crypto.c 55.8 KB
Newer Older
1 2 3 4 5
/**
 * eCryptfs: Linux filesystem encryption layer
 *
 * Copyright (C) 1997-2004 Erez Zadok
 * Copyright (C) 2001-2004 Stony Brook University
6
 * Copyright (C) 2004-2007 International Business Machines Corp.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 *   		Michael C. Thompson <mcthomps@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/key.h>
#include <linux/namei.h>
#include <linux/crypto.h>
#include <linux/file.h>
#include <linux/scatterlist.h>
#include "ecryptfs_kernel.h"

static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);

/**
 * ecryptfs_to_hex
 * @dst: Buffer to take hex character representation of contents of
 *       src; must be at least of size (src_size * 2)
 * @src: Buffer to be converted to a hex string respresentation
 * @src_size: number of bytes to convert
 */
void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
{
	int x;

	for (x = 0; x < src_size; x++)
		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
}

/**
 * ecryptfs_from_hex
 * @dst: Buffer to take the bytes from src hex; must be at least of
 *       size (src_size / 2)
 * @src: Buffer to be converted from a hex string respresentation to raw value
 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
 */
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
{
	int x;
	char tmp[3] = { 0, };

	for (x = 0; x < dst_size; x++) {
		tmp[0] = src[x * 2];
		tmp[1] = src[x * 2 + 1];
		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
	}
}

/**
 * ecryptfs_calculate_md5 - calculates the md5 of @src
 * @dst: Pointer to 16 bytes of allocated memory
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 * @src: Data to be md5'd
 * @len: Length of @src
 *
 * Uses the allocated crypto context that crypt_stat references to
 * generate the MD5 sum of the contents of src.
 */
static int ecryptfs_calculate_md5(char *dst,
				  struct ecryptfs_crypt_stat *crypt_stat,
				  char *src, int len)
{
	struct scatterlist sg;
98 99 100 101 102
	struct hash_desc desc = {
		.tfm = crypt_stat->hash_tfm,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;
103

104
	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
105
	sg_init_one(&sg, (u8 *)src, len);
106 107 108 109 110
	if (!desc.tfm) {
		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
					     CRYPTO_ALG_ASYNC);
		if (IS_ERR(desc.tfm)) {
			rc = PTR_ERR(desc.tfm);
111
			ecryptfs_printk(KERN_ERR, "Error attempting to "
112 113
					"allocate crypto context; rc = [%d]\n",
					rc);
114 115
			goto out;
		}
116
		crypt_stat->hash_tfm = desc.tfm;
117
	}
118 119 120 121
	crypto_hash_init(&desc);
	crypto_hash_update(&desc, &sg, len);
	crypto_hash_final(&desc, dst);
	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
122 123 124 125
out:
	return rc;
}

126 127 128
static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
						  char *cipher_name,
						  char *chaining_modifier)
129 130 131 132 133 134 135 136
{
	int cipher_name_len = strlen(cipher_name);
	int chaining_modifier_len = strlen(chaining_modifier);
	int algified_name_len;
	int rc;

	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
137
	if (!(*algified_name)) {
138 139 140 141 142 143 144 145 146 147
		rc = -ENOMEM;
		goto out;
	}
	snprintf((*algified_name), algified_name_len, "%s(%s)",
		 chaining_modifier, cipher_name);
	rc = 0;
out:
	return rc;
}

148 149 150 151
/**
 * ecryptfs_derive_iv
 * @iv: destination for the derived iv vale
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
M
Michael Halcrow 已提交
152
 * @offset: Offset of the extent whose IV we are to derive
153 154 155 156 157 158 159
 *
 * Generate the initialization vector from the given root IV and page
 * offset.
 *
 * Returns zero on success; non-zero on error.
 */
static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
M
Michael Halcrow 已提交
160
			      loff_t offset)
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];
	char src[ECRYPTFS_MAX_IV_BYTES + 16];

	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
	}
	/* TODO: It is probably secure to just cast the least
	 * significant bits of the root IV into an unsigned long and
	 * add the offset to that rather than go through all this
	 * hashing business. -Halcrow */
	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
	memset((src + crypt_stat->iv_bytes), 0, 16);
M
Michael Halcrow 已提交
176
	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "source:\n");
		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
				    (crypt_stat->iv_bytes + 16));
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating IV for a page\n");
		goto out;
	}
	memcpy(iv, dst, crypt_stat->iv_bytes);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
	}
out:
	return rc;
}

/**
 * ecryptfs_init_crypt_stat
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Initialize the crypt_stat structure.
 */
void
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
207 208
	INIT_LIST_HEAD(&crypt_stat->keysig_list);
	mutex_init(&crypt_stat->keysig_list_mutex);
209 210
	mutex_init(&crypt_stat->cs_mutex);
	mutex_init(&crypt_stat->cs_tfm_mutex);
211
	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
212
	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
213 214 215
}

/**
216
 * ecryptfs_destroy_crypt_stat
217 218 219 220
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Releases all memory associated with a crypt_stat struct.
 */
221
void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
222
{
223 224
	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;

225
	if (crypt_stat->tfm)
226
		crypto_free_blkcipher(crypt_stat->tfm);
227 228
	if (crypt_stat->hash_tfm)
		crypto_free_hash(crypt_stat->hash_tfm);
229 230 231 232 233 234 235
	mutex_lock(&crypt_stat->keysig_list_mutex);
	list_for_each_entry_safe(key_sig, key_sig_tmp,
				 &crypt_stat->keysig_list, crypt_stat_list) {
		list_del(&key_sig->crypt_stat_list);
		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
	}
	mutex_unlock(&crypt_stat->keysig_list_mutex);
236 237 238
	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
}

239
void ecryptfs_destroy_mount_crypt_stat(
240 241
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;

	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
		return;
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
				 &mount_crypt_stat->global_auth_tok_list,
				 mount_crypt_stat_list) {
		list_del(&auth_tok->mount_crypt_stat_list);
		mount_crypt_stat->num_global_auth_toks--;
		if (auth_tok->global_auth_tok_key
		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
			key_put(auth_tok->global_auth_tok_key);
		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
	}
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
}

/**
 * virt_to_scatterlist
 * @addr: Virtual address
 * @size: Size of data; should be an even multiple of the block size
 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 *      the number of scatterlist structs required in array
 * @sg_size: Max array size
 *
 * Fills in a scatterlist array with page references for a passed
 * virtual address.
 *
 * Returns the number of scatterlist structs in array used
 */
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
			int sg_size)
{
	int i = 0;
	struct page *pg;
	int offset;
	int remainder_of_page;

	while (size > 0 && i < sg_size) {
		pg = virt_to_page(addr);
		offset = offset_in_page(addr);
285 286
		if (sg)
			sg_set_page(&sg[i], pg, 0, offset);
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
		remainder_of_page = PAGE_CACHE_SIZE - offset;
		if (size >= remainder_of_page) {
			if (sg)
				sg[i].length = remainder_of_page;
			addr += remainder_of_page;
			size -= remainder_of_page;
		} else {
			if (sg)
				sg[i].length = size;
			addr += size;
			size = 0;
		}
		i++;
	}
	if (size > 0)
		return -ENOMEM;
	return i;
}

/**
 * encrypt_scatterlist
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 * @dest_sg: Destination of encrypted data
 * @src_sg: Data to be encrypted
 * @size: Length of data to be encrypted
 * @iv: iv to use during encryption
 *
 * Returns the number of bytes encrypted; negative value on error
 */
static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
321 322 323 324 325
	struct blkcipher_desc desc = {
		.tfm = crypt_stat->tfm,
		.info = iv,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
326 327 328
	int rc = 0;

	BUG_ON(!crypt_stat || !crypt_stat->tfm
329
	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
330 331 332 333 334 335 336 337
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
				crypt_stat->key_size);
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
	/* Consider doing this once, when the file is opened */
	mutex_lock(&crypt_stat->cs_tfm_mutex);
338 339
	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
				     crypt_stat->key_size);
340 341 342 343 344 345 346 347
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
				rc);
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
		rc = -EINVAL;
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
348
	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
349 350 351 352 353
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
out:
	return rc;
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
/**
 * ecryptfs_lower_offset_for_extent
 *
 * Convert an eCryptfs page index into a lower byte offset
 */
void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
				      struct ecryptfs_crypt_stat *crypt_stat)
{
	(*offset) = ((crypt_stat->extent_size
		      * crypt_stat->num_header_extents_at_front)
		     + (crypt_stat->extent_size * extent_num));
}

/**
 * ecryptfs_encrypt_extent
 * @enc_extent_page: Allocated page into which to encrypt the data in
 *                   @page
 * @crypt_stat: crypt_stat containing cryptographic context for the
 *              encryption operation
 * @page: Page containing plaintext data extent to encrypt
 * @extent_offset: Page extent offset for use in generating IV
 *
 * Encrypts one extent of data.
 *
 * Return zero on success; non-zero otherwise
 */
static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
				   struct ecryptfs_crypt_stat *crypt_stat,
				   struct page *page,
				   unsigned long extent_offset)
{
M
Michael Halcrow 已提交
385
	loff_t extent_base;
386 387 388
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	int rc;

M
Michael Halcrow 已提交
389
	extent_base = (((loff_t)page->index)
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
				(extent_base + extent_offset));
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error attempting to "
				"derive IV for extent [0x%.16x]; "
				"rc = [%d]\n", (extent_base + extent_offset),
				rc);
		goto out;
	}
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
				"with iv:\n");
		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
				"encryption:\n");
		ecryptfs_dump_hex((char *)
				  (page_address(page)
				   + (extent_offset * crypt_stat->extent_size)),
				  8);
	}
	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
					  page, (extent_offset
						 * crypt_stat->extent_size),
					  crypt_stat->extent_size, extent_iv);
	if (rc < 0) {
		printk(KERN_ERR "%s: Error attempting to encrypt page with "
		       "page->index = [%ld], extent_offset = [%ld]; "
		       "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
		       rc);
		goto out;
	}
	rc = 0;
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
				"rc = [%d]\n", (extent_base + extent_offset),
				rc);
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
				"encryption:\n");
		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
	}
out:
	return rc;
}

435 436
/**
 * ecryptfs_encrypt_page
437 438 439
 * @page: Page mapped from the eCryptfs inode for the file; contains
 *        decrypted content that needs to be encrypted (to a temporary
 *        page; not in place) and written out to the lower file
440 441 442 443 444 445 446 447 448 449 450
 *
 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
451
int ecryptfs_encrypt_page(struct page *page)
452
{
453
	struct inode *ecryptfs_inode;
454
	struct ecryptfs_crypt_stat *crypt_stat;
455 456 457
	char *enc_extent_virt = NULL;
	struct page *enc_extent_page;
	loff_t extent_offset;
458
	int rc = 0;
459 460 461 462

	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
463
	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
464 465
		rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
						       0, PAGE_CACHE_SIZE);
466
		if (rc)
467 468 469
			printk(KERN_ERR "%s: Error attempting to copy "
			       "page at index [%ld]\n", __FUNCTION__,
			       page->index);
470 471
		goto out;
	}
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
	if (!enc_extent_virt) {
		rc = -ENOMEM;
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
				"encrypted extent\n");
		goto out;
	}
	enc_extent_page = virt_to_page(enc_extent_virt);
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
		loff_t offset;

		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
					     extent_offset);
487
		if (rc) {
488 489
			printk(KERN_ERR "%s: Error encrypting extent; "
			       "rc = [%d]\n", __FUNCTION__, rc);
490 491
			goto out;
		}
492
		ecryptfs_lower_offset_for_extent(
M
Michael Halcrow 已提交
493 494 495
			&offset, ((((loff_t)page->index)
				   * (PAGE_CACHE_SIZE
				      / crypt_stat->extent_size))
496 497 498 499 500 501 502 503
				  + extent_offset), crypt_stat);
		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
					  offset, crypt_stat->extent_size);
		if (rc) {
			ecryptfs_printk(KERN_ERR, "Error attempting "
					"to write lower page; rc = [%d]"
					"\n", rc);
			goto out;
504 505 506
		}
		extent_offset++;
	}
507 508 509 510 511 512 513 514 515 516
out:
	kfree(enc_extent_virt);
	return rc;
}

static int ecryptfs_decrypt_extent(struct page *page,
				   struct ecryptfs_crypt_stat *crypt_stat,
				   struct page *enc_extent_page,
				   unsigned long extent_offset)
{
M
Michael Halcrow 已提交
517
	loff_t extent_base;
518 519 520
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	int rc;

M
Michael Halcrow 已提交
521
	extent_base = (((loff_t)page->index)
522 523 524
		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
				(extent_base + extent_offset));
525
	if (rc) {
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
		ecryptfs_printk(KERN_ERR, "Error attempting to "
				"derive IV for extent [0x%.16x]; "
				"rc = [%d]\n", (extent_base + extent_offset),
				rc);
		goto out;
	}
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
				"with iv:\n");
		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
				"decryption:\n");
		ecryptfs_dump_hex((char *)
				  (page_address(enc_extent_page)
				   + (extent_offset * crypt_stat->extent_size)),
				  8);
	}
	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
					  (extent_offset
					   * crypt_stat->extent_size),
					  enc_extent_page, 0,
					  crypt_stat->extent_size, extent_iv);
	if (rc < 0) {
		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
		       "page->index = [%ld], extent_offset = [%ld]; "
		       "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
		       rc);
		goto out;
	}
	rc = 0;
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
				"rc = [%d]\n", (extent_base + extent_offset),
				rc);
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
				"decryption:\n");
		ecryptfs_dump_hex((char *)(page_address(page)
					   + (extent_offset
					      * crypt_stat->extent_size)), 8);
565 566 567 568 569 570 571
	}
out:
	return rc;
}

/**
 * ecryptfs_decrypt_page
572 573 574
 * @page: Page mapped from the eCryptfs inode for the file; data read
 *        and decrypted from the lower file will be written into this
 *        page
575 576 577 578 579 580 581 582 583 584 585
 *
 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
586
int ecryptfs_decrypt_page(struct page *page)
587
{
588
	struct inode *ecryptfs_inode;
589
	struct ecryptfs_crypt_stat *crypt_stat;
590 591 592
	char *enc_extent_virt = NULL;
	struct page *enc_extent_page;
	unsigned long extent_offset;
593 594
	int rc = 0;

595 596 597
	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
598
	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
599 600 601
		rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
						      PAGE_CACHE_SIZE,
						      ecryptfs_inode);
602
		if (rc)
603 604 605
			printk(KERN_ERR "%s: Error attempting to copy "
			       "page at index [%ld]\n", __FUNCTION__,
			       page->index);
606
		goto out;
607
	}
608 609
	enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
	if (!enc_extent_virt) {
610
		rc = -ENOMEM;
611 612
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
				"encrypted extent\n");
613
		goto out;
614
	}
615 616 617 618 619 620 621 622 623 624 625 626 627
	enc_extent_page = virt_to_page(enc_extent_virt);
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
		loff_t offset;

		ecryptfs_lower_offset_for_extent(
			&offset, ((page->index * (PAGE_CACHE_SIZE
						  / crypt_stat->extent_size))
				  + extent_offset), crypt_stat);
		rc = ecryptfs_read_lower(enc_extent_virt, offset,
					 crypt_stat->extent_size,
					 ecryptfs_inode);
628
		if (rc) {
629 630 631
			ecryptfs_printk(KERN_ERR, "Error attempting "
					"to read lower page; rc = [%d]"
					"\n", rc);
632
			goto out;
633
		}
634 635 636 637 638
		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
					     extent_offset);
		if (rc) {
			printk(KERN_ERR "%s: Error encrypting extent; "
			       "rc = [%d]\n", __FUNCTION__, rc);
639
			goto out;
640 641 642 643
		}
		extent_offset++;
	}
out:
644
	kfree(enc_extent_virt);
645 646 647 648 649
	return rc;
}

/**
 * decrypt_scatterlist
650 651 652 653 654
 * @crypt_stat: Cryptographic context
 * @dest_sg: The destination scatterlist to decrypt into
 * @src_sg: The source scatterlist to decrypt from
 * @size: The number of bytes to decrypt
 * @iv: The initialization vector to use for the decryption
655 656 657 658 659 660 661 662
 *
 * Returns the number of bytes decrypted; negative value on error
 */
static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
663 664 665 666 667
	struct blkcipher_desc desc = {
		.tfm = crypt_stat->tfm,
		.info = iv,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
668 669 670 671
	int rc = 0;

	/* Consider doing this once, when the file is opened */
	mutex_lock(&crypt_stat->cs_tfm_mutex);
672 673
	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
				     crypt_stat->key_size);
674 675 676 677 678 679 680 681
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
				rc);
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
		rc = -EINVAL;
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
682
	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
683 684 685 686 687 688 689 690 691 692 693 694 695
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
				rc);
		goto out;
	}
	rc = size;
out:
	return rc;
}

/**
 * ecryptfs_encrypt_page_offset
696 697 698 699 700 701 702
 * @crypt_stat: The cryptographic context
 * @dst_page: The page to encrypt into
 * @dst_offset: The offset in the page to encrypt into
 * @src_page: The page to encrypt from
 * @src_offset: The offset in the page to encrypt from
 * @size: The number of bytes to encrypt
 * @iv: The initialization vector to use for the encryption
703 704 705 706 707 708 709 710 711 712 713
 *
 * Returns the number of bytes encrypted
 */
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

J
Jens Axboe 已提交
714 715 716
	sg_init_table(&src_sg, 1);
	sg_init_table(&dst_sg, 1);

717 718
	sg_set_page(&src_sg, src_page, size, src_offset);
	sg_set_page(&dst_sg, dst_page, size, dst_offset);
719 720 721 722 723
	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

/**
 * ecryptfs_decrypt_page_offset
724 725 726 727 728 729 730
 * @crypt_stat: The cryptographic context
 * @dst_page: The page to decrypt into
 * @dst_offset: The offset in the page to decrypt into
 * @src_page: The page to decrypt from
 * @src_offset: The offset in the page to decrypt from
 * @size: The number of bytes to decrypt
 * @iv: The initialization vector to use for the decryption
731 732 733 734 735 736 737 738 739 740 741
 *
 * Returns the number of bytes decrypted
 */
static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

J
Jens Axboe 已提交
742
	sg_init_table(&src_sg, 1);
743 744
	sg_set_page(&src_sg, src_page, size, src_offset);

J
Jens Axboe 已提交
745
	sg_init_table(&dst_sg, 1);
746
	sg_set_page(&dst_sg, dst_page, size, dst_offset);
J
Jens Axboe 已提交
747

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

#define ECRYPTFS_MAX_SCATTERLIST_LEN 4

/**
 * ecryptfs_init_crypt_ctx
 * @crypt_stat: Uninitilized crypt stats structure
 *
 * Initialize the crypto context.
 *
 * TODO: Performance: Keep a cache of initialized cipher contexts;
 * only init if needed
 */
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
{
764
	char *full_alg_name;
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	int rc = -EINVAL;

	if (!crypt_stat->cipher) {
		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG,
			"Initializing cipher [%s]; strlen = [%d]; "
			"key_size_bits = [%d]\n",
			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
			crypt_stat->key_size << 3);
	if (crypt_stat->tfm) {
		rc = 0;
		goto out;
	}
	mutex_lock(&crypt_stat->cs_tfm_mutex);
781 782 783 784 785 786 787
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
						    crypt_stat->cipher, "cbc");
	if (rc)
		goto out;
	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
						 CRYPTO_ALG_ASYNC);
	kfree(full_alg_name);
788 789
	if (IS_ERR(crypt_stat->tfm)) {
		rc = PTR_ERR(crypt_stat->tfm);
790 791 792
		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
				"Error initializing cipher [%s]\n",
				crypt_stat->cipher);
793
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
794 795
		goto out;
	}
796
	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
797
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
	rc = 0;
out:
	return rc;
}

static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
{
	int extent_size_tmp;

	crypt_stat->extent_mask = 0xFFFFFFFF;
	crypt_stat->extent_shift = 0;
	if (crypt_stat->extent_size == 0)
		return;
	extent_size_tmp = crypt_stat->extent_size;
	while ((extent_size_tmp & 0x01) == 0) {
		extent_size_tmp >>= 1;
		crypt_stat->extent_mask <<= 1;
		crypt_stat->extent_shift++;
	}
}

void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
{
	/* Default values; may be overwritten as we are parsing the
	 * packets. */
	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
	set_extent_mask_and_shift(crypt_stat);
	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
826 827
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
		crypt_stat->num_header_extents_at_front = 0;
828 829 830 831 832 833 834 835 836
	else {
		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
			crypt_stat->num_header_extents_at_front =
				(ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
				 / crypt_stat->extent_size);
		else
			crypt_stat->num_header_extents_at_front =
				(PAGE_CACHE_SIZE / crypt_stat->extent_size);
	}
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
}

/**
 * ecryptfs_compute_root_iv
 * @crypt_stats
 *
 * On error, sets the root IV to all 0's.
 */
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];

	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
	BUG_ON(crypt_stat->iv_bytes <= 0);
852
	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
				"cannot generate root IV\n");
		goto out;
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
				    crypt_stat->key_size);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating root IV\n");
		goto out;
	}
	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
out:
	if (rc) {
		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
869
		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
870 871 872 873 874 875 876
	}
	return rc;
}

static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
{
	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
877
	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
878 879 880 881 882 883 884 885
	ecryptfs_compute_root_iv(crypt_stat);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
}

886 887
/**
 * ecryptfs_copy_mount_wide_flags_to_inode_flags
888 889
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
890 891 892 893 894 895 896 897 898 899 900 901 902 903
 *
 * This function propagates the mount-wide flags to individual inode
 * flags.
 */
static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
}

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	struct ecryptfs_global_auth_tok *global_auth_tok;
	int rc = 0;

	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_for_each_entry(global_auth_tok,
			    &mount_crypt_stat->global_auth_tok_list,
			    mount_crypt_stat_list) {
		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
		if (rc) {
			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
			mutex_unlock(
				&mount_crypt_stat->global_auth_tok_list_mutex);
			goto out;
		}
	}
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
out:
	return rc;
}

928 929
/**
 * ecryptfs_set_default_crypt_stat_vals
930 931
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
932 933 934 935 936 937 938
 *
 * Default values in the event that policy does not override them.
 */
static void ecryptfs_set_default_crypt_stat_vals(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
939 940
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
941 942 943
	ecryptfs_set_default_sizes(crypt_stat);
	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
944
	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
945 946 947 948 949 950
	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
	crypt_stat->mount_crypt_stat = mount_crypt_stat;
}

/**
 * ecryptfs_new_file_context
951
 * @ecryptfs_dentry: The eCryptfs dentry
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
 *
 * If the crypto context for the file has not yet been established,
 * this is where we do that.  Establishing a new crypto context
 * involves the following decisions:
 *  - What cipher to use?
 *  - What set of authentication tokens to use?
 * Here we just worry about getting enough information into the
 * authentication tokens so that we know that they are available.
 * We associate the available authentication tokens with the new file
 * via the set of signatures in the crypt_stat struct.  Later, when
 * the headers are actually written out, we may again defer to
 * userspace to perform the encryption of the session key; for the
 * foreseeable future, this will be the case with public key packets.
 *
 * Returns zero on success; non-zero otherwise
 */
int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
{
	struct ecryptfs_crypt_stat *crypt_stat =
	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
	    &ecryptfs_superblock_to_private(
		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
	int cipher_name_len;
976
	int rc = 0;
977 978

	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
979
	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
							 mount_crypt_stat);
	if (rc) {
		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
		       "to the inode key sigs; rc = [%d]\n", rc);
		goto out;
	}
	cipher_name_len =
		strlen(mount_crypt_stat->global_default_cipher_name);
	memcpy(crypt_stat->cipher,
	       mount_crypt_stat->global_default_cipher_name,
	       cipher_name_len);
	crypt_stat->cipher[cipher_name_len] = '\0';
	crypt_stat->key_size =
		mount_crypt_stat->global_default_cipher_key_size;
	ecryptfs_generate_new_key(crypt_stat);
998 999 1000 1001 1002
	rc = ecryptfs_init_crypt_ctx(crypt_stat);
	if (rc)
		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
				"context for cipher [%s]: rc = [%d]\n",
				crypt_stat->cipher, rc);
1003
out:
1004 1005 1006 1007 1008 1009 1010 1011 1012
	return rc;
}

/**
 * contains_ecryptfs_marker - check for the ecryptfs marker
 * @data: The data block in which to check
 *
 * Returns one if marker found; zero if not found
 */
1013
static int contains_ecryptfs_marker(char *data)
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
{
	u32 m_1, m_2;

	memcpy(&m_1, data, 4);
	m_1 = be32_to_cpu(m_1);
	memcpy(&m_2, (data + 4), 4);
	m_2 = be32_to_cpu(m_2);
	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
		return 1;
	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
			MAGIC_ECRYPTFS_MARKER);
	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
	return 0;
}

struct ecryptfs_flag_map_elem {
	u32 file_flag;
	u32 local_flag;
};

/* Add support for additional flags by adding elements here. */
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1039 1040
	{0x00000002, ECRYPTFS_ENCRYPTED},
	{0x00000004, ECRYPTFS_METADATA_IN_XATTR}
1041 1042 1043 1044
};

/**
 * ecryptfs_process_flags
1045
 * @crypt_stat: The cryptographic context
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
 * @page_virt: Source data to be parsed
 * @bytes_read: Updated with the number of bytes read
 *
 * Returns zero on success; non-zero if the flag set is invalid
 */
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
				  char *page_virt, int *bytes_read)
{
	int rc = 0;
	int i;
	u32 flags;

	memcpy(&flags, page_virt, 4);
	flags = be32_to_cpu(flags);
	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
		if (flags & ecryptfs_flag_map[i].file_flag) {
1063
			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1064
		} else
1065
			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	/* Version is in top 8 bits of the 32-bit flag vector */
	crypt_stat->file_version = ((flags >> 24) & 0xFF);
	(*bytes_read) = 4;
	return rc;
}

/**
 * write_ecryptfs_marker
 * @page_virt: The pointer to in a page to begin writing the marker
 * @written: Number of bytes written
 *
 * Marker = 0x3c81b7f5
 */
static void write_ecryptfs_marker(char *page_virt, size_t *written)
{
	u32 m_1, m_2;

	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
	m_1 = cpu_to_be32(m_1);
	memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	m_2 = cpu_to_be32(m_2);
	memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
	       (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
}

static void
write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
		     size_t *written)
{
	u32 flags = 0;
	int i;

	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1102
		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
			flags |= ecryptfs_flag_map[i].file_flag;
	/* Version is in top 8 bits of the 32-bit flag vector */
	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
	flags = cpu_to_be32(flags);
	memcpy(page_virt, &flags, 4);
	(*written) = 4;
}

struct ecryptfs_cipher_code_str_map_elem {
	char cipher_str[16];
	u16 cipher_code;
};

/* Add support for additional ciphers by adding elements here. The
 * cipher_code is whatever OpenPGP applicatoins use to identify the
 * ciphers. List in order of probability. */
static struct ecryptfs_cipher_code_str_map_elem
ecryptfs_cipher_code_str_map[] = {
	{"aes",RFC2440_CIPHER_AES_128 },
	{"blowfish", RFC2440_CIPHER_BLOWFISH},
	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
	{"cast5", RFC2440_CIPHER_CAST_5},
	{"twofish", RFC2440_CIPHER_TWOFISH},
	{"cast6", RFC2440_CIPHER_CAST_6},
	{"aes", RFC2440_CIPHER_AES_192},
	{"aes", RFC2440_CIPHER_AES_256}
};

/**
 * ecryptfs_code_for_cipher_string
1133
 * @crypt_stat: The cryptographic context
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
 *
 * Returns zero on no match, or the cipher code on match
 */
u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
{
	int i;
	u16 code = 0;
	struct ecryptfs_cipher_code_str_map_elem *map =
		ecryptfs_cipher_code_str_map;

	if (strcmp(crypt_stat->cipher, "aes") == 0) {
		switch (crypt_stat->key_size) {
		case 16:
			code = RFC2440_CIPHER_AES_128;
			break;
		case 24:
			code = RFC2440_CIPHER_AES_192;
			break;
		case 32:
			code = RFC2440_CIPHER_AES_256;
		}
	} else {
		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
			if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
				code = map[i].cipher_code;
				break;
			}
	}
	return code;
}

/**
 * ecryptfs_cipher_code_to_string
 * @str: Destination to write out the cipher name
 * @cipher_code: The code to convert to cipher name string
 *
 * Returns zero on success
 */
int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
{
	int rc = 0;
	int i;

	str[0] = '\0';
	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
	if (str[0] == '\0') {
		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
				"[%d]\n", cipher_code);
		rc = -EINVAL;
	}
	return rc;
}

1189 1190
int ecryptfs_read_and_validate_header_region(char *data,
					     struct inode *ecryptfs_inode)
1191
{
1192 1193
	struct ecryptfs_crypt_stat *crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1194 1195
	int rc;

1196 1197 1198 1199 1200
	rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
				 ecryptfs_inode);
	if (rc) {
		printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
		       __FUNCTION__, rc);
1201
		goto out;
1202 1203
	}
	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1204
		rc = -EINVAL;
1205 1206
		ecryptfs_printk(KERN_DEBUG, "Valid marker not found\n");
	}
1207 1208 1209 1210
out:
	return rc;
}

1211 1212 1213 1214
void
ecryptfs_write_header_metadata(char *virt,
			       struct ecryptfs_crypt_stat *crypt_stat,
			       size_t *written)
1215 1216 1217 1218
{
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1219
	header_extent_size = (u32)crypt_stat->extent_size;
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	num_header_extents_at_front =
		(u16)crypt_stat->num_header_extents_at_front;
	header_extent_size = cpu_to_be32(header_extent_size);
	memcpy(virt, &header_extent_size, 4);
	virt += 4;
	num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
	memcpy(virt, &num_header_extents_at_front, 2);
	(*written) = 6;
}

struct kmem_cache *ecryptfs_header_cache_0;
struct kmem_cache *ecryptfs_header_cache_1;
struct kmem_cache *ecryptfs_header_cache_2;

/**
 * ecryptfs_write_headers_virt
1236 1237 1238 1239
 * @page_virt: The virtual address to write the headers to
 * @size: Set to the number of bytes written by this function
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
 *
 * Format version: 1
 *
 *   Header Extent:
 *     Octets 0-7:        Unencrypted file size (big-endian)
 *     Octets 8-15:       eCryptfs special marker
 *     Octets 16-19:      Flags
 *      Octet 16:         File format version number (between 0 and 255)
 *      Octets 17-18:     Reserved
 *      Octet 19:         Bit 1 (lsb): Reserved
 *                        Bit 2: Encrypted?
 *                        Bits 3-8: Reserved
 *     Octets 20-23:      Header extent size (big-endian)
 *     Octets 24-25:      Number of header extents at front of file
 *                        (big-endian)
 *     Octet  26:         Begin RFC 2440 authentication token packet set
 *   Data Extent 0:
 *     Lower data (CBC encrypted)
 *   Data Extent 1:
 *     Lower data (CBC encrypted)
 *   ...
 *
 * Returns zero on success
 */
1264 1265 1266
static int ecryptfs_write_headers_virt(char *page_virt, size_t *size,
				       struct ecryptfs_crypt_stat *crypt_stat,
				       struct dentry *ecryptfs_dentry)
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
{
	int rc;
	size_t written;
	size_t offset;

	offset = ECRYPTFS_FILE_SIZE_BYTES;
	write_ecryptfs_marker((page_virt + offset), &written);
	offset += written;
	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
	offset += written;
1277 1278
	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
				       &written);
1279 1280 1281 1282 1283 1284 1285
	offset += written;
	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
					      ecryptfs_dentry, &written,
					      PAGE_CACHE_SIZE - offset);
	if (rc)
		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
				"set; rc = [%d]\n", rc);
1286 1287 1288 1289 1290 1291 1292
	if (size) {
		offset += written;
		*size = offset;
	}
	return rc;
}

1293 1294
static int
ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1295 1296
				    struct dentry *ecryptfs_dentry,
				    char *page_virt)
1297 1298 1299
{
	int current_header_page;
	int header_pages;
1300
	int rc;
1301

1302 1303 1304 1305 1306 1307
	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, page_virt,
				  0, PAGE_CACHE_SIZE);
	if (rc) {
		printk(KERN_ERR "%s: Error attempting to write header "
		       "information to lower file; rc = [%d]\n", __FUNCTION__,
		       rc);
1308 1309
		goto out;
	}
1310
	header_pages = ((crypt_stat->extent_size
1311 1312 1313 1314 1315
			 * crypt_stat->num_header_extents_at_front)
			/ PAGE_CACHE_SIZE);
	memset(page_virt, 0, PAGE_CACHE_SIZE);
	current_header_page = 1;
	while (current_header_page < header_pages) {
1316 1317
		loff_t offset;

M
Michael Halcrow 已提交
1318
		offset = (((loff_t)current_header_page) << PAGE_CACHE_SHIFT);
1319 1320 1321 1322 1323 1324
		if ((rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode,
					       page_virt, offset,
					       PAGE_CACHE_SIZE))) {
			printk(KERN_ERR "%s: Error attempting to write header "
			       "information to lower file; rc = [%d]\n",
			       __FUNCTION__, rc);
1325 1326
			goto out;
		}
1327 1328
		current_header_page++;
	}
1329 1330
out:
	return rc;
1331 1332
}

1333 1334 1335 1336
static int
ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
				 struct ecryptfs_crypt_stat *crypt_stat,
				 char *page_virt, size_t size)
1337 1338 1339 1340 1341
{
	int rc;

	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
			       size, 0);
1342 1343 1344 1345
	return rc;
}

/**
1346
 * ecryptfs_write_metadata
1347
 * @ecryptfs_dentry: The eCryptfs dentry
1348 1349 1350 1351 1352 1353 1354
 *
 * Write the file headers out.  This will likely involve a userspace
 * callout, in which the session key is encrypted with one or more
 * public keys and/or the passphrase necessary to do the encryption is
 * retrieved via a prompt.  Exactly what happens at this point should
 * be policy-dependent.
 *
1355 1356
 * TODO: Support header information spanning multiple pages
 *
1357 1358
 * Returns zero on success; non-zero on error
 */
1359
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1360
{
1361 1362
	struct ecryptfs_crypt_stat *crypt_stat =
		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1363
	char *page_virt;
1364
	size_t size = 0;
1365 1366
	int rc = 0;

1367 1368
	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1369
			printk(KERN_ERR "Key is invalid; bailing out\n");
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
			rc = -EINVAL;
			goto out;
		}
	} else {
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING,
				"Called with crypt_stat->encrypted == 0\n");
		goto out;
	}
	/* Released in this function */
1380
	page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER);
1381 1382 1383 1384 1385
	if (!page_virt) {
		ecryptfs_printk(KERN_ERR, "Out of memory\n");
		rc = -ENOMEM;
		goto out;
	}
1386 1387
	rc = ecryptfs_write_headers_virt(page_virt, &size, crypt_stat,
  					 ecryptfs_dentry);
1388 1389 1390 1391 1392
	if (unlikely(rc)) {
		ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
		memset(page_virt, 0, PAGE_CACHE_SIZE);
		goto out_free;
	}
1393 1394 1395 1396 1397
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
						      crypt_stat, page_virt,
						      size);
	else
1398 1399
		rc = ecryptfs_write_metadata_to_contents(crypt_stat,
							 ecryptfs_dentry,
1400 1401 1402 1403 1404
							 page_virt);
	if (rc) {
		printk(KERN_ERR "Error writing metadata out to lower file; "
		       "rc = [%d]\n", rc);
		goto out_free;
1405 1406 1407 1408 1409 1410 1411
	}
out_free:
	kmem_cache_free(ecryptfs_header_cache_0, page_virt);
out:
	return rc;
}

1412 1413
#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1414
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1415 1416
				 char *virt, int *bytes_read,
				 int validate_header_size)
1417 1418 1419 1420 1421
{
	int rc = 0;
	u32 header_extent_size;
	u16 num_header_extents_at_front;

M
Michael Halcrow 已提交
1422
	memcpy(&header_extent_size, virt, sizeof(u32));
1423
	header_extent_size = be32_to_cpu(header_extent_size);
M
Michael Halcrow 已提交
1424 1425
	virt += sizeof(u32);
	memcpy(&num_header_extents_at_front, virt, sizeof(u16));
1426 1427 1428
	num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
	crypt_stat->num_header_extents_at_front =
		(int)num_header_extents_at_front;
1429
	(*bytes_read) = (sizeof(u32) + sizeof(u16));
1430
	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1431
	    && ((crypt_stat->extent_size
1432 1433
		 * crypt_stat->num_header_extents_at_front)
		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1434
		rc = -EINVAL;
1435 1436
		printk(KERN_WARNING "Invalid number of header extents: [%zd]\n",
		       crypt_stat->num_header_extents_at_front);
1437 1438 1439 1440 1441 1442
	}
	return rc;
}

/**
 * set_default_header_data
1443
 * @crypt_stat: The cryptographic context
1444 1445 1446 1447 1448 1449 1450
 *
 * For version 0 file format; this function is only for backwards
 * compatibility for files created with the prior versions of
 * eCryptfs.
 */
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
{
1451
	crypt_stat->num_header_extents_at_front = 2;
1452 1453 1454 1455
}

/**
 * ecryptfs_read_headers_virt
1456 1457 1458 1459
 * @page_virt: The virtual address into which to read the headers
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
 * @validate_header_size: Whether to validate the header size while reading
1460 1461 1462 1463 1464 1465 1466 1467
 *
 * Read/parse the header data. The header format is detailed in the
 * comment block for the ecryptfs_write_headers_virt() function.
 *
 * Returns zero on success
 */
static int ecryptfs_read_headers_virt(char *page_virt,
				      struct ecryptfs_crypt_stat *crypt_stat,
1468 1469
				      struct dentry *ecryptfs_dentry,
				      int validate_header_size)
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
{
	int rc = 0;
	int offset;
	int bytes_read;

	ecryptfs_set_default_sizes(crypt_stat);
	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
		ecryptfs_dentry->d_sb)->mount_crypt_stat;
	offset = ECRYPTFS_FILE_SIZE_BYTES;
	rc = contains_ecryptfs_marker(page_virt + offset);
	if (rc == 0) {
		rc = -EINVAL;
		goto out;
	}
	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
				    &bytes_read);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
		goto out;
	}
	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
				"file version [%d] is supported by this "
				"version of eCryptfs\n",
				crypt_stat->file_version,
				ECRYPTFS_SUPPORTED_FILE_VERSION);
		rc = -EINVAL;
		goto out;
	}
	offset += bytes_read;
	if (crypt_stat->file_version >= 1) {
		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1503
					   &bytes_read, validate_header_size);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
		if (rc) {
			ecryptfs_printk(KERN_WARNING, "Error reading header "
					"metadata; rc = [%d]\n", rc);
		}
		offset += bytes_read;
	} else
		set_default_header_data(crypt_stat);
	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
				       ecryptfs_dentry);
out:
	return rc;
}

/**
1518
 * ecryptfs_read_xattr_region
1519
 * @page_virt: The vitual address into which to read the xattr data
1520
 * @ecryptfs_inode: The eCryptfs inode
1521 1522 1523
 *
 * Attempts to read the crypto metadata from the extended attribute
 * region of the lower file.
1524 1525
 *
 * Returns zero on success; non-zero on error
1526
 */
1527
int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1528
{
1529 1530
	struct dentry *lower_dentry =
		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1531 1532 1533
	ssize_t size;
	int rc = 0;

1534 1535
	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1536
	if (size < 0) {
1537
		printk(KERN_ERR "Error attempting to read the [%s] "
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		       "xattr from the lower file; return value = [%zd]\n",
		       ECRYPTFS_XATTR_NAME, size);
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}

int ecryptfs_read_and_validate_xattr_region(char *page_virt,
					    struct dentry *ecryptfs_dentry)
{
	int rc;

1552
	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	if (rc)
		goto out;
	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) {
		printk(KERN_WARNING "Valid data found in [%s] xattr, but "
			"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
		rc = -EINVAL;
	}
out:
	return rc;
}

/**
 * ecryptfs_read_metadata
 *
 * Common entry point for reading file metadata. From here, we could
 * retrieve the header information from the header region of the file,
 * the xattr region of the file, or some other repostory that is
 * stored separately from the file itself. The current implementation
 * supports retrieving the metadata information from the file contents
 * and from the xattr region.
1573 1574 1575
 *
 * Returns zero if valid headers found and parsed; non-zero otherwise
 */
1576
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1577 1578 1579
{
	int rc = 0;
	char *page_virt = NULL;
1580
	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1581
	struct ecryptfs_crypt_stat *crypt_stat =
1582
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1583 1584 1585
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1586

1587 1588
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
1589
	/* Read the first page from the underlying file */
C
Christoph Lameter 已提交
1590
	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1591 1592
	if (!page_virt) {
		rc = -ENOMEM;
1593 1594
		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
		       __FUNCTION__);
1595 1596
		goto out;
	}
1597 1598 1599 1600 1601 1602
	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
				 ecryptfs_inode);
	if (!rc)
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_VALIDATE_HEADER_SIZE);
1603
	if (rc) {
1604
		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
			       "file header region or xattr region\n");
			rc = -EINVAL;
			goto out;
		}
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
			       "file xattr region either\n");
			rc = -EINVAL;
		}
		if (crypt_stat->mount_crypt_stat->flags
		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
		} else {
			printk(KERN_WARNING "Attempt to access file with "
			       "crypto metadata only in the extended attribute "
			       "region, but eCryptfs was mounted without "
			       "xattr support enabled. eCryptfs will not treat "
			       "this like an encrypted file.\n");
			rc = -EINVAL;
		}
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	}
out:
	if (page_virt) {
		memset(page_virt, 0, PAGE_CACHE_SIZE);
		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
	}
	return rc;
}

/**
 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
 * @name: The plaintext name
 * @length: The length of the plaintext
 * @encoded_name: The encypted name
 *
 * Encrypts and encodes a filename into something that constitutes a
 * valid filename for a filesystem, with printable characters.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * TODO: Implement filename decoding and decryption here, in place of
 * memcpy. We are keeping the framework around for now to (1)
 * facilitate testing of the components needed to implement filename
 * encryption and (2) to provide a code base from which other
 * developers in the community can easily implement this feature.
 *
 * Returns the length of encoded filename; negative if error
 */
int
ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
			 const char *name, int length, char **encoded_name)
{
	int error = 0;

	(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
	if (!(*encoded_name)) {
		error = -ENOMEM;
		goto out;
	}
	/* TODO: Filename encryption is a scheduled feature for a
	 * future version of eCryptfs. This function is here only for
	 * the purpose of providing a framework for other developers
	 * to easily implement filename encryption. Hint: Replace this
	 * memcpy() with a call to encrypt and encode the
	 * filename, the set the length accordingly. */
	memcpy((void *)(*encoded_name), (void *)name, length);
	(*encoded_name)[length] = '\0';
	error = length + 1;
out:
	return error;
}

/**
 * ecryptfs_decode_filename - converts the cipher text name to plaintext
 * @crypt_stat: The crypt_stat struct associated with the file
 * @name: The filename in cipher text
 * @length: The length of the cipher text name
 * @decrypted_name: The plaintext name
 *
 * Decodes and decrypts the filename.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * TODO: Implement filename decoding and decryption here, in place of
 * memcpy. We are keeping the framework around for now to (1)
 * facilitate testing of the components needed to implement filename
 * encryption and (2) to provide a code base from which other
 * developers in the community can easily implement this feature.
 *
 * Returns the length of decoded filename; negative if error
 */
int
ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
			 const char *name, int length, char **decrypted_name)
{
	int error = 0;

	(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
	if (!(*decrypted_name)) {
		error = -ENOMEM;
		goto out;
	}
	/* TODO: Filename encryption is a scheduled feature for a
	 * future version of eCryptfs. This function is here only for
	 * the purpose of providing a framework for other developers
	 * to easily implement filename encryption. Hint: Replace this
	 * memcpy() with a call to decode and decrypt the
	 * filename, the set the length accordingly. */
	memcpy((void *)(*decrypted_name), (void *)name, length);
	(*decrypted_name)[length + 1] = '\0';	/* Only for convenience
						 * in printing out the
						 * string in debug
						 * messages */
	error = length;
out:
	return error;
}

/**
1732
 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1733
 * @key_tfm: Crypto context for key material, set by this function
1734 1735
 * @cipher_name: Name of the cipher
 * @key_size: Size of the key in bytes
1736 1737 1738 1739 1740
 *
 * Returns zero on success. Any crypto_tfm structs allocated here
 * should be released by other functions, such as on a superblock put
 * event, regardless of whether this function succeeds for fails.
 */
1741
static int
1742 1743
ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
			    char *cipher_name, size_t *key_size)
1744 1745
{
	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1746
	char *full_alg_name;
1747 1748
	int rc;

1749 1750
	*key_tfm = NULL;
	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1751 1752
		rc = -EINVAL;
		printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1753
		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1754 1755
		goto out;
	}
1756 1757 1758 1759 1760 1761 1762 1763
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
						    "ecb");
	if (rc)
		goto out;
	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
	kfree(full_alg_name);
	if (IS_ERR(*key_tfm)) {
		rc = PTR_ERR(*key_tfm);
1764
		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1765
		       "[%s]; rc = [%d]\n", cipher_name, rc);
1766 1767
		goto out;
	}
1768 1769 1770 1771 1772 1773
	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
	if (*key_size == 0) {
		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);

		*key_size = alg->max_keysize;
	}
1774
	get_random_bytes(dummy_key, *key_size);
1775
	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1776 1777
	if (rc) {
		printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1778
		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1779 1780 1781 1782 1783 1784
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

struct kmem_cache *ecryptfs_key_tfm_cache;
struct list_head key_tfm_list;
struct mutex key_tfm_list_mutex;

int ecryptfs_init_crypto(void)
{
	mutex_init(&key_tfm_list_mutex);
	INIT_LIST_HEAD(&key_tfm_list);
	return 0;
}

1797
int ecryptfs_destroy_crypto(void)
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
{
	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;

	mutex_lock(&key_tfm_list_mutex);
	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
				 key_tfm_list) {
		list_del(&key_tfm->key_tfm_list);
		if (key_tfm->key_tfm)
			crypto_free_blkcipher(key_tfm->key_tfm);
		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
	}
	mutex_unlock(&key_tfm_list_mutex);
	return 0;
}

int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
			 size_t key_size)
{
	struct ecryptfs_key_tfm *tmp_tfm;
	int rc = 0;

	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
	if (key_tfm != NULL)
		(*key_tfm) = tmp_tfm;
	if (!tmp_tfm) {
		rc = -ENOMEM;
		printk(KERN_ERR "Error attempting to allocate from "
		       "ecryptfs_key_tfm_cache\n");
		goto out;
	}
	mutex_init(&tmp_tfm->key_tfm_mutex);
	strncpy(tmp_tfm->cipher_name, cipher_name,
		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
	tmp_tfm->key_size = key_size;
1833 1834 1835 1836
	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
					 tmp_tfm->cipher_name,
					 &tmp_tfm->key_size);
	if (rc) {
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
		printk(KERN_ERR "Error attempting to initialize key TFM "
		       "cipher with name = [%s]; rc = [%d]\n",
		       tmp_tfm->cipher_name, rc);
		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
		if (key_tfm != NULL)
			(*key_tfm) = NULL;
		goto out;
	}
	mutex_lock(&key_tfm_list_mutex);
	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
	mutex_unlock(&key_tfm_list_mutex);
out:
	return rc;
}

int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
					       struct mutex **tfm_mutex,
					       char *cipher_name)
{
	struct ecryptfs_key_tfm *key_tfm;
	int rc = 0;

	(*tfm) = NULL;
	(*tfm_mutex) = NULL;
	mutex_lock(&key_tfm_list_mutex);
	list_for_each_entry(key_tfm, &key_tfm_list, key_tfm_list) {
		if (strcmp(key_tfm->cipher_name, cipher_name) == 0) {
			(*tfm) = key_tfm->key_tfm;
			(*tfm_mutex) = &key_tfm->key_tfm_mutex;
			mutex_unlock(&key_tfm_list_mutex);
			goto out;
		}
	}
	mutex_unlock(&key_tfm_list_mutex);
1871 1872
	rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
	if (rc) {
1873 1874 1875 1876 1877 1878 1879 1880 1881
		printk(KERN_ERR "Error adding new key_tfm to list; rc = [%d]\n",
		       rc);
		goto out;
	}
	(*tfm) = key_tfm->key_tfm;
	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
out:
	return rc;
}