007,
	0x3c040, 0xffffffff, 0x00060005,
	0x3c044, 0xffffffff, 0x00090008,
	0x3c048, 0xffffffff, 0x00010000,
	0x3c04c, 0xffffffff, 0x00030002,
	0x3c050, 0xffffffff, 0x00040007,
	0x3c054, 0xffffffff, 0x00060005,
	0x3c058, 0xffffffff, 0x00090008,
	0x3c05c, 0xffffffff, 0x00010000,
	0x3c060, 0xffffffff, 0x00030002,
	0x3c064, 0xffffffff, 0x00040007,
	0x3c068, 0xffffffff, 0x00060005,
	0x3c06c, 0xffffffff, 0x00090008,
	0x3c070, 0xffffffff, 0x00010000,
	0x3c074, 0xffffffff, 0x00030002,
	0x3c078, 0xffffffff, 0x00040007,
	0x3c07c, 0xffffffff, 0x00060005,
	0x3c080, 0xffffffff, 0x00090008,
	0x3c084, 0xffffffff, 0x00010000,
	0x3c088, 0xffffffff, 0x00030002,
	0x3c08c, 0xffffffff, 0x00040007,
	0x3c090, 0xffffffff, 0x00060005,
	0x3c094, 0xffffffff, 0x00090008,
	0x3c098, 0xffffffff, 0x00010000,
	0x3c09c, 0xffffffff, 0x00030002,
	0x3c0a0, 0xffffffff, 0x00040007,
	0x3c0a4, 0xffffffff, 0x00060005,
	0x3c0a8, 0xffffffff, 0x00090008,
	0x3c0ac, 0xffffffff, 0x00010000,
	0x3c0b0, 0xffffffff, 0x00030002,
	0x3c0b4, 0xffffffff, 0x00040007,
	0x3c0b8, 0xffffffff, 0x00060005,
	0x3c0bc, 0xffffffff, 0x00090008,
	0x3c000, 0xffffffff, 0x96e00200,
	0x8708, 0xffffffff, 0x00900100,
	0xc424, 0xffffffff, 0x0020003f,
	0x38, 0xffffffff, 0x0140001c,
	0x3c, 0x000f0000, 0x000f0000,
	0x220, 0xffffffff, 0xC060000C,
	0x224, 0xc0000fff, 0x00000100,
	0xf90, 0xffffffff, 0x00000100,
	0xf98, 0x00000101, 0x00000000,
	0x20a8, 0xffffffff, 0x00000104,
	0x55e4, 0xff000fff, 0x00000100,
	0x30cc, 0xc0000fff, 0x00000104,
	0xc1e4, 0x00000001, 0x00000001,
	0xd00c, 0xff000ff0, 0x00000100,
	0xd80c, 0xff000ff0, 0x00000100
};

static const u32 kalindi_golden_spm_registers[] =
{
	0x30800, 0xe0ffffff, 0xe0000000
};

static const u32 kalindi_golden_common_registers[] =
{
	0xc770, 0xffffffff, 0x00000800,
	0xc774, 0xffffffff, 0x00000800,
	0xc798, 0xffffffff, 0x00007fbf,
	0xc79c, 0xffffffff, 0x00007faf
};

static const u32 kalindi_golden_registers[] =
{
	0x3c000, 0xffffdfff, 0x6e944040,
	0x55e4, 0xff607fff, 0xfc000100,
	0x3c220, 0xff000fff, 0x00000100,
	0x3c224, 0xff000fff, 0x00000100,
	0x3c200, 0xfffc0fff, 0x00000100,
	0x6ed8, 0x00010101, 0x00010000,
	0x9830, 0xffffffff, 0x00000000,
	0x9834, 0xf00fffff, 0x00000400,
	0x5bb0, 0x000000f0, 0x00000070,
	0x5bc0, 0xf0311fff, 0x80300000,
	0x98f8, 0x73773777, 0x12010001,
	0x98fc, 0xffffffff, 0x00000010,
	0x9b7c, 0x00ff0000, 0x00fc0000,
	0x8030, 0x00001f0f, 0x0000100a,
	0x2f48, 0x73773777, 0x12010001,
	0x2408, 0x000fffff, 0x000c007f,
	0x8a14, 0xf000003f, 0x00000007,
	0x8b24, 0x3fff3fff, 0x00ffcfff,
	0x30a04, 0x0000ff0f, 0x00000000,
	0x28a4c, 0x07ffffff, 0x06000000,
	0x4d8, 0x00000fff, 0x00000100,
	0x3e78, 0x00000001, 0x00000002,
	0xc768, 0x00000008, 0x00000008,
	0x8c00, 0x000000ff, 0x00000003,
	0x214f8, 0x01ff01ff, 0x00000002,
	0x21498, 0x007ff800, 0x00200000,
	0x2015c, 0xffffffff, 0x00000f40,
	0x88c4, 0x001f3ae3, 0x00000082,
	0x88d4, 0x0000001f, 0x00000010,
	0x30934, 0xffffffff, 0x00000000
};

static const u32 kalindi_mgcg_cgcg_init[] =
{
	0xc420, 0xffffffff, 0xfffffffc,
	0x30800, 0xffffffff, 0xe0000000,
	0x3c2a0, 0xffffffff, 0x00000100,
	0x3c208, 0xffffffff, 0x00000100,
	0x3c2c0, 0xffffffff, 0x00000100,
	0x3c2c8, 0xffffffff, 0x00000100,
	0x3c2c4, 0xffffffff, 0x00000100,
	0x55e4, 0xffffffff, 0x00600100,
	0x3c280, 0xffffffff, 0x00000100,
	0x3c214, 0xffffffff, 0x06000100,
	0x3c220, 0xffffffff, 0x00000100,
	0x3c218, 0xffffffff, 0x06000100,
	0x3c204, 0xffffffff, 0x00000100,
	0x3c2e0, 0xffffffff, 0x00000100,
	0x3c224, 0xffffffff, 0x00000100,
	0x3c200, 0xffffffff, 0x00000100,
	0x3c230, 0xffffffff, 0x00000100,
	0x3c234, 0xffffffff, 0x00000100,
	0x3c250, 0xffffffff, 0x00000100,
	0x3c254, 0xffffffff, 0x00000100,
	0x3c258, 0xffffffff, 0x00000100,
	0x3c25c, 0xffffffff, 0x00000100,
	0x3c260, 0xffffffff, 0x00000100,
	0x3c27c, 0xffffffff, 0x00000100,
	0x3c278, 0xffffffff, 0x00000100,
	0x3c210, 0xffffffff, 0x06000100,
	0x3c290, 0xffffffff, 0x00000100,
	0x3c274, 0xffffffff, 0x00000100,
	0x3c2b4, 0xffffffff, 0x00000100,
	0x3c2b0, 0xffffffff, 0x00000100,
	0x3c270, 0xffffffff, 0x00000100,
	0x30800, 0xffffffff, 0xe0000000,
	0x3c020, 0xffffffff, 0x00010000,
	0x3c024, 0xffffffff, 0x00030002,
	0x3c028, 0xffffffff, 0x00040007,
	0x3c02c, 0xffffffff, 0x00060005,
	0x3c030, 0xffffffff, 0x00090008,
	0x3c034, 0xffffffff, 0x00010000,
	0x3c038, 0xffffffff, 0x00030002,
	0x3c03c, 0xffffffff, 0x00040007,
	0x3c040, 0xffffffff, 0x00060005,
	0x3c044, 0xffffffff, 0x00090008,
	0x3c000, 0xffffffff, 0x96e00200,
	0x8708, 0xffffffff, 0x00900100,
	0xc424, 0xffffffff, 0x0020003f,
	0x38, 0xffffffff, 0x0140001c,
	0x3c, 0x000f0000, 0x000f0000,
	0x220, 0xffffffff, 0xC060000C,
	0x224, 0xc0000fff, 0x00000100,
	0x20a8, 0xffffffff, 0x00000104,
	0x55e4, 0xff000fff, 0x00000100,
	0x30cc, 0xc0000fff, 0x00000104,
	0xc1e4, 0x00000001, 0x00000001,
	0xd00c, 0xff000ff0, 0x00000100,
	0xd80c, 0xff000ff0, 0x00000100
};

static void cik_init_golden_registers(struct radeon_device *rdev)
{
	switch (rdev->family) {
	case CHIP_BONAIRE:
		radeon_program_register_sequence(rdev,
						 bonaire_mgcg_cgcg_init,
						 (const u32)ARRAY_SIZE(bonaire_mgcg_cgcg_init));
		radeon_program_register_sequence(rdev,
						 bonaire_golden_registers,
						 (const u32)ARRAY_SIZE(bonaire_golden_registers));
		radeon_program_register_sequence(rdev,
						 bonaire_golden_common_registers,
						 (const u32)ARRAY_SIZE(bonaire_golden_common_registers));
		radeon_program_register_sequence(rdev,
						 bonaire_golden_spm_registers,
						 (const u32)ARRAY_SIZE(bonaire_golden_spm_registers));
		break;
	case CHIP_KABINI:
		radeon_program_register_sequence(rdev,
						 kalindi_mgcg_cgcg_init,
						 (const u32)ARRAY_SIZE(kalindi_mgcg_cgcg_init));
		radeon_program_register_sequence(rdev,
						 kalindi_golden_registers,
						 (const u32)ARRAY_SIZE(kalindi_golden_registers));
		radeon_program_register_sequence(rdev,
						 kalindi_golden_common_registers,
						 (const u32)ARRAY_SIZE(kalindi_golden_common_registers));
		radeon_program_register_sequence(rdev,
						 kalindi_golden_spm_registers,
						 (const u32)ARRAY_SIZE(kalindi_golden_spm_registers));
		break;
	case CHIP_KAVERI:
		radeon_program_register_sequence(rdev,
						 spectre_mgcg_cgcg_init,
						 (const u32)ARRAY_SIZE(spectre_mgcg_cgcg_init));
		radeon_program_register_sequence(rdev,
						 spectre_golden_registers,
						 (const u32)ARRAY_SIZE(spectre_golden_registers));
		radeon_program_register_sequence(rdev,
						 spectre_golden_common_registers,
						 (const u32)ARRAY_SIZE(spectre_golden_common_registers));
		radeon_program_register_sequence(rdev,
						 spectre_golden_spm_registers,
						 (const u32)ARRAY_SIZE(spectre_golden_spm_registers));
		break;
	default:
		break;
	}
}

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
/**
 * cik_get_xclk - get the xclk
 *
 * @rdev: radeon_device pointer
 *
 * Returns the reference clock used by the gfx engine
 * (CIK).
 */
u32 cik_get_xclk(struct radeon_device *rdev)
{
        u32 reference_clock = rdev->clock.spll.reference_freq;

	if (rdev->flags & RADEON_IS_IGP) {
		if (RREG32_SMC(GENERAL_PWRMGT) & GPU_COUNTER_CLK)
			return reference_clock / 2;
	} else {
		if (RREG32_SMC(CG_CLKPIN_CNTL) & XTALIN_DIVIDE)
			return reference_clock / 4;
	}
	return reference_clock;
}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/**
 * cik_mm_rdoorbell - read a doorbell dword
 *
 * @rdev: radeon_device pointer
 * @offset: byte offset into the aperture
 *
 * Returns the value in the doorbell aperture at the
 * requested offset (CIK).
 */
u32 cik_mm_rdoorbell(struct radeon_device *rdev, u32 offset)
{
	if (offset < rdev->doorbell.size) {
		return readl(((void __iomem *)rdev->doorbell.ptr) + offset);
	} else {
		DRM_ERROR("reading beyond doorbell aperture: 0x%08x!\n", offset);
		return 0;
	}
}

/**
 * cik_mm_wdoorbell - write a doorbell dword
 *
 * @rdev: radeon_device pointer
 * @offset: byte offset into the aperture
 * @v: value to write
 *
 * Writes @v to the doorbell aperture at the
 * requested offset (CIK).
 */
void cik_mm_wdoorbell(struct radeon_device *rdev, u32 offset, u32 v)
{
	if (offset < rdev->doorbell.size) {
		writel(v, ((void __iomem *)rdev->doorbell.ptr) + offset);
	} else {
		DRM_ERROR("writing beyond doorbell aperture: 0x%08x!\n", offset);
	}
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
#define BONAIRE_IO_MC_REGS_SIZE 36

static const u32 bonaire_io_mc_regs[BONAIRE_IO_MC_REGS_SIZE][2] =
{
	{0x00000070, 0x04400000},
	{0x00000071, 0x80c01803},
	{0x00000072, 0x00004004},
	{0x00000073, 0x00000100},
	{0x00000074, 0x00ff0000},
	{0x00000075, 0x34000000},
	{0x00000076, 0x08000014},
	{0x00000077, 0x00cc08ec},
	{0x00000078, 0x00000400},
	{0x00000079, 0x00000000},
	{0x0000007a, 0x04090000},
	{0x0000007c, 0x00000000},
	{0x0000007e, 0x4408a8e8},
	{0x0000007f, 0x00000304},
	{0x00000080, 0x00000000},
	{0x00000082, 0x00000001},
	{0x00000083, 0x00000002},
	{0x00000084, 0xf3e4f400},
	{0x00000085, 0x052024e3},
	{0x00000087, 0x00000000},
	{0x00000088, 0x01000000},
	{0x0000008a, 0x1c0a0000},
	{0x0000008b, 0xff010000},
	{0x0000008d, 0xffffefff},
	{0x0000008e, 0xfff3efff},
	{0x0000008f, 0xfff3efbf},
	{0x00000092, 0xf7ffffff},
	{0x00000093, 0xffffff7f},
	{0x00000095, 0x00101101},
	{0x00000096, 0x00000fff},
	{0x00000097, 0x00116fff},
	{0x00000098, 0x60010000},
	{0x00000099, 0x10010000},
	{0x0000009a, 0x00006000},
	{0x0000009b, 0x00001000},
	{0x0000009f, 0x00b48000}
};

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
/**
 * cik_srbm_select - select specific register instances
 *
 * @rdev: radeon_device pointer
 * @me: selected ME (micro engine)
 * @pipe: pipe
 * @queue: queue
 * @vmid: VMID
 *
 * Switches the currently active registers instances.  Some
 * registers are instanced per VMID, others are instanced per
 * me/pipe/queue combination.
 */
static void cik_srbm_select(struct radeon_device *rdev,
			    u32 me, u32 pipe, u32 queue, u32 vmid)
{
	u32 srbm_gfx_cntl = (PIPEID(pipe & 0x3) |
			     MEID(me & 0x3) |
			     VMID(vmid & 0xf) |
			     QUEUEID(queue & 0x7));
	WREG32(SRBM_GFX_CNTL, srbm_gfx_cntl);
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
/* ucode loading */
/**
 * ci_mc_load_microcode - load MC ucode into the hw
 *
 * @rdev: radeon_device pointer
 *
 * Load the GDDR MC ucode into the hw (CIK).
 * Returns 0 on success, error on failure.
 */
static int ci_mc_load_microcode(struct radeon_device *rdev)
{
	const __be32 *fw_data;
	u32 running, blackout = 0;
	u32 *io_mc_regs;
	int i, ucode_size, regs_size;

	if (!rdev->mc_fw)
		return -EINVAL;

	switch (rdev->family) {
	case CHIP_BONAIRE:
	default:
		io_mc_regs = (u32 *)&bonaire_io_mc_regs;
		ucode_size = CIK_MC_UCODE_SIZE;
		regs_size = BONAIRE_IO_MC_REGS_SIZE;
		break;
	}

	running = RREG32(MC_SEQ_SUP_CNTL) & RUN_MASK;

	if (running == 0) {
		if (running) {
			blackout = RREG32(MC_SHARED_BLACKOUT_CNTL);
			WREG32(MC_SHARED_BLACKOUT_CNTL, blackout | 1);
		}

		/* reset the engine and set to writable */
		WREG32(MC_SEQ_SUP_CNTL, 0x00000008);
		WREG32(MC_SEQ_SUP_CNTL, 0x00000010);

		/* load mc io regs */
		for (i = 0; i < regs_size; i++) {
			WREG32(MC_SEQ_IO_DEBUG_INDEX, io_mc_regs[(i << 1)]);
			WREG32(MC_SEQ_IO_DEBUG_DATA, io_mc_regs[(i << 1) + 1]);
		}
		/* load the MC ucode */
		fw_data = (const __be32 *)rdev->mc_fw->data;
		for (i = 0; i < ucode_size; i++)
			WREG32(MC_SEQ_SUP_PGM, be32_to_cpup(fw_data++));

		/* put the engine back into the active state */
		WREG32(MC_SEQ_SUP_CNTL, 0x00000008);
		WREG32(MC_SEQ_SUP_CNTL, 0x00000004);
		WREG32(MC_SEQ_SUP_CNTL, 0x00000001);

		/* wait for training to complete */
		for (i = 0; i < rdev->usec_timeout; i++) {
			if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D0)
				break;
			udelay(1);
		}
		for (i = 0; i < rdev->usec_timeout; i++) {
			if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D1)
				break;
			udelay(1);
		}

		if (running)
			WREG32(MC_SHARED_BLACKOUT_CNTL, blackout);
	}

	return 0;
}

733 734 735 736 737 738 739 740 741 742 743 744 745
/**
 * cik_init_microcode - load ucode images from disk
 *
 * @rdev: radeon_device pointer
 *
 * Use the firmware interface to load the ucode images into
 * the driver (not loaded into hw).
 * Returns 0 on success, error on failure.
 */
static int cik_init_microcode(struct radeon_device *rdev)
{
	const char *chip_name;
	size_t pfp_req_size, me_req_size, ce_req_size,
746 747
		mec_req_size, rlc_req_size, mc_req_size,
		sdma_req_size;
748 749 750 751 752 753 754 755 756 757 758 759 760 761
	char fw_name[30];
	int err;

	DRM_DEBUG("\n");

	switch (rdev->family) {
	case CHIP_BONAIRE:
		chip_name = "BONAIRE";
		pfp_req_size = CIK_PFP_UCODE_SIZE * 4;
		me_req_size = CIK_ME_UCODE_SIZE * 4;
		ce_req_size = CIK_CE_UCODE_SIZE * 4;
		mec_req_size = CIK_MEC_UCODE_SIZE * 4;
		rlc_req_size = BONAIRE_RLC_UCODE_SIZE * 4;
		mc_req_size = CIK_MC_UCODE_SIZE * 4;
762
		sdma_req_size = CIK_SDMA_UCODE_SIZE * 4;
763 764 765 766 767 768 769 770
		break;
	case CHIP_KAVERI:
		chip_name = "KAVERI";
		pfp_req_size = CIK_PFP_UCODE_SIZE * 4;
		me_req_size = CIK_ME_UCODE_SIZE * 4;
		ce_req_size = CIK_CE_UCODE_SIZE * 4;
		mec_req_size = CIK_MEC_UCODE_SIZE * 4;
		rlc_req_size = KV_RLC_UCODE_SIZE * 4;
771
		sdma_req_size = CIK_SDMA_UCODE_SIZE * 4;
772 773 774 775 776 777 778 779
		break;
	case CHIP_KABINI:
		chip_name = "KABINI";
		pfp_req_size = CIK_PFP_UCODE_SIZE * 4;
		me_req_size = CIK_ME_UCODE_SIZE * 4;
		ce_req_size = CIK_CE_UCODE_SIZE * 4;
		mec_req_size = CIK_MEC_UCODE_SIZE * 4;
		rlc_req_size = KB_RLC_UCODE_SIZE * 4;
780
		sdma_req_size = CIK_SDMA_UCODE_SIZE * 4;
781 782 783 784 785 786 787
		break;
	default: BUG();
	}

	DRM_INFO("Loading %s Microcode\n", chip_name);

	snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name);
788
	err = request_firmware(&rdev->pfp_fw, fw_name, rdev->dev);
789 790 791 792 793 794 795 796 797 798 799
	if (err)
		goto out;
	if (rdev->pfp_fw->size != pfp_req_size) {
		printk(KERN_ERR
		       "cik_cp: Bogus length %zu in firmware \"%s\"\n",
		       rdev->pfp_fw->size, fw_name);
		err = -EINVAL;
		goto out;
	}

	snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name);
800
	err = request_firmware(&rdev->me_fw, fw_name, rdev->dev);
801 802 803 804 805 806 807 808 809 810
	if (err)
		goto out;
	if (rdev->me_fw->size != me_req_size) {
		printk(KERN_ERR
		       "cik_cp: Bogus length %zu in firmware \"%s\"\n",
		       rdev->me_fw->size, fw_name);
		err = -EINVAL;
	}

	snprintf(fw_name, sizeof(fw_name), "radeon/%s_ce.bin", chip_name);
811
	err = request_firmware(&rdev->ce_fw, fw_name, rdev->dev);
812 813 814 815 816 817 818 819 820 821
	if (err)
		goto out;
	if (rdev->ce_fw->size != ce_req_size) {
		printk(KERN_ERR
		       "cik_cp: Bogus length %zu in firmware \"%s\"\n",
		       rdev->ce_fw->size, fw_name);
		err = -EINVAL;
	}

	snprintf(fw_name, sizeof(fw_name), "radeon/%s_mec.bin", chip_name);
822
	err = request_firmware(&rdev->mec_fw, fw_name, rdev->dev);
823 824 825 826 827 828 829 830 831 832
	if (err)
		goto out;
	if (rdev->mec_fw->size != mec_req_size) {
		printk(KERN_ERR
		       "cik_cp: Bogus length %zu in firmware \"%s\"\n",
		       rdev->mec_fw->size, fw_name);
		err = -EINVAL;
	}

	snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", chip_name);
833
	err = request_firmware(&rdev->rlc_fw, fw_name, rdev->dev);
834 835 836 837 838 839 840 841 842
	if (err)
		goto out;
	if (rdev->rlc_fw->size != rlc_req_size) {
		printk(KERN_ERR
		       "cik_rlc: Bogus length %zu in firmware \"%s\"\n",
		       rdev->rlc_fw->size, fw_name);
		err = -EINVAL;
	}

843
	snprintf(fw_name, sizeof(fw_name), "radeon/%s_sdma.bin", chip_name);
844
	err = request_firmware(&rdev->sdma_fw, fw_name, rdev->dev);
845 846 847 848 849 850 851 852 853
	if (err)
		goto out;
	if (rdev->sdma_fw->size != sdma_req_size) {
		printk(KERN_ERR
		       "cik_sdma: Bogus length %zu in firmware \"%s\"\n",
		       rdev->sdma_fw->size, fw_name);
		err = -EINVAL;
	}

854 855 856
	/* No MC ucode on APUs */
	if (!(rdev->flags & RADEON_IS_IGP)) {
		snprintf(fw_name, sizeof(fw_name), "radeon/%s_mc.bin", chip_name);
857
		err = request_firmware(&rdev->mc_fw, fw_name, rdev->dev);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
		if (err)
			goto out;
		if (rdev->mc_fw->size != mc_req_size) {
			printk(KERN_ERR
			       "cik_mc: Bogus length %zu in firmware \"%s\"\n",
			       rdev->mc_fw->size, fw_name);
			err = -EINVAL;
		}
	}

out:
	if (err) {
		if (err != -EINVAL)
			printk(KERN_ERR
			       "cik_cp: Failed to load firmware \"%s\"\n",
			       fw_name);
		release_firmware(rdev->pfp_fw);
		rdev->pfp_fw = NULL;
		release_firmware(rdev->me_fw);
		rdev->me_fw = NULL;
		release_firmware(rdev->ce_fw);
		rdev->ce_fw = NULL;
		release_firmware(rdev->rlc_fw);
		rdev->rlc_fw = NULL;
		release_firmware(rdev->mc_fw);
		rdev->mc_fw = NULL;
	}
	return err;
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
/*
 * Core functions
 */
/**
 * cik_tiling_mode_table_init - init the hw tiling table
 *
 * @rdev: radeon_device pointer
 *
 * Starting with SI, the tiling setup is done globally in a
 * set of 32 tiling modes.  Rather than selecting each set of
 * parameters per surface as on older asics, we just select
 * which index in the tiling table we want to use, and the
 * surface uses those parameters (CIK).
 */
static void cik_tiling_mode_table_init(struct radeon_device *rdev)
{
	const u32 num_tile_mode_states = 32;
	const u32 num_secondary_tile_mode_states = 16;
	u32 reg_offset, gb_tile_moden, split_equal_to_row_size;
	u32 num_pipe_configs;
	u32 num_rbs = rdev->config.cik.max_backends_per_se *
		rdev->config.cik.max_shader_engines;

	switch (rdev->config.cik.mem_row_size_in_kb) {
	case 1:
		split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_1KB;
		break;
	case 2:
	default:
		split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_2KB;
		break;
	case 4:
		split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_4KB;
		break;
	}

	num_pipe_configs = rdev->config.cik.max_tile_pipes;
	if (num_pipe_configs > 8)
		num_pipe_configs = 8; /* ??? */

	if (num_pipe_configs == 8) {
		for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
			switch (reg_offset) {
			case 0:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
				break;
			case 1:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
				break;
			case 2:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
				break;
			case 3:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
				break;
			case 4:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 TILE_SPLIT(split_equal_to_row_size));
				break;
			case 5:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
				break;
			case 6:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
				break;
			case 7:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 TILE_SPLIT(split_equal_to_row_size));
				break;
			case 8:
				gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16));
				break;
			case 9:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
				break;
			case 10:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 11:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 12:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 13:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
				break;
			case 14:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 16:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 17:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 27:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
				break;
			case 28:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 29:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 30:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			default:
				gb_tile_moden = 0;
				break;
			}
1051
			rdev->config.cik.tile_mode_array[reg_offset] = gb_tile_moden;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
			WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
		}
		for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) {
			switch (reg_offset) {
			case 0:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 1:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 2:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 3:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 4:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_8_BANK));
				break;
			case 5:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_4_BANK));
				break;
			case 6:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_2_BANK));
				break;
			case 8:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 9:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 10:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 11:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 12:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_8_BANK));
				break;
			case 13:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_4_BANK));
				break;
			case 14:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_2_BANK));
				break;
			default:
				gb_tile_moden = 0;
				break;
			}
			WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden);
		}
	} else if (num_pipe_configs == 4) {
		if (num_rbs == 4) {
			for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
				switch (reg_offset) {
				case 0:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
					break;
				case 1:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
					break;
				case 2:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
					break;
				case 3:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
					break;
				case 4:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 TILE_SPLIT(split_equal_to_row_size));
					break;
				case 5:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
					break;
				case 6:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
					break;
				case 7:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 TILE_SPLIT(split_equal_to_row_size));
					break;
				case 8:
					gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16));
					break;
				case 9:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
					break;
				case 10:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 11:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 12:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 13:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
					break;
				case 14:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 16:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 17:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 27:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
					break;
				case 28:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 29:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 30:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				default:
					gb_tile_moden = 0;
					break;
				}
1270
				rdev->config.cik.tile_mode_array[reg_offset] = gb_tile_moden;
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
				WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
			}
		} else if (num_rbs < 4) {
			for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
				switch (reg_offset) {
				case 0:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
					break;
				case 1:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
					break;
				case 2:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
					break;
				case 3:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
					break;
				case 4:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 TILE_SPLIT(split_equal_to_row_size));
					break;
				case 5:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
					break;
				case 6:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
					break;
				case 7:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 TILE_SPLIT(split_equal_to_row_size));
					break;
				case 8:
					gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
						 PIPE_CONFIG(ADDR_SURF_P4_8x16));
					break;
				case 9:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
					break;
				case 10:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 11:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 12:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 13:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
					break;
				case 14:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 16:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 17:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 27:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
					break;
				case 28:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 29:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 30:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				default:
					gb_tile_moden = 0;
					break;
				}
1396
				rdev->config.cik.tile_mode_array[reg_offset] = gb_tile_moden;
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
				WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
			}
		}
		for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) {
			switch (reg_offset) {
			case 0:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 1:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 2:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 3:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 4:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 5:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_8_BANK));
				break;
			case 6:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_4_BANK));
				break;
			case 8:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 9:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 10:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 11:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 12:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 13:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_8_BANK));
				break;
			case 14:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_4_BANK));
				break;
			default:
				gb_tile_moden = 0;
				break;
			}
			WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden);
		}
	} else if (num_pipe_configs == 2) {
		for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
			switch (reg_offset) {
			case 0:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
				break;
			case 1:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
				break;
			case 2:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
				break;
			case 3:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
				break;
			case 4:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 TILE_SPLIT(split_equal_to_row_size));
				break;
			case 5:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
				break;
			case 6:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
				break;
			case 7:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 TILE_SPLIT(split_equal_to_row_size));
				break;
			case 8:
				gb_tile_moden = ARRAY_MODE(ARRAY_LINEAR_ALIGNED);
				break;
			case 9:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
				break;
			case 10:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 11:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 12:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 13:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
				break;
			case 14:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 16:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 17:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 27:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
				break;
			case 28:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 29:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 30:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			default:
				gb_tile_moden = 0;
				break;
			}
1614
			rdev->config.cik.tile_mode_array[reg_offset] = gb_tile_moden;
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
			WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
		}
		for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) {
			switch (reg_offset) {
			case 0:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 1:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 2:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 3:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 4:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 5:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 6:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_8_BANK));
				break;
			case 8:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 9:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 10:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 11:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 12:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 13:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 14:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_8_BANK));
				break;
			default:
				gb_tile_moden = 0;
				break;
			}
			WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden);
		}
	} else
		DRM_ERROR("unknown num pipe config: 0x%x\n", num_pipe_configs);
}

/**
 * cik_select_se_sh - select which SE, SH to address
 *
 * @rdev: radeon_device pointer
 * @se_num: shader engine to address
 * @sh_num: sh block to address
 *
 * Select which SE, SH combinations to address. Certain
 * registers are instanced per SE or SH.  0xffffffff means
 * broadcast to all SEs or SHs (CIK).
 */
static void cik_select_se_sh(struct radeon_device *rdev,
			     u32 se_num, u32 sh_num)
{
	u32 data = INSTANCE_BROADCAST_WRITES;

	if ((se_num == 0xffffffff) && (sh_num == 0xffffffff))
1730
		data |= SH_BROADCAST_WRITES | SE_BROADCAST_WRITES;
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
	else if (se_num == 0xffffffff)
		data |= SE_BROADCAST_WRITES | SH_INDEX(sh_num);
	else if (sh_num == 0xffffffff)
		data |= SH_BROADCAST_WRITES | SE_INDEX(se_num);
	else
		data |= SH_INDEX(sh_num) | SE_INDEX(se_num);
	WREG32(GRBM_GFX_INDEX, data);
}

/**
 * cik_create_bitmask - create a bitmask
 *
 * @bit_width: length of the mask
 *
 * create a variable length bit mask (CIK).
 * Returns the bitmask.
 */
static u32 cik_create_bitmask(u32 bit_width)
{
	u32 i, mask = 0;

	for (i = 0; i < bit_width; i++) {
		mask <<= 1;
		mask |= 1;
	}
	return mask;
}

/**
 * cik_select_se_sh - select which SE, SH to address
 *
 * @rdev: radeon_device pointer
 * @max_rb_num: max RBs (render backends) for the asic
 * @se_num: number of SEs (shader engines) for the asic
 * @sh_per_se: number of SH blocks per SE for the asic
 *
 * Calculates the bitmask of disabled RBs (CIK).
 * Returns the disabled RB bitmask.
 */
static u32 cik_get_rb_disabled(struct radeon_device *rdev,
			      u32 max_rb_num, u32 se_num,
			      u32 sh_per_se)
{
	u32 data, mask;

	data = RREG32(CC_RB_BACKEND_DISABLE);
	if (data & 1)
		data &= BACKEND_DISABLE_MASK;
	else
		data = 0;
	data |= RREG32(GC_USER_RB_BACKEND_DISABLE);

	data >>= BACKEND_DISABLE_SHIFT;

	mask = cik_create_bitmask(max_rb_num / se_num / sh_per_se);

	return data & mask;
}

/**
 * cik_setup_rb - setup the RBs on the asic
 *
 * @rdev: radeon_device pointer
 * @se_num: number of SEs (shader engines) for the asic
 * @sh_per_se: number of SH blocks per SE for the asic
 * @max_rb_num: max RBs (render backends) for the asic
 *
 * Configures per-SE/SH RB registers (CIK).
 */
static void cik_setup_rb(struct radeon_device *rdev,
			 u32 se_num, u32 sh_per_se,
			 u32 max_rb_num)
{
	int i, j;
	u32 data, mask;
	u32 disabled_rbs = 0;
	u32 enabled_rbs = 0;

	for (i = 0; i < se_num; i++) {
		for (j = 0; j < sh_per_se; j++) {
			cik_select_se_sh(rdev, i, j);
			data = cik_get_rb_disabled(rdev, max_rb_num, se_num, sh_per_se);
			disabled_rbs |= data << ((i * sh_per_se + j) * CIK_RB_BITMAP_WIDTH_PER_SH);
		}
	}
	cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);

	mask = 1;
	for (i = 0; i < max_rb_num; i++) {
		if (!(disabled_rbs & mask))
			enabled_rbs |= mask;
		mask <<= 1;
	}

	for (i = 0; i < se_num; i++) {
		cik_select_se_sh(rdev, i, 0xffffffff);
		data = 0;
		for (j = 0; j < sh_per_se; j++) {
			switch (enabled_rbs & 3) {
			case 1:
				data |= (RASTER_CONFIG_RB_MAP_0 << (i * sh_per_se + j) * 2);
				break;
			case 2:
				data |= (RASTER_CONFIG_RB_MAP_3 << (i * sh_per_se + j) * 2);
				break;
			case 3:
			default:
				data |= (RASTER_CONFIG_RB_MAP_2 << (i * sh_per_se + j) * 2);
				break;
			}
			enabled_rbs >>= 2;
		}
		WREG32(PA_SC_RASTER_CONFIG, data);
	}
	cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);
}

/**
 * cik_gpu_init - setup the 3D engine
 *
 * @rdev: radeon_device pointer
 *
 * Configures the 3D engine and tiling configuration
 * registers so that the 3D engine is usable.
 */
static void cik_gpu_init(struct radeon_device *rdev)
{
	u32 gb_addr_config = RREG32(GB_ADDR_CONFIG);
	u32 mc_shared_chmap, mc_arb_ramcfg;
	u32 hdp_host_path_cntl;
	u32 tmp;
	int i, j;

	switch (rdev->family) {
	case CHIP_BONAIRE:
		rdev->config.cik.max_shader_engines = 2;
		rdev->config.cik.max_tile_pipes = 4;
		rdev->config.cik.max_cu_per_sh = 7;
		rdev->config.cik.max_sh_per_se = 1;
		rdev->config.cik.max_backends_per_se = 2;
		rdev->config.cik.max_texture_channel_caches = 4;
		rdev->config.cik.max_gprs = 256;
		rdev->config.cik.max_gs_threads = 32;
		rdev->config.cik.max_hw_contexts = 8;

		rdev->config.cik.sc_prim_fifo_size_frontend = 0x20;
		rdev->config.cik.sc_prim_fifo_size_backend = 0x100;
		rdev->config.cik.sc_hiz_tile_fifo_size = 0x30;
		rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130;
		gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN;
		break;
	case CHIP_KAVERI:
		/* TODO */
		break;
	case CHIP_KABINI:
	default:
		rdev->config.cik.max_shader_engines = 1;
		rdev->config.cik.max_tile_pipes = 2;
		rdev->config.cik.max_cu_per_sh = 2;
		rdev->config.cik.max_sh_per_se = 1;
		rdev->config.cik.max_backends_per_se = 1;
		rdev->config.cik.max_texture_channel_caches = 2;
		rdev->config.cik.max_gprs = 256;
		rdev->config.cik.max_gs_threads = 16;
		rdev->config.cik.max_hw_contexts = 8;

		rdev->config.cik.sc_prim_fifo_size_frontend = 0x20;
		rdev->config.cik.sc_prim_fifo_size_backend = 0x100;
		rdev->config.cik.sc_hiz_tile_fifo_size = 0x30;
		rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130;
		gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN;
		break;
	}

	/* Initialize HDP */
	for (i = 0, j = 0; i < 32; i++, j += 0x18) {
		WREG32((0x2c14 + j), 0x00000000);
		WREG32((0x2c18 + j), 0x00000000);
		WREG32((0x2c1c + j), 0x00000000);
		WREG32((0x2c20 + j), 0x00000000);
		WREG32((0x2c24 + j), 0x00000000);
	}

	WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff));

	WREG32(BIF_FB_EN, FB_READ_EN | FB_WRITE_EN);

	mc_shared_chmap = RREG32(MC_SHARED_CHMAP);
	mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG);

	rdev->config.cik.num_tile_pipes = rdev->config.cik.max_tile_pipes;
	rdev->config.cik.mem_max_burst_length_bytes = 256;
	tmp = (mc_arb_ramcfg & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT;
	rdev->config.cik.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024;
	if (rdev->config.cik.mem_row_size_in_kb > 4)
		rdev->config.cik.mem_row_size_in_kb = 4;
	/* XXX use MC settings? */
	rdev->config.cik.shader_engine_tile_size = 32;
	rdev->config.cik.num_gpus = 1;
	rdev->config.cik.multi_gpu_tile_size = 64;

	/* fix up row size */
	gb_addr_config &= ~ROW_SIZE_MASK;
	switch (rdev->config.cik.mem_row_size_in_kb) {
	case 1:
	default:
		gb_addr_config |= ROW_SIZE(0);
		break;
	case 2:
		gb_addr_config |= ROW_SIZE(1);
		break;
	case 4:
		gb_addr_config |= ROW_SIZE(2);
		break;
	}

	/* setup tiling info dword.  gb_addr_config is not adequate since it does
	 * not have bank info, so create a custom tiling dword.
	 * bits 3:0   num_pipes
	 * bits 7:4   num_banks
	 * bits 11:8  group_size
	 * bits 15:12 row_size
	 */
	rdev->config.cik.tile_config = 0;
	switch (rdev->config.cik.num_tile_pipes) {
	case 1:
		rdev->config.cik.tile_config |= (0 << 0);
		break;
	case 2:
		rdev->config.cik.tile_config |= (1 << 0);
		break;
	case 4:
		rdev->config.cik.tile_config |= (2 << 0);
		break;
	case 8:
	default:
		/* XXX what about 12? */
		rdev->config.cik.tile_config |= (3 << 0);
		break;
	}
	if ((mc_arb_ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT)
		rdev->config.cik.tile_config |= 1 << 4;
	else
		rdev->config.cik.tile_config |= 0 << 4;
	rdev->config.cik.tile_config |=
		((gb_addr_config & PIPE_INTERLEAVE_SIZE_MASK) >> PIPE_INTERLEAVE_SIZE_SHIFT) << 8;
	rdev->config.cik.tile_config |=
		((gb_addr_config & ROW_SIZE_MASK) >> ROW_SIZE_SHIFT) << 12;

	WREG32(GB_ADDR_CONFIG, gb_addr_config);
	WREG32(HDP_ADDR_CONFIG, gb_addr_config);
	WREG32(DMIF_ADDR_CALC, gb_addr_config);
1983 1984
	WREG32(SDMA0_TILING_CONFIG + SDMA0_REGISTER_OFFSET, gb_addr_config & 0x70);
	WREG32(SDMA0_TILING_CONFIG + SDMA1_REGISTER_OFFSET, gb_addr_config & 0x70);
1985 1986 1987
	WREG32(UVD_UDEC_ADDR_CONFIG, gb_addr_config);
	WREG32(UVD_UDEC_DB_ADDR_CONFIG, gb_addr_config);
	WREG32(UVD_UDEC_DBW_ADDR_CONFIG, gb_addr_config);
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

	cik_tiling_mode_table_init(rdev);

	cik_setup_rb(rdev, rdev->config.cik.max_shader_engines,
		     rdev->config.cik.max_sh_per_se,
		     rdev->config.cik.max_backends_per_se);

	/* set HW defaults for 3D engine */
	WREG32(CP_MEQ_THRESHOLDS, MEQ1_START(0x30) | MEQ2_START(0x60));

	WREG32(SX_DEBUG_1, 0x20);

	WREG32(TA_CNTL_AUX, 0x00010000);

	tmp = RREG32(SPI_CONFIG_CNTL);
	tmp |= 0x03000000;
	WREG32(SPI_CONFIG_CNTL, tmp);

	WREG32(SQ_CONFIG, 1);

	WREG32(DB_DEBUG, 0);

	tmp = RREG32(DB_DEBUG2) & ~0xf00fffff;
	tmp |= 0x00000400;
	WREG32(DB_DEBUG2, tmp);

	tmp = RREG32(DB_DEBUG3) & ~0x0002021c;
	tmp |= 0x00020200;
	WREG32(DB_DEBUG3, tmp);

	tmp = RREG32(CB_HW_CONTROL) & ~0x00010000;
	tmp |= 0x00018208;
	WREG32(CB_HW_CONTROL, tmp);

	WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4));

	WREG32(PA_SC_FIFO_SIZE, (SC_FRONTEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_frontend) |
				 SC_BACKEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_backend) |
				 SC_HIZ_TILE_FIFO_SIZE(rdev->config.cik.sc_hiz_tile_fifo_size) |
				 SC_EARLYZ_TILE_FIFO_SIZE(rdev->config.cik.sc_earlyz_tile_fifo_size)));

	WREG32(VGT_NUM_INSTANCES, 1);

	WREG32(CP_PERFMON_CNTL, 0);

	WREG32(SQ_CONFIG, 0);

	WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) |
					  FORCE_EOV_MAX_REZ_CNT(255)));

	WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC) |
	       AUTO_INVLD_EN(ES_AND_GS_AUTO));

	WREG32(VGT_GS_VERTEX_REUSE, 16);
	WREG32(PA_SC_LINE_STIPPLE_STATE, 0);

	tmp = RREG32(HDP_MISC_CNTL);
	tmp |= HDP_FLUSH_INVALIDATE_CACHE;
	WREG32(HDP_MISC_CNTL, tmp);

	hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL);
	WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl);

	WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3));
	WREG32(PA_SC_ENHANCE, ENABLE_PA_SC_OUT_OF_ORDER);

	udelay(50);
}

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
/*
 * GPU scratch registers helpers function.
 */
/**
 * cik_scratch_init - setup driver info for CP scratch regs
 *
 * @rdev: radeon_device pointer
 *
 * Set up the number and offset of the CP scratch registers.
 * NOTE: use of CP scratch registers is a legacy inferface and
 * is not used by default on newer asics (r6xx+).  On newer asics,
 * memory buffers are used for fences rather than scratch regs.
 */
static void cik_scratch_init(struct radeon_device *rdev)
{
	int i;

	rdev->scratch.num_reg = 7;
	rdev->scratch.reg_base = SCRATCH_REG0;
	for (i = 0; i < rdev->scratch.num_reg; i++) {
		rdev->scratch.free[i] = true;
		rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4);
	}
}

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
/**
 * cik_ring_test - basic gfx ring test
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 *
 * Allocate a scratch register and write to it using the gfx ring (CIK).
 * Provides a basic gfx ring test to verify that the ring is working.
 * Used by cik_cp_gfx_resume();
 * Returns 0 on success, error on failure.
 */
int cik_ring_test(struct radeon_device *rdev, struct radeon_ring *ring)
{
	uint32_t scratch;
	uint32_t tmp = 0;
	unsigned i;
	int r;

	r = radeon_scratch_get(rdev, &scratch);
	if (r) {
		DRM_ERROR("radeon: cp failed to get scratch reg (%d).\n", r);
		return r;
	}
	WREG32(scratch, 0xCAFEDEAD);
	r = radeon_ring_lock(rdev, ring, 3);
	if (r) {
		DRM_ERROR("radeon: cp failed to lock ring %d (%d).\n", ring->idx, r);
		radeon_scratch_free(rdev, scratch);
		return r;
	}
	radeon_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1));
	radeon_ring_write(ring, ((scratch - PACKET3_SET_UCONFIG_REG_START) >> 2));
	radeon_ring_write(ring, 0xDEADBEEF);
	radeon_ring_unlock_commit(rdev, ring);
2116

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
	for (i = 0; i < rdev->usec_timeout; i++) {
		tmp = RREG32(scratch);
		if (tmp == 0xDEADBEEF)
			break;
		DRM_UDELAY(1);
	}
	if (i < rdev->usec_timeout) {
		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
	} else {
		DRM_ERROR("radeon: ring %d test failed (scratch(0x%04X)=0x%08X)\n",
			  ring->idx, scratch, tmp);
		r = -EINVAL;
	}
	radeon_scratch_free(rdev, scratch);
	return r;
}

2134
/**
2135
 * cik_fence_gfx_ring_emit - emit a fence on the gfx ring
2136 2137 2138 2139 2140 2141 2142
 *
 * @rdev: radeon_device pointer
 * @fence: radeon fence object
 *
 * Emits a fence sequnce number on the gfx ring and flushes
 * GPU caches.
 */
2143 2144
void cik_fence_gfx_ring_emit(struct radeon_device *rdev,
			     struct radeon_fence *fence)
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
{
	struct radeon_ring *ring = &rdev->ring[fence->ring];
	u64 addr = rdev->fence_drv[fence->ring].gpu_addr;

	/* EVENT_WRITE_EOP - flush caches, send int */
	radeon_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4));
	radeon_ring_write(ring, (EOP_TCL1_ACTION_EN |
				 EOP_TC_ACTION_EN |
				 EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) |
				 EVENT_INDEX(5)));
	radeon_ring_write(ring, addr & 0xfffffffc);
	radeon_ring_write(ring, (upper_32_bits(addr) & 0xffff) | DATA_SEL(1) | INT_SEL(2));
	radeon_ring_write(ring, fence->seq);
	radeon_ring_write(ring, 0);
	/* HDP flush */
	/* We should be using the new WAIT_REG_MEM special op packet here
	 * but it causes the CP to hang
	 */
	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(0)));
	radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2);
	radeon_ring_write(ring, 0);
	radeon_ring_write(ring, 0);
}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
/**
 * cik_fence_compute_ring_emit - emit a fence on the compute ring
 *
 * @rdev: radeon_device pointer
 * @fence: radeon fence object
 *
 * Emits a fence sequnce number on the compute ring and flushes
 * GPU caches.
 */
void cik_fence_compute_ring_emit(struct radeon_device *rdev,
				 struct radeon_fence *fence)
{
	struct radeon_ring *ring = &rdev->ring[fence->ring];
	u64 addr = rdev->fence_drv[fence->ring].gpu_addr;

	/* RELEASE_MEM - flush caches, send int */
	radeon_ring_write(ring, PACKET3(PACKET3_RELEASE_MEM, 5));
	radeon_ring_write(ring, (EOP_TCL1_ACTION_EN |
				 EOP_TC_ACTION_EN |
				 EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) |
				 EVENT_INDEX(5)));
	radeon_ring_write(ring, DATA_SEL(1) | INT_SEL(2));
	radeon_ring_write(ring, addr & 0xfffffffc);
	radeon_ring_write(ring, upper_32_bits(addr));
	radeon_ring_write(ring, fence->seq);
	radeon_ring_write(ring, 0);
	/* HDP flush */
	/* We should be using the new WAIT_REG_MEM special op packet here
	 * but it causes the CP to hang
	 */
	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(0)));
	radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2);
	radeon_ring_write(ring, 0);
	radeon_ring_write(ring, 0);
}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
void cik_semaphore_ring_emit(struct radeon_device *rdev,
			     struct radeon_ring *ring,
			     struct radeon_semaphore *semaphore,
			     bool emit_wait)
{
	uint64_t addr = semaphore->gpu_addr;
	unsigned sel = emit_wait ? PACKET3_SEM_SEL_WAIT : PACKET3_SEM_SEL_SIGNAL;

	radeon_ring_write(ring, PACKET3(PACKET3_MEM_SEMAPHORE, 1));
	radeon_ring_write(ring, addr & 0xffffffff);
	radeon_ring_write(ring, (upper_32_bits(addr) & 0xffff) | sel);
}

/*
 * IB stuff
 */
/**
 * cik_ring_ib_execute - emit an IB (Indirect Buffer) on the gfx ring
 *
 * @rdev: radeon_device pointer
 * @ib: radeon indirect buffer object
 *
 * Emits an DE (drawing engine) or CE (constant engine) IB
 * on the gfx ring.  IBs are usually generated by userspace
 * acceleration drivers and submitted to the kernel for
 * sheduling on the ring.  This function schedules the IB
 * on the gfx ring for execution by the GPU.
 */
void cik_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib)
{
	struct radeon_ring *ring = &rdev->ring[ib->ring];
	u32 header, control = INDIRECT_BUFFER_VALID;

	if (ib->is_const_ib) {
		/* set switch buffer packet before const IB */
		radeon_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
		radeon_ring_write(ring, 0);

		header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2);
	} else {
		u32 next_rptr;
		if (ring->rptr_save_reg) {
			next_rptr = ring->wptr + 3 + 4;
			radeon_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1));
			radeon_ring_write(ring, ((ring->rptr_save_reg -
						  PACKET3_SET_UCONFIG_REG_START) >> 2));
			radeon_ring_write(ring, next_rptr);
		} else if (rdev->wb.enabled) {
			next_rptr = ring->wptr + 5 + 4;
			radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
			radeon_ring_write(ring, WRITE_DATA_DST_SEL(1));
			radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
			radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff);
			radeon_ring_write(ring, next_rptr);
		}

		header = PACKET3(PACKET3_INDIRECT_BUFFER, 2);
	}

	control |= ib->length_dw |
		(ib->vm ? (ib->vm->id << 24) : 0);

	radeon_ring_write(ring, header);
	radeon_ring_write(ring,
#ifdef __BIG_ENDIAN
			  (2 << 0) |
#endif
			  (ib->gpu_addr & 0xFFFFFFFC));
	radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF);
	radeon_ring_write(ring, control);
}

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
/**
 * cik_ib_test - basic gfx ring IB test
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 *
 * Allocate an IB and execute it on the gfx ring (CIK).
 * Provides a basic gfx ring test to verify that IBs are working.
 * Returns 0 on success, error on failure.
 */
int cik_ib_test(struct radeon_device *rdev, struct radeon_ring *ring)
{
	struct radeon_ib ib;
	uint32_t scratch;
	uint32_t tmp = 0;
	unsigned i;
	int r;

	r = radeon_scratch_get(rdev, &scratch);
	if (r) {
		DRM_ERROR("radeon: failed to get scratch reg (%d).\n", r);
		return r;
	}
	WREG32(scratch, 0xCAFEDEAD);
	r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256);
	if (r) {
		DRM_ERROR("radeon: failed to get ib (%d).\n", r);
		return r;
	}
	ib.ptr[0] = PACKET3(PACKET3_SET_UCONFIG_REG, 1);
	ib.ptr[1] = ((scratch - PACKET3_SET_UCONFIG_REG_START) >> 2);
	ib.ptr[2] = 0xDEADBEEF;
	ib.length_dw = 3;
	r = radeon_ib_schedule(rdev, &ib, NULL);
	if (r) {
		radeon_scratch_free(rdev, scratch);
		radeon_ib_free(rdev, &ib);
		DRM_ERROR("radeon: failed to schedule ib (%d).\n", r);
		return r;
	}
	r = radeon_fence_wait(ib.fence, false);
	if (r) {
		DRM_ERROR("radeon: fence wait failed (%d).\n", r);
		return r;
	}
	for (i = 0; i < rdev->usec_timeout; i++) {
		tmp = RREG32(scratch);
		if (tmp == 0xDEADBEEF)
			break;
		DRM_UDELAY(1);
	}
	if (i < rdev->usec_timeout) {
		DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i);
	} else {
		DRM_ERROR("radeon: ib test failed (scratch(0x%04X)=0x%08X)\n",
			  scratch, tmp);
		r = -EINVAL;
	}
	radeon_scratch_free(rdev, scratch);
	radeon_ib_free(rdev, &ib);
	return r;
}

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
/*
 * CP.
 * On CIK, gfx and compute now have independant command processors.
 *
 * GFX
 * Gfx consists of a single ring and can process both gfx jobs and
 * compute jobs.  The gfx CP consists of three microengines (ME):
 * PFP - Pre-Fetch Parser
 * ME - Micro Engine
 * CE - Constant Engine
 * The PFP and ME make up what is considered the Drawing Engine (DE).
 * The CE is an asynchronous engine used for updating buffer desciptors
 * used by the DE so that they can be loaded into cache in parallel
 * while the DE is processing state update packets.
 *
 * Compute
 * The compute CP consists of two microengines (ME):
 * MEC1 - Compute MicroEngine 1
 * MEC2 - Compute MicroEngine 2
 * Each MEC supports 4 compute pipes and each pipe supports 8 queues.
 * The queues are exposed to userspace and are programmed directly
 * by the compute runtime.
 */
/**
 * cik_cp_gfx_enable - enable/disable the gfx CP MEs
 *
 * @rdev: radeon_device pointer
 * @enable: enable or disable the MEs
 *
 * Halts or unhalts the gfx MEs.
 */
static void cik_cp_gfx_enable(struct radeon_device *rdev, bool enable)
{
	if (enable)
		WREG32(CP_ME_CNTL, 0);
	else {
		WREG32(CP_ME_CNTL, (CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT));
		rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false;
	}
	udelay(50);
}

/**
 * cik_cp_gfx_load_microcode - load the gfx CP ME ucode
 *
 * @rdev: radeon_device pointer
 *
 * Loads the gfx PFP, ME, and CE ucode.
 * Returns 0 for success, -EINVAL if the ucode is not available.
 */
static int cik_cp_gfx_load_microcode(struct radeon_device *rdev)
{
	const __be32 *fw_data;
	int i;

	if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw)
		return -EINVAL;

	cik_cp_gfx_enable(rdev, false);

	/* PFP */
	fw_data = (const __be32 *)rdev->pfp_fw->data;
	WREG32(CP_PFP_UCODE_ADDR, 0);
	for (i = 0; i < CIK_PFP_UCODE_SIZE; i++)
		WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++));
	WREG32(CP_PFP_UCODE_ADDR, 0);

	/* CE */
	fw_data = (const __be32 *)rdev->ce_fw->data;
	WREG32(CP_CE_UCODE_ADDR, 0);
	for (i = 0; i < CIK_CE_UCODE_SIZE; i++)
		WREG32(CP_CE_UCODE_DATA, be32_to_cpup(fw_data++));
	WREG32(CP_CE_UCODE_ADDR, 0);

	/* ME */
	fw_data = (const __be32 *)rdev->me_fw->data;
	WREG32(CP_ME_RAM_WADDR, 0);
	for (i = 0; i < CIK_ME_UCODE_SIZE; i++)
		WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++));
	WREG32(CP_ME_RAM_WADDR, 0);

	WREG32(CP_PFP_UCODE_ADDR, 0);
	WREG32(CP_CE_UCODE_ADDR, 0);
	WREG32(CP_ME_RAM_WADDR, 0);
	WREG32(CP_ME_RAM_RADDR, 0);
	return 0;
}

/**
 * cik_cp_gfx_start - start the gfx ring
 *
 * @rdev: radeon_device pointer
 *
 * Enables the ring and loads the clear state context and other
 * packets required to init the ring.
 * Returns 0 for success, error for failure.
 */
static int cik_cp_gfx_start(struct radeon_device *rdev)
{
	struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
	int r, i;

	/* init the CP */
	WREG32(CP_MAX_CONTEXT, rdev->config.cik.max_hw_contexts - 1);
	WREG32(CP_ENDIAN_SWAP, 0);
	WREG32(CP_DEVICE_ID, 1);

	cik_cp_gfx_enable(rdev, true);

	r = radeon_ring_lock(rdev, ring, cik_default_size + 17);
	if (r) {
		DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r);
		return r;
	}

	/* init the CE partitions.  CE only used for gfx on CIK */
	radeon_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2));
	radeon_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE));
	radeon_ring_write(ring, 0xc000);
	radeon_ring_write(ring, 0xc000);

	/* setup clear context state */
	radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
	radeon_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);

	radeon_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1));
	radeon_ring_write(ring, 0x80000000);
	radeon_ring_write(ring, 0x80000000);

	for (i = 0; i < cik_default_size; i++)
		radeon_ring_write(ring, cik_default_state[i]);

	radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
	radeon_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE);

	/* set clear context state */
	radeon_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0));
	radeon_ring_write(ring, 0);

	radeon_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2));
	radeon_ring_write(ring, 0x00000316);
	radeon_ring_write(ring, 0x0000000e); /* VGT_VERTEX_REUSE_BLOCK_CNTL */
	radeon_ring_write(ring, 0x00000010); /* VGT_OUT_DEALLOC_CNTL */

	radeon_ring_unlock_commit(rdev, ring);

	return 0;
}

/**
 * cik_cp_gfx_fini - stop the gfx ring
 *
 * @rdev: radeon_device pointer
 *
 * Stop the gfx ring and tear down the driver ring
 * info.
 */
static void cik_cp_gfx_fini(struct radeon_device *rdev)
{
	cik_cp_gfx_enable(rdev, false);
	radeon_ring_fini(rdev, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]);
}

/**
 * cik_cp_gfx_resume - setup the gfx ring buffer registers
 *
 * @rdev: radeon_device pointer
 *
 * Program the location and size of the gfx ring buffer
 * and test it to make sure it's working.
 * Returns 0 for success, error for failure.
 */
static int cik_cp_gfx_resume(struct radeon_device *rdev)
{
	struct radeon_ring *ring;
	u32 tmp;
	u32 rb_bufsz;
	u64 rb_addr;
	int r;

	WREG32(CP_SEM_WAIT_TIMER, 0x0);
	WREG32(CP_SEM_INCOMPLETE_TIMER_CNTL, 0x0);

	/* Set the write pointer delay */
	WREG32(CP_RB_WPTR_DELAY, 0);

	/* set the RB to use vmid 0 */
	WREG32(CP_RB_VMID, 0);

	WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF);

	/* ring 0 - compute and gfx */
	/* Set ring buffer size */
	ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
	rb_bufsz = drm_order(ring->ring_size / 8);
	tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz;
#ifdef __BIG_ENDIAN
	tmp |= BUF_SWAP_32BIT;
#endif
	WREG32(CP_RB0_CNTL, tmp);

	/* Initialize the ring buffer's read and write pointers */
	WREG32(CP_RB0_CNTL, tmp | RB_RPTR_WR_ENA);
	ring->wptr = 0;
	WREG32(CP_RB0_WPTR, ring->wptr);

	/* set the wb address wether it's enabled or not */
	WREG32(CP_RB0_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC);
	WREG32(CP_RB0_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF);

	/* scratch register shadowing is no longer supported */
	WREG32(SCRATCH_UMSK, 0);

	if (!rdev->wb.enabled)
		tmp |= RB_NO_UPDATE;

	mdelay(1);
	WREG32(CP_RB0_CNTL, tmp);

	rb_addr = ring->gpu_addr >> 8;
	WREG32(CP_RB0_BASE, rb_addr);
	WREG32(CP_RB0_BASE_HI, upper_32_bits(rb_addr));

	ring->rptr = RREG32(CP_RB0_RPTR);

	/* start the ring */
	cik_cp_gfx_start(rdev);
	rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = true;
	r = radeon_ring_test(rdev, RADEON_RING_TYPE_GFX_INDEX, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]);
	if (r) {
		rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false;
		return r;
	}
	return 0;
}

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
u32 cik_compute_ring_get_rptr(struct radeon_device *rdev,
			      struct radeon_ring *ring)
{
	u32 rptr;



	if (rdev->wb.enabled) {
		rptr = le32_to_cpu(rdev->wb.wb[ring->rptr_offs/4]);
	} else {
2590
		mutex_lock(&rdev->srbm_mutex);
2591 2592 2593
		cik_srbm_select(rdev, ring->me, ring->pipe, ring->queue, 0);
		rptr = RREG32(CP_HQD_PQ_RPTR);
		cik_srbm_select(rdev, 0, 0, 0, 0);
2594
		mutex_unlock(&rdev->srbm_mutex);
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
	}
	rptr = (rptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift;

	return rptr;
}

u32 cik_compute_ring_get_wptr(struct radeon_device *rdev,
			      struct radeon_ring *ring)
{
	u32 wptr;

	if (rdev->wb.enabled) {
		wptr = le32_to_cpu(rdev->wb.wb[ring->wptr_offs/4]);
	} else {
2609
		mutex_lock(&rdev->srbm_mutex);
2610 2611 2612
		cik_srbm_select(rdev, ring->me, ring->pipe, ring->queue, 0);
		wptr = RREG32(CP_HQD_PQ_WPTR);
		cik_srbm_select(rdev, 0, 0, 0, 0);
2613
		mutex_unlock(&rdev->srbm_mutex);
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
	}
	wptr = (wptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift;

	return wptr;
}

void cik_compute_ring_set_wptr(struct radeon_device *rdev,
			       struct radeon_ring *ring)
{
	u32 wptr = (ring->wptr << ring->ptr_reg_shift) & ring->ptr_reg_mask;

	rdev->wb.wb[ring->wptr_offs/4] = cpu_to_le32(wptr);
	WDOORBELL32(ring->doorbell_offset, wptr);
}

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
/**
 * cik_cp_compute_enable - enable/disable the compute CP MEs
 *
 * @rdev: radeon_device pointer
 * @enable: enable or disable the MEs
 *
 * Halts or unhalts the compute MEs.
 */
static void cik_cp_compute_enable(struct radeon_device *rdev, bool enable)
{
	if (enable)
		WREG32(CP_MEC_CNTL, 0);
	else
		WREG32(CP_MEC_CNTL, (MEC_ME1_HALT | MEC_ME2_HALT));
	udelay(50);
}

/**
 * cik_cp_compute_load_microcode - load the compute CP ME ucode
 *
 * @rdev: radeon_device pointer
 *
 * Loads the compute MEC1&2 ucode.
 * Returns 0 for success, -EINVAL if the ucode is not available.
 */
static int cik_cp_compute_load_microcode(struct radeon_device *rdev)
{
	const __be32 *fw_data;
	int i;

	if (!rdev->mec_fw)
		return -EINVAL;

	cik_cp_compute_enable(rdev, false);

	/* MEC1 */
	fw_data = (const __be32 *)rdev->mec_fw->data;
	WREG32(CP_MEC_ME1_UCODE_ADDR, 0);
	for (i = 0; i < CIK_MEC_UCODE_SIZE; i++)
		WREG32(CP_MEC_ME1_UCODE_DATA, be32_to_cpup(fw_data++));
	WREG32(CP_MEC_ME1_UCODE_ADDR, 0);

	if (rdev->family == CHIP_KAVERI) {
		/* MEC2 */
		fw_data = (const __be32 *)rdev->mec_fw->data;
		WREG32(CP_MEC_ME2_UCODE_ADDR, 0);
		for (i = 0; i < CIK_MEC_UCODE_SIZE; i++)
			WREG32(CP_MEC_ME2_UCODE_DATA, be32_to_cpup(fw_data++));
		WREG32(CP_MEC_ME2_UCODE_ADDR, 0);
	}

	return 0;
}

/**
 * cik_cp_compute_start - start the compute queues
 *
 * @rdev: radeon_device pointer
 *
 * Enable the compute queues.
 * Returns 0 for success, error for failure.
 */
static int cik_cp_compute_start(struct radeon_device *rdev)
{
2693 2694
	cik_cp_compute_enable(rdev, true);

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	return 0;
}

/**
 * cik_cp_compute_fini - stop the compute queues
 *
 * @rdev: radeon_device pointer
 *
 * Stop the compute queues and tear down the driver queue
 * info.
 */
static void cik_cp_compute_fini(struct radeon_device *rdev)
{
2708 2709
	int i, idx, r;

2710
	cik_cp_compute_enable(rdev, false);
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729

	for (i = 0; i < 2; i++) {
		if (i == 0)
			idx = CAYMAN_RING_TYPE_CP1_INDEX;
		else
			idx = CAYMAN_RING_TYPE_CP2_INDEX;

		if (rdev->ring[idx].mqd_obj) {
			r = radeon_bo_reserve(rdev->ring[idx].mqd_obj, false);
			if (unlikely(r != 0))
				dev_warn(rdev->dev, "(%d) reserve MQD bo failed\n", r);

			radeon_bo_unpin(rdev->ring[idx].mqd_obj);
			radeon_bo_unreserve(rdev->ring[idx].mqd_obj);

			radeon_bo_unref(&rdev->ring[idx].mqd_obj);
			rdev->ring[idx].mqd_obj = NULL;
		}
	}
2730 2731
}

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
static void cik_mec_fini(struct radeon_device *rdev)
{
	int r;

	if (rdev->mec.hpd_eop_obj) {
		r = radeon_bo_reserve(rdev->mec.hpd_eop_obj, false);
		if (unlikely(r != 0))
			dev_warn(rdev->dev, "(%d) reserve HPD EOP bo failed\n", r);
		radeon_bo_unpin(rdev->mec.hpd_eop_obj);
		radeon_bo_unreserve(rdev->mec.hpd_eop_obj);

		radeon_bo_unref(&rdev->mec.hpd_eop_obj);
		rdev->mec.hpd_eop_obj = NULL;
	}
}

#define MEC_HPD_SIZE 2048

static int cik_mec_init(struct radeon_device *rdev)
{
	int r;
	u32 *hpd;

	/*
	 * KV:    2 MEC, 4 Pipes/MEC, 8 Queues/Pipe - 64 Queues total
	 * CI/KB: 1 MEC, 4 Pipes/MEC, 8 Queues/Pipe - 32 Queues total
	 */
	if (rdev->family == CHIP_KAVERI)
		rdev->mec.num_mec = 2;
	else
		rdev->mec.num_mec = 1;
	rdev->mec.num_pipe = 4;
	rdev->mec.num_queue = rdev->mec.num_mec * rdev->mec.num_pipe * 8;

	if (rdev->mec.hpd_eop_obj == NULL) {
		r = radeon_bo_create(rdev,
				     rdev->mec.num_mec *rdev->mec.num_pipe * MEC_HPD_SIZE * 2,
				     PAGE_SIZE, true,
				     RADEON_GEM_DOMAIN_GTT, NULL,
				     &rdev->mec.hpd_eop_obj);
		if (r) {
			dev_warn(rdev->dev, "(%d) create HDP EOP bo failed\n", r);
			return r;
		}
	}

	r = radeon_bo_reserve(rdev->mec.hpd_eop_obj, false);
	if (unlikely(r != 0)) {
		cik_mec_fini(rdev);
		return r;
	}
	r = radeon_bo_pin(rdev->mec.hpd_eop_obj, RADEON_GEM_DOMAIN_GTT,
			  &rdev->mec.hpd_eop_gpu_addr);
	if (r) {
		dev_warn(rdev->dev, "(%d) pin HDP EOP bo failed\n", r);
		cik_mec_fini(rdev);
		return r;
	}
	r = radeon_bo_kmap(rdev->mec.hpd_eop_obj, (void **)&hpd);
	if (r) {
		dev_warn(rdev->dev, "(%d) map HDP EOP bo failed\n", r);
		cik_mec_fini(rdev);
		return r;
	}

	/* clear memory.  Not sure if this is required or not */
	memset(hpd, 0, rdev->mec.num_mec *rdev->mec.num_pipe * MEC_HPD_SIZE * 2);

	radeon_bo_kunmap(rdev->mec.hpd_eop_obj);
	radeon_bo_unreserve(rdev->mec.hpd_eop_obj);

	return 0;
}

struct hqd_registers
{
	u32 cp_mqd_base_addr;
	u32 cp_mqd_base_addr_hi;
	u32 cp_hqd_active;
	u32 cp_hqd_vmid;
	u32 cp_hqd_persistent_state;
	u32 cp_hqd_pipe_priority;
	u32 cp_hqd_queue_priority;
	u32 cp_hqd_quantum;
	u32 cp_hqd_pq_base;
	u32 cp_hqd_pq_base_hi;
	u32 cp_hqd_pq_rptr;
	u32 cp_hqd_pq_rptr_report_addr;
	u32 cp_hqd_pq_rptr_report_addr_hi;
	u32 cp_hqd_pq_wptr_poll_addr;
	u32 cp_hqd_pq_wptr_poll_addr_hi;
	u32 cp_hqd_pq_doorbell_control;
	u32 cp_hqd_pq_wptr;
	u32 cp_hqd_pq_control;
	u32 cp_hqd_ib_base_addr;
	u32 cp_hqd_ib_base_addr_hi;
	u32 cp_hqd_ib_rptr;
	u32 cp_hqd_ib_control;
	u32 cp_hqd_iq_timer;
	u32 cp_hqd_iq_rptr;
	u32 cp_hqd_dequeue_request;
	u32 cp_hqd_dma_offload;
	u32 cp_hqd_sema_cmd;
	u32 cp_hqd_msg_type;
	u32 cp_hqd_atomic0_preop_lo;
	u32 cp_hqd_atomic0_preop_hi;
	u32 cp_hqd_atomic1_preop_lo;
	u32 cp_hqd_atomic1_preop_hi;
	u32 cp_hqd_hq_scheduler0;
	u32 cp_hqd_hq_scheduler1;
	u32 cp_mqd_control;
};

struct bonaire_mqd
{
	u32 header;
	u32 dispatch_initiator;
	u32 dimensions[3];
	u32 start_idx[3];
	u32 num_threads[3];
	u32 pipeline_stat_enable;
	u32 perf_counter_enable;
	u32 pgm[2];
	u32 tba[2];
	u32 tma[2];
	u32 pgm_rsrc[2];
	u32 vmid;
	u32 resource_limits;
	u32 static_thread_mgmt01[2];
	u32 tmp_ring_size;
	u32 static_thread_mgmt23[2];
	u32 restart[3];
	u32 thread_trace_enable;
	u32 reserved1;
	u32 user_data[16];
	u32 vgtcs_invoke_count[2];
	struct hqd_registers queue_state;
	u32 dequeue_cntr;
	u32 interrupt_queue[64];
};

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
/**
 * cik_cp_compute_resume - setup the compute queue registers
 *
 * @rdev: radeon_device pointer
 *
 * Program the compute queues and test them to make sure they
 * are working.
 * Returns 0 for success, error for failure.
 */
static int cik_cp_compute_resume(struct radeon_device *rdev)
{
2884 2885 2886 2887 2888 2889 2890 2891 2892
	int r, i, idx;
	u32 tmp;
	bool use_doorbell = true;
	u64 hqd_gpu_addr;
	u64 mqd_gpu_addr;
	u64 eop_gpu_addr;
	u64 wb_gpu_addr;
	u32 *buf;
	struct bonaire_mqd *mqd;
2893 2894 2895 2896

	r = cik_cp_compute_start(rdev);
	if (r)
		return r;
2897 2898 2899 2900 2901 2902 2903

	/* fix up chicken bits */
	tmp = RREG32(CP_CPF_DEBUG);
	tmp |= (1 << 23);
	WREG32(CP_CPF_DEBUG, tmp);

	/* init the pipes */
2904
	mutex_lock(&rdev->srbm_mutex);
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	for (i = 0; i < (rdev->mec.num_pipe * rdev->mec.num_mec); i++) {
		int me = (i < 4) ? 1 : 2;
		int pipe = (i < 4) ? i : (i - 4);

		eop_gpu_addr = rdev->mec.hpd_eop_gpu_addr + (i * MEC_HPD_SIZE * 2);

		cik_srbm_select(rdev, me, pipe, 0, 0);

		/* write the EOP addr */
		WREG32(CP_HPD_EOP_BASE_ADDR, eop_gpu_addr >> 8);
		WREG32(CP_HPD_EOP_BASE_ADDR_HI, upper_32_bits(eop_gpu_addr) >> 8);

		/* set the VMID assigned */
		WREG32(CP_HPD_EOP_VMID, 0);

		/* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */
		tmp = RREG32(CP_HPD_EOP_CONTROL);
		tmp &= ~EOP_SIZE_MASK;
		tmp |= drm_order(MEC_HPD_SIZE / 8);
		WREG32(CP_HPD_EOP_CONTROL, tmp);
	}
	cik_srbm_select(rdev, 0, 0, 0, 0);
2927
	mutex_unlock(&rdev->srbm_mutex);
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980

	/* init the queues.  Just two for now. */
	for (i = 0; i < 2; i++) {
		if (i == 0)
			idx = CAYMAN_RING_TYPE_CP1_INDEX;
		else
			idx = CAYMAN_RING_TYPE_CP2_INDEX;

		if (rdev->ring[idx].mqd_obj == NULL) {
			r = radeon_bo_create(rdev,
					     sizeof(struct bonaire_mqd),
					     PAGE_SIZE, true,
					     RADEON_GEM_DOMAIN_GTT, NULL,
					     &rdev->ring[idx].mqd_obj);
			if (r) {
				dev_warn(rdev->dev, "(%d) create MQD bo failed\n", r);
				return r;
			}
		}

		r = radeon_bo_reserve(rdev->ring[idx].mqd_obj, false);
		if (unlikely(r != 0)) {
			cik_cp_compute_fini(rdev);
			return r;
		}
		r = radeon_bo_pin(rdev->ring[idx].mqd_obj, RADEON_GEM_DOMAIN_GTT,
				  &mqd_gpu_addr);
		if (r) {
			dev_warn(rdev->dev, "(%d) pin MQD bo failed\n", r);
			cik_cp_compute_fini(rdev);
			return r;
		}
		r = radeon_bo_kmap(rdev->ring[idx].mqd_obj, (void **)&buf);
		if (r) {
			dev_warn(rdev->dev, "(%d) map MQD bo failed\n", r);
			cik_cp_compute_fini(rdev);
			return r;
		}

		/* doorbell offset */
		rdev->ring[idx].doorbell_offset =
			(rdev->ring[idx].doorbell_page_num * PAGE_SIZE) + 0;

		/* init the mqd struct */
		memset(buf, 0, sizeof(struct bonaire_mqd));

		mqd = (struct bonaire_mqd *)buf;
		mqd->header = 0xC0310800;
		mqd->static_thread_mgmt01[0] = 0xffffffff;
		mqd->static_thread_mgmt01[1] = 0xffffffff;
		mqd->static_thread_mgmt23[0] = 0xffffffff;
		mqd->static_thread_mgmt23[1] = 0xffffffff;

2981
		mutex_lock(&rdev->srbm_mutex);
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
		cik_srbm_select(rdev, rdev->ring[idx].me,
				rdev->ring[idx].pipe,
				rdev->ring[idx].queue, 0);

		/* disable wptr polling */
		tmp = RREG32(CP_PQ_WPTR_POLL_CNTL);
		tmp &= ~WPTR_POLL_EN;
		WREG32(CP_PQ_WPTR_POLL_CNTL, tmp);

		/* enable doorbell? */
		mqd->queue_state.cp_hqd_pq_doorbell_control =
			RREG32(CP_HQD_PQ_DOORBELL_CONTROL);
		if (use_doorbell)
			mqd->queue_state.cp_hqd_pq_doorbell_control |= DOORBELL_EN;
		else
			mqd->queue_state.cp_hqd_pq_doorbell_control &= ~DOORBELL_EN;
		WREG32(CP_HQD_PQ_DOORBELL_CONTROL,
		       mqd->queue_state.cp_hqd_pq_doorbell_control);

		/* disable the queue if it's active */
		mqd->queue_state.cp_hqd_dequeue_request = 0;
		mqd->queue_state.cp_hqd_pq_rptr = 0;
		mqd->queue_state.cp_hqd_pq_wptr= 0;
		if (RREG32(CP_HQD_ACTIVE) & 1) {
			WREG32(CP_HQD_DEQUEUE_REQUEST, 1);
			for (i = 0; i < rdev->usec_timeout; i++) {
				if (!(RREG32(CP_HQD_ACTIVE) & 1))
					break;
				udelay(1);
			}
			WREG32(CP_HQD_DEQUEUE_REQUEST, mqd->queue_state.cp_hqd_dequeue_request);
			WREG32(CP_HQD_PQ_RPTR, mqd->queue_state.cp_hqd_pq_rptr);
			WREG32(CP_HQD_PQ_WPTR, mqd->queue_state.cp_hqd_pq_wptr);
		}

		/* set the pointer to the MQD */
		mqd->queue_state.cp_mqd_base_addr = mqd_gpu_addr & 0xfffffffc;
		mqd->queue_state.cp_mqd_base_addr_hi = upper_32_bits(mqd_gpu_addr);
		WREG32(CP_MQD_BASE_ADDR, mqd->queue_state.cp_mqd_base_addr);
		WREG32(CP_MQD_BASE_ADDR_HI, mqd->queue_state.cp_mqd_base_addr_hi);
		/* set MQD vmid to 0 */
		mqd->queue_state.cp_mqd_control = RREG32(CP_MQD_CONTROL);
		mqd->queue_state.cp_mqd_control &= ~MQD_VMID_MASK;
		WREG32(CP_MQD_CONTROL, mqd->queue_state.cp_mqd_control);

		/* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */
		hqd_gpu_addr = rdev->ring[idx].gpu_addr >> 8;
		mqd->queue_state.cp_hqd_pq_base = hqd_gpu_addr;
		mqd->queue_state.cp_hqd_pq_base_hi = upper_32_bits(hqd_gpu_addr);
		WREG32(CP_HQD_PQ_BASE, mqd->queue_state.cp_hqd_pq_base);
		WREG32(CP_HQD_PQ_BASE_HI, mqd->queue_state.cp_hqd_pq_base_hi);

		/* set up the HQD, this is similar to CP_RB0_CNTL */
		mqd->queue_state.cp_hqd_pq_control = RREG32(CP_HQD_PQ_CONTROL);
		mqd->queue_state.cp_hqd_pq_control &=
			~(QUEUE_SIZE_MASK | RPTR_BLOCK_SIZE_MASK);

		mqd->queue_state.cp_hqd_pq_control |=
			drm_order(rdev->ring[idx].ring_size / 8);
		mqd->queue_state.cp_hqd_pq_control |=
			(drm_order(RADEON_GPU_PAGE_SIZE/8) << 8);
#ifdef __BIG_ENDIAN
		mqd->queue_state.cp_hqd_pq_control |= BUF_SWAP_32BIT;
#endif
		mqd->queue_state.cp_hqd_pq_control &=
			~(UNORD_DISPATCH | ROQ_PQ_IB_FLIP | PQ_VOLATILE);
		mqd->queue_state.cp_hqd_pq_control |=
			PRIV_STATE | KMD_QUEUE; /* assuming kernel queue control */
		WREG32(CP_HQD_PQ_CONTROL, mqd->queue_state.cp_hqd_pq_control);

		/* only used if CP_PQ_WPTR_POLL_CNTL.WPTR_POLL_EN=1 */
		if (i == 0)
			wb_gpu_addr = rdev->wb.gpu_addr + CIK_WB_CP1_WPTR_OFFSET;
		else
			wb_gpu_addr = rdev->wb.gpu_addr + CIK_WB_CP2_WPTR_OFFSET;
		mqd->queue_state.cp_hqd_pq_wptr_poll_addr = wb_gpu_addr & 0xfffffffc;
		mqd->queue_state.cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff;
		WREG32(CP_HQD_PQ_WPTR_POLL_ADDR, mqd->queue_state.cp_hqd_pq_wptr_poll_addr);
		WREG32(CP_HQD_PQ_WPTR_POLL_ADDR_HI,
		       mqd->queue_state.cp_hqd_pq_wptr_poll_addr_hi);

		/* set the wb address wether it's enabled or not */
		if (i == 0)
			wb_gpu_addr = rdev->wb.gpu_addr + RADEON_WB_CP1_RPTR_OFFSET;
		else
			wb_gpu_addr = rdev->wb.gpu_addr + RADEON_WB_CP2_RPTR_OFFSET;
		mqd->queue_state.cp_hqd_pq_rptr_report_addr = wb_gpu_addr & 0xfffffffc;
		mqd->queue_state.cp_hqd_pq_rptr_report_addr_hi =
			upper_32_bits(wb_gpu_addr) & 0xffff;
		WREG32(CP_HQD_PQ_RPTR_REPORT_ADDR,
		       mqd->queue_state.cp_hqd_pq_rptr_report_addr);
		WREG32(CP_HQD_PQ_RPTR_REPORT_ADDR_HI,
		       mqd->queue_state.cp_hqd_pq_rptr_report_addr_hi);

		/* enable the doorbell if requested */
		if (use_doorbell) {
			mqd->queue_state.cp_hqd_pq_doorbell_control =
				RREG32(CP_HQD_PQ_DOORBELL_CONTROL);
			mqd->queue_state.cp_hqd_pq_doorbell_control &= ~DOORBELL_OFFSET_MASK;
			mqd->queue_state.cp_hqd_pq_doorbell_control |=
				DOORBELL_OFFSET(rdev->ring[idx].doorbell_offset / 4);
			mqd->queue_state.cp_hqd_pq_doorbell_control |= DOORBELL_EN;
			mqd->queue_state.cp_hqd_pq_doorbell_control &=
				~(DOORBELL_SOURCE | DOORBELL_HIT);

		} else {
			mqd->queue_state.cp_hqd_pq_doorbell_control = 0;
		}
		WREG32(CP_HQD_PQ_DOORBELL_CONTROL,
		       mqd->queue_state.cp_hqd_pq_doorbell_control);

		/* read and write pointers, similar to CP_RB0_WPTR/_RPTR */
		rdev->ring[idx].wptr = 0;
		mqd->queue_state.cp_hqd_pq_wptr = rdev->ring[idx].wptr;
		WREG32(CP_HQD_PQ_WPTR, mqd->queue_state.cp_hqd_pq_wptr);
		rdev->ring[idx].rptr = RREG32(CP_HQD_PQ_RPTR);
		mqd->queue_state.cp_hqd_pq_rptr = rdev->ring[idx].rptr;

		/* set the vmid for the queue */
		mqd->queue_state.cp_hqd_vmid = 0;
		WREG32(CP_HQD_VMID, mqd->queue_state.cp_hqd_vmid);

		/* activate the queue */
		mqd->queue_state.cp_hqd_active = 1;
		WREG32(CP_HQD_ACTIVE, mqd->queue_state.cp_hqd_active);

		cik_srbm_select(rdev, 0, 0, 0, 0);
3109
		mutex_unlock(&rdev->srbm_mutex);
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119

		radeon_bo_kunmap(rdev->ring[idx].mqd_obj);
		radeon_bo_unreserve(rdev->ring[idx].mqd_obj);

		rdev->ring[idx].ready = true;
		r = radeon_ring_test(rdev, idx, &rdev->ring[idx]);
		if (r)
			rdev->ring[idx].ready = false;
	}

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
	return 0;
}

static void cik_cp_enable(struct radeon_device *rdev, bool enable)
{
	cik_cp_gfx_enable(rdev, enable);
	cik_cp_compute_enable(rdev, enable);
}

static int cik_cp_load_microcode(struct radeon_device *rdev)
{
	int r;

	r = cik_cp_gfx_load_microcode(rdev);
	if (r)
		return r;
	r = cik_cp_compute_load_microcode(rdev);
	if (r)
		return r;

	return 0;
}

static void cik_cp_fini(struct radeon_device *rdev)
{
	cik_cp_gfx_fini(rdev);
	cik_cp_compute_fini(rdev);
}

static int cik_cp_resume(struct radeon_device *rdev)
{
	int r;

	/* Reset all cp blocks */
	WREG32(GRBM_SOFT_RESET, SOFT_RESET_CP);
	RREG32(GRBM_SOFT_RESET);
	mdelay(15);
	WREG32(GRBM_SOFT_RESET, 0);
	RREG32(GRBM_SOFT_RESET);

	r = cik_cp_load_microcode(rdev);
	if (r)
		return r;

	r = cik_cp_gfx_resume(rdev);
	if (r)
		return r;
	r = cik_cp_compute_resume(rdev);
	if (r)
		return r;

	return 0;
}

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
/*
 * sDMA - System DMA
 * Starting with CIK, the GPU has new asynchronous
 * DMA engines.  These engines are used for compute
 * and gfx.  There are two DMA engines (SDMA0, SDMA1)
 * and each one supports 1 ring buffer used for gfx
 * and 2 queues used for compute.
 *
 * The programming model is very similar to the CP
 * (ring buffer, IBs, etc.), but sDMA has it's own
 * packet format that is different from the PM4 format
 * used by the CP. sDMA supports copying data, writing
 * embedded data, solid fills, and a number of other
 * things.  It also has support for tiling/detiling of
 * buffers.
 */
/**
 * cik_sdma_ring_ib_execute - Schedule an IB on the DMA engine
 *
 * @rdev: radeon_device pointer
 * @ib: IB object to schedule
 *
 * Schedule an IB in the DMA ring (CIK).
 */
void cik_sdma_ring_ib_execute(struct radeon_device *rdev,
			      struct radeon_ib *ib)
{
	struct radeon_ring *ring = &rdev->ring[ib->ring];
	u32 extra_bits = (ib->vm ? ib->vm->id : 0) & 0xf;

	if (rdev->wb.enabled) {
		u32 next_rptr = ring->wptr + 5;
		while ((next_rptr & 7) != 4)
			next_rptr++;
		next_rptr += 4;
		radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0));
		radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
		radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff);
		radeon_ring_write(ring, 1); /* number of DWs to follow */
		radeon_ring_write(ring, next_rptr);
	}

	/* IB packet must end on a 8 DW boundary */
	while ((ring->wptr & 7) != 4)
		radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0));
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_INDIRECT_BUFFER, 0, extra_bits));
	radeon_ring_write(ring, ib->gpu_addr & 0xffffffe0); /* base must be 32 byte aligned */
	radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xffffffff);
	radeon_ring_write(ring, ib->length_dw);

}

/**
 * cik_sdma_fence_ring_emit - emit a fence on the DMA ring
 *
 * @rdev: radeon_device pointer
 * @fence: radeon fence object
 *
 * Add a DMA fence packet to the ring to write
 * the fence seq number and DMA trap packet to generate
 * an interrupt if needed (CIK).
 */
void cik_sdma_fence_ring_emit(struct radeon_device *rdev,
			      struct radeon_fence *fence)
{
	struct radeon_ring *ring = &rdev->ring[fence->ring];
	u64 addr = rdev->fence_drv[fence->ring].gpu_addr;
	u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) |
			  SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */
	u32 ref_and_mask;

	if (fence->ring == R600_RING_TYPE_DMA_INDEX)
		ref_and_mask = SDMA0;
	else
		ref_and_mask = SDMA1;

	/* write the fence */
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0));
	radeon_ring_write(ring, addr & 0xffffffff);
	radeon_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
	radeon_ring_write(ring, fence->seq);
	/* generate an interrupt */
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_TRAP, 0, 0));
	/* flush HDP */
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits));
	radeon_ring_write(ring, GPU_HDP_FLUSH_DONE);
	radeon_ring_write(ring, GPU_HDP_FLUSH_REQ);
	radeon_ring_write(ring, ref_and_mask); /* REFERENCE */
	radeon_ring_write(ring, ref_and_mask); /* MASK */
	radeon_ring_write(ring, (4 << 16) | 10); /* RETRY_COUNT, POLL_INTERVAL */
}

/**
 * cik_sdma_semaphore_ring_emit - emit a semaphore on the dma ring
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 * @semaphore: radeon semaphore object
 * @emit_wait: wait or signal semaphore
 *
 * Add a DMA semaphore packet to the ring wait on or signal
 * other rings (CIK).
 */
void cik_sdma_semaphore_ring_emit(struct radeon_device *rdev,
				  struct radeon_ring *ring,
				  struct radeon_semaphore *semaphore,
				  bool emit_wait)
{
	u64 addr = semaphore->gpu_addr;
	u32 extra_bits = emit_wait ? 0 : SDMA_SEMAPHORE_EXTRA_S;

	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SEMAPHORE, 0, extra_bits));
	radeon_ring_write(ring, addr & 0xfffffff8);
	radeon_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
}

/**
 * cik_sdma_gfx_stop - stop the gfx async dma engines
 *
 * @rdev: radeon_device pointer
 *
 * Stop the gfx async dma ring buffers (CIK).
 */
static void cik_sdma_gfx_stop(struct radeon_device *rdev)
{
	u32 rb_cntl, reg_offset;
	int i;

	radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size);

	for (i = 0; i < 2; i++) {
		if (i == 0)
			reg_offset = SDMA0_REGISTER_OFFSET;
		else
			reg_offset = SDMA1_REGISTER_OFFSET;
		rb_cntl = RREG32(SDMA0_GFX_RB_CNTL + reg_offset);
		rb_cntl &= ~SDMA_RB_ENABLE;
		WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl);
		WREG32(SDMA0_GFX_IB_CNTL + reg_offset, 0);
	}
}

/**
 * cik_sdma_rlc_stop - stop the compute async dma engines
 *
 * @rdev: radeon_device pointer
 *
 * Stop the compute async dma queues (CIK).
 */
static void cik_sdma_rlc_stop(struct radeon_device *rdev)
{
	/* XXX todo */
}

/**
 * cik_sdma_enable - stop the async dma engines
 *
 * @rdev: radeon_device pointer
 * @enable: enable/disable the DMA MEs.
 *
 * Halt or unhalt the async dma engines (CIK).
 */
static void cik_sdma_enable(struct radeon_device *rdev, bool enable)
{
	u32 me_cntl, reg_offset;
	int i;

	for (i = 0; i < 2; i++) {
		if (i == 0)
			reg_offset = SDMA0_REGISTER_OFFSET;
		else
			reg_offset = SDMA1_REGISTER_OFFSET;
		me_cntl = RREG32(SDMA0_ME_CNTL + reg_offset);
		if (enable)
			me_cntl &= ~SDMA_HALT;
		else
			me_cntl |= SDMA_HALT;
		WREG32(SDMA0_ME_CNTL + reg_offset, me_cntl);
	}
}

/**
 * cik_sdma_gfx_resume - setup and start the async dma engines
 *
 * @rdev: radeon_device pointer
 *
 * Set up the gfx DMA ring buffers and enable them (CIK).
 * Returns 0 for success, error for failure.
 */
static int cik_sdma_gfx_resume(struct radeon_device *rdev)
{
	struct radeon_ring *ring;
	u32 rb_cntl, ib_cntl;
	u32 rb_bufsz;
	u32 reg_offset, wb_offset;
	int i, r;

	for (i = 0; i < 2; i++) {
		if (i == 0) {
			ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX];
			reg_offset = SDMA0_REGISTER_OFFSET;
			wb_offset = R600_WB_DMA_RPTR_OFFSET;
		} else {
			ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX];
			reg_offset = SDMA1_REGISTER_OFFSET;
			wb_offset = CAYMAN_WB_DMA1_RPTR_OFFSET;
		}

		WREG32(SDMA0_SEM_INCOMPLETE_TIMER_CNTL + reg_offset, 0);
		WREG32(SDMA0_SEM_WAIT_FAIL_TIMER_CNTL + reg_offset, 0);

		/* Set ring buffer size in dwords */
		rb_bufsz = drm_order(ring->ring_size / 4);
		rb_cntl = rb_bufsz << 1;
#ifdef __BIG_ENDIAN
		rb_cntl |= SDMA_RB_SWAP_ENABLE | SDMA_RPTR_WRITEBACK_SWAP_ENABLE;
#endif
		WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl);

		/* Initialize the ring buffer's read and write pointers */
		WREG32(SDMA0_GFX_RB_RPTR + reg_offset, 0);
		WREG32(SDMA0_GFX_RB_WPTR + reg_offset, 0);

		/* set the wb address whether it's enabled or not */
		WREG32(SDMA0_GFX_RB_RPTR_ADDR_HI + reg_offset,
		       upper_32_bits(rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
		WREG32(SDMA0_GFX_RB_RPTR_ADDR_LO + reg_offset,
		       ((rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC));

		if (rdev->wb.enabled)
			rb_cntl |= SDMA_RPTR_WRITEBACK_ENABLE;

		WREG32(SDMA0_GFX_RB_BASE + reg_offset, ring->gpu_addr >> 8);
		WREG32(SDMA0_GFX_RB_BASE_HI + reg_offset, ring->gpu_addr >> 40);

		ring->wptr = 0;
		WREG32(SDMA0_GFX_RB_WPTR + reg_offset, ring->wptr << 2);

		ring->rptr = RREG32(SDMA0_GFX_RB_RPTR + reg_offset) >> 2;

		/* enable DMA RB */
		WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl | SDMA_RB_ENABLE);

		ib_cntl = SDMA_IB_ENABLE;
#ifdef __BIG_ENDIAN
		ib_cntl |= SDMA_IB_SWAP_ENABLE;
#endif
		/* enable DMA IBs */
		WREG32(SDMA0_GFX_IB_CNTL + reg_offset, ib_cntl);

		ring->ready = true;

		r = radeon_ring_test(rdev, ring->idx, ring);
		if (r) {
			ring->ready = false;
			return r;
		}
	}

	radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size);

	return 0;
}

/**
 * cik_sdma_rlc_resume - setup and start the async dma engines
 *
 * @rdev: radeon_device pointer
 *
 * Set up the compute DMA queues and enable them (CIK).
 * Returns 0 for success, error for failure.
 */
static int cik_sdma_rlc_resume(struct radeon_device *rdev)
{
	/* XXX todo */
	return 0;
}

/**
 * cik_sdma_load_microcode - load the sDMA ME ucode
 *
 * @rdev: radeon_device pointer
 *
 * Loads the sDMA0/1 ucode.
 * Returns 0 for success, -EINVAL if the ucode is not available.
 */
static int cik_sdma_load_microcode(struct radeon_device *rdev)
{
	const __be32 *fw_data;
	int i;

	if (!rdev->sdma_fw)
		return -EINVAL;

	/* stop the gfx rings and rlc compute queues */
	cik_sdma_gfx_stop(rdev);
	cik_sdma_rlc_stop(rdev);

	/* halt the MEs */
	cik_sdma_enable(rdev, false);

	/* sdma0 */
	fw_data = (const __be32 *)rdev->sdma_fw->data;
	WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0);
	for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++)
		WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, be32_to_cpup(fw_data++));
	WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION);

	/* sdma1 */
	fw_data = (const __be32 *)rdev->sdma_fw->data;
	WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0);
	for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++)
		WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, be32_to_cpup(fw_data++));
	WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION);

	WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0);
	WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0);
	return 0;
}

/**
 * cik_sdma_resume - setup and start the async dma engines
 *
 * @rdev: radeon_device pointer
 *
 * Set up the DMA engines and enable them (CIK).
 * Returns 0 for success, error for failure.
 */
static int cik_sdma_resume(struct radeon_device *rdev)
{
	int r;

	/* Reset dma */
	WREG32(SRBM_SOFT_RESET, SOFT_RESET_SDMA | SOFT_RESET_SDMA1);
	RREG32(SRBM_SOFT_RESET);
	udelay(50);
	WREG32(SRBM_SOFT_RESET, 0);
	RREG32(SRBM_SOFT_RESET);

	r = cik_sdma_load_microcode(rdev);
	if (r)
		return r;

	/* unhalt the MEs */
	cik_sdma_enable(rdev, true);

	/* start the gfx rings and rlc compute queues */
	r = cik_sdma_gfx_resume(rdev);
	if (r)
		return r;
	r = cik_sdma_rlc_resume(rdev);
	if (r)
		return r;

	return 0;
}

/**
 * cik_sdma_fini - tear down the async dma engines
 *
 * @rdev: radeon_device pointer
 *
 * Stop the async dma engines and free the rings (CIK).
 */
static void cik_sdma_fini(struct radeon_device *rdev)
{
	/* stop the gfx rings and rlc compute queues */
	cik_sdma_gfx_stop(rdev);
	cik_sdma_rlc_stop(rdev);
	/* halt the MEs */
	cik_sdma_enable(rdev, false);
	radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]);
	radeon_ring_fini(rdev, &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]);
	/* XXX - compute dma queue tear down */
}

/**
 * cik_copy_dma - copy pages using the DMA engine
 *
 * @rdev: radeon_device pointer
 * @src_offset: src GPU address
 * @dst_offset: dst GPU address
 * @num_gpu_pages: number of GPU pages to xfer
 * @fence: radeon fence object
 *
 * Copy GPU paging using the DMA engine (CIK).
 * Used by the radeon ttm implementation to move pages if
 * registered as the asic copy callback.
 */
int cik_copy_dma(struct radeon_device *rdev,
		 uint64_t src_offset, uint64_t dst_offset,
		 unsigned num_gpu_pages,
		 struct radeon_fence **fence)
{
	struct radeon_semaphore *sem = NULL;
	int ring_index = rdev->asic->copy.dma_ring_index;
	struct radeon_ring *ring = &rdev->ring[ring_index];
	u32 size_in_bytes, cur_size_in_bytes;
	int i, num_loops;
	int r = 0;

	r = radeon_semaphore_create(rdev, &sem);
	if (r) {
		DRM_ERROR("radeon: moving bo (%d).\n", r);
		return r;
	}

	size_in_bytes = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT);
	num_loops = DIV_ROUND_UP(size_in_bytes, 0x1fffff);
	r = radeon_ring_lock(rdev, ring, num_loops * 7 + 14);
	if (r) {
		DRM_ERROR("radeon: moving bo (%d).\n", r);
		radeon_semaphore_free(rdev, &sem, NULL);
		return r;
	}

	if (radeon_fence_need_sync(*fence, ring->idx)) {
		radeon_semaphore_sync_rings(rdev, sem, (*fence)->ring,
					    ring->idx);
		radeon_fence_note_sync(*fence, ring->idx);
	} else {
		radeon_semaphore_free(rdev, &sem, NULL);
	}

	for (i = 0; i < num_loops; i++) {
		cur_size_in_bytes = size_in_bytes;
		if (cur_size_in_bytes > 0x1fffff)
			cur_size_in_bytes = 0x1fffff;
		size_in_bytes -= cur_size_in_bytes;
		radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_COPY_SUB_OPCODE_LINEAR, 0));
		radeon_ring_write(ring, cur_size_in_bytes);
		radeon_ring_write(ring, 0); /* src/dst endian swap */
		radeon_ring_write(ring, src_offset & 0xffffffff);
		radeon_ring_write(ring, upper_32_bits(src_offset) & 0xffffffff);
		radeon_ring_write(ring, dst_offset & 0xfffffffc);
		radeon_ring_write(ring, upper_32_bits(dst_offset) & 0xffffffff);
		src_offset += cur_size_in_bytes;
		dst_offset += cur_size_in_bytes;
	}

	r = radeon_fence_emit(rdev, fence, ring->idx);
	if (r) {
		radeon_ring_unlock_undo(rdev, ring);
		return r;
	}

	radeon_ring_unlock_commit(rdev, ring);
	radeon_semaphore_free(rdev, &sem, *fence);

	return r;
}

/**
 * cik_sdma_ring_test - simple async dma engine test
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 *
 * Test the DMA engine by writing using it to write an
 * value to memory. (CIK).
 * Returns 0 for success, error for failure.
 */
int cik_sdma_ring_test(struct radeon_device *rdev,
		       struct radeon_ring *ring)
{
	unsigned i;
	int r;
	void __iomem *ptr = (void *)rdev->vram_scratch.ptr;
	u32 tmp;

	if (!ptr) {
		DRM_ERROR("invalid vram scratch pointer\n");
		return -EINVAL;
	}

	tmp = 0xCAFEDEAD;
	writel(tmp, ptr);

	r = radeon_ring_lock(rdev, ring, 4);
	if (r) {
		DRM_ERROR("radeon: dma failed to lock ring %d (%d).\n", ring->idx, r);
		return r;
	}
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0));
	radeon_ring_write(ring, rdev->vram_scratch.gpu_addr & 0xfffffffc);
	radeon_ring_write(ring, upper_32_bits(rdev->vram_scratch.gpu_addr) & 0xffffffff);
	radeon_ring_write(ring, 1); /* number of DWs to follow */
	radeon_ring_write(ring, 0xDEADBEEF);
	radeon_ring_unlock_commit(rdev, ring);

	for (i = 0; i < rdev->usec_timeout; i++) {
		tmp = readl(ptr);
		if (tmp == 0xDEADBEEF)
			break;
		DRM_UDELAY(1);
	}

	if (i < rdev->usec_timeout) {
		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
	} else {
		DRM_ERROR("radeon: ring %d test failed (0x%08X)\n",
			  ring->idx, tmp);
		r = -EINVAL;
	}
	return r;
}

/**
 * cik_sdma_ib_test - test an IB on the DMA engine
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 *
 * Test a simple IB in the DMA ring (CIK).
 * Returns 0 on success, error on failure.
 */
int cik_sdma_ib_test(struct radeon_device *rdev, struct radeon_ring *ring)
{
	struct radeon_ib ib;
	unsigned i;
	int r;
	void __iomem *ptr = (void *)rdev->vram_scratch.ptr;
	u32 tmp = 0;

	if (!ptr) {
		DRM_ERROR("invalid vram scratch pointer\n");
		return -EINVAL;
	}

	tmp = 0xCAFEDEAD;
	writel(tmp, ptr);

	r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256);
	if (r) {
		DRM_ERROR("radeon: failed to get ib (%d).\n", r);
		return r;
	}

	ib.ptr[0] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
	ib.ptr[1] = rdev->vram_scratch.gpu_addr & 0xfffffffc;
	ib.ptr[2] = upper_32_bits(rdev->vram_scratch.gpu_addr) & 0xffffffff;
	ib.ptr[3] = 1;
	ib.ptr[4] = 0xDEADBEEF;
	ib.length_dw = 5;

	r = radeon_ib_schedule(rdev, &ib, NULL);
	if (r) {
		radeon_ib_free(rdev, &ib);
		DRM_ERROR("radeon: failed to schedule ib (%d).\n", r);
		return r;
	}
	r = radeon_fence_wait(ib.fence, false);
	if (r) {
		DRM_ERROR("radeon: fence wait failed (%d).\n", r);
		return r;
	}
	for (i = 0; i < rdev->usec_timeout; i++) {
		tmp = readl(ptr);
		if (tmp == 0xDEADBEEF)
			break;
		DRM_UDELAY(1);
	}
	if (i < rdev->usec_timeout) {
		DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i);
	} else {
		DRM_ERROR("radeon: ib test failed (0x%08X)\n", tmp);
		r = -EINVAL;
	}
	radeon_ib_free(rdev, &ib);
	return r;
}

3746

A
Alex Deucher 已提交
3747
static void cik_print_gpu_status_regs(struct radeon_device *rdev)
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
{
	dev_info(rdev->dev, "  GRBM_STATUS=0x%08X\n",
		RREG32(GRBM_STATUS));
	dev_info(rdev->dev, "  GRBM_STATUS2=0x%08X\n",
		RREG32(GRBM_STATUS2));
	dev_info(rdev->dev, "  GRBM_STATUS_SE0=0x%08X\n",
		RREG32(GRBM_STATUS_SE0));
	dev_info(rdev->dev, "  GRBM_STATUS_SE1=0x%08X\n",
		RREG32(GRBM_STATUS_SE1));
	dev_info(rdev->dev, "  GRBM_STATUS_SE2=0x%08X\n",
		RREG32(GRBM_STATUS_SE2));
	dev_info(rdev->dev, "  GRBM_STATUS_SE3=0x%08X\n",
		RREG32(GRBM_STATUS_SE3));
	dev_info(rdev->dev, "  SRBM_STATUS=0x%08X\n",
		RREG32(SRBM_STATUS));
	dev_info(rdev->dev, "  SRBM_STATUS2=0x%08X\n",
		RREG32(SRBM_STATUS2));
A
Alex Deucher 已提交
3765 3766 3767 3768
	dev_info(rdev->dev, "  SDMA0_STATUS_REG   = 0x%08X\n",
		RREG32(SDMA0_STATUS_REG + SDMA0_REGISTER_OFFSET));
	dev_info(rdev->dev, "  SDMA1_STATUS_REG   = 0x%08X\n",
		 RREG32(SDMA0_STATUS_REG + SDMA1_REGISTER_OFFSET));
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
	dev_info(rdev->dev, "  CP_STAT = 0x%08x\n", RREG32(CP_STAT));
	dev_info(rdev->dev, "  CP_STALLED_STAT1 = 0x%08x\n",
		 RREG32(CP_STALLED_STAT1));
	dev_info(rdev->dev, "  CP_STALLED_STAT2 = 0x%08x\n",
		 RREG32(CP_STALLED_STAT2));
	dev_info(rdev->dev, "  CP_STALLED_STAT3 = 0x%08x\n",
		 RREG32(CP_STALLED_STAT3));
	dev_info(rdev->dev, "  CP_CPF_BUSY_STAT = 0x%08x\n",
		 RREG32(CP_CPF_BUSY_STAT));
	dev_info(rdev->dev, "  CP_CPF_STALLED_STAT1 = 0x%08x\n",
		 RREG32(CP_CPF_STALLED_STAT1));
	dev_info(rdev->dev, "  CP_CPF_STATUS = 0x%08x\n", RREG32(CP_CPF_STATUS));
	dev_info(rdev->dev, "  CP_CPC_BUSY_STAT = 0x%08x\n", RREG32(CP_CPC_BUSY_STAT));
	dev_info(rdev->dev, "  CP_CPC_STALLED_STAT1 = 0x%08x\n",
		 RREG32(CP_CPC_STALLED_STAT1));
	dev_info(rdev->dev, "  CP_CPC_STATUS = 0x%08x\n", RREG32(CP_CPC_STATUS));
A
Alex Deucher 已提交
3785
}
3786

A
Alex Deucher 已提交
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
/**
 * cik_gpu_check_soft_reset - check which blocks are busy
 *
 * @rdev: radeon_device pointer
 *
 * Check which blocks are busy and return the relevant reset
 * mask to be used by cik_gpu_soft_reset().
 * Returns a mask of the blocks to be reset.
 */
static u32 cik_gpu_check_soft_reset(struct radeon_device *rdev)
{
	u32 reset_mask = 0;
	u32 tmp;
3800

A
Alex Deucher 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
	/* GRBM_STATUS */
	tmp = RREG32(GRBM_STATUS);
	if (tmp & (PA_BUSY | SC_BUSY |
		   BCI_BUSY | SX_BUSY |
		   TA_BUSY | VGT_BUSY |
		   DB_BUSY | CB_BUSY |
		   GDS_BUSY | SPI_BUSY |
		   IA_BUSY | IA_BUSY_NO_DMA))
		reset_mask |= RADEON_RESET_GFX;

	if (tmp & (CP_BUSY | CP_COHERENCY_BUSY))
		reset_mask |= RADEON_RESET_CP;

	/* GRBM_STATUS2 */
	tmp = RREG32(GRBM_STATUS2);
	if (tmp & RLC_BUSY)
		reset_mask |= RADEON_RESET_RLC;

	/* SDMA0_STATUS_REG */
	tmp = RREG32(SDMA0_STATUS_REG + SDMA0_REGISTER_OFFSET);
	if (!(tmp & SDMA_IDLE))
		reset_mask |= RADEON_RESET_DMA;

	/* SDMA1_STATUS_REG */
	tmp = RREG32(SDMA0_STATUS_REG + SDMA1_REGISTER_OFFSET);
	if (!(tmp & SDMA_IDLE))
		reset_mask |= RADEON_RESET_DMA1;

	/* SRBM_STATUS2 */
	tmp = RREG32(SRBM_STATUS2);
	if (tmp & SDMA_BUSY)
		reset_mask |= RADEON_RESET_DMA;

	if (tmp & SDMA1_BUSY)
		reset_mask |= RADEON_RESET_DMA1;

	/* SRBM_STATUS */
	tmp = RREG32(SRBM_STATUS);

	if (tmp & IH_BUSY)
		reset_mask |= RADEON_RESET_IH;

	if (tmp & SEM_BUSY)
		reset_mask |= RADEON_RESET_SEM;

	if (tmp & GRBM_RQ_PENDING)
		reset_mask |= RADEON_RESET_GRBM;

	if (tmp & VMC_BUSY)
		reset_mask |= RADEON_RESET_VMC;

	if (tmp & (MCB_BUSY | MCB_NON_DISPLAY_BUSY |
		   MCC_BUSY | MCD_BUSY))
		reset_mask |= RADEON_RESET_MC;

	if (evergreen_is_display_hung(rdev))
		reset_mask |= RADEON_RESET_DISPLAY;

	/* Skip MC reset as it's mostly likely not hung, just busy */
	if (reset_mask & RADEON_RESET_MC) {
		DRM_DEBUG("MC busy: 0x%08X, clearing.\n", reset_mask);
		reset_mask &= ~RADEON_RESET_MC;
	}

	return reset_mask;
3866 3867 3868
}

/**
A
Alex Deucher 已提交
3869
 * cik_gpu_soft_reset - soft reset GPU
3870 3871
 *
 * @rdev: radeon_device pointer
A
Alex Deucher 已提交
3872
 * @reset_mask: mask of which blocks to reset
3873
 *
A
Alex Deucher 已提交
3874
 * Soft reset the blocks specified in @reset_mask.
3875
 */
A
Alex Deucher 已提交
3876
static void cik_gpu_soft_reset(struct radeon_device *rdev, u32 reset_mask)
3877 3878
{
	struct evergreen_mc_save save;
A
Alex Deucher 已提交
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
	u32 grbm_soft_reset = 0, srbm_soft_reset = 0;
	u32 tmp;

	if (reset_mask == 0)
		return;

	dev_info(rdev->dev, "GPU softreset: 0x%08X\n", reset_mask);

	cik_print_gpu_status_regs(rdev);
	dev_info(rdev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_ADDR   0x%08X\n",
		 RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR));
	dev_info(rdev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
		 RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS));

	/* stop the rlc */
	cik_rlc_stop(rdev);

	/* Disable GFX parsing/prefetching */
	WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT);

	/* Disable MEC parsing/prefetching */
	WREG32(CP_MEC_CNTL, MEC_ME1_HALT | MEC_ME2_HALT);

	if (reset_mask & RADEON_RESET_DMA) {
		/* sdma0 */
		tmp = RREG32(SDMA0_ME_CNTL + SDMA0_REGISTER_OFFSET);
		tmp |= SDMA_HALT;
		WREG32(SDMA0_ME_CNTL + SDMA0_REGISTER_OFFSET, tmp);
	}
	if (reset_mask & RADEON_RESET_DMA1) {
		/* sdma1 */
		tmp = RREG32(SDMA0_ME_CNTL + SDMA1_REGISTER_OFFSET);
		tmp |= SDMA_HALT;
		WREG32(SDMA0_ME_CNTL + SDMA1_REGISTER_OFFSET, tmp);
	}
3914 3915

	evergreen_mc_stop(rdev, &save);
A
Alex Deucher 已提交
3916
	if (evergreen_mc_wait_for_idle(rdev)) {
3917 3918 3919
		dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
	}

A
Alex Deucher 已提交
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
	if (reset_mask & (RADEON_RESET_GFX | RADEON_RESET_COMPUTE | RADEON_RESET_CP))
		grbm_soft_reset = SOFT_RESET_CP | SOFT_RESET_GFX;

	if (reset_mask & RADEON_RESET_CP) {
		grbm_soft_reset |= SOFT_RESET_CP;

		srbm_soft_reset |= SOFT_RESET_GRBM;
	}

	if (reset_mask & RADEON_RESET_DMA)
		srbm_soft_reset |= SOFT_RESET_SDMA;

	if (reset_mask & RADEON_RESET_DMA1)
		srbm_soft_reset |= SOFT_RESET_SDMA1;

	if (reset_mask & RADEON_RESET_DISPLAY)
		srbm_soft_reset |= SOFT_RESET_DC;

	if (reset_mask & RADEON_RESET_RLC)
		grbm_soft_reset |= SOFT_RESET_RLC;

	if (reset_mask & RADEON_RESET_SEM)
		srbm_soft_reset |= SOFT_RESET_SEM;

	if (reset_mask & RADEON_RESET_IH)
		srbm_soft_reset |= SOFT_RESET_IH;

	if (reset_mask & RADEON_RESET_GRBM)
		srbm_soft_reset |= SOFT_RESET_GRBM;

	if (reset_mask & RADEON_RESET_VMC)
		srbm_soft_reset |= SOFT_RESET_VMC;

	if (!(rdev->flags & RADEON_IS_IGP)) {
		if (reset_mask & RADEON_RESET_MC)
			srbm_soft_reset |= SOFT_RESET_MC;
	}

	if (grbm_soft_reset) {
		tmp = RREG32(GRBM_SOFT_RESET);
		tmp |= grbm_soft_reset;
		dev_info(rdev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp);
		WREG32(GRBM_SOFT_RESET, tmp);
		tmp = RREG32(GRBM_SOFT_RESET);

		udelay(50);

		tmp &= ~grbm_soft_reset;
		WREG32(GRBM_SOFT_RESET, tmp);
		tmp = RREG32(GRBM_SOFT_RESET);
	}

	if (srbm_soft_reset) {
		tmp = RREG32(SRBM_SOFT_RESET);
		tmp |= srbm_soft_reset;
		dev_info(rdev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
		WREG32(SRBM_SOFT_RESET, tmp);
		tmp = RREG32(SRBM_SOFT_RESET);

		udelay(50);

		tmp &= ~srbm_soft_reset;
		WREG32(SRBM_SOFT_RESET, tmp);
		tmp = RREG32(SRBM_SOFT_RESET);
	}
3985 3986 3987

	/* Wait a little for things to settle down */
	udelay(50);
A
Alex Deucher 已提交
3988

3989
	evergreen_mc_resume(rdev, &save);
A
Alex Deucher 已提交
3990 3991 3992
	udelay(50);

	cik_print_gpu_status_regs(rdev);
3993 3994 3995
}

/**
A
Alex Deucher 已提交
3996
 * cik_asic_reset - soft reset GPU
3997 3998 3999
 *
 * @rdev: radeon_device pointer
 *
A
Alex Deucher 已提交
4000 4001
 * Look up which blocks are hung and attempt
 * to reset them.
4002 4003 4004 4005
 * Returns 0 for success.
 */
int cik_asic_reset(struct radeon_device *rdev)
{
A
Alex Deucher 已提交
4006
	u32 reset_mask;
4007

A
Alex Deucher 已提交
4008 4009 4010 4011 4012 4013
	reset_mask = cik_gpu_check_soft_reset(rdev);

	if (reset_mask)
		r600_set_bios_scratch_engine_hung(rdev, true);

	cik_gpu_soft_reset(rdev, reset_mask);
4014

A
Alex Deucher 已提交
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
	reset_mask = cik_gpu_check_soft_reset(rdev);

	if (!reset_mask)
		r600_set_bios_scratch_engine_hung(rdev, false);

	return 0;
}

/**
 * cik_gfx_is_lockup - check if the 3D engine is locked up
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 *
 * Check if the 3D engine is locked up (CIK).
 * Returns true if the engine is locked, false if not.
 */
bool cik_gfx_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
{
	u32 reset_mask = cik_gpu_check_soft_reset(rdev);

	if (!(reset_mask & (RADEON_RESET_GFX |
			    RADEON_RESET_COMPUTE |
			    RADEON_RESET_CP))) {
		radeon_ring_lockup_update(ring);
		return false;
	}
	/* force CP activities */
	radeon_ring_force_activity(rdev, ring);
	return radeon_ring_test_lockup(rdev, ring);
4045
}
4046

4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
/**
 * cik_sdma_is_lockup - Check if the DMA engine is locked up
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 *
 * Check if the async DMA engine is locked up (CIK).
 * Returns true if the engine appears to be locked up, false if not.
 */
bool cik_sdma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
{
A
Alex Deucher 已提交
4058 4059
	u32 reset_mask = cik_gpu_check_soft_reset(rdev);
	u32 mask;
4060 4061

	if (ring->idx == R600_RING_TYPE_DMA_INDEX)
A
Alex Deucher 已提交
4062
		mask = RADEON_RESET_DMA;
4063
	else
A
Alex Deucher 已提交
4064 4065 4066
		mask = RADEON_RESET_DMA1;

	if (!(reset_mask & mask)) {
4067 4068 4069 4070 4071 4072 4073 4074
		radeon_ring_lockup_update(ring);
		return false;
	}
	/* force ring activities */
	radeon_ring_force_activity(rdev, ring);
	return radeon_ring_test_lockup(rdev, ring);
}

4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
/* MC */
/**
 * cik_mc_program - program the GPU memory controller
 *
 * @rdev: radeon_device pointer
 *
 * Set the location of vram, gart, and AGP in the GPU's
 * physical address space (CIK).
 */
static void cik_mc_program(struct radeon_device *rdev)
{
	struct evergreen_mc_save save;
	u32 tmp;
	int i, j;

	/* Initialize HDP */
	for (i = 0, j = 0; i < 32; i++, j += 0x18) {
		WREG32((0x2c14 + j), 0x00000000);
		WREG32((0x2c18 + j), 0x00000000);
		WREG32((0x2c1c + j), 0x00000000);
		WREG32((0x2c20 + j), 0x00000000);
		WREG32((0x2c24 + j), 0x00000000);
	}
	WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0);

	evergreen_mc_stop(rdev, &save);
	if (radeon_mc_wait_for_idle(rdev)) {
		dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
	}
	/* Lockout access through VGA aperture*/
	WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE);
	/* Update configuration */
	WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
	       rdev->mc.vram_start >> 12);
	WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
	       rdev->mc.vram_end >> 12);
	WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
	       rdev->vram_scratch.gpu_addr >> 12);
	tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16;
	tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF);
	WREG32(MC_VM_FB_LOCATION, tmp);
	/* XXX double check these! */
	WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8));
	WREG32(HDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
	WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF);
	WREG32(MC_VM_AGP_BASE, 0);
	WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF);
	WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF);
	if (radeon_mc_wait_for_idle(rdev)) {
		dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
	}
	evergreen_mc_resume(rdev, &save);
	/* we need to own VRAM, so turn off the VGA renderer here
	 * to stop it overwriting our objects */
	rv515_vga_render_disable(rdev);
}

/**
 * cik_mc_init - initialize the memory controller driver params
 *
 * @rdev: radeon_device pointer
 *
 * Look up the amount of vram, vram width, and decide how to place
 * vram and gart within the GPU's physical address space (CIK).
 * Returns 0 for success.
 */
static int cik_mc_init(struct radeon_device *rdev)
{
	u32 tmp;
	int chansize, numchan;

	/* Get VRAM informations */
	rdev->mc.vram_is_ddr = true;
	tmp = RREG32(MC_ARB_RAMCFG);
	if (tmp & CHANSIZE_MASK) {
		chansize = 64;
	} else {
		chansize = 32;
	}
	tmp = RREG32(MC_SHARED_CHMAP);
	switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
	case 0:
	default:
		numchan = 1;
		break;
	case 1:
		numchan = 2;
		break;
	case 2:
		numchan = 4;
		break;
	case 3:
		numchan = 8;
		break;
	case 4:
		numchan = 3;
		break;
	case 5:
		numchan = 6;
		break;
	case 6:
		numchan = 10;
		break;
	case 7:
		numchan = 12;
		break;
	case 8:
		numchan = 16;
		break;
	}
	rdev->mc.vram_width = numchan * chansize;
	/* Could aper size report 0 ? */
	rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0);
	rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0);
	/* size in MB on si */
	rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024;
	rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024;
	rdev->mc.visible_vram_size = rdev->mc.aper_size;
	si_vram_gtt_location(rdev, &rdev->mc);
	radeon_update_bandwidth_info(rdev);

	return 0;
}

/*
 * GART
 * VMID 0 is the physical GPU addresses as used by the kernel.
 * VMIDs 1-15 are used for userspace clients and are handled
 * by the radeon vm/hsa code.
 */
/**
 * cik_pcie_gart_tlb_flush - gart tlb flush callback
 *
 * @rdev: radeon_device pointer
 *
 * Flush the TLB for the VMID 0 page table (CIK).
 */
void cik_pcie_gart_tlb_flush(struct radeon_device *rdev)
{
	/* flush hdp cache */
	WREG32(HDP_MEM_COHERENCY_FLUSH_CNTL, 0);

	/* bits 0-15 are the VM contexts0-15 */
	WREG32(VM_INVALIDATE_REQUEST, 0x1);
}

/**
 * cik_pcie_gart_enable - gart enable
 *
 * @rdev: radeon_device pointer
 *
 * This sets up the TLBs, programs the page tables for VMID0,
 * sets up the hw for VMIDs 1-15 which are allocated on
 * demand, and sets up the global locations for the LDS, GDS,
 * and GPUVM for FSA64 clients (CIK).
 * Returns 0 for success, errors for failure.
 */
static int cik_pcie_gart_enable(struct radeon_device *rdev)
{
	int r, i;

	if (rdev->gart.robj == NULL) {
		dev_err(rdev->dev, "No VRAM object for PCIE GART.\n");
		return -EINVAL;
	}
	r = radeon_gart_table_vram_pin(rdev);
	if (r)
		return r;
	radeon_gart_restore(rdev);
	/* Setup TLB control */
	WREG32(MC_VM_MX_L1_TLB_CNTL,
	       (0xA << 7) |
	       ENABLE_L1_TLB |
	       SYSTEM_ACCESS_MODE_NOT_IN_SYS |
	       ENABLE_ADVANCED_DRIVER_MODEL |
	       SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU);
	/* Setup L2 cache */
	WREG32(VM_L2_CNTL, ENABLE_L2_CACHE |
	       ENABLE_L2_FRAGMENT_PROCESSING |
	       ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
	       ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE |
	       EFFECTIVE_L2_QUEUE_SIZE(7) |
	       CONTEXT1_IDENTITY_ACCESS_MODE(1));
	WREG32(VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS | INVALIDATE_L2_CACHE);
	WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY |
	       L2_CACHE_BIGK_FRAGMENT_SIZE(6));
	/* setup context0 */
	WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12);
	WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12);
	WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12);
	WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
			(u32)(rdev->dummy_page.addr >> 12));
	WREG32(VM_CONTEXT0_CNTL2, 0);
	WREG32(VM_CONTEXT0_CNTL, (ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) |
				  RANGE_PROTECTION_FAULT_ENABLE_DEFAULT));

	WREG32(0x15D4, 0);
	WREG32(0x15D8, 0);
	WREG32(0x15DC, 0);

	/* empty context1-15 */
	/* FIXME start with 4G, once using 2 level pt switch to full
	 * vm size space
	 */
	/* set vm size, must be a multiple of 4 */
	WREG32(VM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
	WREG32(VM_CONTEXT1_PAGE_TABLE_END_ADDR, rdev->vm_manager.max_pfn);
	for (i = 1; i < 16; i++) {
		if (i < 8)
			WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (i << 2),
			       rdev->gart.table_addr >> 12);
		else
			WREG32(VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((i - 8) << 2),
			       rdev->gart.table_addr >> 12);
	}

	/* enable context1-15 */
	WREG32(VM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
	       (u32)(rdev->dummy_page.addr >> 12));
4294
	WREG32(VM_CONTEXT1_CNTL2, 4);
4295
	WREG32(VM_CONTEXT1_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(1) |
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
				RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT |
				RANGE_PROTECTION_FAULT_ENABLE_DEFAULT |
				DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT |
				DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT |
				PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT |
				PDE0_PROTECTION_FAULT_ENABLE_DEFAULT |
				VALID_PROTECTION_FAULT_ENABLE_INTERRUPT |
				VALID_PROTECTION_FAULT_ENABLE_DEFAULT |
				READ_PROTECTION_FAULT_ENABLE_INTERRUPT |
				READ_PROTECTION_FAULT_ENABLE_DEFAULT |
				WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT |
				WRITE_PROTECTION_FAULT_ENABLE_DEFAULT);
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330

	/* TC cache setup ??? */
	WREG32(TC_CFG_L1_LOAD_POLICY0, 0);
	WREG32(TC_CFG_L1_LOAD_POLICY1, 0);
	WREG32(TC_CFG_L1_STORE_POLICY, 0);

	WREG32(TC_CFG_L2_LOAD_POLICY0, 0);
	WREG32(TC_CFG_L2_LOAD_POLICY1, 0);
	WREG32(TC_CFG_L2_STORE_POLICY0, 0);
	WREG32(TC_CFG_L2_STORE_POLICY1, 0);
	WREG32(TC_CFG_L2_ATOMIC_POLICY, 0);

	WREG32(TC_CFG_L1_VOLATILE, 0);
	WREG32(TC_CFG_L2_VOLATILE, 0);

	if (rdev->family == CHIP_KAVERI) {
		u32 tmp = RREG32(CHUB_CONTROL);
		tmp &= ~BYPASS_VM;
		WREG32(CHUB_CONTROL, tmp);
	}

	/* XXX SH_MEM regs */
	/* where to put LDS, scratch, GPUVM in FSA64 space */
4331
	mutex_lock(&rdev->srbm_mutex);
4332
	for (i = 0; i < 16; i++) {
4333
		cik_srbm_select(rdev, 0, 0, 0, i);
4334
		/* CP and shaders */
4335 4336 4337 4338
		WREG32(SH_MEM_CONFIG, 0);
		WREG32(SH_MEM_APE1_BASE, 1);
		WREG32(SH_MEM_APE1_LIMIT, 0);
		WREG32(SH_MEM_BASES, 0);
4339 4340 4341 4342 4343 4344
		/* SDMA GFX */
		WREG32(SDMA0_GFX_VIRTUAL_ADDR + SDMA0_REGISTER_OFFSET, 0);
		WREG32(SDMA0_GFX_APE1_CNTL + SDMA0_REGISTER_OFFSET, 0);
		WREG32(SDMA0_GFX_VIRTUAL_ADDR + SDMA1_REGISTER_OFFSET, 0);
		WREG32(SDMA0_GFX_APE1_CNTL + SDMA1_REGISTER_OFFSET, 0);
		/* XXX SDMA RLC - todo */
4345
	}
4346
	cik_srbm_select(rdev, 0, 0, 0, 0);
4347
	mutex_unlock(&rdev->srbm_mutex);
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453

	cik_pcie_gart_tlb_flush(rdev);
	DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
		 (unsigned)(rdev->mc.gtt_size >> 20),
		 (unsigned long long)rdev->gart.table_addr);
	rdev->gart.ready = true;
	return 0;
}

/**
 * cik_pcie_gart_disable - gart disable
 *
 * @rdev: radeon_device pointer
 *
 * This disables all VM page table (CIK).
 */
static void cik_pcie_gart_disable(struct radeon_device *rdev)
{
	/* Disable all tables */
	WREG32(VM_CONTEXT0_CNTL, 0);
	WREG32(VM_CONTEXT1_CNTL, 0);
	/* Setup TLB control */
	WREG32(MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE_NOT_IN_SYS |
	       SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU);
	/* Setup L2 cache */
	WREG32(VM_L2_CNTL,
	       ENABLE_L2_FRAGMENT_PROCESSING |
	       ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
	       ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE |
	       EFFECTIVE_L2_QUEUE_SIZE(7) |
	       CONTEXT1_IDENTITY_ACCESS_MODE(1));
	WREG32(VM_L2_CNTL2, 0);
	WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY |
	       L2_CACHE_BIGK_FRAGMENT_SIZE(6));
	radeon_gart_table_vram_unpin(rdev);
}

/**
 * cik_pcie_gart_fini - vm fini callback
 *
 * @rdev: radeon_device pointer
 *
 * Tears down the driver GART/VM setup (CIK).
 */
static void cik_pcie_gart_fini(struct radeon_device *rdev)
{
	cik_pcie_gart_disable(rdev);
	radeon_gart_table_vram_free(rdev);
	radeon_gart_fini(rdev);
}

/* vm parser */
/**
 * cik_ib_parse - vm ib_parse callback
 *
 * @rdev: radeon_device pointer
 * @ib: indirect buffer pointer
 *
 * CIK uses hw IB checking so this is a nop (CIK).
 */
int cik_ib_parse(struct radeon_device *rdev, struct radeon_ib *ib)
{
	return 0;
}

/*
 * vm
 * VMID 0 is the physical GPU addresses as used by the kernel.
 * VMIDs 1-15 are used for userspace clients and are handled
 * by the radeon vm/hsa code.
 */
/**
 * cik_vm_init - cik vm init callback
 *
 * @rdev: radeon_device pointer
 *
 * Inits cik specific vm parameters (number of VMs, base of vram for
 * VMIDs 1-15) (CIK).
 * Returns 0 for success.
 */
int cik_vm_init(struct radeon_device *rdev)
{
	/* number of VMs */
	rdev->vm_manager.nvm = 16;
	/* base offset of vram pages */
	if (rdev->flags & RADEON_IS_IGP) {
		u64 tmp = RREG32(MC_VM_FB_OFFSET);
		tmp <<= 22;
		rdev->vm_manager.vram_base_offset = tmp;
	} else
		rdev->vm_manager.vram_base_offset = 0;

	return 0;
}

/**
 * cik_vm_fini - cik vm fini callback
 *
 * @rdev: radeon_device pointer
 *
 * Tear down any asic specific VM setup (CIK).
 */
void cik_vm_fini(struct radeon_device *rdev)
{
}

4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
/**
 * cik_vm_decode_fault - print human readable fault info
 *
 * @rdev: radeon_device pointer
 * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
 * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
 *
 * Print human readable fault information (CIK).
 */
static void cik_vm_decode_fault(struct radeon_device *rdev,
				u32 status, u32 addr, u32 mc_client)
{
	u32 mc_id = (status & MEMORY_CLIENT_ID_MASK) >> MEMORY_CLIENT_ID_SHIFT;
	u32 vmid = (status & FAULT_VMID_MASK) >> FAULT_VMID_SHIFT;
	u32 protections = (status & PROTECTIONS_MASK) >> PROTECTIONS_SHIFT;
	char *block = (char *)&mc_client;

	printk("VM fault (0x%02x, vmid %d) at page %u, %s from %s (%d)\n",
	       protections, vmid, addr,
	       (status & MEMORY_CLIENT_RW_MASK) ? "write" : "read",
	       block, mc_id);
}

4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
/**
 * cik_vm_flush - cik vm flush using the CP
 *
 * @rdev: radeon_device pointer
 *
 * Update the page table base and flush the VM TLB
 * using the CP (CIK).
 */
void cik_vm_flush(struct radeon_device *rdev, int ridx, struct radeon_vm *vm)
{
	struct radeon_ring *ring = &rdev->ring[ridx];

	if (vm == NULL)
		return;

	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(0)));
	if (vm->id < 8) {
		radeon_ring_write(ring,
				  (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm->id << 2)) >> 2);
	} else {
		radeon_ring_write(ring,
				  (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm->id - 8) << 2)) >> 2);
	}
	radeon_ring_write(ring, 0);
	radeon_ring_write(ring, vm->pd_gpu_addr >> 12);

	/* update SH_MEM_* regs */
	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(0)));
	radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
	radeon_ring_write(ring, 0);
	radeon_ring_write(ring, VMID(vm->id));

	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 6));
	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(0)));
	radeon_ring_write(ring, SH_MEM_BASES >> 2);
	radeon_ring_write(ring, 0);

	radeon_ring_write(ring, 0); /* SH_MEM_BASES */
	radeon_ring_write(ring, 0); /* SH_MEM_CONFIG */
	radeon_ring_write(ring, 1); /* SH_MEM_APE1_BASE */
	radeon_ring_write(ring, 0); /* SH_MEM_APE1_LIMIT */

	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(0)));
	radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
	radeon_ring_write(ring, 0);
	radeon_ring_write(ring, VMID(0));

	/* HDP flush */
	/* We should be using the WAIT_REG_MEM packet here like in
	 * cik_fence_ring_emit(), but it causes the CP to hang in this
	 * context...
	 */
	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(0)));
	radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2);
	radeon_ring_write(ring, 0);
	radeon_ring_write(ring, 0);

	/* bits 0-15 are the VM contexts0-15 */
	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(0)));
	radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2);
	radeon_ring_write(ring, 0);
	radeon_ring_write(ring, 1 << vm->id);

4551 4552 4553 4554 4555 4556
	/* compute doesn't have PFP */
	if (ridx == RADEON_RING_TYPE_GFX_INDEX) {
		/* sync PFP to ME, otherwise we might get invalid PFP reads */
		radeon_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0));
		radeon_ring_write(ring, 0x0);
	}
4557 4558
}

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
/**
 * cik_vm_set_page - update the page tables using sDMA
 *
 * @rdev: radeon_device pointer
 * @ib: indirect buffer to fill with commands
 * @pe: addr of the page entry
 * @addr: dst addr to write into pe
 * @count: number of page entries to update
 * @incr: increase next addr by incr bytes
 * @flags: access flags
 *
 * Update the page tables using CP or sDMA (CIK).
 */
void cik_vm_set_page(struct radeon_device *rdev,
		     struct radeon_ib *ib,
		     uint64_t pe,
		     uint64_t addr, unsigned count,
		     uint32_t incr, uint32_t flags)
{
	uint32_t r600_flags = cayman_vm_page_flags(rdev, flags);
	uint64_t value;
	unsigned ndw;

	if (rdev->asic->vm.pt_ring_index == RADEON_RING_TYPE_GFX_INDEX) {
		/* CP */
		while (count) {
			ndw = 2 + count * 2;
			if (ndw > 0x3FFE)
				ndw = 0x3FFE;

			ib->ptr[ib->length_dw++] = PACKET3(PACKET3_WRITE_DATA, ndw);
			ib->ptr[ib->length_dw++] = (WRITE_DATA_ENGINE_SEL(0) |
						    WRITE_DATA_DST_SEL(1));
			ib->ptr[ib->length_dw++] = pe;
			ib->ptr[ib->length_dw++] = upper_32_bits(pe);
			for (; ndw > 2; ndw -= 2, --count, pe += 8) {
				if (flags & RADEON_VM_PAGE_SYSTEM) {
					value = radeon_vm_map_gart(rdev, addr);
					value &= 0xFFFFFFFFFFFFF000ULL;
				} else if (flags & RADEON_VM_PAGE_VALID) {
					value = addr;
				} else {
					value = 0;
				}
				addr += incr;
				value |= r600_flags;
				ib->ptr[ib->length_dw++] = value;
				ib->ptr[ib->length_dw++] = upper_32_bits(value);
			}
		}
	} else {
		/* DMA */
		if (flags & RADEON_VM_PAGE_SYSTEM) {
			while (count) {
				ndw = count * 2;
				if (ndw > 0xFFFFE)
					ndw = 0xFFFFE;

				/* for non-physically contiguous pages (system) */
				ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
				ib->ptr[ib->length_dw++] = pe;
				ib->ptr[ib->length_dw++] = upper_32_bits(pe);
				ib->ptr[ib->length_dw++] = ndw;
				for (; ndw > 0; ndw -= 2, --count, pe += 8) {
					if (flags & RADEON_VM_PAGE_SYSTEM) {
						value = radeon_vm_map_gart(rdev, addr);
						value &= 0xFFFFFFFFFFFFF000ULL;
					} else if (flags & RADEON_VM_PAGE_VALID) {
						value = addr;
					} else {
						value = 0;
					}
					addr += incr;
					value |= r600_flags;
					ib->ptr[ib->length_dw++] = value;
					ib->ptr[ib->length_dw++] = upper_32_bits(value);
				}
			}
		} else {
			while (count) {
				ndw = count;
				if (ndw > 0x7FFFF)
					ndw = 0x7FFFF;

				if (flags & RADEON_VM_PAGE_VALID)
					value = addr;
				else
					value = 0;
				/* for physically contiguous pages (vram) */
				ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_GENERATE_PTE_PDE, 0, 0);
				ib->ptr[ib->length_dw++] = pe; /* dst addr */
				ib->ptr[ib->length_dw++] = upper_32_bits(pe);
				ib->ptr[ib->length_dw++] = r600_flags; /* mask */
				ib->ptr[ib->length_dw++] = 0;
				ib->ptr[ib->length_dw++] = value; /* value */
				ib->ptr[ib->length_dw++] = upper_32_bits(value);
				ib->ptr[ib->length_dw++] = incr; /* increment size */
				ib->ptr[ib->length_dw++] = 0;
				ib->ptr[ib->length_dw++] = ndw; /* number of entries */
				pe += ndw * 8;
				addr += ndw * incr;
				count -= ndw;
			}
		}
		while (ib->length_dw & 0x7)
			ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0);
	}
}

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
/**
 * cik_dma_vm_flush - cik vm flush using sDMA
 *
 * @rdev: radeon_device pointer
 *
 * Update the page table base and flush the VM TLB
 * using sDMA (CIK).
 */
void cik_dma_vm_flush(struct radeon_device *rdev, int ridx, struct radeon_vm *vm)
{
	struct radeon_ring *ring = &rdev->ring[ridx];
	u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) |
			  SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */
	u32 ref_and_mask;

	if (vm == NULL)
		return;

	if (ridx == R600_RING_TYPE_DMA_INDEX)
		ref_and_mask = SDMA0;
	else
		ref_and_mask = SDMA1;

	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	if (vm->id < 8) {
		radeon_ring_write(ring, (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm->id << 2)) >> 2);
	} else {
		radeon_ring_write(ring, (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm->id - 8) << 2)) >> 2);
	}
	radeon_ring_write(ring, vm->pd_gpu_addr >> 12);

	/* update SH_MEM_* regs */
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
	radeon_ring_write(ring, VMID(vm->id));

	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	radeon_ring_write(ring, SH_MEM_BASES >> 2);
	radeon_ring_write(ring, 0);

	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	radeon_ring_write(ring, SH_MEM_CONFIG >> 2);
	radeon_ring_write(ring, 0);

	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	radeon_ring_write(ring, SH_MEM_APE1_BASE >> 2);
	radeon_ring_write(ring, 1);

	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	radeon_ring_write(ring, SH_MEM_APE1_LIMIT >> 2);
	radeon_ring_write(ring, 0);

	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
	radeon_ring_write(ring, VMID(0));

	/* flush HDP */
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits));
	radeon_ring_write(ring, GPU_HDP_FLUSH_DONE);
	radeon_ring_write(ring, GPU_HDP_FLUSH_REQ);
	radeon_ring_write(ring, ref_and_mask); /* REFERENCE */
	radeon_ring_write(ring, ref_and_mask); /* MASK */
	radeon_ring_write(ring, (4 << 16) | 10); /* RETRY_COUNT, POLL_INTERVAL */

	/* flush TLB */
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2);
	radeon_ring_write(ring, 1 << vm->id);
}

4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
/*
 * RLC
 * The RLC is a multi-purpose microengine that handles a
 * variety of functions, the most important of which is
 * the interrupt controller.
 */
/**
 * cik_rlc_stop - stop the RLC ME
 *
 * @rdev: radeon_device pointer
 *
 * Halt the RLC ME (MicroEngine) (CIK).
 */
static void cik_rlc_stop(struct radeon_device *rdev)
{
	int i, j, k;
	u32 mask, tmp;

	tmp = RREG32(CP_INT_CNTL_RING0);
	tmp &= ~(CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
	WREG32(CP_INT_CNTL_RING0, tmp);

	RREG32(CB_CGTT_SCLK_CTRL);
	RREG32(CB_CGTT_SCLK_CTRL);
	RREG32(CB_CGTT_SCLK_CTRL);
	RREG32(CB_CGTT_SCLK_CTRL);

	tmp = RREG32(RLC_CGCG_CGLS_CTRL) & 0xfffffffc;
	WREG32(RLC_CGCG_CGLS_CTRL, tmp);

	WREG32(RLC_CNTL, 0);

	for (i = 0; i < rdev->config.cik.max_shader_engines; i++) {
		for (j = 0; j < rdev->config.cik.max_sh_per_se; j++) {
			cik_select_se_sh(rdev, i, j);
			for (k = 0; k < rdev->usec_timeout; k++) {
				if (RREG32(RLC_SERDES_CU_MASTER_BUSY) == 0)
					break;
				udelay(1);
			}
		}
	}
	cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);

	mask = SE_MASTER_BUSY_MASK | GC_MASTER_BUSY | TC0_MASTER_BUSY | TC1_MASTER_BUSY;
	for (k = 0; k < rdev->usec_timeout; k++) {
		if ((RREG32(RLC_SERDES_NONCU_MASTER_BUSY) & mask) == 0)
			break;
		udelay(1);
	}
}

/**
 * cik_rlc_start - start the RLC ME
 *
 * @rdev: radeon_device pointer
 *
 * Unhalt the RLC ME (MicroEngine) (CIK).
 */
static void cik_rlc_start(struct radeon_device *rdev)
{
	u32 tmp;

	WREG32(RLC_CNTL, RLC_ENABLE);

	tmp = RREG32(CP_INT_CNTL_RING0);
	tmp |= (CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
	WREG32(CP_INT_CNTL_RING0, tmp);

	udelay(50);
}

/**
 * cik_rlc_resume - setup the RLC hw
 *
 * @rdev: radeon_device pointer
 *
 * Initialize the RLC registers, load the ucode,
 * and start the RLC (CIK).
 * Returns 0 for success, -EINVAL if the ucode is not available.
 */
static int cik_rlc_resume(struct radeon_device *rdev)
{
	u32 i, size;
	u32 clear_state_info[3];
	const __be32 *fw_data;

	if (!rdev->rlc_fw)
		return -EINVAL;

	switch (rdev->family) {
	case CHIP_BONAIRE:
	default:
		size = BONAIRE_RLC_UCODE_SIZE;
		break;
	case CHIP_KAVERI:
		size = KV_RLC_UCODE_SIZE;
		break;
	case CHIP_KABINI:
		size = KB_RLC_UCODE_SIZE;
		break;
	}

	cik_rlc_stop(rdev);

	WREG32(GRBM_SOFT_RESET, SOFT_RESET_RLC);
	RREG32(GRBM_SOFT_RESET);
	udelay(50);
	WREG32(GRBM_SOFT_RESET, 0);
	RREG32(GRBM_SOFT_RESET);
	udelay(50);

	WREG32(RLC_LB_CNTR_INIT, 0);
	WREG32(RLC_LB_CNTR_MAX, 0x00008000);

	cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);
	WREG32(RLC_LB_INIT_CU_MASK, 0xffffffff);
	WREG32(RLC_LB_PARAMS, 0x00600408);
	WREG32(RLC_LB_CNTL, 0x80000004);

	WREG32(RLC_MC_CNTL, 0);
	WREG32(RLC_UCODE_CNTL, 0);

	fw_data = (const __be32 *)rdev->rlc_fw->data;
		WREG32(RLC_GPM_UCODE_ADDR, 0);
	for (i = 0; i < size; i++)
		WREG32(RLC_GPM_UCODE_DATA, be32_to_cpup(fw_data++));
	WREG32(RLC_GPM_UCODE_ADDR, 0);

	/* XXX */
	clear_state_info[0] = 0;//upper_32_bits(rdev->rlc.save_restore_gpu_addr);
	clear_state_info[1] = 0;//rdev->rlc.save_restore_gpu_addr;
	clear_state_info[2] = 0;//cik_default_size;
	WREG32(RLC_GPM_SCRATCH_ADDR, 0x3d);
	for (i = 0; i < 3; i++)
		WREG32(RLC_GPM_SCRATCH_DATA, clear_state_info[i]);
	WREG32(RLC_DRIVER_DMA_STATUS, 0);

	cik_rlc_start(rdev);

	return 0;
}
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950

/*
 * Interrupts
 * Starting with r6xx, interrupts are handled via a ring buffer.
 * Ring buffers are areas of GPU accessible memory that the GPU
 * writes interrupt vectors into and the host reads vectors out of.
 * There is a rptr (read pointer) that determines where the
 * host is currently reading, and a wptr (write pointer)
 * which determines where the GPU has written.  When the
 * pointers are equal, the ring is idle.  When the GPU
 * writes vectors to the ring buffer, it increments the
 * wptr.  When there is an interrupt, the host then starts
 * fetching commands and processing them until the pointers are
 * equal again at which point it updates the rptr.
 */

/**
 * cik_enable_interrupts - Enable the interrupt ring buffer
 *
 * @rdev: radeon_device pointer
 *
 * Enable the interrupt ring buffer (CIK).
 */
static void cik_enable_interrupts(struct radeon_device *rdev)
{
	u32 ih_cntl = RREG32(IH_CNTL);
	u32 ih_rb_cntl = RREG32(IH_RB_CNTL);

	ih_cntl |= ENABLE_INTR;
	ih_rb_cntl |= IH_RB_ENABLE;
	WREG32(IH_CNTL, ih_cntl);
	WREG32(IH_RB_CNTL, ih_rb_cntl);
	rdev->ih.enabled = true;
}

/**
 * cik_disable_interrupts - Disable the interrupt ring buffer
 *
 * @rdev: radeon_device pointer
 *
 * Disable the interrupt ring buffer (CIK).
 */
static void cik_disable_interrupts(struct radeon_device *rdev)
{
	u32 ih_rb_cntl = RREG32(IH_RB_CNTL);
	u32 ih_cntl = RREG32(IH_CNTL);

	ih_rb_cntl &= ~IH_RB_ENABLE;
	ih_cntl &= ~ENABLE_INTR;
	WREG32(IH_RB_CNTL, ih_rb_cntl);
	WREG32(IH_CNTL, ih_cntl);
	/* set rptr, wptr to 0 */
	WREG32(IH_RB_RPTR, 0);
	WREG32(IH_RB_WPTR, 0);
	rdev->ih.enabled = false;
	rdev->ih.rptr = 0;
}

/**
 * cik_disable_interrupt_state - Disable all interrupt sources
 *
 * @rdev: radeon_device pointer
 *
 * Clear all interrupt enable bits used by the driver (CIK).
 */
static void cik_disable_interrupt_state(struct radeon_device *rdev)
{
	u32 tmp;

	/* gfx ring */
	WREG32(CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
4951 4952 4953 4954 4955
	/* sdma */
	tmp = RREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET) & ~TRAP_ENABLE;
	WREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET, tmp);
	tmp = RREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET) & ~TRAP_ENABLE;
	WREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET, tmp);
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
	/* compute queues */
	WREG32(CP_ME1_PIPE0_INT_CNTL, 0);
	WREG32(CP_ME1_PIPE1_INT_CNTL, 0);
	WREG32(CP_ME1_PIPE2_INT_CNTL, 0);
	WREG32(CP_ME1_PIPE3_INT_CNTL, 0);
	WREG32(CP_ME2_PIPE0_INT_CNTL, 0);
	WREG32(CP_ME2_PIPE1_INT_CNTL, 0);
	WREG32(CP_ME2_PIPE2_INT_CNTL, 0);
	WREG32(CP_ME2_PIPE3_INT_CNTL, 0);
	/* grbm */
	WREG32(GRBM_INT_CNTL, 0);
	/* vline/vblank, etc. */
	WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, 0);
	WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, 0);
	if (rdev->num_crtc >= 4) {
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, 0);
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, 0);
	}
	if (rdev->num_crtc >= 6) {
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, 0);
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, 0);
	}

	/* dac hotplug */
	WREG32(DAC_AUTODETECT_INT_CONTROL, 0);

	/* digital hotplug */
	tmp = RREG32(DC_HPD1_INT_CONTROL) & DC_HPDx_INT_POLARITY;
	WREG32(DC_HPD1_INT_CONTROL, tmp);
	tmp = RREG32(DC_HPD2_INT_CONTROL) & DC_HPDx_INT_POLARITY;
	WREG32(DC_HPD2_INT_CONTROL, tmp);
	tmp = RREG32(DC_HPD3_INT_CONTROL) & DC_HPDx_INT_POLARITY;
	WREG32(DC_HPD3_INT_CONTROL, tmp);
	tmp = RREG32(DC_HPD4_INT_CONTROL) & DC_HPDx_INT_POLARITY;
	WREG32(DC_HPD4_INT_CONTROL, tmp);
	tmp = RREG32(DC_HPD5_INT_CONTROL) & DC_HPDx_INT_POLARITY;
	WREG32(DC_HPD5_INT_CONTROL, tmp);
	tmp = RREG32(DC_HPD6_INT_CONTROL) & DC_HPDx_INT_POLARITY;
	WREG32(DC_HPD6_INT_CONTROL, tmp);

}

/**
 * cik_irq_init - init and enable the interrupt ring
 *
 * @rdev: radeon_device pointer
 *
 * Allocate a ring buffer for the interrupt controller,
 * enable the RLC, disable interrupts, enable the IH
 * ring buffer and enable it (CIK).
 * Called at device load and reume.
 * Returns 0 for success, errors for failure.
 */
static int cik_irq_init(struct radeon_device *rdev)
{
	int ret = 0;
	int rb_bufsz;
	u32 interrupt_cntl, ih_cntl, ih_rb_cntl;

	/* allocate ring */
	ret = r600_ih_ring_alloc(rdev);
	if (ret)
		return ret;

	/* disable irqs */
	cik_disable_interrupts(rdev);

	/* init rlc */
	ret = cik_rlc_resume(rdev);
	if (ret) {
		r600_ih_ring_fini(rdev);
		return ret;
	}

	/* setup interrupt control */
	/* XXX this should actually be a bus address, not an MC address. same on older asics */
	WREG32(INTERRUPT_CNTL2, rdev->ih.gpu_addr >> 8);
	interrupt_cntl = RREG32(INTERRUPT_CNTL);
	/* IH_DUMMY_RD_OVERRIDE=0 - dummy read disabled with msi, enabled without msi
	 * IH_DUMMY_RD_OVERRIDE=1 - dummy read controlled by IH_DUMMY_RD_EN
	 */
	interrupt_cntl &= ~IH_DUMMY_RD_OVERRIDE;
	/* IH_REQ_NONSNOOP_EN=1 if ring is in non-cacheable memory, e.g., vram */
	interrupt_cntl &= ~IH_REQ_NONSNOOP_EN;
	WREG32(INTERRUPT_CNTL, interrupt_cntl);

	WREG32(IH_RB_BASE, rdev->ih.gpu_addr >> 8);
	rb_bufsz = drm_order(rdev->ih.ring_size / 4);

	ih_rb_cntl = (IH_WPTR_OVERFLOW_ENABLE |
		      IH_WPTR_OVERFLOW_CLEAR |
		      (rb_bufsz << 1));

	if (rdev->wb.enabled)
		ih_rb_cntl |= IH_WPTR_WRITEBACK_ENABLE;

	/* set the writeback address whether it's enabled or not */
	WREG32(IH_RB_WPTR_ADDR_LO, (rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFFFFFFFC);
	WREG32(IH_RB_WPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFF);

	WREG32(IH_RB_CNTL, ih_rb_cntl);

	/* set rptr, wptr to 0 */
	WREG32(IH_RB_RPTR, 0);
	WREG32(IH_RB_WPTR, 0);

	/* Default settings for IH_CNTL (disabled at first) */
	ih_cntl = MC_WRREQ_CREDIT(0x10) | MC_WR_CLEAN_CNT(0x10) | MC_VMID(0);
	/* RPTR_REARM only works if msi's are enabled */
	if (rdev->msi_enabled)
		ih_cntl |= RPTR_REARM;
	WREG32(IH_CNTL, ih_cntl);

	/* force the active interrupt state to all disabled */
	cik_disable_interrupt_state(rdev);

	pci_set_master(rdev->pdev);

	/* enable irqs */
	cik_enable_interrupts(rdev);

	return ret;
}

/**
 * cik_irq_set - enable/disable interrupt sources
 *
 * @rdev: radeon_device pointer
 *
 * Enable interrupt sources on the GPU (vblanks, hpd,
 * etc.) (CIK).
 * Returns 0 for success, errors for failure.
 */
int cik_irq_set(struct radeon_device *rdev)
{
	u32 cp_int_cntl = CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE |
		PRIV_INSTR_INT_ENABLE | PRIV_REG_INT_ENABLE;
5093 5094
	u32 cp_m1p0, cp_m1p1, cp_m1p2, cp_m1p3;
	u32 cp_m2p0, cp_m2p1, cp_m2p2, cp_m2p3;
5095 5096 5097
	u32 crtc1 = 0, crtc2 = 0, crtc3 = 0, crtc4 = 0, crtc5 = 0, crtc6 = 0;
	u32 hpd1, hpd2, hpd3, hpd4, hpd5, hpd6;
	u32 grbm_int_cntl = 0;
5098
	u32 dma_cntl, dma_cntl1;
5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118

	if (!rdev->irq.installed) {
		WARN(1, "Can't enable IRQ/MSI because no handler is installed\n");
		return -EINVAL;
	}
	/* don't enable anything if the ih is disabled */
	if (!rdev->ih.enabled) {
		cik_disable_interrupts(rdev);
		/* force the active interrupt state to all disabled */
		cik_disable_interrupt_state(rdev);
		return 0;
	}

	hpd1 = RREG32(DC_HPD1_INT_CONTROL) & ~DC_HPDx_INT_EN;
	hpd2 = RREG32(DC_HPD2_INT_CONTROL) & ~DC_HPDx_INT_EN;
	hpd3 = RREG32(DC_HPD3_INT_CONTROL) & ~DC_HPDx_INT_EN;
	hpd4 = RREG32(DC_HPD4_INT_CONTROL) & ~DC_HPDx_INT_EN;
	hpd5 = RREG32(DC_HPD5_INT_CONTROL) & ~DC_HPDx_INT_EN;
	hpd6 = RREG32(DC_HPD6_INT_CONTROL) & ~DC_HPDx_INT_EN;

5119 5120 5121
	dma_cntl = RREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET) & ~TRAP_ENABLE;
	dma_cntl1 = RREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET) & ~TRAP_ENABLE;

5122 5123 5124 5125 5126 5127 5128 5129 5130
	cp_m1p0 = RREG32(CP_ME1_PIPE0_INT_CNTL) & ~TIME_STAMP_INT_ENABLE;
	cp_m1p1 = RREG32(CP_ME1_PIPE1_INT_CNTL) & ~TIME_STAMP_INT_ENABLE;
	cp_m1p2 = RREG32(CP_ME1_PIPE2_INT_CNTL) & ~TIME_STAMP_INT_ENABLE;
	cp_m1p3 = RREG32(CP_ME1_PIPE3_INT_CNTL) & ~TIME_STAMP_INT_ENABLE;
	cp_m2p0 = RREG32(CP_ME2_PIPE0_INT_CNTL) & ~TIME_STAMP_INT_ENABLE;
	cp_m2p1 = RREG32(CP_ME2_PIPE1_INT_CNTL) & ~TIME_STAMP_INT_ENABLE;
	cp_m2p2 = RREG32(CP_ME2_PIPE2_INT_CNTL) & ~TIME_STAMP_INT_ENABLE;
	cp_m2p3 = RREG32(CP_ME2_PIPE3_INT_CNTL) & ~TIME_STAMP_INT_ENABLE;

5131 5132 5133 5134 5135
	/* enable CP interrupts on all rings */
	if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) {
		DRM_DEBUG("cik_irq_set: sw int gfx\n");
		cp_int_cntl |= TIME_STAMP_INT_ENABLE;
	}
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
	if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP1_INDEX])) {
		struct radeon_ring *ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX];
		DRM_DEBUG("si_irq_set: sw int cp1\n");
		if (ring->me == 1) {
			switch (ring->pipe) {
			case 0:
				cp_m1p0 |= TIME_STAMP_INT_ENABLE;
				break;
			case 1:
				cp_m1p1 |= TIME_STAMP_INT_ENABLE;
				break;
			case 2:
				cp_m1p2 |= TIME_STAMP_INT_ENABLE;
				break;
			case 3:
				cp_m1p2 |= TIME_STAMP_INT_ENABLE;
				break;
			default:
				DRM_DEBUG("si_irq_set: sw int cp1 invalid pipe %d\n", ring->pipe);
				break;
			}
		} else if (ring->me == 2) {
			switch (ring->pipe) {
			case 0:
				cp_m2p0 |= TIME_STAMP_INT_ENABLE;
				break;
			case 1:
				cp_m2p1 |= TIME_STAMP_INT_ENABLE;
				break;
			case 2:
				cp_m2p2 |= TIME_STAMP_INT_ENABLE;
				break;
			case 3:
				cp_m2p2 |= TIME_STAMP_INT_ENABLE;
				break;
			default:
				DRM_DEBUG("si_irq_set: sw int cp1 invalid pipe %d\n", ring->pipe);
				break;
			}
		} else {
			DRM_DEBUG("si_irq_set: sw int cp1 invalid me %d\n", ring->me);
		}
	}
	if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP2_INDEX])) {
		struct radeon_ring *ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX];
		DRM_DEBUG("si_irq_set: sw int cp2\n");
		if (ring->me == 1) {
			switch (ring->pipe) {
			case 0:
				cp_m1p0 |= TIME_STAMP_INT_ENABLE;
				break;
			case 1:
				cp_m1p1 |= TIME_STAMP_INT_ENABLE;
				break;
			case 2:
				cp_m1p2 |= TIME_STAMP_INT_ENABLE;
				break;
			case 3:
				cp_m1p2 |= TIME_STAMP_INT_ENABLE;
				break;
			default:
				DRM_DEBUG("si_irq_set: sw int cp2 invalid pipe %d\n", ring->pipe);
				break;
			}
		} else if (ring->me == 2) {
			switch (ring->pipe) {
			case 0:
				cp_m2p0 |= TIME_STAMP_INT_ENABLE;
				break;
			case 1:
				cp_m2p1 |= TIME_STAMP_INT_ENABLE;
				break;
			case 2:
				cp_m2p2 |= TIME_STAMP_INT_ENABLE;
				break;
			case 3:
				cp_m2p2 |= TIME_STAMP_INT_ENABLE;
				break;
			default:
				DRM_DEBUG("si_irq_set: sw int cp2 invalid pipe %d\n", ring->pipe);
				break;
			}
		} else {
			DRM_DEBUG("si_irq_set: sw int cp2 invalid me %d\n", ring->me);
		}
	}
5222

5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
	if (atomic_read(&rdev->irq.ring_int[R600_RING_TYPE_DMA_INDEX])) {
		DRM_DEBUG("cik_irq_set: sw int dma\n");
		dma_cntl |= TRAP_ENABLE;
	}

	if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_DMA1_INDEX])) {
		DRM_DEBUG("cik_irq_set: sw int dma1\n");
		dma_cntl1 |= TRAP_ENABLE;
	}

5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
	if (rdev->irq.crtc_vblank_int[0] ||
	    atomic_read(&rdev->irq.pflip[0])) {
		DRM_DEBUG("cik_irq_set: vblank 0\n");
		crtc1 |= VBLANK_INTERRUPT_MASK;
	}
	if (rdev->irq.crtc_vblank_int[1] ||
	    atomic_read(&rdev->irq.pflip[1])) {
		DRM_DEBUG("cik_irq_set: vblank 1\n");
		crtc2 |= VBLANK_INTERRUPT_MASK;
	}
	if (rdev->irq.crtc_vblank_int[2] ||
	    atomic_read(&rdev->irq.pflip[2])) {
		DRM_DEBUG("cik_irq_set: vblank 2\n");
		crtc3 |= VBLANK_INTERRUPT_MASK;
	}
	if (rdev->irq.crtc_vblank_int[3] ||
	    atomic_read(&rdev->irq.pflip[3])) {
		DRM_DEBUG("cik_irq_set: vblank 3\n");
		crtc4 |= VBLANK_INTERRUPT_MASK;
	}
	if (rdev->irq.crtc_vblank_int[4] ||
	    atomic_read(&rdev->irq.pflip[4])) {
		DRM_DEBUG("cik_irq_set: vblank 4\n");
		crtc5 |= VBLANK_INTERRUPT_MASK;
	}
	if (rdev->irq.crtc_vblank_int[5] ||
	    atomic_read(&rdev->irq.pflip[5])) {
		DRM_DEBUG("cik_irq_set: vblank 5\n");
		crtc6 |= VBLANK_INTERRUPT_MASK;
	}
	if (rdev->irq.hpd[0]) {
		DRM_DEBUG("cik_irq_set: hpd 1\n");
		hpd1 |= DC_HPDx_INT_EN;
	}
	if (rdev->irq.hpd[1]) {
		DRM_DEBUG("cik_irq_set: hpd 2\n");
		hpd2 |= DC_HPDx_INT_EN;
	}
	if (rdev->irq.hpd[2]) {
		DRM_DEBUG("cik_irq_set: hpd 3\n");
		hpd3 |= DC_HPDx_INT_EN;
	}
	if (rdev->irq.hpd[3]) {
		DRM_DEBUG("cik_irq_set: hpd 4\n");
		hpd4 |= DC_HPDx_INT_EN;
	}
	if (rdev->irq.hpd[4]) {
		DRM_DEBUG("cik_irq_set: hpd 5\n");
		hpd5 |= DC_HPDx_INT_EN;
	}
	if (rdev->irq.hpd[5]) {
		DRM_DEBUG("cik_irq_set: hpd 6\n");
		hpd6 |= DC_HPDx_INT_EN;
	}

	WREG32(CP_INT_CNTL_RING0, cp_int_cntl);

5290 5291 5292
	WREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET, dma_cntl);
	WREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET, dma_cntl1);

5293 5294 5295 5296 5297 5298 5299 5300 5301
	WREG32(CP_ME1_PIPE0_INT_CNTL, cp_m1p0);
	WREG32(CP_ME1_PIPE1_INT_CNTL, cp_m1p1);
	WREG32(CP_ME1_PIPE2_INT_CNTL, cp_m1p2);
	WREG32(CP_ME1_PIPE3_INT_CNTL, cp_m1p3);
	WREG32(CP_ME2_PIPE0_INT_CNTL, cp_m2p0);
	WREG32(CP_ME2_PIPE1_INT_CNTL, cp_m2p1);
	WREG32(CP_ME2_PIPE2_INT_CNTL, cp_m2p2);
	WREG32(CP_ME2_PIPE3_INT_CNTL, cp_m2p3);

5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
	WREG32(GRBM_INT_CNTL, grbm_int_cntl);

	WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, crtc1);
	WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, crtc2);
	if (rdev->num_crtc >= 4) {
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, crtc3);
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, crtc4);
	}
	if (rdev->num_crtc >= 6) {
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, crtc5);
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, crtc6);
	}

	WREG32(DC_HPD1_INT_CONTROL, hpd1);
	WREG32(DC_HPD2_INT_CONTROL, hpd2);
	WREG32(DC_HPD3_INT_CONTROL, hpd3);
	WREG32(DC_HPD4_INT_CONTROL, hpd4);
	WREG32(DC_HPD5_INT_CONTROL, hpd5);
	WREG32(DC_HPD6_INT_CONTROL, hpd6);

	return 0;
}

/**
 * cik_irq_ack - ack interrupt sources
 *
 * @rdev: radeon_device pointer
 *
 * Ack interrupt sources on the GPU (vblanks, hpd,
 * etc.) (CIK).  Certain interrupts sources are sw
 * generated and do not require an explicit ack.
 */
static inline void cik_irq_ack(struct radeon_device *rdev)
{
	u32 tmp;

	rdev->irq.stat_regs.cik.disp_int = RREG32(DISP_INTERRUPT_STATUS);
	rdev->irq.stat_regs.cik.disp_int_cont = RREG32(DISP_INTERRUPT_STATUS_CONTINUE);
	rdev->irq.stat_regs.cik.disp_int_cont2 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE2);
	rdev->irq.stat_regs.cik.disp_int_cont3 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE3);
	rdev->irq.stat_regs.cik.disp_int_cont4 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE4);
	rdev->irq.stat_regs.cik.disp_int_cont5 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE5);
	rdev->irq.stat_regs.cik.disp_int_cont6 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE6);

	if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VBLANK_INTERRUPT)
		WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VBLANK_ACK);
	if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VLINE_INTERRUPT)
		WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VLINE_ACK);
	if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VBLANK_INTERRUPT)
		WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VBLANK_ACK);
	if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VLINE_INTERRUPT)
		WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VLINE_ACK);

	if (rdev->num_crtc >= 4) {
		if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT)
			WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VBLANK_ACK);
		if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VLINE_INTERRUPT)
			WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VLINE_ACK);
		if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT)
			WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VBLANK_ACK);
		if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VLINE_INTERRUPT)
			WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VLINE_ACK);
	}

	if (rdev->num_crtc >= 6) {
		if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT)
			WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VBLANK_ACK);
		if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VLINE_INTERRUPT)
			WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VLINE_ACK);
		if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT)
			WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VBLANK_ACK);
		if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VLINE_INTERRUPT)
			WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VLINE_ACK);
	}

	if (rdev->irq.stat_regs.cik.disp_int & DC_HPD1_INTERRUPT) {
		tmp = RREG32(DC_HPD1_INT_CONTROL);
		tmp |= DC_HPDx_INT_ACK;
		WREG32(DC_HPD1_INT_CONTROL, tmp);
	}
	if (rdev->irq.stat_regs.cik.disp_int_cont & DC_HPD2_INTERRUPT) {
		tmp = RREG32(DC_HPD2_INT_CONTROL);
		tmp |= DC_HPDx_INT_ACK;
		WREG32(DC_HPD2_INT_CONTROL, tmp);
	}
	if (rdev->irq.stat_regs.cik.disp_int_cont2 & DC_HPD3_INTERRUPT) {
		tmp = RREG32(DC_HPD3_INT_CONTROL);
		tmp |= DC_HPDx_INT_ACK;
		WREG32(DC_HPD3_INT_CONTROL, tmp);
	}
	if (rdev->irq.stat_regs.cik.disp_int_cont3 & DC_HPD4_INTERRUPT) {
		tmp = RREG32(DC_HPD4_INT_CONTROL);
		tmp |= DC_HPDx_INT_ACK;
		WREG32(DC_HPD4_INT_CONTROL, tmp);
	}
	if (rdev->irq.stat_regs.cik.disp_int_cont4 & DC_HPD5_INTERRUPT) {
		tmp = RREG32(DC_HPD5_INT_CONTROL);
		tmp |= DC_HPDx_INT_ACK;
		WREG32(DC_HPD5_INT_CONTROL, tmp);
	}
	if (rdev->irq.stat_regs.cik.disp_int_cont5 & DC_HPD6_INTERRUPT) {
		tmp = RREG32(DC_HPD5_INT_CONTROL);
		tmp |= DC_HPDx_INT_ACK;
		WREG32(DC_HPD6_INT_CONTROL, tmp);
	}
}

/**
 * cik_irq_disable - disable interrupts
 *
 * @rdev: radeon_device pointer
 *
 * Disable interrupts on the hw (CIK).
 */
static void cik_irq_disable(struct radeon_device *rdev)
{
	cik_disable_interrupts(rdev);
	/* Wait and acknowledge irq */
	mdelay(1);
	cik_irq_ack(rdev);
	cik_disable_interrupt_state(rdev);
}

/**
 * cik_irq_disable - disable interrupts for suspend
 *
 * @rdev: radeon_device pointer
 *
 * Disable interrupts and stop the RLC (CIK).
 * Used for suspend.
 */
static void cik_irq_suspend(struct radeon_device *rdev)
{
	cik_irq_disable(rdev);
	cik_rlc_stop(rdev);
}

/**
 * cik_irq_fini - tear down interrupt support
 *
 * @rdev: radeon_device pointer
 *
 * Disable interrupts on the hw and free the IH ring
 * buffer (CIK).
 * Used for driver unload.
 */
static void cik_irq_fini(struct radeon_device *rdev)
{
	cik_irq_suspend(rdev);
	r600_ih_ring_fini(rdev);
}

/**
 * cik_get_ih_wptr - get the IH ring buffer wptr
 *
 * @rdev: radeon_device pointer
 *
 * Get the IH ring buffer wptr from either the register
 * or the writeback memory buffer (CIK).  Also check for
 * ring buffer overflow and deal with it.
 * Used by cik_irq_process().
 * Returns the value of the wptr.
 */
static inline u32 cik_get_ih_wptr(struct radeon_device *rdev)
{
	u32 wptr, tmp;

	if (rdev->wb.enabled)
		wptr = le32_to_cpu(rdev->wb.wb[R600_WB_IH_WPTR_OFFSET/4]);
	else
		wptr = RREG32(IH_RB_WPTR);

	if (wptr & RB_OVERFLOW) {
		/* When a ring buffer overflow happen start parsing interrupt
		 * from the last not overwritten vector (wptr + 16). Hopefully
		 * this should allow us to catchup.
		 */
		dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, %d, %d)\n",
			wptr, rdev->ih.rptr, (wptr + 16) + rdev->ih.ptr_mask);
		rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask;
		tmp = RREG32(IH_RB_CNTL);
		tmp |= IH_WPTR_OVERFLOW_CLEAR;
		WREG32(IH_RB_CNTL, tmp);
	}
	return (wptr & rdev->ih.ptr_mask);
}

/*        CIK IV Ring
 * Each IV ring entry is 128 bits:
 * [7:0]    - interrupt source id
 * [31:8]   - reserved
 * [59:32]  - interrupt source data
 * [63:60]  - reserved
5495 5496 5497
 * [71:64]  - RINGID
 *            CP:
 *            ME_ID [1:0], PIPE_ID[1:0], QUEUE_ID[2:0]
5498 5499 5500 5501 5502
 *            QUEUE_ID - for compute, which of the 8 queues owned by the dispatcher
 *                     - for gfx, hw shader state (0=PS...5=LS, 6=CS)
 *            ME_ID - 0 = gfx, 1 = first 4 CS pipes, 2 = second 4 CS pipes
 *            PIPE_ID - ME0 0=3D
 *                    - ME1&2 compute dispatcher (4 pipes each)
5503 5504 5505 5506
 *            SDMA:
 *            INSTANCE_ID [1:0], QUEUE_ID[1:0]
 *            INSTANCE_ID - 0 = sdma0, 1 = sdma1
 *            QUEUE_ID - 0 = gfx, 1 = rlc0, 2 = rlc1
5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
 * [79:72]  - VMID
 * [95:80]  - PASID
 * [127:96] - reserved
 */
/**
 * cik_irq_process - interrupt handler
 *
 * @rdev: radeon_device pointer
 *
 * Interrupt hander (CIK).  Walk the IH ring,
 * ack interrupts and schedule work to handle
 * interrupt events.
 * Returns irq process return code.
 */
int cik_irq_process(struct radeon_device *rdev)
{
5523 5524
	struct radeon_ring *cp1_ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX];
	struct radeon_ring *cp2_ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX];
5525 5526 5527 5528 5529 5530 5531
	u32 wptr;
	u32 rptr;
	u32 src_id, src_data, ring_id;
	u8 me_id, pipe_id, queue_id;
	u32 ring_index;
	bool queue_hotplug = false;
	bool queue_reset = false;
5532
	u32 addr, status, mc_client;
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765

	if (!rdev->ih.enabled || rdev->shutdown)
		return IRQ_NONE;

	wptr = cik_get_ih_wptr(rdev);

restart_ih:
	/* is somebody else already processing irqs? */
	if (atomic_xchg(&rdev->ih.lock, 1))
		return IRQ_NONE;

	rptr = rdev->ih.rptr;
	DRM_DEBUG("cik_irq_process start: rptr %d, wptr %d\n", rptr, wptr);

	/* Order reading of wptr vs. reading of IH ring data */
	rmb();

	/* display interrupts */
	cik_irq_ack(rdev);

	while (rptr != wptr) {
		/* wptr/rptr are in bytes! */
		ring_index = rptr / 4;
		src_id =  le32_to_cpu(rdev->ih.ring[ring_index]) & 0xff;
		src_data = le32_to_cpu(rdev->ih.ring[ring_index + 1]) & 0xfffffff;
		ring_id = le32_to_cpu(rdev->ih.ring[ring_index + 2]) & 0xff;

		switch (src_id) {
		case 1: /* D1 vblank/vline */
			switch (src_data) {
			case 0: /* D1 vblank */
				if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VBLANK_INTERRUPT) {
					if (rdev->irq.crtc_vblank_int[0]) {
						drm_handle_vblank(rdev->ddev, 0);
						rdev->pm.vblank_sync = true;
						wake_up(&rdev->irq.vblank_queue);
					}
					if (atomic_read(&rdev->irq.pflip[0]))
						radeon_crtc_handle_flip(rdev, 0);
					rdev->irq.stat_regs.cik.disp_int &= ~LB_D1_VBLANK_INTERRUPT;
					DRM_DEBUG("IH: D1 vblank\n");
				}
				break;
			case 1: /* D1 vline */
				if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VLINE_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int &= ~LB_D1_VLINE_INTERRUPT;
					DRM_DEBUG("IH: D1 vline\n");
				}
				break;
			default:
				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
				break;
			}
			break;
		case 2: /* D2 vblank/vline */
			switch (src_data) {
			case 0: /* D2 vblank */
				if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VBLANK_INTERRUPT) {
					if (rdev->irq.crtc_vblank_int[1]) {
						drm_handle_vblank(rdev->ddev, 1);
						rdev->pm.vblank_sync = true;
						wake_up(&rdev->irq.vblank_queue);
					}
					if (atomic_read(&rdev->irq.pflip[1]))
						radeon_crtc_handle_flip(rdev, 1);
					rdev->irq.stat_regs.cik.disp_int_cont &= ~LB_D2_VBLANK_INTERRUPT;
					DRM_DEBUG("IH: D2 vblank\n");
				}
				break;
			case 1: /* D2 vline */
				if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VLINE_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont &= ~LB_D2_VLINE_INTERRUPT;
					DRM_DEBUG("IH: D2 vline\n");
				}
				break;
			default:
				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
				break;
			}
			break;
		case 3: /* D3 vblank/vline */
			switch (src_data) {
			case 0: /* D3 vblank */
				if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT) {
					if (rdev->irq.crtc_vblank_int[2]) {
						drm_handle_vblank(rdev->ddev, 2);
						rdev->pm.vblank_sync = true;
						wake_up(&rdev->irq.vblank_queue);
					}
					if (atomic_read(&rdev->irq.pflip[2]))
						radeon_crtc_handle_flip(rdev, 2);
					rdev->irq.stat_regs.cik.disp_int_cont2 &= ~LB_D3_VBLANK_INTERRUPT;
					DRM_DEBUG("IH: D3 vblank\n");
				}
				break;
			case 1: /* D3 vline */
				if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VLINE_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont2 &= ~LB_D3_VLINE_INTERRUPT;
					DRM_DEBUG("IH: D3 vline\n");
				}
				break;
			default:
				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
				break;
			}
			break;
		case 4: /* D4 vblank/vline */
			switch (src_data) {
			case 0: /* D4 vblank */
				if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT) {
					if (rdev->irq.crtc_vblank_int[3]) {
						drm_handle_vblank(rdev->ddev, 3);
						rdev->pm.vblank_sync = true;
						wake_up(&rdev->irq.vblank_queue);
					}
					if (atomic_read(&rdev->irq.pflip[3]))
						radeon_crtc_handle_flip(rdev, 3);
					rdev->irq.stat_regs.cik.disp_int_cont3 &= ~LB_D4_VBLANK_INTERRUPT;
					DRM_DEBUG("IH: D4 vblank\n");
				}
				break;
			case 1: /* D4 vline */
				if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VLINE_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont3 &= ~LB_D4_VLINE_INTERRUPT;
					DRM_DEBUG("IH: D4 vline\n");
				}
				break;
			default:
				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
				break;
			}
			break;
		case 5: /* D5 vblank/vline */
			switch (src_data) {
			case 0: /* D5 vblank */
				if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT) {
					if (rdev->irq.crtc_vblank_int[4]) {
						drm_handle_vblank(rdev->ddev, 4);
						rdev->pm.vblank_sync = true;
						wake_up(&rdev->irq.vblank_queue);
					}
					if (atomic_read(&rdev->irq.pflip[4]))
						radeon_crtc_handle_flip(rdev, 4);
					rdev->irq.stat_regs.cik.disp_int_cont4 &= ~LB_D5_VBLANK_INTERRUPT;
					DRM_DEBUG("IH: D5 vblank\n");
				}
				break;
			case 1: /* D5 vline */
				if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VLINE_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont4 &= ~LB_D5_VLINE_INTERRUPT;
					DRM_DEBUG("IH: D5 vline\n");
				}
				break;
			default:
				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
				break;
			}
			break;
		case 6: /* D6 vblank/vline */
			switch (src_data) {
			case 0: /* D6 vblank */
				if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT) {
					if (rdev->irq.crtc_vblank_int[5]) {
						drm_handle_vblank(rdev->ddev, 5);
						rdev->pm.vblank_sync = true;
						wake_up(&rdev->irq.vblank_queue);
					}
					if (atomic_read(&rdev->irq.pflip[5]))
						radeon_crtc_handle_flip(rdev, 5);
					rdev->irq.stat_regs.cik.disp_int_cont5 &= ~LB_D6_VBLANK_INTERRUPT;
					DRM_DEBUG("IH: D6 vblank\n");
				}
				break;
			case 1: /* D6 vline */
				if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VLINE_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont5 &= ~LB_D6_VLINE_INTERRUPT;
					DRM_DEBUG("IH: D6 vline\n");
				}
				break;
			default:
				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
				break;
			}
			break;
		case 42: /* HPD hotplug */
			switch (src_data) {
			case 0:
				if (rdev->irq.stat_regs.cik.disp_int & DC_HPD1_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int &= ~DC_HPD1_INTERRUPT;
					queue_hotplug = true;
					DRM_DEBUG("IH: HPD1\n");
				}
				break;
			case 1:
				if (rdev->irq.stat_regs.cik.disp_int_cont & DC_HPD2_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont &= ~DC_HPD2_INTERRUPT;
					queue_hotplug = true;
					DRM_DEBUG("IH: HPD2\n");
				}
				break;
			case 2:
				if (rdev->irq.stat_regs.cik.disp_int_cont2 & DC_HPD3_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont2 &= ~DC_HPD3_INTERRUPT;
					queue_hotplug = true;
					DRM_DEBUG("IH: HPD3\n");
				}
				break;
			case 3:
				if (rdev->irq.stat_regs.cik.disp_int_cont3 & DC_HPD4_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont3 &= ~DC_HPD4_INTERRUPT;
					queue_hotplug = true;
					DRM_DEBUG("IH: HPD4\n");
				}
				break;
			case 4:
				if (rdev->irq.stat_regs.cik.disp_int_cont4 & DC_HPD5_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont4 &= ~DC_HPD5_INTERRUPT;
					queue_hotplug = true;
					DRM_DEBUG("IH: HPD5\n");
				}
				break;
			case 5:
				if (rdev->irq.stat_regs.cik.disp_int_cont5 & DC_HPD6_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont5 &= ~DC_HPD6_INTERRUPT;
					queue_hotplug = true;
					DRM_DEBUG("IH: HPD6\n");
				}
				break;
			default:
				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
				break;
			}
			break;
5766 5767
		case 146:
		case 147:
5768 5769 5770
			addr = RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR);
			status = RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS);
			mc_client = RREG32(VM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
5771 5772
			dev_err(rdev->dev, "GPU fault detected: %d 0x%08x\n", src_id, src_data);
			dev_err(rdev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_ADDR   0x%08X\n",
5773
				addr);
5774
			dev_err(rdev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
5775 5776
				status);
			cik_vm_decode_fault(rdev, status, addr, mc_client);
5777 5778 5779
			/* reset addr and status */
			WREG32_P(VM_CONTEXT1_CNTL2, 1, ~1);
			break;
5780 5781 5782 5783 5784 5785
		case 176: /* GFX RB CP_INT */
		case 177: /* GFX IB CP_INT */
			radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX);
			break;
		case 181: /* CP EOP event */
			DRM_DEBUG("IH: CP EOP\n");
5786 5787 5788 5789
			/* XXX check the bitfield order! */
			me_id = (ring_id & 0x60) >> 5;
			pipe_id = (ring_id & 0x18) >> 3;
			queue_id = (ring_id & 0x7) >> 0;
5790 5791 5792 5793 5794 5795
			switch (me_id) {
			case 0:
				radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX);
				break;
			case 1:
			case 2:
5796 5797 5798 5799
				if ((cp1_ring->me == me_id) & (cp1_ring->pipe == pipe_id))
					radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP1_INDEX);
				if ((cp2_ring->me == me_id) & (cp2_ring->pipe == pipe_id))
					radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP2_INDEX);
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817
				break;
			}
			break;
		case 184: /* CP Privileged reg access */
			DRM_ERROR("Illegal register access in command stream\n");
			/* XXX check the bitfield order! */
			me_id = (ring_id & 0x60) >> 5;
			pipe_id = (ring_id & 0x18) >> 3;
			queue_id = (ring_id & 0x7) >> 0;
			switch (me_id) {
			case 0:
				/* This results in a full GPU reset, but all we need to do is soft
				 * reset the CP for gfx
				 */
				queue_reset = true;
				break;
			case 1:
				/* XXX compute */
5818
				queue_reset = true;
5819 5820 5821
				break;
			case 2:
				/* XXX compute */
5822
				queue_reset = true;
5823 5824 5825 5826 5827
				break;
			}
			break;
		case 185: /* CP Privileged inst */
			DRM_ERROR("Illegal instruction in command stream\n");
5828 5829 5830 5831
			/* XXX check the bitfield order! */
			me_id = (ring_id & 0x60) >> 5;
			pipe_id = (ring_id & 0x18) >> 3;
			queue_id = (ring_id & 0x7) >> 0;
5832 5833 5834 5835 5836 5837 5838 5839 5840
			switch (me_id) {
			case 0:
				/* This results in a full GPU reset, but all we need to do is soft
				 * reset the CP for gfx
				 */
				queue_reset = true;
				break;
			case 1:
				/* XXX compute */
5841
				queue_reset = true;
5842 5843 5844
				break;
			case 2:
				/* XXX compute */
5845
				queue_reset = true;
5846 5847 5848
				break;
			}
			break;
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921
		case 224: /* SDMA trap event */
			/* XXX check the bitfield order! */
			me_id = (ring_id & 0x3) >> 0;
			queue_id = (ring_id & 0xc) >> 2;
			DRM_DEBUG("IH: SDMA trap\n");
			switch (me_id) {
			case 0:
				switch (queue_id) {
				case 0:
					radeon_fence_process(rdev, R600_RING_TYPE_DMA_INDEX);
					break;
				case 1:
					/* XXX compute */
					break;
				case 2:
					/* XXX compute */
					break;
				}
				break;
			case 1:
				switch (queue_id) {
				case 0:
					radeon_fence_process(rdev, CAYMAN_RING_TYPE_DMA1_INDEX);
					break;
				case 1:
					/* XXX compute */
					break;
				case 2:
					/* XXX compute */
					break;
				}
				break;
			}
			break;
		case 241: /* SDMA Privileged inst */
		case 247: /* SDMA Privileged inst */
			DRM_ERROR("Illegal instruction in SDMA command stream\n");
			/* XXX check the bitfield order! */
			me_id = (ring_id & 0x3) >> 0;
			queue_id = (ring_id & 0xc) >> 2;
			switch (me_id) {
			case 0:
				switch (queue_id) {
				case 0:
					queue_reset = true;
					break;
				case 1:
					/* XXX compute */
					queue_reset = true;
					break;
				case 2:
					/* XXX compute */
					queue_reset = true;
					break;
				}
				break;
			case 1:
				switch (queue_id) {
				case 0:
					queue_reset = true;
					break;
				case 1:
					/* XXX compute */
					queue_reset = true;
					break;
				case 2:
					/* XXX compute */
					queue_reset = true;
					break;
				}
				break;
			}
			break;
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
		case 233: /* GUI IDLE */
			DRM_DEBUG("IH: GUI idle\n");
			break;
		default:
			DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
			break;
		}

		/* wptr/rptr are in bytes! */
		rptr += 16;
		rptr &= rdev->ih.ptr_mask;
	}
	if (queue_hotplug)
		schedule_work(&rdev->hotplug_work);
	if (queue_reset)
		schedule_work(&rdev->reset_work);
	rdev->ih.rptr = rptr;
	WREG32(IH_RB_RPTR, rdev->ih.rptr);
	atomic_set(&rdev->ih.lock, 0);

	/* make sure wptr hasn't changed while processing */
	wptr = cik_get_ih_wptr(rdev);
	if (wptr != rptr)
		goto restart_ih;

	return IRQ_HANDLED;
}
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966

/*
 * startup/shutdown callbacks
 */
/**
 * cik_startup - program the asic to a functional state
 *
 * @rdev: radeon_device pointer
 *
 * Programs the asic to a functional state (CIK).
 * Called by cik_init() and cik_resume().
 * Returns 0 for success, error for failure.
 */
static int cik_startup(struct radeon_device *rdev)
{
	struct radeon_ring *ring;
	int r;

5967 5968
	cik_mc_program(rdev);

5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
	if (rdev->flags & RADEON_IS_IGP) {
		if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw ||
		    !rdev->mec_fw || !rdev->sdma_fw || !rdev->rlc_fw) {
			r = cik_init_microcode(rdev);
			if (r) {
				DRM_ERROR("Failed to load firmware!\n");
				return r;
			}
		}
	} else {
		if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw ||
		    !rdev->mec_fw || !rdev->sdma_fw || !rdev->rlc_fw ||
		    !rdev->mc_fw) {
			r = cik_init_microcode(rdev);
			if (r) {
				DRM_ERROR("Failed to load firmware!\n");
				return r;
			}
		}

		r = ci_mc_load_microcode(rdev);
		if (r) {
			DRM_ERROR("Failed to load MC firmware!\n");
			return r;
		}
	}

	r = r600_vram_scratch_init(rdev);
	if (r)
		return r;

	r = cik_pcie_gart_enable(rdev);
	if (r)
		return r;
	cik_gpu_init(rdev);

	/* allocate rlc buffers */
	r = si_rlc_init(rdev);
	if (r) {
		DRM_ERROR("Failed to init rlc BOs!\n");
		return r;
	}

	/* allocate wb buffer */
	r = radeon_wb_init(rdev);
	if (r)
		return r;

6017 6018 6019 6020 6021 6022 6023
	/* allocate mec buffers */
	r = cik_mec_init(rdev);
	if (r) {
		DRM_ERROR("Failed to init MEC BOs!\n");
		return r;
	}

6024 6025 6026 6027 6028 6029
	r = radeon_fence_driver_start_ring(rdev, RADEON_RING_TYPE_GFX_INDEX);
	if (r) {
		dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r);
		return r;
	}

6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
	r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_CP1_INDEX);
	if (r) {
		dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r);
		return r;
	}

	r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_CP2_INDEX);
	if (r) {
		dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r);
		return r;
	}

6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
	r = radeon_fence_driver_start_ring(rdev, R600_RING_TYPE_DMA_INDEX);
	if (r) {
		dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r);
		return r;
	}

	r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_DMA1_INDEX);
	if (r) {
		dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r);
		return r;
	}

6054 6055 6056 6057 6058 6059 6060 6061 6062 6063
	r = cik_uvd_resume(rdev);
	if (!r) {
		r = radeon_fence_driver_start_ring(rdev,
						   R600_RING_TYPE_UVD_INDEX);
		if (r)
			dev_err(rdev->dev, "UVD fences init error (%d).\n", r);
	}
	if (r)
		rdev->ring[R600_RING_TYPE_UVD_INDEX].ring_size = 0;

6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
	/* Enable IRQ */
	if (!rdev->irq.installed) {
		r = radeon_irq_kms_init(rdev);
		if (r)
			return r;
	}

	r = cik_irq_init(rdev);
	if (r) {
		DRM_ERROR("radeon: IH init failed (%d).\n", r);
		radeon_irq_kms_fini(rdev);
		return r;
	}
	cik_irq_set(rdev);

	ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
	r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP_RPTR_OFFSET,
			     CP_RB0_RPTR, CP_RB0_WPTR,
			     0, 0xfffff, RADEON_CP_PACKET2);
	if (r)
		return r;

6086
	/* set up the compute queues */
6087
	/* type-2 packets are deprecated on MEC, use type-3 instead */
6088 6089 6090
	ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX];
	r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP1_RPTR_OFFSET,
			     CP_HQD_PQ_RPTR, CP_HQD_PQ_WPTR,
6091
			     0, 0xfffff, PACKET3(PACKET3_NOP, 0x3FFF));
6092 6093 6094 6095 6096 6097 6098
	if (r)
		return r;
	ring->me = 1; /* first MEC */
	ring->pipe = 0; /* first pipe */
	ring->queue = 0; /* first queue */
	ring->wptr_offs = CIK_WB_CP1_WPTR_OFFSET;

6099
	/* type-2 packets are deprecated on MEC, use type-3 instead */
6100 6101 6102
	ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX];
	r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP2_RPTR_OFFSET,
			     CP_HQD_PQ_RPTR, CP_HQD_PQ_WPTR,
6103
			     0, 0xffffffff, PACKET3(PACKET3_NOP, 0x3FFF));
6104 6105 6106 6107 6108 6109 6110 6111
	if (r)
		return r;
	/* dGPU only have 1 MEC */
	ring->me = 1; /* first MEC */
	ring->pipe = 0; /* first pipe */
	ring->queue = 1; /* second queue */
	ring->wptr_offs = CIK_WB_CP2_WPTR_OFFSET;

6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
	ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX];
	r = radeon_ring_init(rdev, ring, ring->ring_size, R600_WB_DMA_RPTR_OFFSET,
			     SDMA0_GFX_RB_RPTR + SDMA0_REGISTER_OFFSET,
			     SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET,
			     2, 0xfffffffc, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0));
	if (r)
		return r;

	ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX];
	r = radeon_ring_init(rdev, ring, ring->ring_size, CAYMAN_WB_DMA1_RPTR_OFFSET,
			     SDMA0_GFX_RB_RPTR + SDMA1_REGISTER_OFFSET,
			     SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET,
			     2, 0xfffffffc, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0));
	if (r)
		return r;

	r = cik_cp_resume(rdev);
	if (r)
		return r;

	r = cik_sdma_resume(rdev);
	if (r)
		return r;

6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147
	ring = &rdev->ring[R600_RING_TYPE_UVD_INDEX];
	if (ring->ring_size) {
		r = radeon_ring_init(rdev, ring, ring->ring_size,
				     R600_WB_UVD_RPTR_OFFSET,
				     UVD_RBC_RB_RPTR, UVD_RBC_RB_WPTR,
				     0, 0xfffff, RADEON_CP_PACKET2);
		if (!r)
			r = r600_uvd_init(rdev);
		if (r)
			DRM_ERROR("radeon: failed initializing UVD (%d).\n", r);
	}

6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
	r = radeon_ib_pool_init(rdev);
	if (r) {
		dev_err(rdev->dev, "IB initialization failed (%d).\n", r);
		return r;
	}

	r = radeon_vm_manager_init(rdev);
	if (r) {
		dev_err(rdev->dev, "vm manager initialization failed (%d).\n", r);
		return r;
	}

	return 0;
}

/**
 * cik_resume - resume the asic to a functional state
 *
 * @rdev: radeon_device pointer
 *
 * Programs the asic to a functional state (CIK).
 * Called at resume.
 * Returns 0 for success, error for failure.
 */
int cik_resume(struct radeon_device *rdev)
{
	int r;

	/* post card */
	atom_asic_init(rdev->mode_info.atom_context);

6179 6180 6181
	/* init golden registers */
	cik_init_golden_registers(rdev);

6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
	rdev->accel_working = true;
	r = cik_startup(rdev);
	if (r) {
		DRM_ERROR("cik startup failed on resume\n");
		rdev->accel_working = false;
		return r;
	}

	return r;

}

/**
 * cik_suspend - suspend the asic
 *
 * @rdev: radeon_device pointer
 *
 * Bring the chip into a state suitable for suspend (CIK).
 * Called at suspend.
 * Returns 0 for success.
 */
int cik_suspend(struct radeon_device *rdev)
{
	radeon_vm_manager_fini(rdev);
	cik_cp_enable(rdev, false);
	cik_sdma_enable(rdev, false);
C
Christian König 已提交
6208
	r600_uvd_stop(rdev);
6209
	radeon_uvd_suspend(rdev);
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
	cik_irq_suspend(rdev);
	radeon_wb_disable(rdev);
	cik_pcie_gart_disable(rdev);
	return 0;
}

/* Plan is to move initialization in that function and use
 * helper function so that radeon_device_init pretty much
 * do nothing more than calling asic specific function. This
 * should also allow to remove a bunch of callback function
 * like vram_info.
 */
/**
 * cik_init - asic specific driver and hw init
 *
 * @rdev: radeon_device pointer
 *
 * Setup asic specific driver variables and program the hw
 * to a functional state (CIK).
 * Called at driver startup.
 * Returns 0 for success, errors for failure.
 */
int cik_init(struct radeon_device *rdev)
{
	struct radeon_ring *ring;
	int r;

	/* Read BIOS */
	if (!radeon_get_bios(rdev)) {
		if (ASIC_IS_AVIVO(rdev))
			return -EINVAL;
	}
	/* Must be an ATOMBIOS */
	if (!rdev->is_atom_bios) {
		dev_err(rdev->dev, "Expecting atombios for cayman GPU\n");
		return -EINVAL;
	}
	r = radeon_atombios_init(rdev);
	if (r)
		return r;

	/* Post card if necessary */
	if (!radeon_card_posted(rdev)) {
		if (!rdev->bios) {
			dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n");
			return -EINVAL;
		}
		DRM_INFO("GPU not posted. posting now...\n");
		atom_asic_init(rdev->mode_info.atom_context);
	}
6260 6261
	/* init golden registers */
	cik_init_golden_registers(rdev);
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
	/* Initialize scratch registers */
	cik_scratch_init(rdev);
	/* Initialize surface registers */
	radeon_surface_init(rdev);
	/* Initialize clocks */
	radeon_get_clock_info(rdev->ddev);

	/* Fence driver */
	r = radeon_fence_driver_init(rdev);
	if (r)
		return r;

	/* initialize memory controller */
	r = cik_mc_init(rdev);
	if (r)
		return r;
	/* Memory manager */
	r = radeon_bo_init(rdev);
	if (r)
		return r;

	ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
	ring->ring_obj = NULL;
	r600_ring_init(rdev, ring, 1024 * 1024);

6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
	ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX];
	ring->ring_obj = NULL;
	r600_ring_init(rdev, ring, 1024 * 1024);
	r = radeon_doorbell_get(rdev, &ring->doorbell_page_num);
	if (r)
		return r;

	ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX];
	ring->ring_obj = NULL;
	r600_ring_init(rdev, ring, 1024 * 1024);
	r = radeon_doorbell_get(rdev, &ring->doorbell_page_num);
	if (r)
		return r;

6301 6302 6303 6304 6305 6306 6307 6308
	ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX];
	ring->ring_obj = NULL;
	r600_ring_init(rdev, ring, 256 * 1024);

	ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX];
	ring->ring_obj = NULL;
	r600_ring_init(rdev, ring, 256 * 1024);

6309 6310 6311 6312 6313 6314 6315
	r = radeon_uvd_init(rdev);
	if (!r) {
		ring = &rdev->ring[R600_RING_TYPE_UVD_INDEX];
		ring->ring_obj = NULL;
		r600_ring_init(rdev, ring, 4096);
	}

6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
	rdev->ih.ring_obj = NULL;
	r600_ih_ring_init(rdev, 64 * 1024);

	r = r600_pcie_gart_init(rdev);
	if (r)
		return r;

	rdev->accel_working = true;
	r = cik_startup(rdev);
	if (r) {
		dev_err(rdev->dev, "disabling GPU acceleration\n");
		cik_cp_fini(rdev);
		cik_sdma_fini(rdev);
		cik_irq_fini(rdev);
		si_rlc_fini(rdev);
6331
		cik_mec_fini(rdev);
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
		radeon_wb_fini(rdev);
		radeon_ib_pool_fini(rdev);
		radeon_vm_manager_fini(rdev);
		radeon_irq_kms_fini(rdev);
		cik_pcie_gart_fini(rdev);
		rdev->accel_working = false;
	}

	/* Don't start up if the MC ucode is missing.
	 * The default clocks and voltages before the MC ucode
	 * is loaded are not suffient for advanced operations.
	 */
	if (!rdev->mc_fw && !(rdev->flags & RADEON_IS_IGP)) {
		DRM_ERROR("radeon: MC ucode required for NI+.\n");
		return -EINVAL;
	}

	return 0;
}

/**
 * cik_fini - asic specific driver and hw fini
 *
 * @rdev: radeon_device pointer
 *
 * Tear down the asic specific driver variables and program the hw
 * to an idle state (CIK).
 * Called at driver unload.
 */
void cik_fini(struct radeon_device *rdev)
{
	cik_cp_fini(rdev);
	cik_sdma_fini(rdev);
	cik_irq_fini(rdev);
	si_rlc_fini(rdev);
6367
	cik_mec_fini(rdev);
6368 6369 6370 6371
	radeon_wb_fini(rdev);
	radeon_vm_manager_fini(rdev);
	radeon_ib_pool_fini(rdev);
	radeon_irq_kms_fini(rdev);
C
Christian König 已提交
6372
	r600_uvd_stop(rdev);
6373
	radeon_uvd_fini(rdev);
6374 6375 6376 6377 6378 6379 6380 6381 6382
	cik_pcie_gart_fini(rdev);
	r600_vram_scratch_fini(rdev);
	radeon_gem_fini(rdev);
	radeon_fence_driver_fini(rdev);
	radeon_bo_fini(rdev);
	radeon_atombios_fini(rdev);
	kfree(rdev->bios);
	rdev->bios = NULL;
}
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919

/* display watermark setup */
/**
 * dce8_line_buffer_adjust - Set up the line buffer
 *
 * @rdev: radeon_device pointer
 * @radeon_crtc: the selected display controller
 * @mode: the current display mode on the selected display
 * controller
 *
 * Setup up the line buffer allocation for
 * the selected display controller (CIK).
 * Returns the line buffer size in pixels.
 */
static u32 dce8_line_buffer_adjust(struct radeon_device *rdev,
				   struct radeon_crtc *radeon_crtc,
				   struct drm_display_mode *mode)
{
	u32 tmp;

	/*
	 * Line Buffer Setup
	 * There are 6 line buffers, one for each display controllers.
	 * There are 3 partitions per LB. Select the number of partitions
	 * to enable based on the display width.  For display widths larger
	 * than 4096, you need use to use 2 display controllers and combine
	 * them using the stereo blender.
	 */
	if (radeon_crtc->base.enabled && mode) {
		if (mode->crtc_hdisplay < 1920)
			tmp = 1;
		else if (mode->crtc_hdisplay < 2560)
			tmp = 2;
		else if (mode->crtc_hdisplay < 4096)
			tmp = 0;
		else {
			DRM_DEBUG_KMS("Mode too big for LB!\n");
			tmp = 0;
		}
	} else
		tmp = 1;

	WREG32(LB_MEMORY_CTRL + radeon_crtc->crtc_offset,
	       LB_MEMORY_CONFIG(tmp) | LB_MEMORY_SIZE(0x6B0));

	if (radeon_crtc->base.enabled && mode) {
		switch (tmp) {
		case 0:
		default:
			return 4096 * 2;
		case 1:
			return 1920 * 2;
		case 2:
			return 2560 * 2;
		}
	}

	/* controller not enabled, so no lb used */
	return 0;
}

/**
 * cik_get_number_of_dram_channels - get the number of dram channels
 *
 * @rdev: radeon_device pointer
 *
 * Look up the number of video ram channels (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the number of dram channels
 */
static u32 cik_get_number_of_dram_channels(struct radeon_device *rdev)
{
	u32 tmp = RREG32(MC_SHARED_CHMAP);

	switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
	case 0:
	default:
		return 1;
	case 1:
		return 2;
	case 2:
		return 4;
	case 3:
		return 8;
	case 4:
		return 3;
	case 5:
		return 6;
	case 6:
		return 10;
	case 7:
		return 12;
	case 8:
		return 16;
	}
}

struct dce8_wm_params {
	u32 dram_channels; /* number of dram channels */
	u32 yclk;          /* bandwidth per dram data pin in kHz */
	u32 sclk;          /* engine clock in kHz */
	u32 disp_clk;      /* display clock in kHz */
	u32 src_width;     /* viewport width */
	u32 active_time;   /* active display time in ns */
	u32 blank_time;    /* blank time in ns */
	bool interlaced;    /* mode is interlaced */
	fixed20_12 vsc;    /* vertical scale ratio */
	u32 num_heads;     /* number of active crtcs */
	u32 bytes_per_pixel; /* bytes per pixel display + overlay */
	u32 lb_size;       /* line buffer allocated to pipe */
	u32 vtaps;         /* vertical scaler taps */
};

/**
 * dce8_dram_bandwidth - get the dram bandwidth
 *
 * @wm: watermark calculation data
 *
 * Calculate the raw dram bandwidth (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the dram bandwidth in MBytes/s
 */
static u32 dce8_dram_bandwidth(struct dce8_wm_params *wm)
{
	/* Calculate raw DRAM Bandwidth */
	fixed20_12 dram_efficiency; /* 0.7 */
	fixed20_12 yclk, dram_channels, bandwidth;
	fixed20_12 a;

	a.full = dfixed_const(1000);
	yclk.full = dfixed_const(wm->yclk);
	yclk.full = dfixed_div(yclk, a);
	dram_channels.full = dfixed_const(wm->dram_channels * 4);
	a.full = dfixed_const(10);
	dram_efficiency.full = dfixed_const(7);
	dram_efficiency.full = dfixed_div(dram_efficiency, a);
	bandwidth.full = dfixed_mul(dram_channels, yclk);
	bandwidth.full = dfixed_mul(bandwidth, dram_efficiency);

	return dfixed_trunc(bandwidth);
}

/**
 * dce8_dram_bandwidth_for_display - get the dram bandwidth for display
 *
 * @wm: watermark calculation data
 *
 * Calculate the dram bandwidth used for display (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the dram bandwidth for display in MBytes/s
 */
static u32 dce8_dram_bandwidth_for_display(struct dce8_wm_params *wm)
{
	/* Calculate DRAM Bandwidth and the part allocated to display. */
	fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */
	fixed20_12 yclk, dram_channels, bandwidth;
	fixed20_12 a;

	a.full = dfixed_const(1000);
	yclk.full = dfixed_const(wm->yclk);
	yclk.full = dfixed_div(yclk, a);
	dram_channels.full = dfixed_const(wm->dram_channels * 4);
	a.full = dfixed_const(10);
	disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */
	disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a);
	bandwidth.full = dfixed_mul(dram_channels, yclk);
	bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation);

	return dfixed_trunc(bandwidth);
}

/**
 * dce8_data_return_bandwidth - get the data return bandwidth
 *
 * @wm: watermark calculation data
 *
 * Calculate the data return bandwidth used for display (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the data return bandwidth in MBytes/s
 */
static u32 dce8_data_return_bandwidth(struct dce8_wm_params *wm)
{
	/* Calculate the display Data return Bandwidth */
	fixed20_12 return_efficiency; /* 0.8 */
	fixed20_12 sclk, bandwidth;
	fixed20_12 a;

	a.full = dfixed_const(1000);
	sclk.full = dfixed_const(wm->sclk);
	sclk.full = dfixed_div(sclk, a);
	a.full = dfixed_const(10);
	return_efficiency.full = dfixed_const(8);
	return_efficiency.full = dfixed_div(return_efficiency, a);
	a.full = dfixed_const(32);
	bandwidth.full = dfixed_mul(a, sclk);
	bandwidth.full = dfixed_mul(bandwidth, return_efficiency);

	return dfixed_trunc(bandwidth);
}

/**
 * dce8_dmif_request_bandwidth - get the dmif bandwidth
 *
 * @wm: watermark calculation data
 *
 * Calculate the dmif bandwidth used for display (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the dmif bandwidth in MBytes/s
 */
static u32 dce8_dmif_request_bandwidth(struct dce8_wm_params *wm)
{
	/* Calculate the DMIF Request Bandwidth */
	fixed20_12 disp_clk_request_efficiency; /* 0.8 */
	fixed20_12 disp_clk, bandwidth;
	fixed20_12 a, b;

	a.full = dfixed_const(1000);
	disp_clk.full = dfixed_const(wm->disp_clk);
	disp_clk.full = dfixed_div(disp_clk, a);
	a.full = dfixed_const(32);
	b.full = dfixed_mul(a, disp_clk);

	a.full = dfixed_const(10);
	disp_clk_request_efficiency.full = dfixed_const(8);
	disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a);

	bandwidth.full = dfixed_mul(b, disp_clk_request_efficiency);

	return dfixed_trunc(bandwidth);
}

/**
 * dce8_available_bandwidth - get the min available bandwidth
 *
 * @wm: watermark calculation data
 *
 * Calculate the min available bandwidth used for display (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the min available bandwidth in MBytes/s
 */
static u32 dce8_available_bandwidth(struct dce8_wm_params *wm)
{
	/* Calculate the Available bandwidth. Display can use this temporarily but not in average. */
	u32 dram_bandwidth = dce8_dram_bandwidth(wm);
	u32 data_return_bandwidth = dce8_data_return_bandwidth(wm);
	u32 dmif_req_bandwidth = dce8_dmif_request_bandwidth(wm);

	return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth));
}

/**
 * dce8_average_bandwidth - get the average available bandwidth
 *
 * @wm: watermark calculation data
 *
 * Calculate the average available bandwidth used for display (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the average available bandwidth in MBytes/s
 */
static u32 dce8_average_bandwidth(struct dce8_wm_params *wm)
{
	/* Calculate the display mode Average Bandwidth
	 * DisplayMode should contain the source and destination dimensions,
	 * timing, etc.
	 */
	fixed20_12 bpp;
	fixed20_12 line_time;
	fixed20_12 src_width;
	fixed20_12 bandwidth;
	fixed20_12 a;

	a.full = dfixed_const(1000);
	line_time.full = dfixed_const(wm->active_time + wm->blank_time);
	line_time.full = dfixed_div(line_time, a);
	bpp.full = dfixed_const(wm->bytes_per_pixel);
	src_width.full = dfixed_const(wm->src_width);
	bandwidth.full = dfixed_mul(src_width, bpp);
	bandwidth.full = dfixed_mul(bandwidth, wm->vsc);
	bandwidth.full = dfixed_div(bandwidth, line_time);

	return dfixed_trunc(bandwidth);
}

/**
 * dce8_latency_watermark - get the latency watermark
 *
 * @wm: watermark calculation data
 *
 * Calculate the latency watermark (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the latency watermark in ns
 */
static u32 dce8_latency_watermark(struct dce8_wm_params *wm)
{
	/* First calculate the latency in ns */
	u32 mc_latency = 2000; /* 2000 ns. */
	u32 available_bandwidth = dce8_available_bandwidth(wm);
	u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth;
	u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth;
	u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */
	u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) +
		(wm->num_heads * cursor_line_pair_return_time);
	u32 latency = mc_latency + other_heads_data_return_time + dc_latency;
	u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time;
	u32 tmp, dmif_size = 12288;
	fixed20_12 a, b, c;

	if (wm->num_heads == 0)
		return 0;

	a.full = dfixed_const(2);
	b.full = dfixed_const(1);
	if ((wm->vsc.full > a.full) ||
	    ((wm->vsc.full > b.full) && (wm->vtaps >= 3)) ||
	    (wm->vtaps >= 5) ||
	    ((wm->vsc.full >= a.full) && wm->interlaced))
		max_src_lines_per_dst_line = 4;
	else
		max_src_lines_per_dst_line = 2;

	a.full = dfixed_const(available_bandwidth);
	b.full = dfixed_const(wm->num_heads);
	a.full = dfixed_div(a, b);

	b.full = dfixed_const(mc_latency + 512);
	c.full = dfixed_const(wm->disp_clk);
	b.full = dfixed_div(b, c);

	c.full = dfixed_const(dmif_size);
	b.full = dfixed_div(c, b);

	tmp = min(dfixed_trunc(a), dfixed_trunc(b));

	b.full = dfixed_const(1000);
	c.full = dfixed_const(wm->disp_clk);
	b.full = dfixed_div(c, b);
	c.full = dfixed_const(wm->bytes_per_pixel);
	b.full = dfixed_mul(b, c);

	lb_fill_bw = min(tmp, dfixed_trunc(b));

	a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel);
	b.full = dfixed_const(1000);
	c.full = dfixed_const(lb_fill_bw);
	b.full = dfixed_div(c, b);
	a.full = dfixed_div(a, b);
	line_fill_time = dfixed_trunc(a);

	if (line_fill_time < wm->active_time)
		return latency;
	else
		return latency + (line_fill_time - wm->active_time);

}

/**
 * dce8_average_bandwidth_vs_dram_bandwidth_for_display - check
 * average and available dram bandwidth
 *
 * @wm: watermark calculation data
 *
 * Check if the display average bandwidth fits in the display
 * dram bandwidth (CIK).
 * Used for display watermark bandwidth calculations
 * Returns true if the display fits, false if not.
 */
static bool dce8_average_bandwidth_vs_dram_bandwidth_for_display(struct dce8_wm_params *wm)
{
	if (dce8_average_bandwidth(wm) <=
	    (dce8_dram_bandwidth_for_display(wm) / wm->num_heads))
		return true;
	else
		return false;
}

/**
 * dce8_average_bandwidth_vs_available_bandwidth - check
 * average and available bandwidth
 *
 * @wm: watermark calculation data
 *
 * Check if the display average bandwidth fits in the display
 * available bandwidth (CIK).
 * Used for display watermark bandwidth calculations
 * Returns true if the display fits, false if not.
 */
static bool dce8_average_bandwidth_vs_available_bandwidth(struct dce8_wm_params *wm)
{
	if (dce8_average_bandwidth(wm) <=
	    (dce8_available_bandwidth(wm) / wm->num_heads))
		return true;
	else
		return false;
}

/**
 * dce8_check_latency_hiding - check latency hiding
 *
 * @wm: watermark calculation data
 *
 * Check latency hiding (CIK).
 * Used for display watermark bandwidth calculations
 * Returns true if the display fits, false if not.
 */
static bool dce8_check_latency_hiding(struct dce8_wm_params *wm)
{
	u32 lb_partitions = wm->lb_size / wm->src_width;
	u32 line_time = wm->active_time + wm->blank_time;
	u32 latency_tolerant_lines;
	u32 latency_hiding;
	fixed20_12 a;

	a.full = dfixed_const(1);
	if (wm->vsc.full > a.full)
		latency_tolerant_lines = 1;
	else {
		if (lb_partitions <= (wm->vtaps + 1))
			latency_tolerant_lines = 1;
		else
			latency_tolerant_lines = 2;
	}

	latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time);

	if (dce8_latency_watermark(wm) <= latency_hiding)
		return true;
	else
		return false;
}

/**
 * dce8_program_watermarks - program display watermarks
 *
 * @rdev: radeon_device pointer
 * @radeon_crtc: the selected display controller
 * @lb_size: line buffer size
 * @num_heads: number of display controllers in use
 *
 * Calculate and program the display watermarks for the
 * selected display controller (CIK).
 */
static void dce8_program_watermarks(struct radeon_device *rdev,
				    struct radeon_crtc *radeon_crtc,
				    u32 lb_size, u32 num_heads)
{
	struct drm_display_mode *mode = &radeon_crtc->base.mode;
	struct dce8_wm_params wm;
	u32 pixel_period;
	u32 line_time = 0;
	u32 latency_watermark_a = 0, latency_watermark_b = 0;
	u32 tmp, wm_mask;

	if (radeon_crtc->base.enabled && num_heads && mode) {
		pixel_period = 1000000 / (u32)mode->clock;
		line_time = min((u32)mode->crtc_htotal * pixel_period, (u32)65535);

		wm.yclk = rdev->pm.current_mclk * 10;
		wm.sclk = rdev->pm.current_sclk * 10;
		wm.disp_clk = mode->clock;
		wm.src_width = mode->crtc_hdisplay;
		wm.active_time = mode->crtc_hdisplay * pixel_period;
		wm.blank_time = line_time - wm.active_time;
		wm.interlaced = false;
		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
			wm.interlaced = true;
		wm.vsc = radeon_crtc->vsc;
		wm.vtaps = 1;
		if (radeon_crtc->rmx_type != RMX_OFF)
			wm.vtaps = 2;
		wm.bytes_per_pixel = 4; /* XXX: get this from fb config */
		wm.lb_size = lb_size;
		wm.dram_channels = cik_get_number_of_dram_channels(rdev);
		wm.num_heads = num_heads;

		/* set for high clocks */
		latency_watermark_a = min(dce8_latency_watermark(&wm), (u32)65535);
		/* set for low clocks */
		/* wm.yclk = low clk; wm.sclk = low clk */
		latency_watermark_b = min(dce8_latency_watermark(&wm), (u32)65535);

		/* possibly force display priority to high */
		/* should really do this at mode validation time... */
		if (!dce8_average_bandwidth_vs_dram_bandwidth_for_display(&wm) ||
		    !dce8_average_bandwidth_vs_available_bandwidth(&wm) ||
		    !dce8_check_latency_hiding(&wm) ||
		    (rdev->disp_priority == 2)) {
			DRM_DEBUG_KMS("force priority to high\n");
		}
	}

	/* select wm A */
	wm_mask = RREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset);
	tmp = wm_mask;
	tmp &= ~LATENCY_WATERMARK_MASK(3);
	tmp |= LATENCY_WATERMARK_MASK(1);
	WREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset, tmp);
	WREG32(DPG_PIPE_LATENCY_CONTROL + radeon_crtc->crtc_offset,
	       (LATENCY_LOW_WATERMARK(latency_watermark_a) |
		LATENCY_HIGH_WATERMARK(line_time)));
	/* select wm B */
	tmp = RREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset);
	tmp &= ~LATENCY_WATERMARK_MASK(3);
	tmp |= LATENCY_WATERMARK_MASK(2);
	WREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset, tmp);
	WREG32(DPG_PIPE_LATENCY_CONTROL + radeon_crtc->crtc_offset,
	       (LATENCY_LOW_WATERMARK(latency_watermark_b) |
		LATENCY_HIGH_WATERMARK(line_time)));
	/* restore original selection */
	WREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset, wm_mask);
}

/**
 * dce8_bandwidth_update - program display watermarks
 *
 * @rdev: radeon_device pointer
 *
 * Calculate and program the display watermarks and line
 * buffer allocation (CIK).
 */
void dce8_bandwidth_update(struct radeon_device *rdev)
{
	struct drm_display_mode *mode = NULL;
	u32 num_heads = 0, lb_size;
	int i;

	radeon_update_display_priority(rdev);

	for (i = 0; i < rdev->num_crtc; i++) {
		if (rdev->mode_info.crtcs[i]->base.enabled)
			num_heads++;
	}
	for (i = 0; i < rdev->num_crtc; i++) {
		mode = &rdev->mode_info.crtcs[i]->base.mode;
		lb_size = dce8_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i], mode);
		dce8_program_watermarks(rdev, rdev->mode_info.crtcs[i], lb_size, num_heads);
	}
}
6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940

/**
 * cik_get_gpu_clock_counter - return GPU clock counter snapshot
 *
 * @rdev: radeon_device pointer
 *
 * Fetches a GPU clock counter snapshot (SI).
 * Returns the 64 bit clock counter snapshot.
 */
uint64_t cik_get_gpu_clock_counter(struct radeon_device *rdev)
{
	uint64_t clock;

	mutex_lock(&rdev->gpu_clock_mutex);
	WREG32(RLC_CAPTURE_GPU_CLOCK_COUNT, 1);
	clock = (uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_LSB) |
	        ((uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_MSB) << 32ULL);
	mutex_unlock(&rdev->gpu_clock_mutex);
	return clock;
}

6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
static int cik_set_uvd_clock(struct radeon_device *rdev, u32 clock,
                              u32 cntl_reg, u32 status_reg)
{
	int r, i;
	struct atom_clock_dividers dividers;
	uint32_t tmp;

	r = radeon_atom_get_clock_dividers(rdev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
					   clock, false, &dividers);
	if (r)
		return r;

	tmp = RREG32_SMC(cntl_reg);
	tmp &= ~(DCLK_DIR_CNTL_EN|DCLK_DIVIDER_MASK);
	tmp |= dividers.post_divider;
	WREG32_SMC(cntl_reg, tmp);

	for (i = 0; i < 100; i++) {
		if (RREG32_SMC(status_reg) & DCLK_STATUS)
			break;
		mdelay(10);
	}
	if (i == 100)
		return -ETIMEDOUT;

	return 0;
}

int cik_set_uvd_clocks(struct radeon_device *rdev, u32 vclk, u32 dclk)
{
	int r = 0;

	r = cik_set_uvd_clock(rdev, vclk, CG_VCLK_CNTL, CG_VCLK_STATUS);
	if (r)
		return r;

	r = cik_set_uvd_clock(rdev, dclk, CG_DCLK_CNTL, CG_DCLK_STATUS);
	return r;
}

int cik_uvd_resume(struct radeon_device *rdev)
{
	uint64_t addr;
	uint32_t size;
	int r;

	r = radeon_uvd_resume(rdev);
	if (r)
		return r;

	/* programm the VCPU memory controller bits 0-27 */
	addr = rdev->uvd.gpu_addr >> 3;
6993
	size = RADEON_GPU_PAGE_ALIGN(rdev->uvd_fw->size + 4) >> 3;
6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016
	WREG32(UVD_VCPU_CACHE_OFFSET0, addr);
	WREG32(UVD_VCPU_CACHE_SIZE0, size);

	addr += size;
	size = RADEON_UVD_STACK_SIZE >> 3;
	WREG32(UVD_VCPU_CACHE_OFFSET1, addr);
	WREG32(UVD_VCPU_CACHE_SIZE1, size);

	addr += size;
	size = RADEON_UVD_HEAP_SIZE >> 3;
	WREG32(UVD_VCPU_CACHE_OFFSET2, addr);
	WREG32(UVD_VCPU_CACHE_SIZE2, size);

	/* bits 28-31 */
	addr = (rdev->uvd.gpu_addr >> 28) & 0xF;
	WREG32(UVD_LMI_ADDR_EXT, (addr << 12) | (addr << 0));

	/* bits 32-39 */
	addr = (rdev->uvd.gpu_addr >> 32) & 0xFF;
	WREG32(UVD_LMI_EXT40_ADDR, addr | (0x9 << 16) | (0x1 << 31));

	return 0;
}