crypto.c 69.3 KB
Newer Older
1 2 3 4 5
/**
 * eCryptfs: Linux filesystem encryption layer
 *
 * Copyright (C) 1997-2004 Erez Zadok
 * Copyright (C) 2001-2004 Stony Brook University
6
 * Copyright (C) 2004-2007 International Business Machines Corp.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 *   		Michael C. Thompson <mcthomps@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/key.h>
#include <linux/namei.h>
#include <linux/crypto.h>
#include <linux/file.h>
#include <linux/scatterlist.h>
36
#include <linux/slab.h>
37
#include <asm/unaligned.h>
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
#include "ecryptfs_kernel.h"

static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);

/**
 * ecryptfs_to_hex
 * @dst: Buffer to take hex character representation of contents of
 *       src; must be at least of size (src_size * 2)
 * @src: Buffer to be converted to a hex string respresentation
 * @src_size: number of bytes to convert
 */
void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
{
	int x;

	for (x = 0; x < src_size; x++)
		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
}

/**
 * ecryptfs_from_hex
 * @dst: Buffer to take the bytes from src hex; must be at least of
 *       size (src_size / 2)
 * @src: Buffer to be converted from a hex string respresentation to raw value
 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
 */
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
{
	int x;
	char tmp[3] = { 0, };

	for (x = 0; x < dst_size; x++) {
		tmp[0] = src[x * 2];
		tmp[1] = src[x * 2 + 1];
		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
	}
}

/**
 * ecryptfs_calculate_md5 - calculates the md5 of @src
 * @dst: Pointer to 16 bytes of allocated memory
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 * @src: Data to be md5'd
 * @len: Length of @src
 *
 * Uses the allocated crypto context that crypt_stat references to
 * generate the MD5 sum of the contents of src.
 */
static int ecryptfs_calculate_md5(char *dst,
				  struct ecryptfs_crypt_stat *crypt_stat,
				  char *src, int len)
{
	struct scatterlist sg;
100 101 102 103 104
	struct hash_desc desc = {
		.tfm = crypt_stat->hash_tfm,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;
105

106
	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107
	sg_init_one(&sg, (u8 *)src, len);
108 109 110 111 112
	if (!desc.tfm) {
		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
					     CRYPTO_ALG_ASYNC);
		if (IS_ERR(desc.tfm)) {
			rc = PTR_ERR(desc.tfm);
113
			ecryptfs_printk(KERN_ERR, "Error attempting to "
114 115
					"allocate crypto context; rc = [%d]\n",
					rc);
116 117
			goto out;
		}
118
		crypt_stat->hash_tfm = desc.tfm;
119
	}
120 121 122 123
	rc = crypto_hash_init(&desc);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error initializing crypto hash; rc = [%d]\n",
124
		       __func__, rc);
125 126 127 128 129 130
		goto out;
	}
	rc = crypto_hash_update(&desc, &sg, len);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error updating crypto hash; rc = [%d]\n",
131
		       __func__, rc);
132 133 134 135 136 137
		goto out;
	}
	rc = crypto_hash_final(&desc, dst);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error finalizing crypto hash; rc = [%d]\n",
138
		       __func__, rc);
139 140
		goto out;
	}
141
out:
142
	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
143 144 145
	return rc;
}

146 147 148
static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
						  char *cipher_name,
						  char *chaining_modifier)
149 150 151 152 153 154 155 156
{
	int cipher_name_len = strlen(cipher_name);
	int chaining_modifier_len = strlen(chaining_modifier);
	int algified_name_len;
	int rc;

	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157
	if (!(*algified_name)) {
158 159 160 161 162 163 164 165 166 167
		rc = -ENOMEM;
		goto out;
	}
	snprintf((*algified_name), algified_name_len, "%s(%s)",
		 chaining_modifier, cipher_name);
	rc = 0;
out:
	return rc;
}

168 169 170 171
/**
 * ecryptfs_derive_iv
 * @iv: destination for the derived iv vale
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
M
Michael Halcrow 已提交
172
 * @offset: Offset of the extent whose IV we are to derive
173 174 175 176 177 178
 *
 * Generate the initialization vector from the given root IV and page
 * offset.
 *
 * Returns zero on success; non-zero on error.
 */
179 180
int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
		       loff_t offset)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];
	char src[ECRYPTFS_MAX_IV_BYTES + 16];

	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
	}
	/* TODO: It is probably secure to just cast the least
	 * significant bits of the root IV into an unsigned long and
	 * add the offset to that rather than go through all this
	 * hashing business. -Halcrow */
	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
	memset((src + crypt_stat->iv_bytes), 0, 16);
M
Michael Halcrow 已提交
196
	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "source:\n");
		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
				    (crypt_stat->iv_bytes + 16));
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating IV for a page\n");
		goto out;
	}
	memcpy(iv, dst, crypt_stat->iv_bytes);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
	}
out:
	return rc;
}

/**
 * ecryptfs_init_crypt_stat
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Initialize the crypt_stat structure.
 */
void
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227 228
	INIT_LIST_HEAD(&crypt_stat->keysig_list);
	mutex_init(&crypt_stat->keysig_list_mutex);
229 230
	mutex_init(&crypt_stat->cs_mutex);
	mutex_init(&crypt_stat->cs_tfm_mutex);
231
	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232
	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
233 234 235
}

/**
236
 * ecryptfs_destroy_crypt_stat
237 238 239 240
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Releases all memory associated with a crypt_stat struct.
 */
241
void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242
{
243 244
	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;

245
	if (crypt_stat->tfm)
246
		crypto_free_ablkcipher(crypt_stat->tfm);
247 248
	if (crypt_stat->hash_tfm)
		crypto_free_hash(crypt_stat->hash_tfm);
249 250 251 252 253
	list_for_each_entry_safe(key_sig, key_sig_tmp,
				 &crypt_stat->keysig_list, crypt_stat_list) {
		list_del(&key_sig->crypt_stat_list);
		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
	}
254 255 256
	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
}

257
void ecryptfs_destroy_mount_crypt_stat(
258 259
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;

	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
		return;
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
				 &mount_crypt_stat->global_auth_tok_list,
				 mount_crypt_stat_list) {
		list_del(&auth_tok->mount_crypt_stat_list);
		if (auth_tok->global_auth_tok_key
		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
			key_put(auth_tok->global_auth_tok_key);
		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
	}
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
}

/**
 * virt_to_scatterlist
 * @addr: Virtual address
 * @size: Size of data; should be an even multiple of the block size
 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 *      the number of scatterlist structs required in array
 * @sg_size: Max array size
 *
 * Fills in a scatterlist array with page references for a passed
 * virtual address.
 *
 * Returns the number of scatterlist structs in array used
 */
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
			int sg_size)
{
	int i = 0;
	struct page *pg;
	int offset;
	int remainder_of_page;

299 300
	sg_init_table(sg, sg_size);

301 302 303
	while (size > 0 && i < sg_size) {
		pg = virt_to_page(addr);
		offset = offset_in_page(addr);
304
		sg_set_page(&sg[i], pg, 0, offset);
305 306
		remainder_of_page = PAGE_CACHE_SIZE - offset;
		if (size >= remainder_of_page) {
307
			sg[i].length = remainder_of_page;
308 309 310
			addr += remainder_of_page;
			size -= remainder_of_page;
		} else {
311
			sg[i].length = size;
312 313 314 315 316 317 318 319 320 321
			addr += size;
			size = 0;
		}
		i++;
	}
	if (size > 0)
		return -ENOMEM;
	return i;
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
struct extent_crypt_result {
	struct completion completion;
	int rc;
};

static void extent_crypt_complete(struct crypto_async_request *req, int rc)
{
	struct extent_crypt_result *ecr = req->data;

	if (rc == -EINPROGRESS)
		return;

	ecr->rc = rc;
	complete(&ecr->completion);
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/**
 * encrypt_scatterlist
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 * @dest_sg: Destination of encrypted data
 * @src_sg: Data to be encrypted
 * @size: Length of data to be encrypted
 * @iv: iv to use during encryption
 *
 * Returns the number of bytes encrypted; negative value on error
 */
static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
353 354
	struct ablkcipher_request *req = NULL;
	struct extent_crypt_result ecr;
355 356 357
	int rc = 0;

	BUG_ON(!crypt_stat || !crypt_stat->tfm
358
	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
359
	if (unlikely(ecryptfs_verbosity > 0)) {
360
		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
361 362 363 364
				crypt_stat->key_size);
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
365 366 367

	init_completion(&ecr.completion);

368
	mutex_lock(&crypt_stat->cs_tfm_mutex);
369 370
	req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
	if (!req) {
371
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
372
		rc = -ENOMEM;
373 374
		goto out;
	}
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

	ablkcipher_request_set_callback(req,
			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
			extent_crypt_complete, &ecr);
	/* Consider doing this once, when the file is opened */
	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
		rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
					      crypt_stat->key_size);
		if (rc) {
			ecryptfs_printk(KERN_ERR,
					"Error setting key; rc = [%d]\n",
					rc);
			mutex_unlock(&crypt_stat->cs_tfm_mutex);
			rc = -EINVAL;
			goto out;
		}
		crypt_stat->flags |= ECRYPTFS_KEY_SET;
	}
393
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
394 395 396 397 398 399 400 401 402 403
	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
	ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
	rc = crypto_ablkcipher_encrypt(req);
	if (rc == -EINPROGRESS || rc == -EBUSY) {
		struct extent_crypt_result *ecr = req->base.data;

		wait_for_completion(&ecr->completion);
		rc = ecr->rc;
		INIT_COMPLETION(ecr->completion);
	}
404
out:
405
	ablkcipher_request_free(req);
406 407 408
	return rc;
}

409 410 411 412 413
/**
 * ecryptfs_lower_offset_for_extent
 *
 * Convert an eCryptfs page index into a lower byte offset
 */
A
Adrian Bunk 已提交
414 415
static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
					     struct ecryptfs_crypt_stat *crypt_stat)
416
{
417 418
	(*offset) = ecryptfs_lower_header_size(crypt_stat)
		    + (crypt_stat->extent_size * extent_num);
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
}

/**
 * ecryptfs_encrypt_extent
 * @enc_extent_page: Allocated page into which to encrypt the data in
 *                   @page
 * @crypt_stat: crypt_stat containing cryptographic context for the
 *              encryption operation
 * @page: Page containing plaintext data extent to encrypt
 * @extent_offset: Page extent offset for use in generating IV
 *
 * Encrypts one extent of data.
 *
 * Return zero on success; non-zero otherwise
 */
static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
				   struct ecryptfs_crypt_stat *crypt_stat,
				   struct page *page,
				   unsigned long extent_offset)
{
M
Michael Halcrow 已提交
439
	loff_t extent_base;
440 441 442
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	int rc;

M
Michael Halcrow 已提交
443
	extent_base = (((loff_t)page->index)
444 445 446 447
		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
				(extent_base + extent_offset));
	if (rc) {
448 449 450
		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
			"extent [0x%.16llx]; rc = [%d]\n",
			(unsigned long long)(extent_base + extent_offset), rc);
451 452 453 454 455 456 457 458 459
		goto out;
	}
	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
					  page, (extent_offset
						 * crypt_stat->extent_size),
					  crypt_stat->extent_size, extent_iv);
	if (rc < 0) {
		printk(KERN_ERR "%s: Error attempting to encrypt page with "
		       "page->index = [%ld], extent_offset = [%ld]; "
460
		       "rc = [%d]\n", __func__, page->index, extent_offset,
461 462 463 464 465 466 467 468
		       rc);
		goto out;
	}
	rc = 0;
out:
	return rc;
}

469 470
/**
 * ecryptfs_encrypt_page
471 472 473
 * @page: Page mapped from the eCryptfs inode for the file; contains
 *        decrypted content that needs to be encrypted (to a temporary
 *        page; not in place) and written out to the lower file
474 475 476 477 478 479 480 481 482 483 484
 *
 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
485
int ecryptfs_encrypt_page(struct page *page)
486
{
487
	struct inode *ecryptfs_inode;
488
	struct ecryptfs_crypt_stat *crypt_stat;
489 490
	char *enc_extent_virt;
	struct page *enc_extent_page = NULL;
491
	loff_t extent_offset;
492
	int rc = 0;
493 494 495 496

	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
497
	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
498 499
	enc_extent_page = alloc_page(GFP_USER);
	if (!enc_extent_page) {
500 501 502 503 504
		rc = -ENOMEM;
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
				"encrypted extent\n");
		goto out;
	}
505
	enc_extent_virt = kmap(enc_extent_page);
506 507 508 509 510 511 512
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
		loff_t offset;

		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
					     extent_offset);
513
		if (rc) {
514
			printk(KERN_ERR "%s: Error encrypting extent; "
515
			       "rc = [%d]\n", __func__, rc);
516 517
			goto out;
		}
518
		ecryptfs_lower_offset_for_extent(
M
Michael Halcrow 已提交
519 520 521
			&offset, ((((loff_t)page->index)
				   * (PAGE_CACHE_SIZE
				      / crypt_stat->extent_size))
522 523 524
				  + extent_offset), crypt_stat);
		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
					  offset, crypt_stat->extent_size);
525
		if (rc < 0) {
526 527 528 529
			ecryptfs_printk(KERN_ERR, "Error attempting "
					"to write lower page; rc = [%d]"
					"\n", rc);
			goto out;
530 531
		}
	}
532
	rc = 0;
533
out:
534 535 536 537
	if (enc_extent_page) {
		kunmap(enc_extent_page);
		__free_page(enc_extent_page);
	}
538 539 540 541 542 543 544 545
	return rc;
}

static int ecryptfs_decrypt_extent(struct page *page,
				   struct ecryptfs_crypt_stat *crypt_stat,
				   struct page *enc_extent_page,
				   unsigned long extent_offset)
{
M
Michael Halcrow 已提交
546
	loff_t extent_base;
547 548 549
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	int rc;

M
Michael Halcrow 已提交
550
	extent_base = (((loff_t)page->index)
551 552 553
		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
				(extent_base + extent_offset));
554
	if (rc) {
555 556 557
		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
			"extent [0x%.16llx]; rc = [%d]\n",
			(unsigned long long)(extent_base + extent_offset), rc);
558 559 560 561 562 563 564 565 566 567
		goto out;
	}
	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
					  (extent_offset
					   * crypt_stat->extent_size),
					  enc_extent_page, 0,
					  crypt_stat->extent_size, extent_iv);
	if (rc < 0) {
		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
		       "page->index = [%ld], extent_offset = [%ld]; "
568
		       "rc = [%d]\n", __func__, page->index, extent_offset,
569 570 571 572
		       rc);
		goto out;
	}
	rc = 0;
573 574 575 576 577 578
out:
	return rc;
}

/**
 * ecryptfs_decrypt_page
579 580 581
 * @page: Page mapped from the eCryptfs inode for the file; data read
 *        and decrypted from the lower file will be written into this
 *        page
582 583 584 585 586 587 588 589 590 591 592
 *
 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
593
int ecryptfs_decrypt_page(struct page *page)
594
{
595
	struct inode *ecryptfs_inode;
596
	struct ecryptfs_crypt_stat *crypt_stat;
597 598
	char *enc_extent_virt;
	struct page *enc_extent_page = NULL;
599
	unsigned long extent_offset;
600 601
	int rc = 0;

602 603 604
	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
605
	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
606 607
	enc_extent_page = alloc_page(GFP_USER);
	if (!enc_extent_page) {
608
		rc = -ENOMEM;
609 610
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
				"encrypted extent\n");
611
		goto out;
612
	}
613
	enc_extent_virt = kmap(enc_extent_page);
614 615 616 617 618 619 620 621 622 623 624 625
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
		loff_t offset;

		ecryptfs_lower_offset_for_extent(
			&offset, ((page->index * (PAGE_CACHE_SIZE
						  / crypt_stat->extent_size))
				  + extent_offset), crypt_stat);
		rc = ecryptfs_read_lower(enc_extent_virt, offset,
					 crypt_stat->extent_size,
					 ecryptfs_inode);
626
		if (rc < 0) {
627 628 629
			ecryptfs_printk(KERN_ERR, "Error attempting "
					"to read lower page; rc = [%d]"
					"\n", rc);
630
			goto out;
631
		}
632 633 634 635
		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
					     extent_offset);
		if (rc) {
			printk(KERN_ERR "%s: Error encrypting extent; "
636
			       "rc = [%d]\n", __func__, rc);
637
			goto out;
638 639 640
		}
	}
out:
641 642 643 644
	if (enc_extent_page) {
		kunmap(enc_extent_page);
		__free_page(enc_extent_page);
	}
645 646 647 648 649
	return rc;
}

/**
 * decrypt_scatterlist
650 651 652 653 654
 * @crypt_stat: Cryptographic context
 * @dest_sg: The destination scatterlist to decrypt into
 * @src_sg: The source scatterlist to decrypt from
 * @size: The number of bytes to decrypt
 * @iv: The initialization vector to use for the decryption
655 656 657 658 659 660 661 662
 *
 * Returns the number of bytes decrypted; negative value on error
 */
static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
663 664
	struct ablkcipher_request *req = NULL;
	struct extent_crypt_result ecr;
665 666
	int rc = 0;

667 668 669 670 671 672 673 674 675 676 677
	BUG_ON(!crypt_stat || !crypt_stat->tfm
	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
				crypt_stat->key_size);
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}

	init_completion(&ecr.completion);

678
	mutex_lock(&crypt_stat->cs_tfm_mutex);
679 680
	req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
	if (!req) {
681
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
682
		rc = -ENOMEM;
683 684
		goto out;
	}
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702

	ablkcipher_request_set_callback(req,
			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
			extent_crypt_complete, &ecr);
	/* Consider doing this once, when the file is opened */
	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
		rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
					      crypt_stat->key_size);
		if (rc) {
			ecryptfs_printk(KERN_ERR,
					"Error setting key; rc = [%d]\n",
					rc);
			mutex_unlock(&crypt_stat->cs_tfm_mutex);
			rc = -EINVAL;
			goto out;
		}
		crypt_stat->flags |= ECRYPTFS_KEY_SET;
	}
703
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
704 705 706 707 708 709 710 711 712
	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
	ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
	rc = crypto_ablkcipher_decrypt(req);
	if (rc == -EINPROGRESS || rc == -EBUSY) {
		struct extent_crypt_result *ecr = req->base.data;

		wait_for_completion(&ecr->completion);
		rc = ecr->rc;
		INIT_COMPLETION(ecr->completion);
713 714
	}
out:
715
	ablkcipher_request_free(req);
716
	return rc;
717

718 719 720 721
}

/**
 * ecryptfs_encrypt_page_offset
722 723 724 725 726 727 728
 * @crypt_stat: The cryptographic context
 * @dst_page: The page to encrypt into
 * @dst_offset: The offset in the page to encrypt into
 * @src_page: The page to encrypt from
 * @src_offset: The offset in the page to encrypt from
 * @size: The number of bytes to encrypt
 * @iv: The initialization vector to use for the encryption
729 730 731 732 733 734 735 736 737 738 739
 *
 * Returns the number of bytes encrypted
 */
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

J
Jens Axboe 已提交
740 741 742
	sg_init_table(&src_sg, 1);
	sg_init_table(&dst_sg, 1);

743 744
	sg_set_page(&src_sg, src_page, size, src_offset);
	sg_set_page(&dst_sg, dst_page, size, dst_offset);
745 746 747 748 749
	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

/**
 * ecryptfs_decrypt_page_offset
750 751 752 753 754 755 756
 * @crypt_stat: The cryptographic context
 * @dst_page: The page to decrypt into
 * @dst_offset: The offset in the page to decrypt into
 * @src_page: The page to decrypt from
 * @src_offset: The offset in the page to decrypt from
 * @size: The number of bytes to decrypt
 * @iv: The initialization vector to use for the decryption
757 758 759 760 761 762 763 764 765 766 767
 *
 * Returns the number of bytes decrypted
 */
static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

J
Jens Axboe 已提交
768
	sg_init_table(&src_sg, 1);
769 770
	sg_set_page(&src_sg, src_page, size, src_offset);

J
Jens Axboe 已提交
771
	sg_init_table(&dst_sg, 1);
772
	sg_set_page(&dst_sg, dst_page, size, dst_offset);
J
Jens Axboe 已提交
773

774 775 776 777 778 779 780
	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

#define ECRYPTFS_MAX_SCATTERLIST_LEN 4

/**
 * ecryptfs_init_crypt_ctx
781
 * @crypt_stat: Uninitialized crypt stats structure
782 783 784 785 786 787 788 789
 *
 * Initialize the crypto context.
 *
 * TODO: Performance: Keep a cache of initialized cipher contexts;
 * only init if needed
 */
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
{
790
	char *full_alg_name;
791 792 793 794 795 796 797 798
	int rc = -EINVAL;

	if (!crypt_stat->cipher) {
		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG,
			"Initializing cipher [%s]; strlen = [%d]; "
799
			"key_size_bits = [%zd]\n",
800 801 802 803 804 805 806
			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
			crypt_stat->key_size << 3);
	if (crypt_stat->tfm) {
		rc = 0;
		goto out;
	}
	mutex_lock(&crypt_stat->cs_tfm_mutex);
807 808 809
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
						    crypt_stat->cipher, "cbc");
	if (rc)
810
		goto out_unlock;
811
	crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
812
	kfree(full_alg_name);
813 814
	if (IS_ERR(crypt_stat->tfm)) {
		rc = PTR_ERR(crypt_stat->tfm);
815
		crypt_stat->tfm = NULL;
816 817 818
		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
				"Error initializing cipher [%s]\n",
				crypt_stat->cipher);
819
		goto out_unlock;
820
	}
821
	crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
822
	rc = 0;
823 824
out_unlock:
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
out:
	return rc;
}

static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
{
	int extent_size_tmp;

	crypt_stat->extent_mask = 0xFFFFFFFF;
	crypt_stat->extent_shift = 0;
	if (crypt_stat->extent_size == 0)
		return;
	extent_size_tmp = crypt_stat->extent_size;
	while ((extent_size_tmp & 0x01) == 0) {
		extent_size_tmp >>= 1;
		crypt_stat->extent_mask <<= 1;
		crypt_stat->extent_shift++;
	}
}

void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
{
	/* Default values; may be overwritten as we are parsing the
	 * packets. */
	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
	set_extent_mask_and_shift(crypt_stat);
	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
852
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
853
		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
854 855
	else {
		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
856
			crypt_stat->metadata_size =
857
				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
858
		else
859
			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
860
	}
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
}

/**
 * ecryptfs_compute_root_iv
 * @crypt_stats
 *
 * On error, sets the root IV to all 0's.
 */
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];

	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
	BUG_ON(crypt_stat->iv_bytes <= 0);
876
	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
				"cannot generate root IV\n");
		goto out;
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
				    crypt_stat->key_size);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating root IV\n");
		goto out;
	}
	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
out:
	if (rc) {
		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
893
		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
894 895 896 897 898 899 900
	}
	return rc;
}

static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
{
	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
901
	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
902 903 904 905 906 907 908 909
	ecryptfs_compute_root_iv(crypt_stat);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
}

910 911
/**
 * ecryptfs_copy_mount_wide_flags_to_inode_flags
912 913
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
914 915 916 917 918 919 920 921 922 923 924 925
 *
 * This function propagates the mount-wide flags to individual inode
 * flags.
 */
static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
926 927 928 929 930 931 932 933 934
	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
		if (mount_crypt_stat->flags
		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
		else if (mount_crypt_stat->flags
			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
	}
935 936
}

937 938 939 940 941 942 943
static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	struct ecryptfs_global_auth_tok *global_auth_tok;
	int rc = 0;

944
	mutex_lock(&crypt_stat->keysig_list_mutex);
945
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
946

947 948 949
	list_for_each_entry(global_auth_tok,
			    &mount_crypt_stat->global_auth_tok_list,
			    mount_crypt_stat_list) {
950 951
		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
			continue;
952 953 954 955 956 957
		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
		if (rc) {
			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
			goto out;
		}
	}
958

959
out:
960 961
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
	mutex_unlock(&crypt_stat->keysig_list_mutex);
962 963 964
	return rc;
}

965 966
/**
 * ecryptfs_set_default_crypt_stat_vals
967 968
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
969 970 971 972 973 974 975
 *
 * Default values in the event that policy does not override them.
 */
static void ecryptfs_set_default_crypt_stat_vals(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
976 977
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
978 979 980
	ecryptfs_set_default_sizes(crypt_stat);
	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
981
	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
982 983 984 985 986 987
	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
	crypt_stat->mount_crypt_stat = mount_crypt_stat;
}

/**
 * ecryptfs_new_file_context
988
 * @ecryptfs_inode: The eCryptfs inode
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
 *
 * If the crypto context for the file has not yet been established,
 * this is where we do that.  Establishing a new crypto context
 * involves the following decisions:
 *  - What cipher to use?
 *  - What set of authentication tokens to use?
 * Here we just worry about getting enough information into the
 * authentication tokens so that we know that they are available.
 * We associate the available authentication tokens with the new file
 * via the set of signatures in the crypt_stat struct.  Later, when
 * the headers are actually written out, we may again defer to
 * userspace to perform the encryption of the session key; for the
 * foreseeable future, this will be the case with public key packets.
 *
 * Returns zero on success; non-zero otherwise
 */
1005
int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
1006 1007
{
	struct ecryptfs_crypt_stat *crypt_stat =
1008
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1009 1010
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
	    &ecryptfs_superblock_to_private(
1011
		    ecryptfs_inode->i_sb)->mount_crypt_stat;
1012
	int cipher_name_len;
1013
	int rc = 0;
1014 1015

	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1016
	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
							 mount_crypt_stat);
	if (rc) {
		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
		       "to the inode key sigs; rc = [%d]\n", rc);
		goto out;
	}
	cipher_name_len =
		strlen(mount_crypt_stat->global_default_cipher_name);
	memcpy(crypt_stat->cipher,
	       mount_crypt_stat->global_default_cipher_name,
	       cipher_name_len);
	crypt_stat->cipher[cipher_name_len] = '\0';
	crypt_stat->key_size =
		mount_crypt_stat->global_default_cipher_key_size;
	ecryptfs_generate_new_key(crypt_stat);
1035 1036 1037 1038 1039
	rc = ecryptfs_init_crypt_ctx(crypt_stat);
	if (rc)
		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
				"context for cipher [%s]: rc = [%d]\n",
				crypt_stat->cipher, rc);
1040
out:
1041 1042 1043 1044
	return rc;
}

/**
1045
 * ecryptfs_validate_marker - check for the ecryptfs marker
1046 1047
 * @data: The data block in which to check
 *
1048
 * Returns zero if marker found; -EINVAL if not found
1049
 */
1050
static int ecryptfs_validate_marker(char *data)
1051 1052 1053
{
	u32 m_1, m_2;

1054 1055
	m_1 = get_unaligned_be32(data);
	m_2 = get_unaligned_be32(data + 4);
1056
	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1057
		return 0;
1058 1059 1060 1061 1062
	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
			MAGIC_ECRYPTFS_MARKER);
	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1063
	return -EINVAL;
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
}

struct ecryptfs_flag_map_elem {
	u32 file_flag;
	u32 local_flag;
};

/* Add support for additional flags by adding elements here. */
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1074
	{0x00000002, ECRYPTFS_ENCRYPTED},
1075 1076
	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1077 1078 1079 1080
};

/**
 * ecryptfs_process_flags
1081
 * @crypt_stat: The cryptographic context
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
 * @page_virt: Source data to be parsed
 * @bytes_read: Updated with the number of bytes read
 *
 * Returns zero on success; non-zero if the flag set is invalid
 */
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
				  char *page_virt, int *bytes_read)
{
	int rc = 0;
	int i;
	u32 flags;

1094
	flags = get_unaligned_be32(page_virt);
1095 1096 1097
	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
		if (flags & ecryptfs_flag_map[i].file_flag) {
1098
			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1099
		} else
1100
			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	/* Version is in top 8 bits of the 32-bit flag vector */
	crypt_stat->file_version = ((flags >> 24) & 0xFF);
	(*bytes_read) = 4;
	return rc;
}

/**
 * write_ecryptfs_marker
 * @page_virt: The pointer to in a page to begin writing the marker
 * @written: Number of bytes written
 *
 * Marker = 0x3c81b7f5
 */
static void write_ecryptfs_marker(char *page_virt, size_t *written)
{
	u32 m_1, m_2;

	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1120 1121 1122
	put_unaligned_be32(m_1, page_virt);
	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
	put_unaligned_be32(m_2, page_virt);
1123 1124 1125
	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
}

1126 1127 1128
void ecryptfs_write_crypt_stat_flags(char *page_virt,
				     struct ecryptfs_crypt_stat *crypt_stat,
				     size_t *written)
1129 1130 1131 1132 1133 1134
{
	u32 flags = 0;
	int i;

	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1135
		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1136 1137 1138
			flags |= ecryptfs_flag_map[i].file_flag;
	/* Version is in top 8 bits of the 32-bit flag vector */
	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1139
	put_unaligned_be32(flags, page_virt);
1140 1141 1142 1143 1144
	(*written) = 4;
}

struct ecryptfs_cipher_code_str_map_elem {
	char cipher_str[16];
1145
	u8 cipher_code;
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
};

/* Add support for additional ciphers by adding elements here. The
 * cipher_code is whatever OpenPGP applicatoins use to identify the
 * ciphers. List in order of probability. */
static struct ecryptfs_cipher_code_str_map_elem
ecryptfs_cipher_code_str_map[] = {
	{"aes",RFC2440_CIPHER_AES_128 },
	{"blowfish", RFC2440_CIPHER_BLOWFISH},
	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
	{"cast5", RFC2440_CIPHER_CAST_5},
	{"twofish", RFC2440_CIPHER_TWOFISH},
	{"cast6", RFC2440_CIPHER_CAST_6},
	{"aes", RFC2440_CIPHER_AES_192},
	{"aes", RFC2440_CIPHER_AES_256}
};

/**
 * ecryptfs_code_for_cipher_string
1165 1166
 * @cipher_name: The string alias for the cipher
 * @key_bytes: Length of key in bytes; used for AES code selection
1167 1168 1169
 *
 * Returns zero on no match, or the cipher code on match
 */
1170
u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1171 1172
{
	int i;
1173
	u8 code = 0;
1174 1175 1176
	struct ecryptfs_cipher_code_str_map_elem *map =
		ecryptfs_cipher_code_str_map;

1177 1178
	if (strcmp(cipher_name, "aes") == 0) {
		switch (key_bytes) {
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
		case 16:
			code = RFC2440_CIPHER_AES_128;
			break;
		case 24:
			code = RFC2440_CIPHER_AES_192;
			break;
		case 32:
			code = RFC2440_CIPHER_AES_256;
		}
	} else {
		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1190
			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
				code = map[i].cipher_code;
				break;
			}
	}
	return code;
}

/**
 * ecryptfs_cipher_code_to_string
 * @str: Destination to write out the cipher name
 * @cipher_code: The code to convert to cipher name string
 *
 * Returns zero on success
 */
1205
int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
{
	int rc = 0;
	int i;

	str[0] = '\0';
	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
	if (str[0] == '\0') {
		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
				"[%d]\n", cipher_code);
		rc = -EINVAL;
	}
	return rc;
}

1222
int ecryptfs_read_and_validate_header_region(struct inode *inode)
1223
{
1224 1225
	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1226 1227
	int rc;

1228 1229 1230 1231 1232 1233 1234
	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
				 inode);
	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
		return rc >= 0 ? -EINVAL : rc;
	rc = ecryptfs_validate_marker(marker);
	if (!rc)
		ecryptfs_i_size_init(file_size, inode);
1235 1236 1237
	return rc;
}

1238 1239 1240 1241
void
ecryptfs_write_header_metadata(char *virt,
			       struct ecryptfs_crypt_stat *crypt_stat,
			       size_t *written)
1242 1243 1244 1245
{
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1246
	header_extent_size = (u32)crypt_stat->extent_size;
1247
	num_header_extents_at_front =
1248
		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1249
	put_unaligned_be32(header_extent_size, virt);
1250
	virt += 4;
1251
	put_unaligned_be16(num_header_extents_at_front, virt);
1252 1253 1254
	(*written) = 6;
}

1255
struct kmem_cache *ecryptfs_header_cache;
1256 1257 1258

/**
 * ecryptfs_write_headers_virt
1259
 * @page_virt: The virtual address to write the headers to
1260
 * @max: The size of memory allocated at page_virt
1261 1262 1263
 * @size: Set to the number of bytes written by this function
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
 *
 * Format version: 1
 *
 *   Header Extent:
 *     Octets 0-7:        Unencrypted file size (big-endian)
 *     Octets 8-15:       eCryptfs special marker
 *     Octets 16-19:      Flags
 *      Octet 16:         File format version number (between 0 and 255)
 *      Octets 17-18:     Reserved
 *      Octet 19:         Bit 1 (lsb): Reserved
 *                        Bit 2: Encrypted?
 *                        Bits 3-8: Reserved
 *     Octets 20-23:      Header extent size (big-endian)
 *     Octets 24-25:      Number of header extents at front of file
 *                        (big-endian)
 *     Octet  26:         Begin RFC 2440 authentication token packet set
 *   Data Extent 0:
 *     Lower data (CBC encrypted)
 *   Data Extent 1:
 *     Lower data (CBC encrypted)
 *   ...
 *
 * Returns zero on success
 */
1288 1289
static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
				       size_t *size,
1290 1291
				       struct ecryptfs_crypt_stat *crypt_stat,
				       struct dentry *ecryptfs_dentry)
1292 1293 1294 1295 1296 1297 1298 1299
{
	int rc;
	size_t written;
	size_t offset;

	offset = ECRYPTFS_FILE_SIZE_BYTES;
	write_ecryptfs_marker((page_virt + offset), &written);
	offset += written;
1300 1301
	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
					&written);
1302
	offset += written;
1303 1304
	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
				       &written);
1305 1306 1307
	offset += written;
	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
					      ecryptfs_dentry, &written,
1308
					      max - offset);
1309 1310 1311
	if (rc)
		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
				"set; rc = [%d]\n", rc);
1312 1313 1314 1315 1316 1317 1318
	if (size) {
		offset += written;
		*size = offset;
	}
	return rc;
}

1319
static int
1320
ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1321
				    char *virt, size_t virt_len)
1322
{
1323
	int rc;
1324

1325
	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1326
				  0, virt_len);
1327
	if (rc < 0)
1328
		printk(KERN_ERR "%s: Error attempting to write header "
1329 1330 1331
		       "information to lower file; rc = [%d]\n", __func__, rc);
	else
		rc = 0;
1332
	return rc;
1333 1334
}

1335 1336 1337
static int
ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
				 char *page_virt, size_t size)
1338 1339 1340 1341 1342
{
	int rc;

	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
			       size, 0);
1343 1344 1345
	return rc;
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
					       unsigned int order)
{
	struct page *page;

	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
	if (page)
		return (unsigned long) page_address(page);
	return 0;
}

1357
/**
1358
 * ecryptfs_write_metadata
1359 1360
 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
 * @ecryptfs_inode: The newly created eCryptfs inode
1361 1362 1363 1364 1365 1366 1367 1368 1369
 *
 * Write the file headers out.  This will likely involve a userspace
 * callout, in which the session key is encrypted with one or more
 * public keys and/or the passphrase necessary to do the encryption is
 * retrieved via a prompt.  Exactly what happens at this point should
 * be policy-dependent.
 *
 * Returns zero on success; non-zero on error
 */
1370 1371
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
			    struct inode *ecryptfs_inode)
1372
{
1373
	struct ecryptfs_crypt_stat *crypt_stat =
1374
		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1375
	unsigned int order;
1376
	char *virt;
1377
	size_t virt_len;
1378
	size_t size = 0;
1379 1380
	int rc = 0;

1381 1382
	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1383
			printk(KERN_ERR "Key is invalid; bailing out\n");
1384 1385 1386 1387
			rc = -EINVAL;
			goto out;
		}
	} else {
1388
		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1389
		       __func__);
1390 1391 1392
		rc = -EINVAL;
		goto out;
	}
1393
	virt_len = crypt_stat->metadata_size;
1394
	order = get_order(virt_len);
1395
	/* Released in this function */
1396
	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1397
	if (!virt) {
1398
		printk(KERN_ERR "%s: Out of memory\n", __func__);
1399 1400 1401
		rc = -ENOMEM;
		goto out;
	}
1402
	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1403 1404
	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
					 ecryptfs_dentry);
1405
	if (unlikely(rc)) {
1406
		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1407
		       __func__, rc);
1408 1409
		goto out_free;
	}
1410
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1411 1412
		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
						      size);
1413
	else
1414
		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1415
							 virt_len);
1416
	if (rc) {
1417
		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1418
		       "rc = [%d]\n", __func__, rc);
1419
		goto out_free;
1420 1421
	}
out_free:
1422
	free_pages((unsigned long)virt, order);
1423 1424 1425 1426
out:
	return rc;
}

1427 1428
#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1429
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1430 1431
				 char *virt, int *bytes_read,
				 int validate_header_size)
1432 1433 1434 1435 1436
{
	int rc = 0;
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1437 1438 1439
	header_extent_size = get_unaligned_be32(virt);
	virt += sizeof(__be32);
	num_header_extents_at_front = get_unaligned_be16(virt);
1440 1441
	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
				     * (size_t)header_extent_size));
1442
	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1443
	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1444
	    && (crypt_stat->metadata_size
1445
		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1446
		rc = -EINVAL;
1447
		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1448
		       crypt_stat->metadata_size);
1449 1450 1451 1452 1453 1454
	}
	return rc;
}

/**
 * set_default_header_data
1455
 * @crypt_stat: The cryptographic context
1456 1457 1458 1459 1460 1461 1462
 *
 * For version 0 file format; this function is only for backwards
 * compatibility for files created with the prior versions of
 * eCryptfs.
 */
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
{
1463
	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1464 1465
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
{
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
	struct ecryptfs_crypt_stat *crypt_stat;
	u64 file_size;

	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
	mount_crypt_stat =
		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
			file_size += crypt_stat->metadata_size;
	} else
		file_size = get_unaligned_be64(page_virt);
	i_size_write(inode, (loff_t)file_size);
	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
}

1485 1486
/**
 * ecryptfs_read_headers_virt
1487 1488 1489 1490
 * @page_virt: The virtual address into which to read the headers
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
 * @validate_header_size: Whether to validate the header size while reading
1491 1492 1493 1494 1495 1496 1497 1498
 *
 * Read/parse the header data. The header format is detailed in the
 * comment block for the ecryptfs_write_headers_virt() function.
 *
 * Returns zero on success
 */
static int ecryptfs_read_headers_virt(char *page_virt,
				      struct ecryptfs_crypt_stat *crypt_stat,
1499 1500
				      struct dentry *ecryptfs_dentry,
				      int validate_header_size)
1501 1502 1503 1504 1505 1506 1507 1508 1509
{
	int rc = 0;
	int offset;
	int bytes_read;

	ecryptfs_set_default_sizes(crypt_stat);
	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
		ecryptfs_dentry->d_sb)->mount_crypt_stat;
	offset = ECRYPTFS_FILE_SIZE_BYTES;
1510 1511
	rc = ecryptfs_validate_marker(page_virt + offset);
	if (rc)
1512
		goto out;
1513 1514
	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
		ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
				    &bytes_read);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
		goto out;
	}
	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
				"file version [%d] is supported by this "
				"version of eCryptfs\n",
				crypt_stat->file_version,
				ECRYPTFS_SUPPORTED_FILE_VERSION);
		rc = -EINVAL;
		goto out;
	}
	offset += bytes_read;
	if (crypt_stat->file_version >= 1) {
		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1534
					   &bytes_read, validate_header_size);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
		if (rc) {
			ecryptfs_printk(KERN_WARNING, "Error reading header "
					"metadata; rc = [%d]\n", rc);
		}
		offset += bytes_read;
	} else
		set_default_header_data(crypt_stat);
	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
				       ecryptfs_dentry);
out:
	return rc;
}

/**
1549
 * ecryptfs_read_xattr_region
1550
 * @page_virt: The vitual address into which to read the xattr data
1551
 * @ecryptfs_inode: The eCryptfs inode
1552 1553 1554
 *
 * Attempts to read the crypto metadata from the extended attribute
 * region of the lower file.
1555 1556
 *
 * Returns zero on success; non-zero on error
1557
 */
1558
int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1559
{
1560 1561
	struct dentry *lower_dentry =
		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1562 1563 1564
	ssize_t size;
	int rc = 0;

1565 1566
	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1567
	if (size < 0) {
1568 1569 1570 1571
		if (unlikely(ecryptfs_verbosity > 0))
			printk(KERN_INFO "Error attempting to read the [%s] "
			       "xattr from the lower file; return value = "
			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1572 1573 1574 1575 1576 1577 1578
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}

1579
int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1580
					    struct inode *inode)
1581
{
1582 1583
	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1584 1585
	int rc;

1586 1587 1588 1589 1590 1591 1592 1593
	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
				     ECRYPTFS_XATTR_NAME, file_size,
				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
		return rc >= 0 ? -EINVAL : rc;
	rc = ecryptfs_validate_marker(marker);
	if (!rc)
		ecryptfs_i_size_init(file_size, inode);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	return rc;
}

/**
 * ecryptfs_read_metadata
 *
 * Common entry point for reading file metadata. From here, we could
 * retrieve the header information from the header region of the file,
 * the xattr region of the file, or some other repostory that is
 * stored separately from the file itself. The current implementation
 * supports retrieving the metadata information from the file contents
 * and from the xattr region.
1606 1607 1608
 *
 * Returns zero if valid headers found and parsed; non-zero otherwise
 */
1609
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1610
{
1611 1612
	int rc;
	char *page_virt;
1613
	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1614
	struct ecryptfs_crypt_stat *crypt_stat =
1615
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1616 1617 1618
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1619

1620 1621
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
1622
	/* Read the first page from the underlying file */
1623
	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1624 1625
	if (!page_virt) {
		rc = -ENOMEM;
1626
		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1627
		       __func__);
1628 1629
		goto out;
	}
1630 1631
	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
				 ecryptfs_inode);
1632
	if (rc >= 0)
1633 1634 1635
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_VALIDATE_HEADER_SIZE);
1636
	if (rc) {
1637
		/* metadata is not in the file header, so try xattrs */
1638
		memset(page_virt, 0, PAGE_CACHE_SIZE);
1639
		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1640 1641
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1642 1643
			       "file header region or xattr region, inode %lu\n",
				ecryptfs_inode->i_ino);
1644 1645 1646 1647 1648 1649 1650 1651
			rc = -EINVAL;
			goto out;
		}
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1652 1653
			       "file xattr region either, inode %lu\n",
				ecryptfs_inode->i_ino);
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
			rc = -EINVAL;
		}
		if (crypt_stat->mount_crypt_stat->flags
		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
		} else {
			printk(KERN_WARNING "Attempt to access file with "
			       "crypto metadata only in the extended attribute "
			       "region, but eCryptfs was mounted without "
			       "xattr support enabled. eCryptfs will not treat "
1664 1665
			       "this like an encrypted file, inode %lu\n",
				ecryptfs_inode->i_ino);
1666 1667
			rc = -EINVAL;
		}
1668 1669 1670 1671
	}
out:
	if (page_virt) {
		memset(page_virt, 0, PAGE_CACHE_SIZE);
1672
		kmem_cache_free(ecryptfs_header_cache, page_virt);
1673 1674 1675 1676
	}
	return rc;
}

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
/**
 * ecryptfs_encrypt_filename - encrypt filename
 *
 * CBC-encrypts the filename. We do not want to encrypt the same
 * filename with the same key and IV, which may happen with hard
 * links, so we prepend random bits to each filename.
 *
 * Returns zero on success; non-zero otherwise
 */
static int
ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
			  struct ecryptfs_crypt_stat *crypt_stat,
			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	int rc = 0;

	filename->encrypted_filename = NULL;
	filename->encrypted_filename_size = 0;
	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
	    || (mount_crypt_stat && (mount_crypt_stat->flags
				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
		size_t packet_size;
		size_t remaining_bytes;

		rc = ecryptfs_write_tag_70_packet(
			NULL, NULL,
			&filename->encrypted_filename_size,
			mount_crypt_stat, NULL,
			filename->filename_size);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to get packet "
			       "size for tag 72; rc = [%d]\n", __func__,
			       rc);
			filename->encrypted_filename_size = 0;
			goto out;
		}
		filename->encrypted_filename =
			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
		if (!filename->encrypted_filename) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
M
Michael Halcrow 已提交
1717
			       "to kmalloc [%zd] bytes\n", __func__,
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
			       filename->encrypted_filename_size);
			rc = -ENOMEM;
			goto out;
		}
		remaining_bytes = filename->encrypted_filename_size;
		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
						  &remaining_bytes,
						  &packet_size,
						  mount_crypt_stat,
						  filename->filename,
						  filename->filename_size);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to generate "
			       "tag 70 packet; rc = [%d]\n", __func__,
			       rc);
			kfree(filename->encrypted_filename);
			filename->encrypted_filename = NULL;
			filename->encrypted_filename_size = 0;
			goto out;
		}
		filename->encrypted_filename_size = packet_size;
	} else {
		printk(KERN_ERR "%s: No support for requested filename "
		       "encryption method in this release\n", __func__);
1742
		rc = -EOPNOTSUPP;
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
		goto out;
	}
out:
	return rc;
}

static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
				  const char *name, size_t name_size)
{
	int rc = 0;

1754
	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1755 1756 1757 1758 1759 1760 1761 1762 1763
	if (!(*copied_name)) {
		rc = -ENOMEM;
		goto out;
	}
	memcpy((void *)(*copied_name), (void *)name, name_size);
	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
						 * in printing out the
						 * string in debug
						 * messages */
1764
	(*copied_name_size) = name_size;
1765 1766 1767 1768
out:
	return rc;
}

1769
/**
1770
 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1771
 * @key_tfm: Crypto context for key material, set by this function
1772 1773
 * @cipher_name: Name of the cipher
 * @key_size: Size of the key in bytes
1774 1775 1776 1777 1778
 *
 * Returns zero on success. Any crypto_tfm structs allocated here
 * should be released by other functions, such as on a superblock put
 * event, regardless of whether this function succeeds for fails.
 */
1779
static int
1780 1781
ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
			    char *cipher_name, size_t *key_size)
1782 1783
{
	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
D
Dan Carpenter 已提交
1784
	char *full_alg_name = NULL;
1785 1786
	int rc;

1787 1788
	*key_tfm = NULL;
	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1789
		rc = -EINVAL;
M
Michael Halcrow 已提交
1790
		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1791
		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1792 1793
		goto out;
	}
1794 1795 1796 1797 1798 1799 1800
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
						    "ecb");
	if (rc)
		goto out;
	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
	if (IS_ERR(*key_tfm)) {
		rc = PTR_ERR(*key_tfm);
1801
		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1802
		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1803 1804
		goto out;
	}
1805 1806 1807 1808 1809 1810
	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
	if (*key_size == 0) {
		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);

		*key_size = alg->max_keysize;
	}
1811
	get_random_bytes(dummy_key, *key_size);
1812
	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1813
	if (rc) {
M
Michael Halcrow 已提交
1814
		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1815 1816
		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
		       rc);
1817 1818 1819 1820
		rc = -EINVAL;
		goto out;
	}
out:
D
Dan Carpenter 已提交
1821
	kfree(full_alg_name);
1822 1823
	return rc;
}
1824 1825

struct kmem_cache *ecryptfs_key_tfm_cache;
A
Adrian Bunk 已提交
1826
static struct list_head key_tfm_list;
1827
struct mutex key_tfm_list_mutex;
1828

1829
int __init ecryptfs_init_crypto(void)
1830 1831 1832 1833 1834 1835
{
	mutex_init(&key_tfm_list_mutex);
	INIT_LIST_HEAD(&key_tfm_list);
	return 0;
}

1836 1837 1838 1839 1840
/**
 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
 *
 * Called only at module unload time
 */
1841
int ecryptfs_destroy_crypto(void)
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
{
	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;

	mutex_lock(&key_tfm_list_mutex);
	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
				 key_tfm_list) {
		list_del(&key_tfm->key_tfm_list);
		if (key_tfm->key_tfm)
			crypto_free_blkcipher(key_tfm->key_tfm);
		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
	}
	mutex_unlock(&key_tfm_list_mutex);
	return 0;
}

int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
			 size_t key_size)
{
	struct ecryptfs_key_tfm *tmp_tfm;
	int rc = 0;

1864 1865
	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
	if (key_tfm != NULL)
		(*key_tfm) = tmp_tfm;
	if (!tmp_tfm) {
		rc = -ENOMEM;
		printk(KERN_ERR "Error attempting to allocate from "
		       "ecryptfs_key_tfm_cache\n");
		goto out;
	}
	mutex_init(&tmp_tfm->key_tfm_mutex);
	strncpy(tmp_tfm->cipher_name, cipher_name,
		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1878
	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1879
	tmp_tfm->key_size = key_size;
1880 1881 1882 1883
	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
					 tmp_tfm->cipher_name,
					 &tmp_tfm->key_size);
	if (rc) {
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		printk(KERN_ERR "Error attempting to initialize key TFM "
		       "cipher with name = [%s]; rc = [%d]\n",
		       tmp_tfm->cipher_name, rc);
		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
		if (key_tfm != NULL)
			(*key_tfm) = NULL;
		goto out;
	}
	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
out:
	return rc;
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
/**
 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
 * @cipher_name: the name of the cipher to search for
 * @key_tfm: set to corresponding tfm if found
 *
 * Searches for cached key_tfm matching @cipher_name
 * Must be called with &key_tfm_list_mutex held
 * Returns 1 if found, with @key_tfm set
 * Returns 0 if not found, with @key_tfm set to NULL
 */
int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
{
	struct ecryptfs_key_tfm *tmp_key_tfm;

	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
			if (key_tfm)
				(*key_tfm) = tmp_key_tfm;
			return 1;
		}
	}
	if (key_tfm)
		(*key_tfm) = NULL;
	return 0;
}

/**
 * ecryptfs_get_tfm_and_mutex_for_cipher_name
 *
 * @tfm: set to cached tfm found, or new tfm created
 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
 * @cipher_name: the name of the cipher to search for and/or add
 *
 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
 * Searches for cached item first, and creates new if not found.
 * Returns 0 on success, non-zero if adding new cipher failed
 */
1936 1937 1938 1939 1940 1941 1942 1943 1944
int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
					       struct mutex **tfm_mutex,
					       char *cipher_name)
{
	struct ecryptfs_key_tfm *key_tfm;
	int rc = 0;

	(*tfm) = NULL;
	(*tfm_mutex) = NULL;
1945

1946
	mutex_lock(&key_tfm_list_mutex);
1947 1948 1949 1950 1951
	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
		if (rc) {
			printk(KERN_ERR "Error adding new key_tfm to list; "
					"rc = [%d]\n", rc);
1952 1953 1954 1955 1956 1957
			goto out;
		}
	}
	(*tfm) = key_tfm->key_tfm;
	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
out:
1958
	mutex_unlock(&key_tfm_list_mutex);
1959 1960
	return rc;
}
1961 1962 1963 1964 1965 1966 1967 1968 1969

/* 64 characters forming a 6-bit target field */
static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
						 "EFGHIJKLMNOPQRST"
						 "UVWXYZabcdefghij"
						 "klmnopqrstuvwxyz");

/* We could either offset on every reverse map or just pad some 0x00's
 * at the front here */
1970
static const unsigned char filename_rev_map[256] = {
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1986
	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1987 1988 1989 1990 1991 1992 1993 1994 1995
};

/**
 * ecryptfs_encode_for_filename
 * @dst: Destination location for encoded filename
 * @dst_size: Size of the encoded filename in bytes
 * @src: Source location for the filename to encode
 * @src_size: Size of the source in bytes
 */
1996
static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
				  unsigned char *src, size_t src_size)
{
	size_t num_blocks;
	size_t block_num = 0;
	size_t dst_offset = 0;
	unsigned char last_block[3];

	if (src_size == 0) {
		(*dst_size) = 0;
		goto out;
	}
	num_blocks = (src_size / 3);
	if ((src_size % 3) == 0) {
		memcpy(last_block, (&src[src_size - 3]), 3);
	} else {
		num_blocks++;
		last_block[2] = 0x00;
		switch (src_size % 3) {
		case 1:
			last_block[0] = src[src_size - 1];
			last_block[1] = 0x00;
			break;
		case 2:
			last_block[0] = src[src_size - 2];
			last_block[1] = src[src_size - 1];
		}
	}
	(*dst_size) = (num_blocks * 4);
	if (!dst)
		goto out;
	while (block_num < num_blocks) {
		unsigned char *src_block;
		unsigned char dst_block[4];

		if (block_num == (num_blocks - 1))
			src_block = last_block;
		else
			src_block = &src[block_num * 3];
		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
		dst_block[1] = (((src_block[0] << 4) & 0x30)
				| ((src_block[1] >> 4) & 0x0F));
		dst_block[2] = (((src_block[1] << 2) & 0x3C)
				| ((src_block[2] >> 6) & 0x03));
		dst_block[3] = (src_block[2] & 0x3F);
		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
		block_num++;
	}
out:
	return;
}

T
Tyler Hicks 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
static size_t ecryptfs_max_decoded_size(size_t encoded_size)
{
	/* Not exact; conservatively long. Every block of 4
	 * encoded characters decodes into a block of 3
	 * decoded characters. This segment of code provides
	 * the caller with the maximum amount of allocated
	 * space that @dst will need to point to in a
	 * subsequent call. */
	return ((encoded_size + 1) * 3) / 4;
}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
/**
 * ecryptfs_decode_from_filename
 * @dst: If NULL, this function only sets @dst_size and returns. If
 *       non-NULL, this function decodes the encoded octets in @src
 *       into the memory that @dst points to.
 * @dst_size: Set to the size of the decoded string.
 * @src: The encoded set of octets to decode.
 * @src_size: The size of the encoded set of octets to decode.
 */
static void
ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
			      const unsigned char *src, size_t src_size)
2074 2075 2076 2077 2078 2079
{
	u8 current_bit_offset = 0;
	size_t src_byte_offset = 0;
	size_t dst_byte_offset = 0;

	if (dst == NULL) {
T
Tyler Hicks 已提交
2080
		(*dst_size) = ecryptfs_max_decoded_size(src_size);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		goto out;
	}
	while (src_byte_offset < src_size) {
		unsigned char src_byte =
				filename_rev_map[(int)src[src_byte_offset]];

		switch (current_bit_offset) {
		case 0:
			dst[dst_byte_offset] = (src_byte << 2);
			current_bit_offset = 6;
			break;
		case 6:
			dst[dst_byte_offset++] |= (src_byte >> 4);
			dst[dst_byte_offset] = ((src_byte & 0xF)
						 << 4);
			current_bit_offset = 4;
			break;
		case 4:
			dst[dst_byte_offset++] |= (src_byte >> 2);
			dst[dst_byte_offset] = (src_byte << 6);
			current_bit_offset = 2;
			break;
		case 2:
			dst[dst_byte_offset++] |= (src_byte);
			dst[dst_byte_offset] = 0;
			current_bit_offset = 0;
			break;
		}
		src_byte_offset++;
	}
	(*dst_size) = dst_byte_offset;
out:
2113
	return;
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
}

/**
 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
 * @name: The plaintext name
 * @length: The length of the plaintext
 * @encoded_name: The encypted name
 *
 * Encrypts and encodes a filename into something that constitutes a
 * valid filename for a filesystem, with printable characters.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * Returns zero on success; non-zero on otherwise
 */
int ecryptfs_encrypt_and_encode_filename(
	char **encoded_name,
	size_t *encoded_name_size,
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
	const char *name, size_t name_size)
{
	size_t encoded_name_no_prefix_size;
	int rc = 0;

	(*encoded_name) = NULL;
	(*encoded_name_size) = 0;
	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
	    || (mount_crypt_stat && (mount_crypt_stat->flags
				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
		struct ecryptfs_filename *filename;

		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
		if (!filename) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
2151
			       "to kzalloc [%zd] bytes\n", __func__,
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
			       sizeof(*filename));
			rc = -ENOMEM;
			goto out;
		}
		filename->filename = (char *)name;
		filename->filename_size = name_size;
		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
					       mount_crypt_stat);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to encrypt "
			       "filename; rc = [%d]\n", __func__, rc);
			kfree(filename);
			goto out;
		}
		ecryptfs_encode_for_filename(
			NULL, &encoded_name_no_prefix_size,
			filename->encrypted_filename,
			filename->encrypted_filename_size);
		if ((crypt_stat && (crypt_stat->flags
				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
		    || (mount_crypt_stat
			&& (mount_crypt_stat->flags
			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
			(*encoded_name_size) =
				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
		else
			(*encoded_name_size) =
				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
		if (!(*encoded_name)) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
2185
			       "to kzalloc [%zd] bytes\n", __func__,
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
			       (*encoded_name_size));
			rc = -ENOMEM;
			kfree(filename->encrypted_filename);
			kfree(filename);
			goto out;
		}
		if ((crypt_stat && (crypt_stat->flags
				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
		    || (mount_crypt_stat
			&& (mount_crypt_stat->flags
			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
			memcpy((*encoded_name),
			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
			ecryptfs_encode_for_filename(
			    ((*encoded_name)
			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
			    &encoded_name_no_prefix_size,
			    filename->encrypted_filename,
			    filename->encrypted_filename_size);
			(*encoded_name_size) =
				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
			(*encoded_name)[(*encoded_name_size)] = '\0';
		} else {
2211
			rc = -EOPNOTSUPP;
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
		}
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to encode "
			       "encrypted filename; rc = [%d]\n", __func__,
			       rc);
			kfree((*encoded_name));
			(*encoded_name) = NULL;
			(*encoded_name_size) = 0;
		}
		kfree(filename->encrypted_filename);
		kfree(filename);
	} else {
		rc = ecryptfs_copy_filename(encoded_name,
					    encoded_name_size,
					    name, name_size);
	}
out:
	return rc;
}

/**
 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
 * @plaintext_name: The plaintext name
 * @plaintext_name_size: The plaintext name size
 * @ecryptfs_dir_dentry: eCryptfs directory dentry
 * @name: The filename in cipher text
 * @name_size: The cipher text name size
 *
 * Decrypts and decodes the filename.
 *
 * Returns zero on error; non-zero otherwise
 */
int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
					 size_t *plaintext_name_size,
					 struct dentry *ecryptfs_dir_dentry,
					 const char *name, size_t name_size)
{
2249 2250 2251
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2252 2253 2254 2255 2256
	char *decoded_name;
	size_t decoded_name_size;
	size_t packet_size;
	int rc = 0;

2257 2258 2259
	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2260 2261 2262 2263 2264 2265 2266
	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
		const char *orig_name = name;
		size_t orig_name_size = name_size;

		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2267 2268
		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
					      name, name_size);
2269 2270 2271
		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
		if (!decoded_name) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
M
Michael Halcrow 已提交
2272
			       "to kmalloc [%zd] bytes\n", __func__,
2273 2274 2275 2276
			       decoded_name_size);
			rc = -ENOMEM;
			goto out;
		}
2277 2278
		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
					      name, name_size);
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
						  plaintext_name_size,
						  &packet_size,
						  mount_crypt_stat,
						  decoded_name,
						  decoded_name_size);
		if (rc) {
			printk(KERN_INFO "%s: Could not parse tag 70 packet "
			       "from filename; copying through filename "
			       "as-is\n", __func__);
			rc = ecryptfs_copy_filename(plaintext_name,
						    plaintext_name_size,
						    orig_name, orig_name_size);
			goto out_free;
		}
	} else {
		rc = ecryptfs_copy_filename(plaintext_name,
					    plaintext_name_size,
					    name, name_size);
		goto out;
	}
out_free:
	kfree(decoded_name);
out:
	return rc;
}
T
Tyler Hicks 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353

#define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143

int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	struct blkcipher_desc desc;
	struct mutex *tfm_mutex;
	size_t cipher_blocksize;
	int rc;

	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
		(*namelen) = lower_namelen;
		return 0;
	}

	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
			mount_crypt_stat->global_default_fn_cipher_name);
	if (unlikely(rc)) {
		(*namelen) = 0;
		return rc;
	}

	mutex_lock(tfm_mutex);
	cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
	mutex_unlock(tfm_mutex);

	/* Return an exact amount for the common cases */
	if (lower_namelen == NAME_MAX
	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
		return 0;
	}

	/* Return a safe estimate for the uncommon cases */
	(*namelen) = lower_namelen;
	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
	/* Since this is the max decoded size, subtract 1 "decoded block" len */
	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
	/* Worst case is that the filename is padded nearly a full block size */
	(*namelen) -= cipher_blocksize - 1;

	if ((*namelen) < 0)
		(*namelen) = 0;

	return 0;
}