crypto.c 63.6 KB
Newer Older
1 2 3 4 5
/**
 * eCryptfs: Linux filesystem encryption layer
 *
 * Copyright (C) 1997-2004 Erez Zadok
 * Copyright (C) 2001-2004 Stony Brook University
6
 * Copyright (C) 2004-2007 International Business Machines Corp.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 *   		Michael C. Thompson <mcthomps@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/key.h>
#include <linux/namei.h>
#include <linux/crypto.h>
#include <linux/file.h>
#include <linux/scatterlist.h>
36
#include <linux/slab.h>
37
#include <asm/unaligned.h>
38 39
#include "ecryptfs_kernel.h"

40 41
#define DECRYPT		0
#define ENCRYPT		1
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * ecryptfs_to_hex
 * @dst: Buffer to take hex character representation of contents of
 *       src; must be at least of size (src_size * 2)
 * @src: Buffer to be converted to a hex string respresentation
 * @src_size: number of bytes to convert
 */
void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
{
	int x;

	for (x = 0; x < src_size; x++)
		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
}

/**
 * ecryptfs_from_hex
 * @dst: Buffer to take the bytes from src hex; must be at least of
 *       size (src_size / 2)
 * @src: Buffer to be converted from a hex string respresentation to raw value
 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
 */
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
{
	int x;
	char tmp[3] = { 0, };

	for (x = 0; x < dst_size; x++) {
		tmp[0] = src[x * 2];
		tmp[1] = src[x * 2 + 1];
		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
	}
}

/**
 * ecryptfs_calculate_md5 - calculates the md5 of @src
 * @dst: Pointer to 16 bytes of allocated memory
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 * @src: Data to be md5'd
 * @len: Length of @src
 *
 * Uses the allocated crypto context that crypt_stat references to
 * generate the MD5 sum of the contents of src.
 */
static int ecryptfs_calculate_md5(char *dst,
				  struct ecryptfs_crypt_stat *crypt_stat,
				  char *src, int len)
{
	struct scatterlist sg;
92 93 94 95 96
	struct hash_desc desc = {
		.tfm = crypt_stat->hash_tfm,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;
97

98
	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
99
	sg_init_one(&sg, (u8 *)src, len);
100 101 102 103 104
	if (!desc.tfm) {
		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
					     CRYPTO_ALG_ASYNC);
		if (IS_ERR(desc.tfm)) {
			rc = PTR_ERR(desc.tfm);
105
			ecryptfs_printk(KERN_ERR, "Error attempting to "
106 107
					"allocate crypto context; rc = [%d]\n",
					rc);
108 109
			goto out;
		}
110
		crypt_stat->hash_tfm = desc.tfm;
111
	}
112 113 114 115
	rc = crypto_hash_init(&desc);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error initializing crypto hash; rc = [%d]\n",
116
		       __func__, rc);
117 118 119 120 121 122
		goto out;
	}
	rc = crypto_hash_update(&desc, &sg, len);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error updating crypto hash; rc = [%d]\n",
123
		       __func__, rc);
124 125 126 127 128 129
		goto out;
	}
	rc = crypto_hash_final(&desc, dst);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error finalizing crypto hash; rc = [%d]\n",
130
		       __func__, rc);
131 132
		goto out;
	}
133
out:
134
	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
135 136 137
	return rc;
}

138 139 140
static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
						  char *cipher_name,
						  char *chaining_modifier)
141 142 143 144 145 146 147 148
{
	int cipher_name_len = strlen(cipher_name);
	int chaining_modifier_len = strlen(chaining_modifier);
	int algified_name_len;
	int rc;

	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
149
	if (!(*algified_name)) {
150 151 152 153 154 155 156 157 158 159
		rc = -ENOMEM;
		goto out;
	}
	snprintf((*algified_name), algified_name_len, "%s(%s)",
		 chaining_modifier, cipher_name);
	rc = 0;
out:
	return rc;
}

160 161 162 163
/**
 * ecryptfs_derive_iv
 * @iv: destination for the derived iv vale
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
M
Michael Halcrow 已提交
164
 * @offset: Offset of the extent whose IV we are to derive
165 166 167 168 169 170
 *
 * Generate the initialization vector from the given root IV and page
 * offset.
 *
 * Returns zero on success; non-zero on error.
 */
171 172
int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
		       loff_t offset)
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];
	char src[ECRYPTFS_MAX_IV_BYTES + 16];

	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
	}
	/* TODO: It is probably secure to just cast the least
	 * significant bits of the root IV into an unsigned long and
	 * add the offset to that rather than go through all this
	 * hashing business. -Halcrow */
	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
	memset((src + crypt_stat->iv_bytes), 0, 16);
M
Michael Halcrow 已提交
188
	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "source:\n");
		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
				    (crypt_stat->iv_bytes + 16));
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating IV for a page\n");
		goto out;
	}
	memcpy(iv, dst, crypt_stat->iv_bytes);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
	}
out:
	return rc;
}

/**
 * ecryptfs_init_crypt_stat
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Initialize the crypt_stat structure.
 */
void
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
219 220
	INIT_LIST_HEAD(&crypt_stat->keysig_list);
	mutex_init(&crypt_stat->keysig_list_mutex);
221 222
	mutex_init(&crypt_stat->cs_mutex);
	mutex_init(&crypt_stat->cs_tfm_mutex);
223
	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
224
	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
225 226 227
}

/**
228
 * ecryptfs_destroy_crypt_stat
229 230 231 232
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Releases all memory associated with a crypt_stat struct.
 */
233
void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
234
{
235 236
	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;

237
	if (crypt_stat->tfm)
238
		crypto_free_ablkcipher(crypt_stat->tfm);
239 240
	if (crypt_stat->hash_tfm)
		crypto_free_hash(crypt_stat->hash_tfm);
241 242 243 244 245
	list_for_each_entry_safe(key_sig, key_sig_tmp,
				 &crypt_stat->keysig_list, crypt_stat_list) {
		list_del(&key_sig->crypt_stat_list);
		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
	}
246 247 248
	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
}

249
void ecryptfs_destroy_mount_crypt_stat(
250 251
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;

	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
		return;
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
				 &mount_crypt_stat->global_auth_tok_list,
				 mount_crypt_stat_list) {
		list_del(&auth_tok->mount_crypt_stat_list);
		if (auth_tok->global_auth_tok_key
		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
			key_put(auth_tok->global_auth_tok_key);
		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
	}
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
}

/**
 * virt_to_scatterlist
 * @addr: Virtual address
 * @size: Size of data; should be an even multiple of the block size
 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 *      the number of scatterlist structs required in array
 * @sg_size: Max array size
 *
 * Fills in a scatterlist array with page references for a passed
 * virtual address.
 *
 * Returns the number of scatterlist structs in array used
 */
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
			int sg_size)
{
	int i = 0;
	struct page *pg;
	int offset;
	int remainder_of_page;

291 292
	sg_init_table(sg, sg_size);

293 294 295
	while (size > 0 && i < sg_size) {
		pg = virt_to_page(addr);
		offset = offset_in_page(addr);
296
		sg_set_page(&sg[i], pg, 0, offset);
297 298
		remainder_of_page = PAGE_CACHE_SIZE - offset;
		if (size >= remainder_of_page) {
299
			sg[i].length = remainder_of_page;
300 301 302
			addr += remainder_of_page;
			size -= remainder_of_page;
		} else {
303
			sg[i].length = size;
304 305 306 307 308 309 310 311 312 313
			addr += size;
			size = 0;
		}
		i++;
	}
	if (size > 0)
		return -ENOMEM;
	return i;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
struct extent_crypt_result {
	struct completion completion;
	int rc;
};

static void extent_crypt_complete(struct crypto_async_request *req, int rc)
{
	struct extent_crypt_result *ecr = req->data;

	if (rc == -EINPROGRESS)
		return;

	ecr->rc = rc;
	complete(&ecr->completion);
}

330
/**
331
 * crypt_scatterlist
332
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
333
 * @dst_sg: Destination of the data after performing the crypto operation
334 335 336 337
 * @src_sg: Data to be encrypted or decrypted
 * @size: Length of data
 * @iv: IV to use
 * @op: ENCRYPT or DECRYPT to indicate the desired operation
338
 *
339
 * Returns the number of bytes encrypted or decrypted; negative value on error
340
 */
341
static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
342
			     struct scatterlist *dst_sg,
343 344
			     struct scatterlist *src_sg, int size,
			     unsigned char *iv, int op)
345
{
346 347
	struct ablkcipher_request *req = NULL;
	struct extent_crypt_result ecr;
348 349 350
	int rc = 0;

	BUG_ON(!crypt_stat || !crypt_stat->tfm
351
	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
352
	if (unlikely(ecryptfs_verbosity > 0)) {
353
		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
354 355 356 357
				crypt_stat->key_size);
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
358 359 360

	init_completion(&ecr.completion);

361
	mutex_lock(&crypt_stat->cs_tfm_mutex);
362 363
	req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
	if (!req) {
364
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
365
		rc = -ENOMEM;
366 367
		goto out;
	}
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385

	ablkcipher_request_set_callback(req,
			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
			extent_crypt_complete, &ecr);
	/* Consider doing this once, when the file is opened */
	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
		rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
					      crypt_stat->key_size);
		if (rc) {
			ecryptfs_printk(KERN_ERR,
					"Error setting key; rc = [%d]\n",
					rc);
			mutex_unlock(&crypt_stat->cs_tfm_mutex);
			rc = -EINVAL;
			goto out;
		}
		crypt_stat->flags |= ECRYPTFS_KEY_SET;
	}
386
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
387
	ablkcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
388 389
	rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) :
			     crypto_ablkcipher_decrypt(req);
390 391 392 393 394 395 396
	if (rc == -EINPROGRESS || rc == -EBUSY) {
		struct extent_crypt_result *ecr = req->base.data;

		wait_for_completion(&ecr->completion);
		rc = ecr->rc;
		INIT_COMPLETION(ecr->completion);
	}
397
out:
398
	ablkcipher_request_free(req);
399 400 401
	return rc;
}

402
/**
403
 * lower_offset_for_page
404 405 406
 *
 * Convert an eCryptfs page index into a lower byte offset
 */
407 408
static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
				    struct page *page)
409
{
410 411
	return ecryptfs_lower_header_size(crypt_stat) +
	       (page->index << PAGE_CACHE_SHIFT);
412 413 414
}

/**
415
 * crypt_extent
416 417
 * @crypt_stat: crypt_stat containing cryptographic context for the
 *              encryption operation
418
 * @dst_page: The page to write the result into
419
 * @src_page: The page to read from
420
 * @extent_offset: Page extent offset for use in generating IV
421
 * @op: ENCRYPT or DECRYPT to indicate the desired operation
422
 *
423
 * Encrypts or decrypts one extent of data.
424 425 426
 *
 * Return zero on success; non-zero otherwise
 */
427 428
static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
			struct page *dst_page,
429 430
			struct page *src_page,
			unsigned long extent_offset, int op)
431
{
432
	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
M
Michael Halcrow 已提交
433
	loff_t extent_base;
434
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
435 436
	struct scatterlist src_sg, dst_sg;
	size_t extent_size = crypt_stat->extent_size;
437 438
	int rc;

439
	extent_base = (((loff_t)page_index) * (PAGE_CACHE_SIZE / extent_size));
440 441 442
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
				(extent_base + extent_offset));
	if (rc) {
443 444 445
		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
			"extent [0x%.16llx]; rc = [%d]\n",
			(unsigned long long)(extent_base + extent_offset), rc);
446 447
		goto out;
	}
448 449 450 451 452 453 454 455 456 457 458

	sg_init_table(&src_sg, 1);
	sg_init_table(&dst_sg, 1);

	sg_set_page(&src_sg, src_page, extent_size,
		    extent_offset * extent_size);
	sg_set_page(&dst_sg, dst_page, extent_size,
		    extent_offset * extent_size);

	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
			       extent_iv, op);
459
	if (rc < 0) {
460 461 462
		printk(KERN_ERR "%s: Error attempting to crypt page with "
		       "page_index = [%ld], extent_offset = [%ld]; "
		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
463 464 465 466 467 468 469
		goto out;
	}
	rc = 0;
out:
	return rc;
}

470 471
/**
 * ecryptfs_encrypt_page
472 473 474
 * @page: Page mapped from the eCryptfs inode for the file; contains
 *        decrypted content that needs to be encrypted (to a temporary
 *        page; not in place) and written out to the lower file
475 476 477 478 479 480 481 482 483 484 485
 *
 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
486
int ecryptfs_encrypt_page(struct page *page)
487
{
488
	struct inode *ecryptfs_inode;
489
	struct ecryptfs_crypt_stat *crypt_stat;
490 491
	char *enc_extent_virt;
	struct page *enc_extent_page = NULL;
492
	loff_t extent_offset;
493
	loff_t lower_offset;
494
	int rc = 0;
495 496 497 498

	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
499
	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
500 501
	enc_extent_page = alloc_page(GFP_USER);
	if (!enc_extent_page) {
502 503 504 505 506
		rc = -ENOMEM;
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
				"encrypted extent\n");
		goto out;
	}
507

508 509 510
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
511
		rc = crypt_extent(crypt_stat, enc_extent_page, page,
512
				  extent_offset, ENCRYPT);
513
		if (rc) {
514
			printk(KERN_ERR "%s: Error encrypting extent; "
515
			       "rc = [%d]\n", __func__, rc);
516 517
			goto out;
		}
518
	}
519

520
	lower_offset = lower_offset_for_page(crypt_stat, page);
521 522 523 524
	enc_extent_virt = kmap(enc_extent_page);
	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
				  PAGE_CACHE_SIZE);
	kunmap(enc_extent_page);
525
	if (rc < 0) {
526 527 528
		ecryptfs_printk(KERN_ERR,
			"Error attempting to write lower page; rc = [%d]\n",
			rc);
529 530 531
		goto out;
	}
	rc = 0;
532
out:
533 534 535
	if (enc_extent_page) {
		__free_page(enc_extent_page);
	}
536 537 538 539 540
	return rc;
}

/**
 * ecryptfs_decrypt_page
541 542 543
 * @page: Page mapped from the eCryptfs inode for the file; data read
 *        and decrypted from the lower file will be written into this
 *        page
544 545 546 547 548 549 550 551 552 553 554
 *
 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
555
int ecryptfs_decrypt_page(struct page *page)
556
{
557
	struct inode *ecryptfs_inode;
558
	struct ecryptfs_crypt_stat *crypt_stat;
T
Tyler Hicks 已提交
559
	char *page_virt;
560
	unsigned long extent_offset;
561
	loff_t lower_offset;
562 563
	int rc = 0;

564 565 566
	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
567
	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
568

569
	lower_offset = lower_offset_for_page(crypt_stat, page);
T
Tyler Hicks 已提交
570 571
	page_virt = kmap(page);
	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE,
572
				 ecryptfs_inode);
T
Tyler Hicks 已提交
573
	kunmap(page);
574 575 576 577
	if (rc < 0) {
		ecryptfs_printk(KERN_ERR,
			"Error attempting to read lower page; rc = [%d]\n",
			rc);
578
		goto out;
579
	}
580

581 582 583
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
584
		rc = crypt_extent(crypt_stat, page, page,
585
				  extent_offset, DECRYPT);
586 587
		if (rc) {
			printk(KERN_ERR "%s: Error encrypting extent; "
588
			       "rc = [%d]\n", __func__, rc);
589
			goto out;
590 591 592 593 594 595 596 597 598 599
		}
	}
out:
	return rc;
}

#define ECRYPTFS_MAX_SCATTERLIST_LEN 4

/**
 * ecryptfs_init_crypt_ctx
600
 * @crypt_stat: Uninitialized crypt stats structure
601 602 603 604 605 606 607 608
 *
 * Initialize the crypto context.
 *
 * TODO: Performance: Keep a cache of initialized cipher contexts;
 * only init if needed
 */
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
{
609
	char *full_alg_name;
610 611 612 613
	int rc = -EINVAL;

	ecryptfs_printk(KERN_DEBUG,
			"Initializing cipher [%s]; strlen = [%d]; "
614
			"key_size_bits = [%zd]\n",
615 616
			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
			crypt_stat->key_size << 3);
617
	mutex_lock(&crypt_stat->cs_tfm_mutex);
618 619
	if (crypt_stat->tfm) {
		rc = 0;
620
		goto out_unlock;
621
	}
622 623 624
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
						    crypt_stat->cipher, "cbc");
	if (rc)
625
		goto out_unlock;
626
	crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
627 628
	if (IS_ERR(crypt_stat->tfm)) {
		rc = PTR_ERR(crypt_stat->tfm);
629
		crypt_stat->tfm = NULL;
630 631
		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
				"Error initializing cipher [%s]\n",
632 633
				full_alg_name);
		goto out_free;
634
	}
635
	crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
636
	rc = 0;
637 638
out_free:
	kfree(full_alg_name);
639 640
out_unlock:
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	return rc;
}

static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
{
	int extent_size_tmp;

	crypt_stat->extent_mask = 0xFFFFFFFF;
	crypt_stat->extent_shift = 0;
	if (crypt_stat->extent_size == 0)
		return;
	extent_size_tmp = crypt_stat->extent_size;
	while ((extent_size_tmp & 0x01) == 0) {
		extent_size_tmp >>= 1;
		crypt_stat->extent_mask <<= 1;
		crypt_stat->extent_shift++;
	}
}

void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
{
	/* Default values; may be overwritten as we are parsing the
	 * packets. */
	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
	set_extent_mask_and_shift(crypt_stat);
	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
667
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
668
		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
669 670
	else {
		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
671
			crypt_stat->metadata_size =
672
				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
673
		else
674
			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
675
	}
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
}

/**
 * ecryptfs_compute_root_iv
 * @crypt_stats
 *
 * On error, sets the root IV to all 0's.
 */
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];

	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
	BUG_ON(crypt_stat->iv_bytes <= 0);
691
	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
				"cannot generate root IV\n");
		goto out;
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
				    crypt_stat->key_size);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating root IV\n");
		goto out;
	}
	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
out:
	if (rc) {
		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
708
		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
709 710 711 712 713 714 715
	}
	return rc;
}

static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
{
	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
716
	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
717 718 719 720 721 722 723 724
	ecryptfs_compute_root_iv(crypt_stat);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
}

725 726
/**
 * ecryptfs_copy_mount_wide_flags_to_inode_flags
727 728
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
729 730 731 732 733 734 735 736 737 738 739 740
 *
 * This function propagates the mount-wide flags to individual inode
 * flags.
 */
static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
741 742 743 744 745 746 747 748 749
	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
		if (mount_crypt_stat->flags
		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
		else if (mount_crypt_stat->flags
			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
	}
750 751
}

752 753 754 755 756 757 758
static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	struct ecryptfs_global_auth_tok *global_auth_tok;
	int rc = 0;

759
	mutex_lock(&crypt_stat->keysig_list_mutex);
760
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
761

762 763 764
	list_for_each_entry(global_auth_tok,
			    &mount_crypt_stat->global_auth_tok_list,
			    mount_crypt_stat_list) {
765 766
		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
			continue;
767 768 769 770 771 772
		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
		if (rc) {
			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
			goto out;
		}
	}
773

774
out:
775 776
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
	mutex_unlock(&crypt_stat->keysig_list_mutex);
777 778 779
	return rc;
}

780 781
/**
 * ecryptfs_set_default_crypt_stat_vals
782 783
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
784 785 786 787 788 789 790
 *
 * Default values in the event that policy does not override them.
 */
static void ecryptfs_set_default_crypt_stat_vals(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
791 792
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
793 794 795
	ecryptfs_set_default_sizes(crypt_stat);
	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
796
	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
797 798 799 800 801 802
	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
	crypt_stat->mount_crypt_stat = mount_crypt_stat;
}

/**
 * ecryptfs_new_file_context
803
 * @ecryptfs_inode: The eCryptfs inode
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
 *
 * If the crypto context for the file has not yet been established,
 * this is where we do that.  Establishing a new crypto context
 * involves the following decisions:
 *  - What cipher to use?
 *  - What set of authentication tokens to use?
 * Here we just worry about getting enough information into the
 * authentication tokens so that we know that they are available.
 * We associate the available authentication tokens with the new file
 * via the set of signatures in the crypt_stat struct.  Later, when
 * the headers are actually written out, we may again defer to
 * userspace to perform the encryption of the session key; for the
 * foreseeable future, this will be the case with public key packets.
 *
 * Returns zero on success; non-zero otherwise
 */
820
int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
821 822
{
	struct ecryptfs_crypt_stat *crypt_stat =
823
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
824 825
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
	    &ecryptfs_superblock_to_private(
826
		    ecryptfs_inode->i_sb)->mount_crypt_stat;
827
	int cipher_name_len;
828
	int rc = 0;
829 830

	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
831
	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
							 mount_crypt_stat);
	if (rc) {
		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
		       "to the inode key sigs; rc = [%d]\n", rc);
		goto out;
	}
	cipher_name_len =
		strlen(mount_crypt_stat->global_default_cipher_name);
	memcpy(crypt_stat->cipher,
	       mount_crypt_stat->global_default_cipher_name,
	       cipher_name_len);
	crypt_stat->cipher[cipher_name_len] = '\0';
	crypt_stat->key_size =
		mount_crypt_stat->global_default_cipher_key_size;
	ecryptfs_generate_new_key(crypt_stat);
850 851 852 853 854
	rc = ecryptfs_init_crypt_ctx(crypt_stat);
	if (rc)
		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
				"context for cipher [%s]: rc = [%d]\n",
				crypt_stat->cipher, rc);
855
out:
856 857 858 859
	return rc;
}

/**
860
 * ecryptfs_validate_marker - check for the ecryptfs marker
861 862
 * @data: The data block in which to check
 *
863
 * Returns zero if marker found; -EINVAL if not found
864
 */
865
static int ecryptfs_validate_marker(char *data)
866 867 868
{
	u32 m_1, m_2;

869 870
	m_1 = get_unaligned_be32(data);
	m_2 = get_unaligned_be32(data + 4);
871
	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
872
		return 0;
873 874 875 876 877
	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
			MAGIC_ECRYPTFS_MARKER);
	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
878
	return -EINVAL;
879 880 881 882 883 884 885 886 887 888
}

struct ecryptfs_flag_map_elem {
	u32 file_flag;
	u32 local_flag;
};

/* Add support for additional flags by adding elements here. */
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
	{0x00000001, ECRYPTFS_ENABLE_HMAC},
889
	{0x00000002, ECRYPTFS_ENCRYPTED},
890 891
	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
892 893 894 895
};

/**
 * ecryptfs_process_flags
896
 * @crypt_stat: The cryptographic context
897 898 899 900 901 902 903 904 905 906 907 908
 * @page_virt: Source data to be parsed
 * @bytes_read: Updated with the number of bytes read
 *
 * Returns zero on success; non-zero if the flag set is invalid
 */
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
				  char *page_virt, int *bytes_read)
{
	int rc = 0;
	int i;
	u32 flags;

909
	flags = get_unaligned_be32(page_virt);
910 911 912
	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
		if (flags & ecryptfs_flag_map[i].file_flag) {
913
			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
914
		} else
915
			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
	/* Version is in top 8 bits of the 32-bit flag vector */
	crypt_stat->file_version = ((flags >> 24) & 0xFF);
	(*bytes_read) = 4;
	return rc;
}

/**
 * write_ecryptfs_marker
 * @page_virt: The pointer to in a page to begin writing the marker
 * @written: Number of bytes written
 *
 * Marker = 0x3c81b7f5
 */
static void write_ecryptfs_marker(char *page_virt, size_t *written)
{
	u32 m_1, m_2;

	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
935 936 937
	put_unaligned_be32(m_1, page_virt);
	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
	put_unaligned_be32(m_2, page_virt);
938 939 940
	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
}

941 942 943
void ecryptfs_write_crypt_stat_flags(char *page_virt,
				     struct ecryptfs_crypt_stat *crypt_stat,
				     size_t *written)
944 945 946 947 948 949
{
	u32 flags = 0;
	int i;

	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
950
		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
951 952 953
			flags |= ecryptfs_flag_map[i].file_flag;
	/* Version is in top 8 bits of the 32-bit flag vector */
	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
954
	put_unaligned_be32(flags, page_virt);
955 956 957 958 959
	(*written) = 4;
}

struct ecryptfs_cipher_code_str_map_elem {
	char cipher_str[16];
960
	u8 cipher_code;
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
};

/* Add support for additional ciphers by adding elements here. The
 * cipher_code is whatever OpenPGP applicatoins use to identify the
 * ciphers. List in order of probability. */
static struct ecryptfs_cipher_code_str_map_elem
ecryptfs_cipher_code_str_map[] = {
	{"aes",RFC2440_CIPHER_AES_128 },
	{"blowfish", RFC2440_CIPHER_BLOWFISH},
	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
	{"cast5", RFC2440_CIPHER_CAST_5},
	{"twofish", RFC2440_CIPHER_TWOFISH},
	{"cast6", RFC2440_CIPHER_CAST_6},
	{"aes", RFC2440_CIPHER_AES_192},
	{"aes", RFC2440_CIPHER_AES_256}
};

/**
 * ecryptfs_code_for_cipher_string
980 981
 * @cipher_name: The string alias for the cipher
 * @key_bytes: Length of key in bytes; used for AES code selection
982 983 984
 *
 * Returns zero on no match, or the cipher code on match
 */
985
u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
986 987
{
	int i;
988
	u8 code = 0;
989 990 991
	struct ecryptfs_cipher_code_str_map_elem *map =
		ecryptfs_cipher_code_str_map;

992 993
	if (strcmp(cipher_name, "aes") == 0) {
		switch (key_bytes) {
994 995 996 997 998 999 1000 1001 1002 1003 1004
		case 16:
			code = RFC2440_CIPHER_AES_128;
			break;
		case 24:
			code = RFC2440_CIPHER_AES_192;
			break;
		case 32:
			code = RFC2440_CIPHER_AES_256;
		}
	} else {
		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1005
			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
				code = map[i].cipher_code;
				break;
			}
	}
	return code;
}

/**
 * ecryptfs_cipher_code_to_string
 * @str: Destination to write out the cipher name
 * @cipher_code: The code to convert to cipher name string
 *
 * Returns zero on success
 */
1020
int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
{
	int rc = 0;
	int i;

	str[0] = '\0';
	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
	if (str[0] == '\0') {
		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
				"[%d]\n", cipher_code);
		rc = -EINVAL;
	}
	return rc;
}

1037
int ecryptfs_read_and_validate_header_region(struct inode *inode)
1038
{
1039 1040
	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1041 1042
	int rc;

1043 1044 1045 1046 1047 1048 1049
	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
				 inode);
	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
		return rc >= 0 ? -EINVAL : rc;
	rc = ecryptfs_validate_marker(marker);
	if (!rc)
		ecryptfs_i_size_init(file_size, inode);
1050 1051 1052
	return rc;
}

1053 1054 1055 1056
void
ecryptfs_write_header_metadata(char *virt,
			       struct ecryptfs_crypt_stat *crypt_stat,
			       size_t *written)
1057 1058 1059 1060
{
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1061
	header_extent_size = (u32)crypt_stat->extent_size;
1062
	num_header_extents_at_front =
1063
		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1064
	put_unaligned_be32(header_extent_size, virt);
1065
	virt += 4;
1066
	put_unaligned_be16(num_header_extents_at_front, virt);
1067 1068 1069
	(*written) = 6;
}

1070
struct kmem_cache *ecryptfs_header_cache;
1071 1072 1073

/**
 * ecryptfs_write_headers_virt
1074
 * @page_virt: The virtual address to write the headers to
1075
 * @max: The size of memory allocated at page_virt
1076 1077 1078
 * @size: Set to the number of bytes written by this function
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
 *
 * Format version: 1
 *
 *   Header Extent:
 *     Octets 0-7:        Unencrypted file size (big-endian)
 *     Octets 8-15:       eCryptfs special marker
 *     Octets 16-19:      Flags
 *      Octet 16:         File format version number (between 0 and 255)
 *      Octets 17-18:     Reserved
 *      Octet 19:         Bit 1 (lsb): Reserved
 *                        Bit 2: Encrypted?
 *                        Bits 3-8: Reserved
 *     Octets 20-23:      Header extent size (big-endian)
 *     Octets 24-25:      Number of header extents at front of file
 *                        (big-endian)
 *     Octet  26:         Begin RFC 2440 authentication token packet set
 *   Data Extent 0:
 *     Lower data (CBC encrypted)
 *   Data Extent 1:
 *     Lower data (CBC encrypted)
 *   ...
 *
 * Returns zero on success
 */
1103 1104
static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
				       size_t *size,
1105 1106
				       struct ecryptfs_crypt_stat *crypt_stat,
				       struct dentry *ecryptfs_dentry)
1107 1108 1109 1110 1111 1112 1113 1114
{
	int rc;
	size_t written;
	size_t offset;

	offset = ECRYPTFS_FILE_SIZE_BYTES;
	write_ecryptfs_marker((page_virt + offset), &written);
	offset += written;
1115 1116
	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
					&written);
1117
	offset += written;
1118 1119
	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
				       &written);
1120 1121 1122
	offset += written;
	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
					      ecryptfs_dentry, &written,
1123
					      max - offset);
1124 1125 1126
	if (rc)
		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
				"set; rc = [%d]\n", rc);
1127 1128 1129 1130 1131 1132 1133
	if (size) {
		offset += written;
		*size = offset;
	}
	return rc;
}

1134
static int
1135
ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1136
				    char *virt, size_t virt_len)
1137
{
1138
	int rc;
1139

1140
	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1141
				  0, virt_len);
1142
	if (rc < 0)
1143
		printk(KERN_ERR "%s: Error attempting to write header "
1144 1145 1146
		       "information to lower file; rc = [%d]\n", __func__, rc);
	else
		rc = 0;
1147
	return rc;
1148 1149
}

1150 1151 1152
static int
ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
				 char *page_virt, size_t size)
1153 1154 1155 1156 1157
{
	int rc;

	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
			       size, 0);
1158 1159 1160
	return rc;
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
					       unsigned int order)
{
	struct page *page;

	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
	if (page)
		return (unsigned long) page_address(page);
	return 0;
}

1172
/**
1173
 * ecryptfs_write_metadata
1174 1175
 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
 * @ecryptfs_inode: The newly created eCryptfs inode
1176 1177 1178 1179 1180 1181 1182 1183 1184
 *
 * Write the file headers out.  This will likely involve a userspace
 * callout, in which the session key is encrypted with one or more
 * public keys and/or the passphrase necessary to do the encryption is
 * retrieved via a prompt.  Exactly what happens at this point should
 * be policy-dependent.
 *
 * Returns zero on success; non-zero on error
 */
1185 1186
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
			    struct inode *ecryptfs_inode)
1187
{
1188
	struct ecryptfs_crypt_stat *crypt_stat =
1189
		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1190
	unsigned int order;
1191
	char *virt;
1192
	size_t virt_len;
1193
	size_t size = 0;
1194 1195
	int rc = 0;

1196 1197
	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1198
			printk(KERN_ERR "Key is invalid; bailing out\n");
1199 1200 1201 1202
			rc = -EINVAL;
			goto out;
		}
	} else {
1203
		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1204
		       __func__);
1205 1206 1207
		rc = -EINVAL;
		goto out;
	}
1208
	virt_len = crypt_stat->metadata_size;
1209
	order = get_order(virt_len);
1210
	/* Released in this function */
1211
	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1212
	if (!virt) {
1213
		printk(KERN_ERR "%s: Out of memory\n", __func__);
1214 1215 1216
		rc = -ENOMEM;
		goto out;
	}
1217
	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1218 1219
	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
					 ecryptfs_dentry);
1220
	if (unlikely(rc)) {
1221
		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1222
		       __func__, rc);
1223 1224
		goto out_free;
	}
1225
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1226 1227
		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
						      size);
1228
	else
1229
		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1230
							 virt_len);
1231
	if (rc) {
1232
		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1233
		       "rc = [%d]\n", __func__, rc);
1234
		goto out_free;
1235 1236
	}
out_free:
1237
	free_pages((unsigned long)virt, order);
1238 1239 1240 1241
out:
	return rc;
}

1242 1243
#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1244
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1245 1246
				 char *virt, int *bytes_read,
				 int validate_header_size)
1247 1248 1249 1250 1251
{
	int rc = 0;
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1252 1253 1254
	header_extent_size = get_unaligned_be32(virt);
	virt += sizeof(__be32);
	num_header_extents_at_front = get_unaligned_be16(virt);
1255 1256
	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
				     * (size_t)header_extent_size));
1257
	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1258
	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1259
	    && (crypt_stat->metadata_size
1260
		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1261
		rc = -EINVAL;
1262
		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1263
		       crypt_stat->metadata_size);
1264 1265 1266 1267 1268 1269
	}
	return rc;
}

/**
 * set_default_header_data
1270
 * @crypt_stat: The cryptographic context
1271 1272 1273 1274 1275 1276 1277
 *
 * For version 0 file format; this function is only for backwards
 * compatibility for files created with the prior versions of
 * eCryptfs.
 */
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
{
1278
	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1279 1280
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
{
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
	struct ecryptfs_crypt_stat *crypt_stat;
	u64 file_size;

	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
	mount_crypt_stat =
		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
			file_size += crypt_stat->metadata_size;
	} else
		file_size = get_unaligned_be64(page_virt);
	i_size_write(inode, (loff_t)file_size);
	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
}

1300 1301
/**
 * ecryptfs_read_headers_virt
1302 1303 1304 1305
 * @page_virt: The virtual address into which to read the headers
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
 * @validate_header_size: Whether to validate the header size while reading
1306 1307 1308 1309 1310 1311 1312 1313
 *
 * Read/parse the header data. The header format is detailed in the
 * comment block for the ecryptfs_write_headers_virt() function.
 *
 * Returns zero on success
 */
static int ecryptfs_read_headers_virt(char *page_virt,
				      struct ecryptfs_crypt_stat *crypt_stat,
1314 1315
				      struct dentry *ecryptfs_dentry,
				      int validate_header_size)
1316 1317 1318 1319 1320 1321 1322 1323 1324
{
	int rc = 0;
	int offset;
	int bytes_read;

	ecryptfs_set_default_sizes(crypt_stat);
	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
		ecryptfs_dentry->d_sb)->mount_crypt_stat;
	offset = ECRYPTFS_FILE_SIZE_BYTES;
1325 1326
	rc = ecryptfs_validate_marker(page_virt + offset);
	if (rc)
1327
		goto out;
1328 1329
	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
		ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
				    &bytes_read);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
		goto out;
	}
	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
				"file version [%d] is supported by this "
				"version of eCryptfs\n",
				crypt_stat->file_version,
				ECRYPTFS_SUPPORTED_FILE_VERSION);
		rc = -EINVAL;
		goto out;
	}
	offset += bytes_read;
	if (crypt_stat->file_version >= 1) {
		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1349
					   &bytes_read, validate_header_size);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
		if (rc) {
			ecryptfs_printk(KERN_WARNING, "Error reading header "
					"metadata; rc = [%d]\n", rc);
		}
		offset += bytes_read;
	} else
		set_default_header_data(crypt_stat);
	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
				       ecryptfs_dentry);
out:
	return rc;
}

/**
1364
 * ecryptfs_read_xattr_region
1365
 * @page_virt: The vitual address into which to read the xattr data
1366
 * @ecryptfs_inode: The eCryptfs inode
1367 1368 1369
 *
 * Attempts to read the crypto metadata from the extended attribute
 * region of the lower file.
1370 1371
 *
 * Returns zero on success; non-zero on error
1372
 */
1373
int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1374
{
1375 1376
	struct dentry *lower_dentry =
		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1377 1378 1379
	ssize_t size;
	int rc = 0;

1380 1381
	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1382
	if (size < 0) {
1383 1384 1385 1386
		if (unlikely(ecryptfs_verbosity > 0))
			printk(KERN_INFO "Error attempting to read the [%s] "
			       "xattr from the lower file; return value = "
			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1387 1388 1389 1390 1391 1392 1393
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}

1394
int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1395
					    struct inode *inode)
1396
{
1397 1398
	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1399 1400
	int rc;

1401 1402 1403 1404 1405 1406 1407 1408
	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
				     ECRYPTFS_XATTR_NAME, file_size,
				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
		return rc >= 0 ? -EINVAL : rc;
	rc = ecryptfs_validate_marker(marker);
	if (!rc)
		ecryptfs_i_size_init(file_size, inode);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	return rc;
}

/**
 * ecryptfs_read_metadata
 *
 * Common entry point for reading file metadata. From here, we could
 * retrieve the header information from the header region of the file,
 * the xattr region of the file, or some other repostory that is
 * stored separately from the file itself. The current implementation
 * supports retrieving the metadata information from the file contents
 * and from the xattr region.
1421 1422 1423
 *
 * Returns zero if valid headers found and parsed; non-zero otherwise
 */
1424
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1425
{
1426 1427
	int rc;
	char *page_virt;
1428
	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1429
	struct ecryptfs_crypt_stat *crypt_stat =
1430
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1431 1432 1433
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1434

1435 1436
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
1437
	/* Read the first page from the underlying file */
1438
	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1439 1440
	if (!page_virt) {
		rc = -ENOMEM;
1441
		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1442
		       __func__);
1443 1444
		goto out;
	}
1445 1446
	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
				 ecryptfs_inode);
1447
	if (rc >= 0)
1448 1449 1450
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_VALIDATE_HEADER_SIZE);
1451
	if (rc) {
1452
		/* metadata is not in the file header, so try xattrs */
1453
		memset(page_virt, 0, PAGE_CACHE_SIZE);
1454
		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1455 1456
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1457 1458
			       "file header region or xattr region, inode %lu\n",
				ecryptfs_inode->i_ino);
1459 1460 1461 1462 1463 1464 1465 1466
			rc = -EINVAL;
			goto out;
		}
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1467 1468
			       "file xattr region either, inode %lu\n",
				ecryptfs_inode->i_ino);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
			rc = -EINVAL;
		}
		if (crypt_stat->mount_crypt_stat->flags
		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
		} else {
			printk(KERN_WARNING "Attempt to access file with "
			       "crypto metadata only in the extended attribute "
			       "region, but eCryptfs was mounted without "
			       "xattr support enabled. eCryptfs will not treat "
1479 1480
			       "this like an encrypted file, inode %lu\n",
				ecryptfs_inode->i_ino);
1481 1482
			rc = -EINVAL;
		}
1483 1484 1485 1486
	}
out:
	if (page_virt) {
		memset(page_virt, 0, PAGE_CACHE_SIZE);
1487
		kmem_cache_free(ecryptfs_header_cache, page_virt);
1488 1489 1490 1491
	}
	return rc;
}

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
/**
 * ecryptfs_encrypt_filename - encrypt filename
 *
 * CBC-encrypts the filename. We do not want to encrypt the same
 * filename with the same key and IV, which may happen with hard
 * links, so we prepend random bits to each filename.
 *
 * Returns zero on success; non-zero otherwise
 */
static int
ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
			  struct ecryptfs_crypt_stat *crypt_stat,
			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	int rc = 0;

	filename->encrypted_filename = NULL;
	filename->encrypted_filename_size = 0;
	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
	    || (mount_crypt_stat && (mount_crypt_stat->flags
				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
		size_t packet_size;
		size_t remaining_bytes;

		rc = ecryptfs_write_tag_70_packet(
			NULL, NULL,
			&filename->encrypted_filename_size,
			mount_crypt_stat, NULL,
			filename->filename_size);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to get packet "
			       "size for tag 72; rc = [%d]\n", __func__,
			       rc);
			filename->encrypted_filename_size = 0;
			goto out;
		}
		filename->encrypted_filename =
			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
		if (!filename->encrypted_filename) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
M
Michael Halcrow 已提交
1532
			       "to kmalloc [%zd] bytes\n", __func__,
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
			       filename->encrypted_filename_size);
			rc = -ENOMEM;
			goto out;
		}
		remaining_bytes = filename->encrypted_filename_size;
		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
						  &remaining_bytes,
						  &packet_size,
						  mount_crypt_stat,
						  filename->filename,
						  filename->filename_size);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to generate "
			       "tag 70 packet; rc = [%d]\n", __func__,
			       rc);
			kfree(filename->encrypted_filename);
			filename->encrypted_filename = NULL;
			filename->encrypted_filename_size = 0;
			goto out;
		}
		filename->encrypted_filename_size = packet_size;
	} else {
		printk(KERN_ERR "%s: No support for requested filename "
		       "encryption method in this release\n", __func__);
1557
		rc = -EOPNOTSUPP;
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
		goto out;
	}
out:
	return rc;
}

static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
				  const char *name, size_t name_size)
{
	int rc = 0;

1569
	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1570 1571 1572 1573 1574 1575 1576 1577 1578
	if (!(*copied_name)) {
		rc = -ENOMEM;
		goto out;
	}
	memcpy((void *)(*copied_name), (void *)name, name_size);
	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
						 * in printing out the
						 * string in debug
						 * messages */
1579
	(*copied_name_size) = name_size;
1580 1581 1582 1583
out:
	return rc;
}

1584
/**
1585
 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1586
 * @key_tfm: Crypto context for key material, set by this function
1587 1588
 * @cipher_name: Name of the cipher
 * @key_size: Size of the key in bytes
1589 1590 1591 1592 1593
 *
 * Returns zero on success. Any crypto_tfm structs allocated here
 * should be released by other functions, such as on a superblock put
 * event, regardless of whether this function succeeds for fails.
 */
1594
static int
1595 1596
ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
			    char *cipher_name, size_t *key_size)
1597 1598
{
	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
D
Dan Carpenter 已提交
1599
	char *full_alg_name = NULL;
1600 1601
	int rc;

1602 1603
	*key_tfm = NULL;
	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1604
		rc = -EINVAL;
M
Michael Halcrow 已提交
1605
		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1606
		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1607 1608
		goto out;
	}
1609 1610 1611 1612 1613 1614 1615
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
						    "ecb");
	if (rc)
		goto out;
	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
	if (IS_ERR(*key_tfm)) {
		rc = PTR_ERR(*key_tfm);
1616
		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1617
		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1618 1619
		goto out;
	}
1620 1621 1622 1623 1624 1625
	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
	if (*key_size == 0) {
		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);

		*key_size = alg->max_keysize;
	}
1626
	get_random_bytes(dummy_key, *key_size);
1627
	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1628
	if (rc) {
M
Michael Halcrow 已提交
1629
		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1630 1631
		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
		       rc);
1632 1633 1634 1635
		rc = -EINVAL;
		goto out;
	}
out:
D
Dan Carpenter 已提交
1636
	kfree(full_alg_name);
1637 1638
	return rc;
}
1639 1640

struct kmem_cache *ecryptfs_key_tfm_cache;
A
Adrian Bunk 已提交
1641
static struct list_head key_tfm_list;
1642
struct mutex key_tfm_list_mutex;
1643

1644
int __init ecryptfs_init_crypto(void)
1645 1646 1647 1648 1649 1650
{
	mutex_init(&key_tfm_list_mutex);
	INIT_LIST_HEAD(&key_tfm_list);
	return 0;
}

1651 1652 1653 1654 1655
/**
 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
 *
 * Called only at module unload time
 */
1656
int ecryptfs_destroy_crypto(void)
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
{
	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;

	mutex_lock(&key_tfm_list_mutex);
	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
				 key_tfm_list) {
		list_del(&key_tfm->key_tfm_list);
		if (key_tfm->key_tfm)
			crypto_free_blkcipher(key_tfm->key_tfm);
		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
	}
	mutex_unlock(&key_tfm_list_mutex);
	return 0;
}

int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
			 size_t key_size)
{
	struct ecryptfs_key_tfm *tmp_tfm;
	int rc = 0;

1679 1680
	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
	if (key_tfm != NULL)
		(*key_tfm) = tmp_tfm;
	if (!tmp_tfm) {
		rc = -ENOMEM;
		printk(KERN_ERR "Error attempting to allocate from "
		       "ecryptfs_key_tfm_cache\n");
		goto out;
	}
	mutex_init(&tmp_tfm->key_tfm_mutex);
	strncpy(tmp_tfm->cipher_name, cipher_name,
		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1693
	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1694
	tmp_tfm->key_size = key_size;
1695 1696 1697 1698
	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
					 tmp_tfm->cipher_name,
					 &tmp_tfm->key_size);
	if (rc) {
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
		printk(KERN_ERR "Error attempting to initialize key TFM "
		       "cipher with name = [%s]; rc = [%d]\n",
		       tmp_tfm->cipher_name, rc);
		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
		if (key_tfm != NULL)
			(*key_tfm) = NULL;
		goto out;
	}
	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
out:
	return rc;
}

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
/**
 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
 * @cipher_name: the name of the cipher to search for
 * @key_tfm: set to corresponding tfm if found
 *
 * Searches for cached key_tfm matching @cipher_name
 * Must be called with &key_tfm_list_mutex held
 * Returns 1 if found, with @key_tfm set
 * Returns 0 if not found, with @key_tfm set to NULL
 */
int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
{
	struct ecryptfs_key_tfm *tmp_key_tfm;

	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
			if (key_tfm)
				(*key_tfm) = tmp_key_tfm;
			return 1;
		}
	}
	if (key_tfm)
		(*key_tfm) = NULL;
	return 0;
}

/**
 * ecryptfs_get_tfm_and_mutex_for_cipher_name
 *
 * @tfm: set to cached tfm found, or new tfm created
 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
 * @cipher_name: the name of the cipher to search for and/or add
 *
 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
 * Searches for cached item first, and creates new if not found.
 * Returns 0 on success, non-zero if adding new cipher failed
 */
1751 1752 1753 1754 1755 1756 1757 1758 1759
int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
					       struct mutex **tfm_mutex,
					       char *cipher_name)
{
	struct ecryptfs_key_tfm *key_tfm;
	int rc = 0;

	(*tfm) = NULL;
	(*tfm_mutex) = NULL;
1760

1761
	mutex_lock(&key_tfm_list_mutex);
1762 1763 1764 1765 1766
	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
		if (rc) {
			printk(KERN_ERR "Error adding new key_tfm to list; "
					"rc = [%d]\n", rc);
1767 1768 1769 1770 1771 1772
			goto out;
		}
	}
	(*tfm) = key_tfm->key_tfm;
	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
out:
1773
	mutex_unlock(&key_tfm_list_mutex);
1774 1775
	return rc;
}
1776 1777 1778 1779 1780 1781 1782 1783 1784

/* 64 characters forming a 6-bit target field */
static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
						 "EFGHIJKLMNOPQRST"
						 "UVWXYZabcdefghij"
						 "klmnopqrstuvwxyz");

/* We could either offset on every reverse map or just pad some 0x00's
 * at the front here */
1785
static const unsigned char filename_rev_map[256] = {
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1801
	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1802 1803 1804 1805 1806 1807 1808 1809 1810
};

/**
 * ecryptfs_encode_for_filename
 * @dst: Destination location for encoded filename
 * @dst_size: Size of the encoded filename in bytes
 * @src: Source location for the filename to encode
 * @src_size: Size of the source in bytes
 */
1811
static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
				  unsigned char *src, size_t src_size)
{
	size_t num_blocks;
	size_t block_num = 0;
	size_t dst_offset = 0;
	unsigned char last_block[3];

	if (src_size == 0) {
		(*dst_size) = 0;
		goto out;
	}
	num_blocks = (src_size / 3);
	if ((src_size % 3) == 0) {
		memcpy(last_block, (&src[src_size - 3]), 3);
	} else {
		num_blocks++;
		last_block[2] = 0x00;
		switch (src_size % 3) {
		case 1:
			last_block[0] = src[src_size - 1];
			last_block[1] = 0x00;
			break;
		case 2:
			last_block[0] = src[src_size - 2];
			last_block[1] = src[src_size - 1];
		}
	}
	(*dst_size) = (num_blocks * 4);
	if (!dst)
		goto out;
	while (block_num < num_blocks) {
		unsigned char *src_block;
		unsigned char dst_block[4];

		if (block_num == (num_blocks - 1))
			src_block = last_block;
		else
			src_block = &src[block_num * 3];
		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
		dst_block[1] = (((src_block[0] << 4) & 0x30)
				| ((src_block[1] >> 4) & 0x0F));
		dst_block[2] = (((src_block[1] << 2) & 0x3C)
				| ((src_block[2] >> 6) & 0x03));
		dst_block[3] = (src_block[2] & 0x3F);
		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
		block_num++;
	}
out:
	return;
}

T
Tyler Hicks 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
static size_t ecryptfs_max_decoded_size(size_t encoded_size)
{
	/* Not exact; conservatively long. Every block of 4
	 * encoded characters decodes into a block of 3
	 * decoded characters. This segment of code provides
	 * the caller with the maximum amount of allocated
	 * space that @dst will need to point to in a
	 * subsequent call. */
	return ((encoded_size + 1) * 3) / 4;
}

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
/**
 * ecryptfs_decode_from_filename
 * @dst: If NULL, this function only sets @dst_size and returns. If
 *       non-NULL, this function decodes the encoded octets in @src
 *       into the memory that @dst points to.
 * @dst_size: Set to the size of the decoded string.
 * @src: The encoded set of octets to decode.
 * @src_size: The size of the encoded set of octets to decode.
 */
static void
ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
			      const unsigned char *src, size_t src_size)
1889 1890 1891 1892 1893 1894
{
	u8 current_bit_offset = 0;
	size_t src_byte_offset = 0;
	size_t dst_byte_offset = 0;

	if (dst == NULL) {
T
Tyler Hicks 已提交
1895
		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		goto out;
	}
	while (src_byte_offset < src_size) {
		unsigned char src_byte =
				filename_rev_map[(int)src[src_byte_offset]];

		switch (current_bit_offset) {
		case 0:
			dst[dst_byte_offset] = (src_byte << 2);
			current_bit_offset = 6;
			break;
		case 6:
			dst[dst_byte_offset++] |= (src_byte >> 4);
			dst[dst_byte_offset] = ((src_byte & 0xF)
						 << 4);
			current_bit_offset = 4;
			break;
		case 4:
			dst[dst_byte_offset++] |= (src_byte >> 2);
			dst[dst_byte_offset] = (src_byte << 6);
			current_bit_offset = 2;
			break;
		case 2:
			dst[dst_byte_offset++] |= (src_byte);
			dst[dst_byte_offset] = 0;
			current_bit_offset = 0;
			break;
		}
		src_byte_offset++;
	}
	(*dst_size) = dst_byte_offset;
out:
1928
	return;
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
}

/**
 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
 * @name: The plaintext name
 * @length: The length of the plaintext
 * @encoded_name: The encypted name
 *
 * Encrypts and encodes a filename into something that constitutes a
 * valid filename for a filesystem, with printable characters.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * Returns zero on success; non-zero on otherwise
 */
int ecryptfs_encrypt_and_encode_filename(
	char **encoded_name,
	size_t *encoded_name_size,
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
	const char *name, size_t name_size)
{
	size_t encoded_name_no_prefix_size;
	int rc = 0;

	(*encoded_name) = NULL;
	(*encoded_name_size) = 0;
	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
	    || (mount_crypt_stat && (mount_crypt_stat->flags
				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
		struct ecryptfs_filename *filename;

		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
		if (!filename) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
1966
			       "to kzalloc [%zd] bytes\n", __func__,
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
			       sizeof(*filename));
			rc = -ENOMEM;
			goto out;
		}
		filename->filename = (char *)name;
		filename->filename_size = name_size;
		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
					       mount_crypt_stat);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to encrypt "
			       "filename; rc = [%d]\n", __func__, rc);
			kfree(filename);
			goto out;
		}
		ecryptfs_encode_for_filename(
			NULL, &encoded_name_no_prefix_size,
			filename->encrypted_filename,
			filename->encrypted_filename_size);
		if ((crypt_stat && (crypt_stat->flags
				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
		    || (mount_crypt_stat
			&& (mount_crypt_stat->flags
			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
			(*encoded_name_size) =
				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
		else
			(*encoded_name_size) =
				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
		if (!(*encoded_name)) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
2000
			       "to kzalloc [%zd] bytes\n", __func__,
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
			       (*encoded_name_size));
			rc = -ENOMEM;
			kfree(filename->encrypted_filename);
			kfree(filename);
			goto out;
		}
		if ((crypt_stat && (crypt_stat->flags
				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
		    || (mount_crypt_stat
			&& (mount_crypt_stat->flags
			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
			memcpy((*encoded_name),
			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
			ecryptfs_encode_for_filename(
			    ((*encoded_name)
			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
			    &encoded_name_no_prefix_size,
			    filename->encrypted_filename,
			    filename->encrypted_filename_size);
			(*encoded_name_size) =
				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
			(*encoded_name)[(*encoded_name_size)] = '\0';
		} else {
2026
			rc = -EOPNOTSUPP;
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
		}
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to encode "
			       "encrypted filename; rc = [%d]\n", __func__,
			       rc);
			kfree((*encoded_name));
			(*encoded_name) = NULL;
			(*encoded_name_size) = 0;
		}
		kfree(filename->encrypted_filename);
		kfree(filename);
	} else {
		rc = ecryptfs_copy_filename(encoded_name,
					    encoded_name_size,
					    name, name_size);
	}
out:
	return rc;
}

/**
 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
 * @plaintext_name: The plaintext name
 * @plaintext_name_size: The plaintext name size
 * @ecryptfs_dir_dentry: eCryptfs directory dentry
 * @name: The filename in cipher text
 * @name_size: The cipher text name size
 *
 * Decrypts and decodes the filename.
 *
 * Returns zero on error; non-zero otherwise
 */
int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
					 size_t *plaintext_name_size,
2061
					 struct super_block *sb,
2062 2063
					 const char *name, size_t name_size)
{
2064
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2065
		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2066 2067 2068 2069 2070
	char *decoded_name;
	size_t decoded_name_size;
	size_t packet_size;
	int rc = 0;

2071 2072 2073
	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2074 2075 2076 2077 2078 2079 2080
	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
		const char *orig_name = name;
		size_t orig_name_size = name_size;

		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2081 2082
		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
					      name, name_size);
2083 2084 2085
		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
		if (!decoded_name) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
M
Michael Halcrow 已提交
2086
			       "to kmalloc [%zd] bytes\n", __func__,
2087 2088 2089 2090
			       decoded_name_size);
			rc = -ENOMEM;
			goto out;
		}
2091 2092
		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
					      name, name_size);
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
						  plaintext_name_size,
						  &packet_size,
						  mount_crypt_stat,
						  decoded_name,
						  decoded_name_size);
		if (rc) {
			printk(KERN_INFO "%s: Could not parse tag 70 packet "
			       "from filename; copying through filename "
			       "as-is\n", __func__);
			rc = ecryptfs_copy_filename(plaintext_name,
						    plaintext_name_size,
						    orig_name, orig_name_size);
			goto out_free;
		}
	} else {
		rc = ecryptfs_copy_filename(plaintext_name,
					    plaintext_name_size,
					    name, name_size);
		goto out;
	}
out_free:
	kfree(decoded_name);
out:
	return rc;
}
T
Tyler Hicks 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167

#define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143

int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	struct blkcipher_desc desc;
	struct mutex *tfm_mutex;
	size_t cipher_blocksize;
	int rc;

	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
		(*namelen) = lower_namelen;
		return 0;
	}

	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
			mount_crypt_stat->global_default_fn_cipher_name);
	if (unlikely(rc)) {
		(*namelen) = 0;
		return rc;
	}

	mutex_lock(tfm_mutex);
	cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
	mutex_unlock(tfm_mutex);

	/* Return an exact amount for the common cases */
	if (lower_namelen == NAME_MAX
	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
		return 0;
	}

	/* Return a safe estimate for the uncommon cases */
	(*namelen) = lower_namelen;
	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
	/* Since this is the max decoded size, subtract 1 "decoded block" len */
	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
	/* Worst case is that the filename is padded nearly a full block size */
	(*namelen) -= cipher_blocksize - 1;

	if ((*namelen) < 0)
		(*namelen) = 0;

	return 0;
}