skge.c 91.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
 * Ethernet adapters. Based on earlier sk98lin, e100 and
 * FreeBSD if_sk drivers.
 *
 * This driver intentionally does not support all the features
 * of the original driver such as link fail-over and link management because
 * those should be done at higher levels.
 *
10
 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

27
#include <linux/in.h>
28 29 30 31 32 33 34 35 36 37 38
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/delay.h>
#include <linux/crc32.h>
A
Al Viro 已提交
39
#include <linux/dma-mapping.h>
40
#include <linux/mii.h>
41 42 43 44 45
#include <asm/irq.h>

#include "skge.h"

#define DRV_NAME		"skge"
S
Stephen Hemminger 已提交
46
#define DRV_VERSION		"1.7"
47 48 49 50 51
#define PFX			DRV_NAME " "

#define DEFAULT_TX_RING_SIZE	128
#define DEFAULT_RX_RING_SIZE	512
#define MAX_TX_RING_SIZE	1024
52
#define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
53
#define MAX_RX_RING_SIZE	4096
54 55
#define RX_COPY_THRESHOLD	128
#define RX_BUF_SIZE		1536
56 57 58 59
#define PHY_RETRIES	        1000
#define ETH_JUMBO_MTU		9000
#define TX_WATCHDOG		(5 * HZ)
#define NAPI_WEIGHT		64
60
#define BLINK_MS		250
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

static const u32 default_msg
	= NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
	  | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;

static int debug = -1;	/* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

static const struct pci_device_id skge_id_table[] = {
76 77 78 79 80
	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
81
	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	/* DGE-530T */
82 83 84 85
	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
86
	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
87 88 89 90 91 92
	{ 0 }
};
MODULE_DEVICE_TABLE(pci, skge_id_table);

static int skge_up(struct net_device *dev);
static int skge_down(struct net_device *dev);
93
static void skge_phy_reset(struct skge_port *skge);
94
static void skge_tx_clean(struct skge_port *skge);
95 96
static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 98 99 100
static void genesis_get_stats(struct skge_port *skge, u64 *data);
static void yukon_get_stats(struct skge_port *skge, u64 *data);
static void yukon_init(struct skge_hw *hw, int port);
static void genesis_mac_init(struct skge_hw *hw, int port);
101
static void genesis_link_up(struct skge_port *skge);
102

103
/* Avoid conditionals by using array */
104 105 106 107 108 109 110
static const int txqaddr[] = { Q_XA1, Q_XA2 };
static const int rxqaddr[] = { Q_R1, Q_R2 };
static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };

static int skge_get_regs_len(struct net_device *dev)
{
111
	return 0x4000;
112 113 114
}

/*
115 116 117
 * Returns copy of whole control register region
 * Note: skip RAM address register because accessing it will
 * 	 cause bus hangs!
118 119 120 121 122 123 124 125
 */
static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
			  void *p)
{
	const struct skge_port *skge = netdev_priv(dev);
	const void __iomem *io = skge->hw->regs;

	regs->version = 1;
126 127
	memset(p, 0, regs->len);
	memcpy_fromio(p, io, B3_RAM_ADDR);
128

129 130
	memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
		      regs->len - B3_RI_WTO_R1);
131 132
}

S
Stephen Hemminger 已提交
133
/* Wake on Lan only supported on Yukon chips with rev 1 or above */
134 135 136
static int wol_supported(const struct skge_hw *hw)
{
	return !((hw->chip_id == CHIP_ID_GENESIS ||
137
		  (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
}

static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct skge_port *skge = netdev_priv(dev);

	wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
	wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
}

static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

153
	if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
		return -EOPNOTSUPP;

	if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
		return -EOPNOTSUPP;

	skge->wol = wol->wolopts == WAKE_MAGIC;

	if (skge->wol) {
		memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);

		skge_write16(hw, WOL_CTRL_STAT,
			     WOL_CTL_ENA_PME_ON_MAGIC_PKT |
			     WOL_CTL_ENA_MAGIC_PKT_UNIT);
	} else
		skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);

	return 0;
}

S
Stephen Hemminger 已提交
173 174
/* Determine supported/advertised modes based on hardware.
 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
175 176 177 178 179
 */
static u32 skge_supported_modes(const struct skge_hw *hw)
{
	u32 supported;

180
	if (hw->copper) {
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
		supported = SUPPORTED_10baseT_Half
			| SUPPORTED_10baseT_Full
			| SUPPORTED_100baseT_Half
			| SUPPORTED_100baseT_Full
			| SUPPORTED_1000baseT_Half
			| SUPPORTED_1000baseT_Full
			| SUPPORTED_Autoneg| SUPPORTED_TP;

		if (hw->chip_id == CHIP_ID_GENESIS)
			supported &= ~(SUPPORTED_10baseT_Half
					     | SUPPORTED_10baseT_Full
					     | SUPPORTED_100baseT_Half
					     | SUPPORTED_100baseT_Full);

		else if (hw->chip_id == CHIP_ID_YUKON)
			supported &= ~SUPPORTED_1000baseT_Half;
	} else
		supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
			| SUPPORTED_Autoneg;

	return supported;
}
203 204 205 206 207 208 209 210

static int skge_get_settings(struct net_device *dev,
			     struct ethtool_cmd *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

	ecmd->transceiver = XCVR_INTERNAL;
211
	ecmd->supported = skge_supported_modes(hw);
212

213
	if (hw->copper) {
214 215
		ecmd->port = PORT_TP;
		ecmd->phy_address = hw->phy_addr;
216
	} else
217 218 219 220 221 222 223 224 225 226 227 228 229
		ecmd->port = PORT_FIBRE;

	ecmd->advertising = skge->advertising;
	ecmd->autoneg = skge->autoneg;
	ecmd->speed = skge->speed;
	ecmd->duplex = skge->duplex;
	return 0;
}

static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	const struct skge_hw *hw = skge->hw;
230
	u32 supported = skge_supported_modes(hw);
231 232

	if (ecmd->autoneg == AUTONEG_ENABLE) {
233 234 235
		ecmd->advertising = supported;
		skge->duplex = -1;
		skge->speed = -1;
236
	} else {
237 238
		u32 setting;

239
		switch (ecmd->speed) {
240
		case SPEED_1000:
241 242 243 244 245 246
			if (ecmd->duplex == DUPLEX_FULL)
				setting = SUPPORTED_1000baseT_Full;
			else if (ecmd->duplex == DUPLEX_HALF)
				setting = SUPPORTED_1000baseT_Half;
			else
				return -EINVAL;
247 248
			break;
		case SPEED_100:
249 250 251 252 253 254 255 256
			if (ecmd->duplex == DUPLEX_FULL)
				setting = SUPPORTED_100baseT_Full;
			else if (ecmd->duplex == DUPLEX_HALF)
				setting = SUPPORTED_100baseT_Half;
			else
				return -EINVAL;
			break;

257
		case SPEED_10:
258 259 260 261 262
			if (ecmd->duplex == DUPLEX_FULL)
				setting = SUPPORTED_10baseT_Full;
			else if (ecmd->duplex == DUPLEX_HALF)
				setting = SUPPORTED_10baseT_Half;
			else
263 264 265 266 267
				return -EINVAL;
			break;
		default:
			return -EINVAL;
		}
268 269 270 271 272 273

		if ((setting & supported) == 0)
			return -EINVAL;

		skge->speed = ecmd->speed;
		skge->duplex = ecmd->duplex;
274 275 276 277 278
	}

	skge->autoneg = ecmd->autoneg;
	skge->advertising = ecmd->advertising;

279 280 281
	if (netif_running(dev))
		skge_phy_reset(skge);

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	return (0);
}

static void skge_get_drvinfo(struct net_device *dev,
			     struct ethtool_drvinfo *info)
{
	struct skge_port *skge = netdev_priv(dev);

	strcpy(info->driver, DRV_NAME);
	strcpy(info->version, DRV_VERSION);
	strcpy(info->fw_version, "N/A");
	strcpy(info->bus_info, pci_name(skge->hw->pdev));
}

static const struct skge_stat {
	char 	   name[ETH_GSTRING_LEN];
	u16	   xmac_offset;
	u16	   gma_offset;
} skge_stats[] = {
	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },

	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },

	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },

	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
};

static int skge_get_stats_count(struct net_device *dev)
{
	return ARRAY_SIZE(skge_stats);
}

static void skge_get_ethtool_stats(struct net_device *dev,
				   struct ethtool_stats *stats, u64 *data)
{
	struct skge_port *skge = netdev_priv(dev);

	if (skge->hw->chip_id == CHIP_ID_GENESIS)
		genesis_get_stats(skge, data);
	else
		yukon_get_stats(skge, data);
}

/* Use hardware MIB variables for critical path statistics and
 * transmit feedback not reported at interrupt.
 * Other errors are accounted for in interrupt handler.
 */
static struct net_device_stats *skge_get_stats(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	u64 data[ARRAY_SIZE(skge_stats)];

	if (skge->hw->chip_id == CHIP_ID_GENESIS)
		genesis_get_stats(skge, data);
	else
		yukon_get_stats(skge, data);

	skge->net_stats.tx_bytes = data[0];
	skge->net_stats.rx_bytes = data[1];
	skge->net_stats.tx_packets = data[2] + data[4] + data[6];
	skge->net_stats.rx_packets = data[3] + data[5] + data[7];
361
	skge->net_stats.multicast = data[3] + data[5];
362 363 364 365 366 367 368 369 370 371
	skge->net_stats.collisions = data[10];
	skge->net_stats.tx_aborted_errors = data[12];

	return &skge->net_stats;
}

static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
	int i;

372
	switch (stringset) {
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	case ETH_SS_STATS:
		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
			memcpy(data + i * ETH_GSTRING_LEN,
			       skge_stats[i].name, ETH_GSTRING_LEN);
		break;
	}
}

static void skge_get_ring_param(struct net_device *dev,
				struct ethtool_ringparam *p)
{
	struct skge_port *skge = netdev_priv(dev);

	p->rx_max_pending = MAX_RX_RING_SIZE;
	p->tx_max_pending = MAX_TX_RING_SIZE;
	p->rx_mini_max_pending = 0;
	p->rx_jumbo_max_pending = 0;

	p->rx_pending = skge->rx_ring.count;
	p->tx_pending = skge->tx_ring.count;
	p->rx_mini_pending = 0;
	p->rx_jumbo_pending = 0;
}

static int skge_set_ring_param(struct net_device *dev,
			       struct ethtool_ringparam *p)
{
	struct skge_port *skge = netdev_priv(dev);
401
	int err;
402 403

	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
404
	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
405 406 407 408 409 410 411
		return -EINVAL;

	skge->rx_ring.count = p->rx_pending;
	skge->tx_ring.count = p->tx_pending;

	if (netif_running(dev)) {
		skge_down(dev);
412 413 414
		err = skge_up(dev);
		if (err)
			dev_close(dev);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	}

	return 0;
}

static u32 skge_get_msglevel(struct net_device *netdev)
{
	struct skge_port *skge = netdev_priv(netdev);
	return skge->msg_enable;
}

static void skge_set_msglevel(struct net_device *netdev, u32 value)
{
	struct skge_port *skge = netdev_priv(netdev);
	skge->msg_enable = value;
}

static int skge_nway_reset(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
		return -EINVAL;

439
	skge_phy_reset(skge);
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	return 0;
}

static int skge_set_sg(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

	if (hw->chip_id == CHIP_ID_GENESIS && data)
		return -EOPNOTSUPP;
	return ethtool_op_set_sg(dev, data);
}

static int skge_set_tx_csum(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

	if (hw->chip_id == CHIP_ID_GENESIS && data)
		return -EOPNOTSUPP;

	return ethtool_op_set_tx_csum(dev, data);
}

static u32 skge_get_rx_csum(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	return skge->rx_csum;
}

/* Only Yukon supports checksum offload. */
static int skge_set_rx_csum(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);

	if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
		return -EOPNOTSUPP;

	skge->rx_csum = data;
	return 0;
}

static void skge_get_pauseparam(struct net_device *dev,
				struct ethtool_pauseparam *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);

	ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
		|| (skge->flow_control == FLOW_MODE_SYMMETRIC);
	ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
		|| (skge->flow_control == FLOW_MODE_SYMMETRIC);

	ecmd->autoneg = skge->autoneg;
}

static int skge_set_pauseparam(struct net_device *dev,
			       struct ethtool_pauseparam *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);

	skge->autoneg = ecmd->autoneg;
	if (ecmd->rx_pause && ecmd->tx_pause)
		skge->flow_control = FLOW_MODE_SYMMETRIC;
504
	else if (ecmd->rx_pause && !ecmd->tx_pause)
505
		skge->flow_control = FLOW_MODE_REM_SEND;
506
	else if (!ecmd->rx_pause && ecmd->tx_pause)
507 508 509 510
		skge->flow_control = FLOW_MODE_LOC_SEND;
	else
		skge->flow_control = FLOW_MODE_NONE;

511 512
	if (netif_running(dev))
		skge_phy_reset(skge);
513 514 515 516 517 518
	return 0;
}

/* Chip internal frequency for clock calculations */
static inline u32 hwkhz(const struct skge_hw *hw)
{
519
	return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
520 521
}

S
Stephen Hemminger 已提交
522
/* Chip HZ to microseconds */
523 524 525 526 527
static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
{
	return (ticks * 1000) / hwkhz(hw);
}

S
Stephen Hemminger 已提交
528
/* Microseconds to chip HZ */
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
{
	return hwkhz(hw) * usec / 1000;
}

static int skge_get_coalesce(struct net_device *dev,
			     struct ethtool_coalesce *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	ecmd->rx_coalesce_usecs = 0;
	ecmd->tx_coalesce_usecs = 0;

	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
		u32 msk = skge_read32(hw, B2_IRQM_MSK);

		if (msk & rxirqmask[port])
			ecmd->rx_coalesce_usecs = delay;
		if (msk & txirqmask[port])
			ecmd->tx_coalesce_usecs = delay;
	}

	return 0;
}

/* Note: interrupt timer is per board, but can turn on/off per port */
static int skge_set_coalesce(struct net_device *dev,
			     struct ethtool_coalesce *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u32 msk = skge_read32(hw, B2_IRQM_MSK);
	u32 delay = 25;

	if (ecmd->rx_coalesce_usecs == 0)
		msk &= ~rxirqmask[port];
	else if (ecmd->rx_coalesce_usecs < 25 ||
		 ecmd->rx_coalesce_usecs > 33333)
		return -EINVAL;
	else {
		msk |= rxirqmask[port];
		delay = ecmd->rx_coalesce_usecs;
	}

	if (ecmd->tx_coalesce_usecs == 0)
		msk &= ~txirqmask[port];
	else if (ecmd->tx_coalesce_usecs < 25 ||
		 ecmd->tx_coalesce_usecs > 33333)
		return -EINVAL;
	else {
		msk |= txirqmask[port];
		delay = min(delay, ecmd->rx_coalesce_usecs);
	}

	skge_write32(hw, B2_IRQM_MSK, msk);
	if (msk == 0)
		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
	else {
		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
	}
	return 0;
}

597 598
enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
static void skge_led(struct skge_port *skge, enum led_mode mode)
599
{
600 601 602
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

603
	mutex_lock(&hw->phy_mutex);
604
	if (hw->chip_id == CHIP_ID_GENESIS) {
605 606 607 608 609 610 611
		switch (mode) {
		case LED_MODE_OFF:
			xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
			break;
612

613 614 615
		case LED_MODE_ON:
			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
616

617 618
			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
619

620
			break;
621

622 623 624 625
		case LED_MODE_TST:
			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
626

627 628 629
			xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
			break;
		}
630
	} else {
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
		switch (mode) {
		case LED_MODE_OFF:
			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
				     PHY_M_LED_MO_10(MO_LED_OFF)   |
				     PHY_M_LED_MO_100(MO_LED_OFF)  |
				     PHY_M_LED_MO_1000(MO_LED_OFF) |
				     PHY_M_LED_MO_RX(MO_LED_OFF));
			break;
		case LED_MODE_ON:
			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
				     PHY_M_LED_PULS_DUR(PULS_170MS) |
				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
				     PHY_M_LEDC_TX_CTRL |
				     PHY_M_LEDC_DP_CTRL);
647

648 649 650 651 652 653 654 655 656 657 658 659 660 661
			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
				     PHY_M_LED_MO_RX(MO_LED_OFF) |
				     (skge->speed == SPEED_100 ?
				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
			break;
		case LED_MODE_TST:
			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
				     PHY_M_LED_MO_10(MO_LED_ON)   |
				     PHY_M_LED_MO_100(MO_LED_ON)  |
				     PHY_M_LED_MO_1000(MO_LED_ON) |
				     PHY_M_LED_MO_RX(MO_LED_ON));
		}
662
	}
663
	mutex_unlock(&hw->phy_mutex);
664 665 666 667 668 669
}

/* blink LED's for finding board */
static int skge_phys_id(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);
670 671
	unsigned long ms;
	enum led_mode mode = LED_MODE_TST;
672

673
	if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
674 675 676
		ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
	else
		ms = data * 1000;
677

678 679 680
	while (ms > 0) {
		skge_led(skge, mode);
		mode ^= LED_MODE_TST;
681

682 683 684 685
		if (msleep_interruptible(BLINK_MS))
			break;
		ms -= BLINK_MS;
	}
686

687 688
	/* back to regular LED state */
	skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

	return 0;
}

static struct ethtool_ops skge_ethtool_ops = {
	.get_settings	= skge_get_settings,
	.set_settings	= skge_set_settings,
	.get_drvinfo	= skge_get_drvinfo,
	.get_regs_len	= skge_get_regs_len,
	.get_regs	= skge_get_regs,
	.get_wol	= skge_get_wol,
	.set_wol	= skge_set_wol,
	.get_msglevel	= skge_get_msglevel,
	.set_msglevel	= skge_set_msglevel,
	.nway_reset	= skge_nway_reset,
	.get_link	= ethtool_op_get_link,
	.get_ringparam	= skge_get_ring_param,
	.set_ringparam	= skge_set_ring_param,
	.get_pauseparam = skge_get_pauseparam,
	.set_pauseparam = skge_set_pauseparam,
	.get_coalesce	= skge_get_coalesce,
	.set_coalesce	= skge_set_coalesce,
	.get_sg		= ethtool_op_get_sg,
	.set_sg		= skge_set_sg,
	.get_tx_csum	= ethtool_op_get_tx_csum,
	.set_tx_csum	= skge_set_tx_csum,
	.get_rx_csum	= skge_get_rx_csum,
	.set_rx_csum	= skge_set_rx_csum,
	.get_strings	= skge_get_strings,
	.phys_id	= skge_phys_id,
	.get_stats_count = skge_get_stats_count,
	.get_ethtool_stats = skge_get_ethtool_stats,
721
	.get_perm_addr	= ethtool_op_get_perm_addr,
722 723 724 725 726 727
};

/*
 * Allocate ring elements and chain them together
 * One-to-one association of board descriptors with ring elements
 */
728
static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
729 730 731 732 733
{
	struct skge_tx_desc *d;
	struct skge_element *e;
	int i;

S
Stephen Hemminger 已提交
734
	ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
	if (!ring->start)
		return -ENOMEM;

	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
		e->desc = d;
		if (i == ring->count - 1) {
			e->next = ring->start;
			d->next_offset = base;
		} else {
			e->next = e + 1;
			d->next_offset = base + (i+1) * sizeof(*d);
		}
	}
	ring->to_use = ring->to_clean = ring->start;

	return 0;
}

753 754 755 756 757 758
/* Allocate and setup a new buffer for receiving */
static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
			  struct sk_buff *skb, unsigned int bufsize)
{
	struct skge_rx_desc *rd = e->desc;
	u64 map;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777

	map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
			     PCI_DMA_FROMDEVICE);

	rd->dma_lo = map;
	rd->dma_hi = map >> 32;
	e->skb = skb;
	rd->csum1_start = ETH_HLEN;
	rd->csum2_start = ETH_HLEN;
	rd->csum1 = 0;
	rd->csum2 = 0;

	wmb();

	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
	pci_unmap_addr_set(e, mapaddr, map);
	pci_unmap_len_set(e, maplen, bufsize);
}

778 779 780 781
/* Resume receiving using existing skb,
 * Note: DMA address is not changed by chip.
 * 	 MTU not changed while receiver active.
 */
782
static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
783 784 785 786 787 788 789 790 791 792 793 794 795
{
	struct skge_rx_desc *rd = e->desc;

	rd->csum2 = 0;
	rd->csum2_start = ETH_HLEN;

	wmb();

	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
}


/* Free all  buffers in receive ring, assumes receiver stopped */
796 797 798 799 800 801
static void skge_rx_clean(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	struct skge_ring *ring = &skge->rx_ring;
	struct skge_element *e;

802 803
	e = ring->start;
	do {
804 805
		struct skge_rx_desc *rd = e->desc;
		rd->control = 0;
806 807 808 809 810 811 812 813 814
		if (e->skb) {
			pci_unmap_single(hw->pdev,
					 pci_unmap_addr(e, mapaddr),
					 pci_unmap_len(e, maplen),
					 PCI_DMA_FROMDEVICE);
			dev_kfree_skb(e->skb);
			e->skb = NULL;
		}
	} while ((e = e->next) != ring->start);
815 816
}

817

818
/* Allocate buffers for receive ring
819
 * For receive:  to_clean is next received frame.
820
 */
821
static int skge_rx_fill(struct net_device *dev)
822
{
823
	struct skge_port *skge = netdev_priv(dev);
824 825 826
	struct skge_ring *ring = &skge->rx_ring;
	struct skge_element *e;

827 828
	e = ring->start;
	do {
829
		struct sk_buff *skb;
830

831 832
		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
					 GFP_KERNEL);
833 834 835
		if (!skb)
			return -ENOMEM;

836 837
		skb_reserve(skb, NET_IP_ALIGN);
		skge_rx_setup(skge, e, skb, skge->rx_buf_size);
838
	} while ( (e = e->next) != ring->start);
839

840 841
	ring->to_clean = ring->start;
	return 0;
842 843 844 845
}

static void skge_link_up(struct skge_port *skge)
{
846
	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
847 848
		    LED_BLK_OFF|LED_SYNC_OFF|LED_ON);

849
	netif_carrier_on(skge->netdev);
850
	netif_wake_queue(skge->netdev);
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865

	if (netif_msg_link(skge))
		printk(KERN_INFO PFX
		       "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
		       skge->netdev->name, skge->speed,
		       skge->duplex == DUPLEX_FULL ? "full" : "half",
		       (skge->flow_control == FLOW_MODE_NONE) ? "none" :
		       (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
		       (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
		       (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
		       "unknown");
}

static void skge_link_down(struct skge_port *skge)
{
866
	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
867 868 869 870 871 872 873
	netif_carrier_off(skge->netdev);
	netif_stop_queue(skge->netdev);

	if (netif_msg_link(skge))
		printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
}

874
static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
875 876 877
{
	int i;

878
	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
879
	*val = xm_read16(hw, port, XM_PHY_DATA);
880

881
	for (i = 0; i < PHY_RETRIES; i++) {
882
		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
883
			goto ready;
884
		udelay(1);
885 886
	}

887
	return -ETIMEDOUT;
888
 ready:
889
	*val = xm_read16(hw, port, XM_PHY_DATA);
890

891 892 893 894 895 896 897 898 899
	return 0;
}

static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
	u16 v = 0;
	if (__xm_phy_read(hw, port, reg, &v))
		printk(KERN_WARNING PFX "%s: phy read timed out\n",
		       hw->dev[port]->name);
900 901 902
	return v;
}

903
static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
904 905 906
{
	int i;

907
	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
908
	for (i = 0; i < PHY_RETRIES; i++) {
909
		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
910
			goto ready;
911
		udelay(1);
912
	}
913
	return -EIO;
914 915

 ready:
916
	xm_write16(hw, port, XM_PHY_DATA, val);
917 918 919 920 921 922
	for (i = 0; i < PHY_RETRIES; i++) {
		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
			return 0;
		udelay(1);
	}
	return -ETIMEDOUT;
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
}

static void genesis_init(struct skge_hw *hw)
{
	/* set blink source counter */
	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
	skge_write8(hw, B2_BSC_CTRL, BSC_START);

	/* configure mac arbiter */
	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);

	/* configure mac arbiter timeout values */
	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);

	skge_write8(hw, B3_MA_RCINI_RX1, 0);
	skge_write8(hw, B3_MA_RCINI_RX2, 0);
	skge_write8(hw, B3_MA_RCINI_TX1, 0);
	skge_write8(hw, B3_MA_RCINI_TX2, 0);

	/* configure packet arbiter timeout */
	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
}

static void genesis_reset(struct skge_hw *hw, int port)
{
955
	const u8 zero[8]  = { 0 };
956

957 958
	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);

959
	/* reset the statistics module */
960 961 962 963 964
	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
	xm_write16(hw, port, XM_IMSK, 0xffff);	/* disable XMAC IRQs */
	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
965

966 967
	/* disable Broadcom PHY IRQ */
	xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
968

969
	xm_outhash(hw, port, XM_HSM, zero);
970 971 972
}


973 974 975 976 977 978 979 980 981 982 983
/* Convert mode to MII values  */
static const u16 phy_pause_map[] = {
	[FLOW_MODE_NONE] =	0,
	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
	[FLOW_MODE_REM_SEND]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
};


/* Check status of Broadcom phy link */
static void bcom_check_link(struct skge_hw *hw, int port)
984
{
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	struct net_device *dev = hw->dev[port];
	struct skge_port *skge = netdev_priv(dev);
	u16 status;

	/* read twice because of latch */
	(void) xm_phy_read(hw, port, PHY_BCOM_STAT);
	status = xm_phy_read(hw, port, PHY_BCOM_STAT);

	if ((status & PHY_ST_LSYNC) == 0) {
		u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
		cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
		xm_write16(hw, port, XM_MMU_CMD, cmd);
		/* dummy read to ensure writing */
		(void) xm_read16(hw, port, XM_MMU_CMD);

		if (netif_carrier_ok(dev))
			skge_link_down(skge);
	} else {
		if (skge->autoneg == AUTONEG_ENABLE &&
		    (status & PHY_ST_AN_OVER)) {
			u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
			u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);

			if (lpa & PHY_B_AN_RF) {
				printk(KERN_NOTICE PFX "%s: remote fault\n",
				       dev->name);
				return;
			}

			/* Check Duplex mismatch */
1015
			switch (aux & PHY_B_AS_AN_RES_MSK) {
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
			case PHY_B_RES_1000FD:
				skge->duplex = DUPLEX_FULL;
				break;
			case PHY_B_RES_1000HD:
				skge->duplex = DUPLEX_HALF;
				break;
			default:
				printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
				       dev->name);
				return;
			}


			/* We are using IEEE 802.3z/D5.0 Table 37-4 */
			switch (aux & PHY_B_AS_PAUSE_MSK) {
			case PHY_B_AS_PAUSE_MSK:
				skge->flow_control = FLOW_MODE_SYMMETRIC;
				break;
			case PHY_B_AS_PRR:
				skge->flow_control = FLOW_MODE_REM_SEND;
				break;
			case PHY_B_AS_PRT:
				skge->flow_control = FLOW_MODE_LOC_SEND;
				break;
			default:
				skge->flow_control = FLOW_MODE_NONE;
			}

			skge->speed = SPEED_1000;
		}

		if (!netif_carrier_ok(dev))
			genesis_link_up(skge);
	}
}

/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
 * Phy on for 100 or 10Mbit operation
 */
static void bcom_phy_init(struct skge_port *skge, int jumbo)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1059
	int i;
1060
	u16 id1, r, ext, ctl;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

	/* magic workaround patterns for Broadcom */
	static const struct {
		u16 reg;
		u16 val;
	} A1hack[] = {
		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
	}, C0hack[] = {
		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
	};

1076 1077 1078 1079 1080 1081 1082 1083
	/* read Id from external PHY (all have the same address) */
	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);

	/* Optimize MDIO transfer by suppressing preamble. */
	r = xm_read16(hw, port, XM_MMU_CMD);
	r |=  XM_MMU_NO_PRE;
	xm_write16(hw, port, XM_MMU_CMD,r);

1084
	switch (id1) {
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	case PHY_BCOM_ID1_C0:
		/*
		 * Workaround BCOM Errata for the C0 type.
		 * Write magic patterns to reserved registers.
		 */
		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
			xm_phy_write(hw, port,
				     C0hack[i].reg, C0hack[i].val);

		break;
	case PHY_BCOM_ID1_A1:
		/*
		 * Workaround BCOM Errata for the A1 type.
		 * Write magic patterns to reserved registers.
		 */
		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
			xm_phy_write(hw, port,
				     A1hack[i].reg, A1hack[i].val);
		break;
	}

	/*
	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
	 * Disable Power Management after reset.
	 */
	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
	r |= PHY_B_AC_DIS_PM;
	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);

	/* Dummy read */
	xm_read16(hw, port, XM_ISRC);

	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
	ctl = PHY_CT_SP1000;	/* always 1000mbit */

	if (skge->autoneg == AUTONEG_ENABLE) {
		/*
		 * Workaround BCOM Errata #1 for the C5 type.
		 * 1000Base-T Link Acquisition Failure in Slave Mode
		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
		 */
		u16 adv = PHY_B_1000C_RD;
		if (skge->advertising & ADVERTISED_1000baseT_Half)
			adv |= PHY_B_1000C_AHD;
		if (skge->advertising & ADVERTISED_1000baseT_Full)
			adv |= PHY_B_1000C_AFD;
		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);

		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
	} else {
		if (skge->duplex == DUPLEX_FULL)
			ctl |= PHY_CT_DUP_MD;
		/* Force to slave */
		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
	}

	/* Set autonegotiation pause parameters */
	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);

	/* Handle Jumbo frames */
	if (jumbo) {
		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);

		ext |= PHY_B_PEC_HIGH_LA;

	}

	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);

S
Stephen Hemminger 已提交
1157
	/* Use link status change interrupt */
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);

	bcom_check_link(hw, port);
}

static void genesis_mac_init(struct skge_hw *hw, int port)
{
	struct net_device *dev = hw->dev[port];
	struct skge_port *skge = netdev_priv(dev);
	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
	int i;
	u32 r;
	const u8 zero[6]  = { 0 };

1172 1173 1174 1175 1176 1177 1178
	for (i = 0; i < 10; i++) {
		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
			     MFF_SET_MAC_RST);
		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
			goto reset_ok;
		udelay(1);
	}
1179

1180 1181 1182
	printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);

 reset_ok:
1183
	/* Unreset the XMAC. */
1184
	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1185 1186 1187 1188 1189 1190

	/*
	 * Perform additional initialization for external PHYs,
	 * namely for the 1000baseTX cards that use the XMAC's
	 * GMII mode.
	 */
1191
	/* Take external Phy out of reset */
1192 1193 1194 1195 1196 1197 1198
	r = skge_read32(hw, B2_GP_IO);
	if (port == 0)
		r |= GP_DIR_0|GP_IO_0;
	else
		r |= GP_DIR_2|GP_IO_2;

	skge_write32(hw, B2_GP_IO, r);
1199

1200

S
Stephen Hemminger 已提交
1201
	/* Enable GMII interface */
1202 1203
	xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);

1204
	bcom_phy_init(skge, jumbo);
1205

1206 1207
	/* Set Station Address */
	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1208

1209 1210 1211 1212
	/* We don't use match addresses so clear */
	for (i = 1; i < 16; i++)
		xm_outaddr(hw, port, XM_EXM(i), zero);

1213 1214 1215 1216 1217 1218 1219
	/* Clear MIB counters */
	xm_write16(hw, port, XM_STAT_CMD,
			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
	/* Clear two times according to Errata #3 */
	xm_write16(hw, port, XM_STAT_CMD,
			XM_SC_CLR_RXC | XM_SC_CLR_TXC);

1220 1221 1222 1223 1224 1225 1226
	/* configure Rx High Water Mark (XM_RX_HI_WM) */
	xm_write16(hw, port, XM_RX_HI_WM, 1450);

	/* We don't need the FCS appended to the packet. */
	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
	if (jumbo)
		r |= XM_RX_BIG_PK_OK;
1227

1228
	if (skge->duplex == DUPLEX_HALF) {
1229
		/*
1230 1231 1232
		 * If in manual half duplex mode the other side might be in
		 * full duplex mode, so ignore if a carrier extension is not seen
		 * on frames received
1233
		 */
1234
		r |= XM_RX_DIS_CEXT;
1235
	}
1236
	xm_write16(hw, port, XM_RX_CMD, r);
1237 1238 1239


	/* We want short frames padded to 60 bytes. */
1240 1241 1242 1243 1244 1245 1246
	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);

	/*
	 * Bump up the transmit threshold. This helps hold off transmit
	 * underruns when we're blasting traffic from both ports at once.
	 */
	xm_write16(hw, port, XM_TX_THR, 512);
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

	/*
	 * Enable the reception of all error frames. This is is
	 * a necessary evil due to the design of the XMAC. The
	 * XMAC's receive FIFO is only 8K in size, however jumbo
	 * frames can be up to 9000 bytes in length. When bad
	 * frame filtering is enabled, the XMAC's RX FIFO operates
	 * in 'store and forward' mode. For this to work, the
	 * entire frame has to fit into the FIFO, but that means
	 * that jumbo frames larger than 8192 bytes will be
	 * truncated. Disabling all bad frame filtering causes
	 * the RX FIFO to operate in streaming mode, in which
S
Stephen Hemminger 已提交
1259
	 * case the XMAC will start transferring frames out of the
1260 1261
	 * RX FIFO as soon as the FIFO threshold is reached.
	 */
1262
	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1263 1264 1265


	/*
1266 1267 1268
	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1269
	 */
1270 1271 1272 1273 1274 1275 1276 1277
	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);

	/*
	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
	 *	  and 'Octets Tx OK Hi Cnt Ov'.
	 */
	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

	/* Configure MAC arbiter */
	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);

	/* configure timeout values */
	skge_write8(hw, B3_MA_TOINI_RX1, 72);
	skge_write8(hw, B3_MA_TOINI_RX2, 72);
	skge_write8(hw, B3_MA_TOINI_TX1, 72);
	skge_write8(hw, B3_MA_TOINI_TX2, 72);

	skge_write8(hw, B3_MA_RCINI_RX1, 0);
	skge_write8(hw, B3_MA_RCINI_RX2, 0);
	skge_write8(hw, B3_MA_RCINI_TX1, 0);
	skge_write8(hw, B3_MA_RCINI_TX2, 0);

	/* Configure Rx MAC FIFO */
1294 1295 1296
	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1297 1298

	/* Configure Tx MAC FIFO */
1299 1300 1301
	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1302

1303
	if (jumbo) {
1304
		/* Enable frame flushing if jumbo frames used */
1305
		skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1306 1307 1308
	} else {
		/* enable timeout timers if normal frames */
		skge_write16(hw, B3_PA_CTRL,
1309
			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1310 1311 1312 1313 1314 1315 1316
	}
}

static void genesis_stop(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1317
	u32 reg;
1318

1319 1320
	genesis_reset(hw, port);

1321 1322 1323 1324 1325
	/* Clear Tx packet arbiter timeout IRQ */
	skge_write16(hw, B3_PA_CTRL,
		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);

	/*
S
Stephen Hemminger 已提交
1326
	 * If the transfer sticks at the MAC the STOP command will not
1327 1328
	 * terminate if we don't flush the XMAC's transmit FIFO !
	 */
1329 1330
	xm_write32(hw, port, XM_MODE,
			xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1331 1332 1333


	/* Reset the MAC */
1334
	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1335 1336

	/* For external PHYs there must be special handling */
1337 1338 1339 1340 1341 1342 1343
	reg = skge_read32(hw, B2_GP_IO);
	if (port == 0) {
		reg |= GP_DIR_0;
		reg &= ~GP_IO_0;
	} else {
		reg |= GP_DIR_2;
		reg &= ~GP_IO_2;
1344
	}
1345 1346
	skge_write32(hw, B2_GP_IO, reg);
	skge_read32(hw, B2_GP_IO);
1347

1348 1349
	xm_write16(hw, port, XM_MMU_CMD,
			xm_read16(hw, port, XM_MMU_CMD)
1350 1351
			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));

1352
	xm_read16(hw, port, XM_MMU_CMD);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
}


static void genesis_get_stats(struct skge_port *skge, u64 *data)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	int i;
	unsigned long timeout = jiffies + HZ;

1363
	xm_write16(hw, port,
1364 1365 1366
			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);

	/* wait for update to complete */
1367
	while (xm_read16(hw, port, XM_STAT_CMD)
1368 1369 1370 1371 1372 1373 1374
	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
		if (time_after(jiffies, timeout))
			break;
		udelay(10);
	}

	/* special case for 64 bit octet counter */
1375 1376 1377 1378
	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
		| xm_read32(hw, port, XM_TXO_OK_LO);
	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
		| xm_read32(hw, port, XM_RXO_OK_LO);
1379 1380

	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1381
		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1382 1383 1384 1385 1386
}

static void genesis_mac_intr(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
1387
	u16 status = xm_read16(hw, port, XM_ISRC);
1388

1389 1390 1391
	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
		       skge->netdev->name, status);
1392 1393

	if (status & XM_IS_TXF_UR) {
1394
		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1395 1396 1397
		++skge->net_stats.tx_fifo_errors;
	}
	if (status & XM_IS_RXF_OV) {
1398
		xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
		++skge->net_stats.rx_fifo_errors;
	}
}

static void genesis_link_up(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u16 cmd;
	u32 mode, msk;

1410
	cmd = xm_read16(hw, port, XM_MMU_CMD);
1411 1412 1413 1414 1415 1416 1417

	/*
	 * enabling pause frame reception is required for 1000BT
	 * because the XMAC is not reset if the link is going down
	 */
	if (skge->flow_control == FLOW_MODE_NONE ||
	    skge->flow_control == FLOW_MODE_LOC_SEND)
1418
		/* Disable Pause Frame Reception */
1419 1420 1421 1422 1423
		cmd |= XM_MMU_IGN_PF;
	else
		/* Enable Pause Frame Reception */
		cmd &= ~XM_MMU_IGN_PF;

1424
	xm_write16(hw, port, XM_MMU_CMD, cmd);
1425

1426
	mode = xm_read32(hw, port, XM_MODE);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
	    skge->flow_control == FLOW_MODE_LOC_SEND) {
		/*
		 * Configure Pause Frame Generation
		 * Use internal and external Pause Frame Generation.
		 * Sending pause frames is edge triggered.
		 * Send a Pause frame with the maximum pause time if
		 * internal oder external FIFO full condition occurs.
		 * Send a zero pause time frame to re-start transmission.
		 */
		/* XM_PAUSE_DA = '010000C28001' (default) */
		/* XM_MAC_PTIME = 0xffff (maximum) */
		/* remember this value is defined in big endian (!) */
1440
		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1441 1442

		mode |= XM_PAUSE_MODE;
1443
		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1444 1445 1446 1447 1448 1449 1450 1451
	} else {
		/*
		 * disable pause frame generation is required for 1000BT
		 * because the XMAC is not reset if the link is going down
		 */
		/* Disable Pause Mode in Mode Register */
		mode &= ~XM_PAUSE_MODE;

1452
		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1453 1454
	}

1455
	xm_write32(hw, port, XM_MODE, mode);
1456 1457

	msk = XM_DEF_MSK;
1458 1459
	/* disable GP0 interrupt bit for external Phy */
	msk |= XM_IS_INP_ASS;
1460

1461 1462
	xm_write16(hw, port, XM_IMSK, msk);
	xm_read16(hw, port, XM_ISRC);
1463 1464

	/* get MMU Command Reg. */
1465
	cmd = xm_read16(hw, port, XM_MMU_CMD);
1466
	if (skge->duplex == DUPLEX_FULL)
1467 1468
		cmd |= XM_MMU_GMII_FD;

1469 1470 1471 1472 1473 1474 1475 1476
	/*
	 * Workaround BCOM Errata (#10523) for all BCom Phys
	 * Enable Power Management after link up
	 */
	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
		     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
		     & ~PHY_B_AC_DIS_PM);
	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1477 1478

	/* enable Rx/Tx */
1479
	xm_write16(hw, port, XM_MMU_CMD,
1480 1481 1482 1483 1484
			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
	skge_link_up(skge);
}


1485
static inline void bcom_phy_intr(struct skge_port *skge)
1486 1487 1488
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1489 1490 1491
	u16 isrc;

	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1492 1493 1494
	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
		       skge->netdev->name, isrc);
1495

1496 1497 1498
	if (isrc & PHY_B_IS_PSE)
		printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
		       hw->dev[port]->name);
1499 1500 1501 1502

	/* Workaround BCom Errata:
	 *	enable and disable loopback mode if "NO HCD" occurs.
	 */
1503
	if (isrc & PHY_B_IS_NO_HDCL) {
1504 1505
		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1506
				  ctrl | PHY_CT_LOOP);
1507
		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1508 1509 1510
				  ctrl & ~PHY_CT_LOOP);
	}

1511 1512
	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
		bcom_check_link(hw, port);
1513 1514 1515

}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{
	int i;

	gma_write16(hw, port, GM_SMI_DATA, val);
	gma_write16(hw, port, GM_SMI_CTRL,
			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
	for (i = 0; i < PHY_RETRIES; i++) {
		udelay(1);

		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
			return 0;
	}

	printk(KERN_WARNING PFX "%s: phy write timeout\n",
	       hw->dev[port]->name);
	return -EIO;
}

static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
{
	int i;

	gma_write16(hw, port, GM_SMI_CTRL,
			 GM_SMI_CT_PHY_AD(hw->phy_addr)
			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);

	for (i = 0; i < PHY_RETRIES; i++) {
		udelay(1);
		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
			goto ready;
	}

	return -ETIMEDOUT;
 ready:
	*val = gma_read16(hw, port, GM_SMI_DATA);
	return 0;
}

static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
	u16 v = 0;
	if (__gm_phy_read(hw, port, reg, &v))
		printk(KERN_WARNING PFX "%s: phy read timeout\n",
	       hw->dev[port]->name);
	return v;
}

S
Stephen Hemminger 已提交
1564
/* Marvell Phy Initialization */
1565 1566 1567 1568 1569 1570
static void yukon_init(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
	u16 ctrl, ct1000, adv;

	if (skge->autoneg == AUTONEG_ENABLE) {
1571
		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1572 1573 1574 1575 1576

		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
			  PHY_M_EC_MAC_S_MSK);
		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);

1577
		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1578

1579
		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1580 1581
	}

1582
	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1583 1584 1585 1586
	if (skge->autoneg == AUTONEG_DISABLE)
		ctrl &= ~PHY_CT_ANE;

	ctrl |= PHY_CT_RESET;
1587
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1588 1589 1590

	ctrl = 0;
	ct1000 = 0;
1591
	adv = PHY_AN_CSMA;
1592 1593

	if (skge->autoneg == AUTONEG_ENABLE) {
1594
		if (hw->copper) {
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
			if (skge->advertising & ADVERTISED_1000baseT_Full)
				ct1000 |= PHY_M_1000C_AFD;
			if (skge->advertising & ADVERTISED_1000baseT_Half)
				ct1000 |= PHY_M_1000C_AHD;
			if (skge->advertising & ADVERTISED_100baseT_Full)
				adv |= PHY_M_AN_100_FD;
			if (skge->advertising & ADVERTISED_100baseT_Half)
				adv |= PHY_M_AN_100_HD;
			if (skge->advertising & ADVERTISED_10baseT_Full)
				adv |= PHY_M_AN_10_FD;
			if (skge->advertising & ADVERTISED_10baseT_Half)
				adv |= PHY_M_AN_10_HD;
1607
		} else	/* special defines for FIBER (88E1011S only) */
1608 1609
			adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;

1610 1611 1612
		/* Set Flow-control capabilities */
		adv |= phy_pause_map[skge->flow_control];

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
		/* Restart Auto-negotiation */
		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
	} else {
		/* forced speed/duplex settings */
		ct1000 = PHY_M_1000C_MSE;

		if (skge->duplex == DUPLEX_FULL)
			ctrl |= PHY_CT_DUP_MD;

		switch (skge->speed) {
		case SPEED_1000:
			ctrl |= PHY_CT_SP1000;
			break;
		case SPEED_100:
			ctrl |= PHY_CT_SP100;
			break;
		}

		ctrl |= PHY_CT_RESET;
	}

1634
	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1635

1636 1637
	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1638 1639 1640

	/* Enable phy interrupt on autonegotiation complete (or link up) */
	if (skge->autoneg == AUTONEG_ENABLE)
1641
		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1642
	else
1643
		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1644 1645 1646 1647
}

static void yukon_reset(struct skge_hw *hw, int port)
{
1648 1649 1650 1651 1652
	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1653

1654 1655
	gma_write16(hw, port, GM_RX_CTRL,
			 gma_read16(hw, port, GM_RX_CTRL)
1656 1657 1658
			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
static int is_yukon_lite_a0(struct skge_hw *hw)
{
	u32 reg;
	int ret;

	if (hw->chip_id != CHIP_ID_YUKON)
		return 0;

	reg = skge_read32(hw, B2_FAR);
	skge_write8(hw, B2_FAR + 3, 0xff);
	ret = (skge_read8(hw, B2_FAR + 3) != 0);
	skge_write32(hw, B2_FAR, reg);
	return ret;
}

1675 1676 1677 1678 1679 1680 1681 1682 1683
static void yukon_mac_init(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
	int i;
	u32 reg;
	const u8 *addr = hw->dev[port]->dev_addr;

	/* WA code for COMA mode -- set PHY reset */
	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1684 1685 1686 1687 1688
	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
		reg = skge_read32(hw, B2_GP_IO);
		reg |= GP_DIR_9 | GP_IO_9;
		skge_write32(hw, B2_GP_IO, reg);
	}
1689 1690

	/* hard reset */
1691 1692
	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1693 1694 1695

	/* WA code for COMA mode -- clear PHY reset */
	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1696 1697 1698 1699 1700 1701
	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
		reg = skge_read32(hw, B2_GP_IO);
		reg |= GP_DIR_9;
		reg &= ~GP_IO_9;
		skge_write32(hw, B2_GP_IO, reg);
	}
1702 1703 1704 1705

	/* Set hardware config mode */
	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1706
	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1707 1708

	/* Clear GMC reset */
1709 1710 1711
	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
S
Stephen Hemminger 已提交
1712

1713 1714
	if (skge->autoneg == AUTONEG_DISABLE) {
		reg = GM_GPCR_AU_ALL_DIS;
1715 1716
		gma_write16(hw, port, GM_GP_CTRL,
				 gma_read16(hw, port, GM_GP_CTRL) | reg);
1717 1718 1719

		switch (skge->speed) {
		case SPEED_1000:
S
Stephen Hemminger 已提交
1720
			reg &= ~GM_GPCR_SPEED_100;
1721
			reg |= GM_GPCR_SPEED_1000;
S
Stephen Hemminger 已提交
1722
			break;
1723
		case SPEED_100:
S
Stephen Hemminger 已提交
1724
			reg &= ~GM_GPCR_SPEED_1000;
1725
			reg |= GM_GPCR_SPEED_100;
S
Stephen Hemminger 已提交
1726 1727 1728 1729
			break;
		case SPEED_10:
			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
			break;
1730 1731 1732 1733 1734 1735
		}

		if (skge->duplex == DUPLEX_FULL)
			reg |= GM_GPCR_DUP_FULL;
	} else
		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
S
Stephen Hemminger 已提交
1736

1737 1738
	switch (skge->flow_control) {
	case FLOW_MODE_NONE:
1739
		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1740 1741 1742 1743 1744 1745 1746
		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
		break;
	case FLOW_MODE_LOC_SEND:
		/* disable Rx flow-control */
		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
	}

1747
	gma_write16(hw, port, GM_GP_CTRL, reg);
1748
	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
1749 1750 1751 1752

	yukon_init(hw, port);

	/* MIB clear */
1753 1754
	reg = gma_read16(hw, port, GM_PHY_ADDR);
	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1755 1756

	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1757 1758
		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
	gma_write16(hw, port, GM_PHY_ADDR, reg);
1759 1760

	/* transmit control */
1761
	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1762 1763

	/* receive control reg: unicast + multicast + no FCS  */
1764
	gma_write16(hw, port, GM_RX_CTRL,
1765 1766 1767
			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);

	/* transmit flow control */
1768
	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1769 1770

	/* transmit parameter */
1771
	gma_write16(hw, port, GM_TX_PARAM,
1772 1773 1774 1775 1776 1777 1778 1779 1780
			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));

	/* serial mode register */
	reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
	if (hw->dev[port]->mtu > 1500)
		reg |= GM_SMOD_JUMBO_ENA;

1781
	gma_write16(hw, port, GM_SERIAL_MODE, reg);
1782 1783

	/* physical address: used for pause frames */
1784
	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1785
	/* virtual address for data */
1786
	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1787 1788

	/* enable interrupt mask for counter overflows */
1789 1790 1791
	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1792 1793 1794 1795

	/* Initialize Mac Fifo */

	/* Configure Rx MAC FIFO */
1796
	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1797
	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1798 1799 1800

	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
	if (is_yukon_lite_a0(hw))
1801
		reg &= ~GMF_RX_F_FL_ON;
1802

1803 1804
	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
1805 1806 1807 1808 1809 1810
	/*
	 * because Pause Packet Truncation in GMAC is not working
	 * we have to increase the Flush Threshold to 64 bytes
	 * in order to flush pause packets in Rx FIFO on Yukon-1
	 */
	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
1811 1812

	/* Configure Tx MAC FIFO */
1813 1814
	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1815 1816
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
/* Go into power down mode */
static void yukon_suspend(struct skge_hw *hw, int port)
{
	u16 ctrl;

	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
	ctrl |= PHY_M_PC_POL_R_DIS;
	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);

	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
	ctrl |= PHY_CT_RESET;
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);

	/* switch IEEE compatible power down mode on */
	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
	ctrl |= PHY_CT_PDOWN;
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
}

1836 1837 1838 1839 1840
static void yukon_stop(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

1841 1842
	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
	yukon_reset(hw, port);
1843

1844 1845
	gma_write16(hw, port, GM_GP_CTRL,
			 gma_read16(hw, port, GM_GP_CTRL)
1846
			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
1847
	gma_read16(hw, port, GM_GP_CTRL);
1848

1849
	yukon_suspend(hw, port);
1850

1851
	/* set GPHY Control reset */
1852 1853
	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1854 1855 1856 1857 1858 1859 1860 1861
}

static void yukon_get_stats(struct skge_port *skge, u64 *data)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	int i;

1862 1863 1864 1865
	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
		| gma_read32(hw, port, GM_TXO_OK_LO);
	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
		| gma_read32(hw, port, GM_RXO_OK_LO);
1866 1867

	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1868
		data[i] = gma_read32(hw, port,
1869 1870 1871 1872 1873
					  skge_stats[i].gma_offset);
}

static void yukon_mac_intr(struct skge_hw *hw, int port)
{
1874 1875
	struct net_device *dev = hw->dev[port];
	struct skge_port *skge = netdev_priv(dev);
1876
	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
1877

1878 1879 1880 1881
	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
		       dev->name, status);

1882 1883
	if (status & GM_IS_RX_FF_OR) {
		++skge->net_stats.rx_fifo_errors;
1884
		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
1885
	}
1886

1887 1888
	if (status & GM_IS_TX_FF_UR) {
		++skge->net_stats.tx_fifo_errors;
1889
		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
1890 1891 1892 1893 1894 1895
	}

}

static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
{
1896
	switch (aux & PHY_M_PS_SPEED_MSK) {
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	case PHY_M_PS_SPEED_1000:
		return SPEED_1000;
	case PHY_M_PS_SPEED_100:
		return SPEED_100;
	default:
		return SPEED_10;
	}
}

static void yukon_link_up(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u16 reg;

	/* Enable Transmit FIFO Underrun */
1913
	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
1914

1915
	reg = gma_read16(hw, port, GM_GP_CTRL);
1916 1917 1918 1919 1920
	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
		reg |= GM_GPCR_DUP_FULL;

	/* enable Rx/Tx */
	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1921
	gma_write16(hw, port, GM_GP_CTRL, reg);
1922

1923
	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1924 1925 1926 1927 1928 1929 1930
	skge_link_up(skge);
}

static void yukon_link_down(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1931
	u16 ctrl;
1932

1933
	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
1934 1935 1936 1937

	ctrl = gma_read16(hw, port, GM_GP_CTRL);
	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
	gma_write16(hw, port, GM_GP_CTRL, ctrl);
1938

1939
	if (skge->flow_control == FLOW_MODE_REM_SEND) {
1940
		/* restore Asymmetric Pause bit */
1941 1942
		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
				  gm_phy_read(hw, port,
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
						   PHY_MARV_AUNE_ADV)
				  | PHY_M_AN_ASP);

	}

	yukon_reset(hw, port);
	skge_link_down(skge);

	yukon_init(hw, port);
}

static void yukon_phy_intr(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	const char *reason = NULL;
	u16 istatus, phystat;

1961 1962
	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
1963 1964 1965 1966

	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
		       skge->netdev->name, istatus, phystat);
1967 1968

	if (istatus & PHY_M_IS_AN_COMPL) {
1969
		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
1970 1971 1972 1973 1974
		    & PHY_M_AN_RF) {
			reason = "remote fault";
			goto failed;
		}

1975
		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
			reason = "master/slave fault";
			goto failed;
		}

		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
			reason = "speed/duplex";
			goto failed;
		}

		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
			? DUPLEX_FULL : DUPLEX_HALF;
		skge->speed = yukon_speed(hw, phystat);

		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
		switch (phystat & PHY_M_PS_PAUSE_MSK) {
		case PHY_M_PS_PAUSE_MSK:
			skge->flow_control = FLOW_MODE_SYMMETRIC;
			break;
		case PHY_M_PS_RX_P_EN:
			skge->flow_control = FLOW_MODE_REM_SEND;
			break;
		case PHY_M_PS_TX_P_EN:
			skge->flow_control = FLOW_MODE_LOC_SEND;
			break;
		default:
			skge->flow_control = FLOW_MODE_NONE;
		}

		if (skge->flow_control == FLOW_MODE_NONE ||
		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2006
			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2007
		else
2008
			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
		yukon_link_up(skge);
		return;
	}

	if (istatus & PHY_M_IS_LSP_CHANGE)
		skge->speed = yukon_speed(hw, phystat);

	if (istatus & PHY_M_IS_DUP_CHANGE)
		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
	if (istatus & PHY_M_IS_LST_CHANGE) {
		if (phystat & PHY_M_PS_LINK_UP)
			yukon_link_up(skge);
		else
			yukon_link_down(skge);
	}
	return;
 failed:
	printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
	       skge->netdev->name, reason);

	/* XXX restart autonegotiation? */
}

2032 2033 2034 2035 2036 2037 2038 2039
static void skge_phy_reset(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	netif_stop_queue(skge->netdev);
	netif_carrier_off(skge->netdev);

2040
	mutex_lock(&hw->phy_mutex);
2041 2042 2043 2044 2045 2046 2047
	if (hw->chip_id == CHIP_ID_GENESIS) {
		genesis_reset(hw, port);
		genesis_mac_init(hw, port);
	} else {
		yukon_reset(hw, port);
		yukon_init(hw, port);
	}
2048
	mutex_unlock(&hw->phy_mutex);
2049 2050
}

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
/* Basic MII support */
static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct mii_ioctl_data *data = if_mii(ifr);
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int err = -EOPNOTSUPP;

	if (!netif_running(dev))
		return -ENODEV;	/* Phy still in reset */

	switch(cmd) {
	case SIOCGMIIPHY:
		data->phy_id = hw->phy_addr;

		/* fallthru */
	case SIOCGMIIREG: {
		u16 val = 0;
2069
		mutex_lock(&hw->phy_mutex);
2070 2071 2072 2073
		if (hw->chip_id == CHIP_ID_GENESIS)
			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
		else
			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2074
		mutex_unlock(&hw->phy_mutex);
2075 2076 2077 2078 2079 2080 2081 2082
		data->val_out = val;
		break;
	}

	case SIOCSMIIREG:
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;

2083
		mutex_lock(&hw->phy_mutex);
2084 2085 2086 2087 2088 2089
		if (hw->chip_id == CHIP_ID_GENESIS)
			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
				   data->val_in);
		else
			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
				   data->val_in);
2090
		mutex_unlock(&hw->phy_mutex);
2091 2092 2093 2094 2095
		break;
	}
	return err;
}

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
{
	u32 end;

	start /= 8;
	len /= 8;
	end = start + len - 1;

	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
	skge_write32(hw, RB_ADDR(q, RB_START), start);
	skge_write32(hw, RB_ADDR(q, RB_WP), start);
	skge_write32(hw, RB_ADDR(q, RB_RP), start);
	skge_write32(hw, RB_ADDR(q, RB_END), end);

	if (q == Q_R1 || q == Q_R2) {
		/* Set thresholds on receive queue's */
		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
			     start + (2*len)/3);
		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
			     start + (len/3));
	} else {
		/* Enable store & forward on Tx queue's because
		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
		 */
		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
	}

	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
}

/* Setup Bus Memory Interface */
static void skge_qset(struct skge_port *skge, u16 q,
		      const struct skge_element *e)
{
	struct skge_hw *hw = skge->hw;
	u32 watermark = 0x600;
	u64 base = skge->dma + (e->desc - skge->mem);

	/* optimization to reduce window on 32bit/33mhz */
	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
		watermark /= 2;

	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
}

static int skge_up(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u32 chunk, ram_addr;
	size_t rx_size, tx_size;
	int err;

	if (netif_msg_ifup(skge))
		printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);

2156
	if (dev->mtu > RX_BUF_SIZE)
2157
		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2158 2159 2160 2161
	else
		skge->rx_buf_size = RX_BUF_SIZE;


2162 2163 2164 2165 2166 2167 2168
	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
	skge->mem_size = tx_size + rx_size;
	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
	if (!skge->mem)
		return -ENOMEM;

2169 2170 2171 2172 2173 2174 2175 2176
	BUG_ON(skge->dma & 7);

	if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
		printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
		err = -EINVAL;
		goto free_pci_mem;
	}

2177 2178
	memset(skge->mem, 0, skge->mem_size);

2179 2180
	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
	if (err)
2181 2182
		goto free_pci_mem;

2183
	err = skge_rx_fill(dev);
2184
	if (err)
2185 2186
		goto free_rx_ring;

2187 2188 2189
	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
			      skge->dma + rx_size);
	if (err)
2190 2191
		goto free_rx_ring;

S
Stephen Hemminger 已提交
2192
	/* Initialize MAC */
2193
	mutex_lock(&hw->phy_mutex);
2194 2195 2196 2197
	if (hw->chip_id == CHIP_ID_GENESIS)
		genesis_mac_init(hw, port);
	else
		yukon_mac_init(hw, port);
2198
	mutex_unlock(&hw->phy_mutex);
2199 2200

	/* Configure RAMbuffers */
2201
	chunk = hw->ram_size / ((hw->ports + 1)*2);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	ram_addr = hw->ram_offset + 2 * chunk * port;

	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);

	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);

	/* Start receiver BMU */
	wmb();
	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2214
	skge_led(skge, LED_MODE_ON);
2215

2216
	netif_poll_enable(dev);
2217 2218 2219 2220 2221 2222 2223
	return 0;

 free_rx_ring:
	skge_rx_clean(skge);
	kfree(skge->rx_ring.start);
 free_pci_mem:
	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2224
	skge->mem = NULL;
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

	return err;
}

static int skge_down(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

2235 2236 2237
	if (skge->mem == NULL)
		return 0;

2238 2239 2240 2241 2242
	if (netif_msg_ifdown(skge))
		printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);

	netif_stop_queue(dev);

2243 2244 2245 2246 2247 2248
	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
	if (hw->chip_id == CHIP_ID_GENESIS)
		genesis_stop(skge);
	else
		yukon_stop(skge);

2249 2250 2251 2252 2253 2254 2255
	/* Stop transmitter */
	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
		     RB_RST_SET|RB_DIS_OP_MD);


	/* Disable Force Sync bit and Enable Alloc bit */
2256
	skge_write8(hw, SK_REG(port, TXA_CTRL),
2257 2258 2259
		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);

	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2260 2261
	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

	/* Reset PCI FIFO */
	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);

	/* Reset the RAM Buffer async Tx queue */
	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
	/* stop receiver */
	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
		     RB_RST_SET|RB_DIS_OP_MD);
	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);

	if (hw->chip_id == CHIP_ID_GENESIS) {
2276 2277
		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2278
	} else {
2279 2280
		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2281 2282
	}

2283
	skge_led(skge, LED_MODE_OFF);
2284

2285
	netif_poll_disable(dev);
2286 2287 2288 2289 2290 2291
	skge_tx_clean(skge);
	skge_rx_clean(skge);

	kfree(skge->rx_ring.start);
	kfree(skge->tx_ring.start);
	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2292
	skge->mem = NULL;
2293 2294 2295
	return 0;
}

2296 2297 2298 2299 2300 2301
static inline int skge_avail(const struct skge_ring *ring)
{
	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
		+ (ring->to_clean - ring->to_use) - 1;
}

2302 2303 2304 2305 2306 2307 2308 2309 2310
static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	struct skge_element *e;
	struct skge_tx_desc *td;
	int i;
	u32 control, len;
	u64 map;
2311
	unsigned long flags;
2312

2313
	if (skb_padto(skb, ETH_ZLEN))
2314 2315
		return NETDEV_TX_OK;

2316
	if (!spin_trylock_irqsave(&skge->tx_lock, flags))
2317 2318
		/* Collision - tell upper layer to requeue */
		return NETDEV_TX_LOCKED;
2319

2320
	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) {
J
Jeff Garzik 已提交
2321
		if (!netif_queue_stopped(dev)) {
2322
			netif_stop_queue(dev);
2323

2324 2325 2326
			printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
			       dev->name);
		}
2327
		spin_unlock_irqrestore(&skge->tx_lock, flags);
2328 2329 2330
		return NETDEV_TX_BUSY;
	}

2331
	e = skge->tx_ring.to_use;
2332
	td = e->desc;
2333
	BUG_ON(td->control & BMU_OWN);
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	e->skb = skb;
	len = skb_headlen(skb);
	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
	pci_unmap_addr_set(e, mapaddr, map);
	pci_unmap_len_set(e, maplen, len);

	td->dma_lo = map;
	td->dma_hi = map >> 32;

	if (skb->ip_summed == CHECKSUM_HW) {
		int offset = skb->h.raw - skb->data;

		/* This seems backwards, but it is what the sk98lin
		 * does.  Looks like hardware is wrong?
		 */
J
Jeff Garzik 已提交
2349
		if (skb->h.ipiph->protocol == IPPROTO_UDP
2350
	            && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
			control = BMU_TCP_CHECK;
		else
			control = BMU_UDP_CHECK;

		td->csum_offs = 0;
		td->csum_start = offset;
		td->csum_write = offset + skb->csum;
	} else
		control = BMU_CHECK;

	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
		control |= BMU_EOF| BMU_IRQ_EOF;
	else {
		struct skge_tx_desc *tf = td;

		control |= BMU_STFWD;
		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

			map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
					   frag->size, PCI_DMA_TODEVICE);

			e = e->next;
2374
			e->skb = skb;
2375
			tf = e->desc;
2376 2377
			BUG_ON(tf->control & BMU_OWN);

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
			tf->dma_lo = map;
			tf->dma_hi = (u64) map >> 32;
			pci_unmap_addr_set(e, mapaddr, map);
			pci_unmap_len_set(e, maplen, frag->size);

			tf->control = BMU_OWN | BMU_SW | control | frag->size;
		}
		tf->control |= BMU_EOF | BMU_IRQ_EOF;
	}
	/* Make sure all the descriptors written */
	wmb();
	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
	wmb();

	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);

2394
	if (unlikely(netif_msg_tx_queued(skge)))
A
Al Viro 已提交
2395
		printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2396
		       dev->name, e - skge->tx_ring.start, skb->len);
2397

2398
	skge->tx_ring.to_use = e->next;
2399
	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2400 2401 2402 2403
		pr_debug("%s: transmit queue full\n", dev->name);
		netif_stop_queue(dev);
	}

2404
	spin_unlock_irqrestore(&skge->tx_lock, flags);
2405

S
Stephen Hemminger 已提交
2406 2407
	dev->trans_start = jiffies;

2408 2409 2410
	return NETDEV_TX_OK;
}

2411 2412 2413 2414

/* Free resources associated with this reing element */
static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
			 u32 control)
2415 2416 2417
{
	struct pci_dev *pdev = skge->hw->pdev;

2418
	BUG_ON(!e->skb);
2419

2420 2421
	/* skb header vs. fragment */
	if (control & BMU_STF)
2422
		pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2423 2424 2425 2426 2427 2428
				 pci_unmap_len(e, maplen),
				 PCI_DMA_TODEVICE);
	else
		pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
			       pci_unmap_len(e, maplen),
			       PCI_DMA_TODEVICE);
2429

2430 2431 2432 2433
	if (control & BMU_EOF) {
		if (unlikely(netif_msg_tx_done(skge)))
			printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
			       skge->netdev->name, e - skge->tx_ring.start);
2434

2435
		dev_kfree_skb_any(e->skb);
2436
	}
2437
	e->skb = NULL;
2438 2439
}

2440
/* Free all buffers in transmit ring */
2441 2442
static void skge_tx_clean(struct skge_port *skge)
{
2443 2444
	struct skge_element *e;
	unsigned long flags;
2445

2446 2447 2448 2449 2450 2451 2452 2453
	spin_lock_irqsave(&skge->tx_lock, flags);
	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
		struct skge_tx_desc *td = e->desc;
		skge_tx_free(skge, e, td->control);
		td->control = 0;
	}

	skge->tx_ring.to_clean = e;
2454
	netif_wake_queue(skge->netdev);
2455
	spin_unlock_irqrestore(&skge->tx_lock, flags);
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
}

static void skge_tx_timeout(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	if (netif_msg_timer(skge))
		printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);

	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
	skge_tx_clean(skge);
}

static int skge_change_mtu(struct net_device *dev, int new_mtu)
{
2471
	int err;
2472

2473
	if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2474 2475
		return -EINVAL;

2476 2477 2478 2479 2480 2481
	if (!netif_running(dev)) {
		dev->mtu = new_mtu;
		return 0;
	}

	skge_down(dev);
2482

2483
	dev->mtu = new_mtu;
2484 2485 2486 2487

	err = skge_up(dev);
	if (err)
		dev_close(dev);
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501

	return err;
}

static void genesis_set_multicast(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	int i, count = dev->mc_count;
	struct dev_mc_list *list = dev->mc_list;
	u32 mode;
	u8 filter[8];

2502
	mode = xm_read32(hw, port, XM_MODE);
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
	mode |= XM_MD_ENA_HASH;
	if (dev->flags & IFF_PROMISC)
		mode |= XM_MD_ENA_PROM;
	else
		mode &= ~XM_MD_ENA_PROM;

	if (dev->flags & IFF_ALLMULTI)
		memset(filter, 0xff, sizeof(filter));
	else {
		memset(filter, 0, sizeof(filter));
2513
		for (i = 0; list && i < count; i++, list = list->next) {
2514 2515 2516
			u32 crc, bit;
			crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
			bit = ~crc & 0x3f;
2517 2518 2519 2520
			filter[bit/8] |= 1 << (bit%8);
		}
	}

2521
	xm_write32(hw, port, XM_MODE, mode);
2522
	xm_outhash(hw, port, XM_HSM, filter);
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
}

static void yukon_set_multicast(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	struct dev_mc_list *list = dev->mc_list;
	u16 reg;
	u8 filter[8];

	memset(filter, 0, sizeof(filter));

2536
	reg = gma_read16(hw, port, GM_RX_CTRL);
2537 2538
	reg |= GM_RXCR_UCF_ENA;

S
Stephen Hemminger 已提交
2539
	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2540 2541 2542 2543 2544 2545 2546 2547 2548
		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
		memset(filter, 0xff, sizeof(filter));
	else if (dev->mc_count == 0)		/* no multicast */
		reg &= ~GM_RXCR_MCF_ENA;
	else {
		int i;
		reg |= GM_RXCR_MCF_ENA;

2549
		for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2550 2551 2552 2553 2554 2555
			u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
			filter[bit/8] |= 1 << (bit%8);
		}
	}


2556
	gma_write16(hw, port, GM_MC_ADDR_H1,
2557
			 (u16)filter[0] | ((u16)filter[1] << 8));
2558
	gma_write16(hw, port, GM_MC_ADDR_H2,
2559
			 (u16)filter[2] | ((u16)filter[3] << 8));
2560
	gma_write16(hw, port, GM_MC_ADDR_H3,
2561
			 (u16)filter[4] | ((u16)filter[5] << 8));
2562
	gma_write16(hw, port, GM_MC_ADDR_H4,
2563 2564
			 (u16)filter[6] | ((u16)filter[7] << 8));

2565
	gma_write16(hw, port, GM_RX_CTRL, reg);
2566 2567
}

2568 2569 2570 2571 2572 2573 2574 2575
static inline u16 phy_length(const struct skge_hw *hw, u32 status)
{
	if (hw->chip_id == CHIP_ID_GENESIS)
		return status >> XMR_FS_LEN_SHIFT;
	else
		return status >> GMR_FS_LEN_SHIFT;
}

2576 2577 2578 2579 2580 2581 2582 2583 2584
static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
{
	if (hw->chip_id == CHIP_ID_GENESIS)
		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
	else
		return (status & GMR_FS_ANY_ERR) ||
			(status & GMR_FS_RX_OK) == 0;
}

2585 2586 2587 2588

/* Get receive buffer from descriptor.
 * Handles copy of small buffers and reallocation failures
 */
2589 2590 2591
static struct sk_buff *skge_rx_get(struct net_device *dev,
				   struct skge_element *e,
				   u32 control, u32 status, u16 csum)
2592
{
2593
	struct skge_port *skge = netdev_priv(dev);
2594 2595 2596 2597 2598
	struct sk_buff *skb;
	u16 len = control & BMU_BBC;

	if (unlikely(netif_msg_rx_status(skge)))
		printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2599
		       dev->name, e - skge->rx_ring.start,
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
		       status, len);

	if (len > skge->rx_buf_size)
		goto error;

	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
		goto error;

	if (bad_phy_status(skge->hw, status))
		goto error;

	if (phy_length(skge->hw, status) != len)
		goto error;
2613 2614

	if (len < RX_COPY_THRESHOLD) {
2615
		skb = netdev_alloc_skb(dev, len + 2);
2616 2617
		if (!skb)
			goto resubmit;
2618

2619
		skb_reserve(skb, 2);
2620 2621 2622
		pci_dma_sync_single_for_cpu(skge->hw->pdev,
					    pci_unmap_addr(e, mapaddr),
					    len, PCI_DMA_FROMDEVICE);
2623
		memcpy(skb->data, e->skb->data, len);
2624 2625 2626 2627 2628
		pci_dma_sync_single_for_device(skge->hw->pdev,
					       pci_unmap_addr(e, mapaddr),
					       len, PCI_DMA_FROMDEVICE);
		skge_rx_reuse(e, skge->rx_buf_size);
	} else {
2629
		struct sk_buff *nskb;
2630
		nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
2631 2632
		if (!nskb)
			goto resubmit;
2633

2634
		skb_reserve(nskb, NET_IP_ALIGN);
2635 2636 2637 2638 2639
		pci_unmap_single(skge->hw->pdev,
				 pci_unmap_addr(e, mapaddr),
				 pci_unmap_len(e, maplen),
				 PCI_DMA_FROMDEVICE);
		skb = e->skb;
2640
  		prefetch(skb->data);
2641
		skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2642
	}
2643 2644 2645 2646 2647 2648 2649

	skb_put(skb, len);
	if (skge->rx_csum) {
		skb->csum = csum;
		skb->ip_summed = CHECKSUM_HW;
	}

2650
	skb->protocol = eth_type_trans(skb, dev);
2651 2652 2653 2654 2655 2656

	return skb;
error:

	if (netif_msg_rx_err(skge))
		printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
2657
		       dev->name, e - skge->rx_ring.start,
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
		       control, status);

	if (skge->hw->chip_id == CHIP_ID_GENESIS) {
		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
			skge->net_stats.rx_length_errors++;
		if (status & XMR_FS_FRA_ERR)
			skge->net_stats.rx_frame_errors++;
		if (status & XMR_FS_FCS_ERR)
			skge->net_stats.rx_crc_errors++;
	} else {
		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
			skge->net_stats.rx_length_errors++;
		if (status & GMR_FS_FRAGMENT)
			skge->net_stats.rx_frame_errors++;
		if (status & GMR_FS_CRC_ERR)
			skge->net_stats.rx_crc_errors++;
	}

resubmit:
	skge_rx_reuse(e, skge->rx_buf_size);
	return NULL;
2679 2680
}

2681 2682
/* Free all buffers in Tx ring which are no longer owned by device */
static void skge_txirq(struct net_device *dev)
2683
{
2684
	struct skge_port *skge = netdev_priv(dev);
2685
	struct skge_ring *ring = &skge->tx_ring;
2686 2687 2688
	struct skge_element *e;

	rmb();
2689 2690

	spin_lock(&skge->tx_lock);
2691
	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2692 2693
		struct skge_tx_desc *td = e->desc;

2694
		if (td->control & BMU_OWN)
2695 2696
			break;

2697
		skge_tx_free(skge, e, td->control);
2698
	}
2699
	skge->tx_ring.to_clean = e;
2700

2701 2702
	if (netif_queue_stopped(skge->netdev)
	    && skge_avail(&skge->tx_ring) > TX_LOW_WATER)
2703 2704 2705 2706
		netif_wake_queue(skge->netdev);

	spin_unlock(&skge->tx_lock);
}
2707

2708 2709 2710 2711 2712 2713
static int skge_poll(struct net_device *dev, int *budget)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	struct skge_ring *ring = &skge->rx_ring;
	struct skge_element *e;
2714 2715 2716
	int to_do = min(dev->quota, *budget);
	int work_done = 0;

2717
	for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
2718
		struct skge_rx_desc *rd = e->desc;
2719
		struct sk_buff *skb;
2720
		u32 control;
2721 2722 2723 2724 2725 2726

		rmb();
		control = rd->control;
		if (control & BMU_OWN)
			break;

2727
		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
2728 2729 2730
		if (likely(skb)) {
			dev->last_rx = jiffies;
			netif_receive_skb(skb);
2731

2732
			++work_done;
2733
		}
2734 2735 2736 2737 2738
	}
	ring->to_clean = e;

	/* restart receiver */
	wmb();
S
Stephen Hemminger 已提交
2739
	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
2740

2741 2742 2743 2744 2745
	*budget -= work_done;
	dev->quota -= work_done;

	if (work_done >=  to_do)
		return 1; /* not done */
2746

2747
	netif_rx_complete(dev);
S
Stephen Hemminger 已提交
2748

2749 2750
	spin_lock_irq(&hw->hw_lock);
	hw->intr_mask |= rxirqmask[skge->port];
S
Stephen Hemminger 已提交
2751
  	skge_write32(hw, B0_IMSK, hw->intr_mask);
2752
	skge_read32(hw, B0_IMSK);
2753
	spin_unlock_irq(&hw->hw_lock);
2754

2755
	return 0;
2756 2757
}

2758 2759 2760
/* Parity errors seem to happen when Genesis is connected to a switch
 * with no other ports present. Heartbeat error??
 */
2761 2762
static void skge_mac_parity(struct skge_hw *hw, int port)
{
2763 2764 2765 2766 2767 2768
	struct net_device *dev = hw->dev[port];

	if (dev) {
		struct skge_port *skge = netdev_priv(dev);
		++skge->net_stats.tx_heartbeat_errors;
	}
2769 2770

	if (hw->chip_id == CHIP_ID_GENESIS)
2771
		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2772 2773 2774
			     MFF_CLR_PERR);
	else
		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2775
		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2776
			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
2777 2778 2779 2780 2781
			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
}

static void skge_mac_intr(struct skge_hw *hw, int port)
{
2782
	if (hw->chip_id == CHIP_ID_GENESIS)
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
		genesis_mac_intr(hw, port);
	else
		yukon_mac_intr(hw, port);
}

/* Handle device specific framing and timeout interrupts */
static void skge_error_irq(struct skge_hw *hw)
{
	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);

	if (hw->chip_id == CHIP_ID_GENESIS) {
		/* clear xmac errors */
		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2796
			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
2797
		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2798
			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
	} else {
		/* Timestamp (unused) overflow */
		if (hwstatus & IS_IRQ_TIST_OV)
			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
	}

	if (hwstatus & IS_RAM_RD_PAR) {
		printk(KERN_ERR PFX "Ram read data parity error\n");
		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
	}

	if (hwstatus & IS_RAM_WR_PAR) {
		printk(KERN_ERR PFX "Ram write data parity error\n");
		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
	}

	if (hwstatus & IS_M1_PAR_ERR)
		skge_mac_parity(hw, 0);

	if (hwstatus & IS_M2_PAR_ERR)
		skge_mac_parity(hw, 1);

2821 2822 2823
	if (hwstatus & IS_R1_PAR_ERR) {
		printk(KERN_ERR PFX "%s: receive queue parity error\n",
		       hw->dev[0]->name);
2824
		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
2825
	}
2826

2827 2828 2829
	if (hwstatus & IS_R2_PAR_ERR) {
		printk(KERN_ERR PFX "%s: receive queue parity error\n",
		       hw->dev[1]->name);
2830
		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
2831
	}
2832 2833

	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
2834 2835 2836 2837
		u16 pci_status, pci_cmd;

		pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
		pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
2838

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
		printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
			       pci_name(hw->pdev), pci_cmd, pci_status);

		/* Write the error bits back to clear them. */
		pci_status &= PCI_STATUS_ERROR_BITS;
		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
		pci_write_config_word(hw->pdev, PCI_COMMAND,
				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
		pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2849

2850
		/* if error still set then just ignore it */
2851 2852
		hwstatus = skge_read32(hw, B0_HWE_ISRC);
		if (hwstatus & IS_IRQ_STAT) {
2853
			printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
2854 2855 2856 2857 2858 2859
			hw->intr_mask &= ~IS_HW_ERR;
		}
	}
}

/*
2860
 * Interrupt from PHY are handled in work queue
2861 2862 2863
 * because accessing phy registers requires spin wait which might
 * cause excess interrupt latency.
 */
2864
static void skge_extirq(void *arg)
2865
{
2866
	struct skge_hw *hw = arg;
2867 2868
	int port;

2869
	mutex_lock(&hw->phy_mutex);
2870
	for (port = 0; port < hw->ports; port++) {
2871
		struct net_device *dev = hw->dev[port];
2872
		struct skge_port *skge = netdev_priv(dev);
2873

2874
		if (netif_running(dev)) {
2875 2876
			if (hw->chip_id != CHIP_ID_GENESIS)
				yukon_phy_intr(skge);
2877
			else
2878
				bcom_phy_intr(skge);
2879 2880
		}
	}
2881
	mutex_unlock(&hw->phy_mutex);
2882

2883
	spin_lock_irq(&hw->hw_lock);
2884 2885
	hw->intr_mask |= IS_EXT_REG;
	skge_write32(hw, B0_IMSK, hw->intr_mask);
2886
	skge_read32(hw, B0_IMSK);
2887
	spin_unlock_irq(&hw->hw_lock);
2888 2889 2890 2891 2892
}

static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
{
	struct skge_hw *hw = dev_id;
2893
	u32 status;
2894

2895 2896 2897
	/* Reading this register masks IRQ */
	status = skge_read32(hw, B0_SP_ISRC);
	if (status == 0)
2898 2899
		return IRQ_NONE;

2900 2901
	spin_lock(&hw->hw_lock);
	status &= hw->intr_mask;
2902 2903
	if (status & IS_EXT_REG) {
		hw->intr_mask &= ~IS_EXT_REG;
2904
		schedule_work(&hw->phy_work);
2905 2906
	}

2907 2908 2909
	if (status & IS_XA1_F) {
		skge_write8(hw, Q_ADDR(Q_XA1, Q_CSR), CSR_IRQ_CL_F);
		skge_txirq(hw->dev[0]);
2910 2911
	}

2912 2913 2914 2915
	if (status & IS_R1_F) {
		skge_write8(hw, Q_ADDR(Q_R1, Q_CSR), CSR_IRQ_CL_F);
		hw->intr_mask &= ~IS_R1_F;
		netif_rx_schedule(hw->dev[0]);
2916 2917
	}

2918 2919
	if (status & IS_PA_TO_TX1)
		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
2920

2921 2922 2923 2924
	if (status & IS_PA_TO_RX1) {
		struct skge_port *skge = netdev_priv(hw->dev[0]);

		++skge->net_stats.rx_over_errors;
2925
		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
2926 2927 2928
	}


2929 2930
	if (status & IS_MAC1)
		skge_mac_intr(hw, 0);
2931

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
	if (hw->dev[1]) {
		if (status & IS_XA2_F) {
			skge_write8(hw, Q_ADDR(Q_XA2, Q_CSR), CSR_IRQ_CL_F);
			skge_txirq(hw->dev[1]);
		}

		if (status & IS_R2_F) {
			skge_write8(hw, Q_ADDR(Q_R2, Q_CSR), CSR_IRQ_CL_F);
			hw->intr_mask &= ~IS_R2_F;
			netif_rx_schedule(hw->dev[1]);
		}

		if (status & IS_PA_TO_RX2) {
			struct skge_port *skge = netdev_priv(hw->dev[1]);
			++skge->net_stats.rx_over_errors;
			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
		}

		if (status & IS_PA_TO_TX2)
			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);

		if (status & IS_MAC2)
			skge_mac_intr(hw, 1);
	}
2956 2957 2958 2959

	if (status & IS_HW_ERR)
		skge_error_irq(hw);

2960
	skge_write32(hw, B0_IMSK, hw->intr_mask);
2961
	skge_read32(hw, B0_IMSK);
2962
	spin_unlock(&hw->hw_lock);
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void skge_netpoll(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	disable_irq(dev->irq);
	skge_intr(dev->irq, skge->hw, NULL);
	enable_irq(dev->irq);
}
#endif

static int skge_set_mac_address(struct net_device *dev, void *p)
{
	struct skge_port *skge = netdev_priv(dev);
2981 2982 2983
	struct skge_hw *hw = skge->hw;
	unsigned port = skge->port;
	const struct sockaddr *addr = p;
2984 2985 2986 2987

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

2988
	mutex_lock(&hw->phy_mutex);
2989
	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
2990
	memcpy_toio(hw->regs + B2_MAC_1 + port*8,
2991
		    dev->dev_addr, ETH_ALEN);
2992
	memcpy_toio(hw->regs + B2_MAC_2 + port*8,
2993
		    dev->dev_addr, ETH_ALEN);
2994 2995 2996 2997 2998 2999 3000

	if (hw->chip_id == CHIP_ID_GENESIS)
		xm_outaddr(hw, port, XM_SA, dev->dev_addr);
	else {
		gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
		gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
	}
3001
	mutex_unlock(&hw->phy_mutex);
3002 3003

	return 0;
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
}

static const struct {
	u8 id;
	const char *name;
} skge_chips[] = {
	{ CHIP_ID_GENESIS,	"Genesis" },
	{ CHIP_ID_YUKON,	 "Yukon" },
	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
};

static const char *skge_board_name(const struct skge_hw *hw)
{
	int i;
	static char buf[16];

	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
		if (skge_chips[i].id == hw->chip_id)
			return skge_chips[i].name;

	snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
	return buf;
}


/*
 * Setup the board data structure, but don't bring up
 * the port(s)
 */
static int skge_reset(struct skge_hw *hw)
{
3036
	u32 reg;
3037
	u16 ctst, pci_status;
3038
	u8 t8, mac_cfg, pmd_type, phy_type;
3039
	int i;
3040 3041 3042 3043 3044 3045 3046 3047

	ctst = skge_read16(hw, B0_CTST);

	/* do a SW reset */
	skge_write8(hw, B0_CTST, CS_RST_SET);
	skge_write8(hw, B0_CTST, CS_RST_CLR);

	/* clear PCI errors, if any */
3048 3049
	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
	skge_write8(hw, B2_TST_CTRL2, 0);
3050

3051 3052 3053 3054
	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
	pci_write_config_word(hw->pdev, PCI_STATUS,
			      pci_status | PCI_STATUS_ERROR_BITS);
	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3055 3056 3057 3058 3059 3060 3061
	skge_write8(hw, B0_CTST, CS_MRST_CLR);

	/* restore CLK_RUN bits (for Yukon-Lite) */
	skge_write16(hw, B0_CTST,
		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));

	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3062 3063 3064
	phy_type = skge_read8(hw, B2_E_1) & 0xf;
	pmd_type = skge_read8(hw, B2_PMD_TYP);
	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3065

3066
	switch (hw->chip_id) {
3067
	case CHIP_ID_GENESIS:
3068
		switch (phy_type) {
3069 3070 3071 3072 3073
		case SK_PHY_BCOM:
			hw->phy_addr = PHY_ADDR_BCOM;
			break;
		default:
			printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
3074
			       pci_name(hw->pdev), phy_type);
3075 3076 3077 3078 3079 3080 3081
			return -EOPNOTSUPP;
		}
		break;

	case CHIP_ID_YUKON:
	case CHIP_ID_YUKON_LITE:
	case CHIP_ID_YUKON_LP:
3082 3083
		if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
			hw->copper = 1;
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093

		hw->phy_addr = PHY_ADDR_MARV;
		break;

	default:
		printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
		       pci_name(hw->pdev), hw->chip_id);
		return -EOPNOTSUPP;
	}

3094 3095 3096
	mac_cfg = skge_read8(hw, B2_MAC_CFG);
	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112

	/* read the adapters RAM size */
	t8 = skge_read8(hw, B2_E_0);
	if (hw->chip_id == CHIP_ID_GENESIS) {
		if (t8 == 3) {
			/* special case: 4 x 64k x 36, offset = 0x80000 */
			hw->ram_size = 0x100000;
			hw->ram_offset = 0x80000;
		} else
			hw->ram_size = t8 * 512;
	}
	else if (t8 == 0)
		hw->ram_size = 0x20000;
	else
		hw->ram_size = t8 * 4096;

3113 3114 3115 3116
	hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
	if (hw->ports > 1)
		hw->intr_mask |= IS_PORT_2;

3117 3118 3119 3120 3121 3122
	if (hw->chip_id == CHIP_ID_GENESIS)
		genesis_init(hw);
	else {
		/* switch power to VCC (WA for VAUX problem) */
		skge_write8(hw, B0_POWER_CTRL,
			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3123

3124 3125 3126 3127 3128 3129 3130
		/* avoid boards with stuck Hardware error bits */
		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
			printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
			hw->intr_mask &= ~IS_HW_ERR;
		}

3131 3132 3133 3134 3135 3136 3137 3138
		/* Clear PHY COMA */
		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
		reg &= ~PCI_PHY_COMA;
		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);


3139
		for (i = 0; i < hw->ports; i++) {
3140 3141
			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3142 3143 3144 3145 3146 3147 3148 3149 3150
		}
	}

	/* turn off hardware timer (unused) */
	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
	skge_write8(hw, B0_LED, LED_STAT_ON);

	/* enable the Tx Arbiters */
3151
	for (i = 0; i < hw->ports; i++)
3152
		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180

	/* Initialize ram interface */
	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);

	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);

	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);

	/* Set interrupt moderation for Transmit only
	 * Receive interrupts avoided by NAPI
	 */
	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
	skge_write32(hw, B2_IRQM_CTRL, TIM_START);

	skge_write32(hw, B0_IMSK, hw->intr_mask);

3181
	mutex_lock(&hw->phy_mutex);
3182
	for (i = 0; i < hw->ports; i++) {
3183 3184 3185 3186 3187
		if (hw->chip_id == CHIP_ID_GENESIS)
			genesis_reset(hw, i);
		else
			yukon_reset(hw, i);
	}
3188
	mutex_unlock(&hw->phy_mutex);
3189 3190 3191 3192 3193

	return 0;
}

/* Initialize network device */
3194 3195
static struct net_device *skge_devinit(struct skge_hw *hw, int port,
				       int highmem)
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
{
	struct skge_port *skge;
	struct net_device *dev = alloc_etherdev(sizeof(*skge));

	if (!dev) {
		printk(KERN_ERR "skge etherdev alloc failed");
		return NULL;
	}

	SET_MODULE_OWNER(dev);
	SET_NETDEV_DEV(dev, &hw->pdev->dev);
	dev->open = skge_up;
	dev->stop = skge_down;
3209
	dev->do_ioctl = skge_ioctl;
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
	dev->hard_start_xmit = skge_xmit_frame;
	dev->get_stats = skge_get_stats;
	if (hw->chip_id == CHIP_ID_GENESIS)
		dev->set_multicast_list = genesis_set_multicast;
	else
		dev->set_multicast_list = yukon_set_multicast;

	dev->set_mac_address = skge_set_mac_address;
	dev->change_mtu = skge_change_mtu;
	SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
	dev->tx_timeout = skge_tx_timeout;
	dev->watchdog_timeo = TX_WATCHDOG;
	dev->poll = skge_poll;
	dev->weight = NAPI_WEIGHT;
#ifdef CONFIG_NET_POLL_CONTROLLER
	dev->poll_controller = skge_netpoll;
#endif
	dev->irq = hw->pdev->irq;
	dev->features = NETIF_F_LLTX;
3229 3230
	if (highmem)
		dev->features |= NETIF_F_HIGHDMA;
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243

	skge = netdev_priv(dev);
	skge->netdev = dev;
	skge->hw = hw;
	skge->msg_enable = netif_msg_init(debug, default_msg);
	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;

	/* Auto speed and flow control */
	skge->autoneg = AUTONEG_ENABLE;
	skge->flow_control = FLOW_MODE_SYMMETRIC;
	skge->duplex = -1;
	skge->speed = -1;
3244
	skge->advertising = skge_supported_modes(hw);
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258

	hw->dev[port] = dev;

	skge->port = port;

	spin_lock_init(&skge->tx_lock);

	if (hw->chip_id != CHIP_ID_GENESIS) {
		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
		skge->rx_csum = 1;
	}

	/* read the mac address */
	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3259
	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285

	/* device is off until link detection */
	netif_carrier_off(dev);
	netif_stop_queue(dev);

	return dev;
}

static void __devinit skge_show_addr(struct net_device *dev)
{
	const struct skge_port *skge = netdev_priv(dev);

	if (netif_msg_probe(skge))
		printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
		       dev->name,
		       dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
		       dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
}

static int __devinit skge_probe(struct pci_dev *pdev,
				const struct pci_device_id *ent)
{
	struct net_device *dev, *dev1;
	struct skge_hw *hw;
	int err, using_dac = 0;

3286 3287
	err = pci_enable_device(pdev);
	if (err) {
3288 3289 3290 3291 3292
		printk(KERN_ERR PFX "%s cannot enable PCI device\n",
		       pci_name(pdev));
		goto err_out;
	}

3293 3294
	err = pci_request_regions(pdev, DRV_NAME);
	if (err) {
3295 3296 3297 3298 3299 3300 3301
		printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
		       pci_name(pdev));
		goto err_out_disable_pdev;
	}

	pci_set_master(pdev);

3302
	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3303
		using_dac = 1;
3304
		err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3305 3306 3307 3308 3309 3310 3311 3312 3313
	} else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
		using_dac = 0;
		err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
	}

	if (err) {
		printk(KERN_ERR PFX "%s no usable DMA configuration\n",
		       pci_name(pdev));
		goto err_out_free_regions;
3314 3315 3316
	}

#ifdef __BIG_ENDIAN
S
Stephen Hemminger 已提交
3317
	/* byte swap descriptors in hardware */
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
	{
		u32 reg;

		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
		reg |= PCI_REV_DESC;
		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
	}
#endif

	err = -ENOMEM;
S
Stephen Hemminger 已提交
3328
	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3329 3330 3331 3332 3333 3334 3335
	if (!hw) {
		printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
		       pci_name(pdev));
		goto err_out_free_regions;
	}

	hw->pdev = pdev;
3336 3337
	mutex_init(&hw->phy_mutex);
	INIT_WORK(&hw->phy_work, skge_extirq, hw);
3338
	spin_lock_init(&hw->hw_lock);
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348

	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
	if (!hw->regs) {
		printk(KERN_ERR PFX "%s: cannot map device registers\n",
		       pci_name(pdev));
		goto err_out_free_hw;
	}

	err = skge_reset(hw);
	if (err)
3349
		goto err_out_iounmap;
3350

3351 3352
	printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
	       (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3353
	       skge_board_name(hw), hw->chip_rev);
3354

3355 3356
	dev = skge_devinit(hw, 0, using_dac);
	if (!dev)
3357 3358
		goto err_out_led_off;

3359 3360 3361 3362 3363 3364 3365
	if (!is_valid_ether_addr(dev->dev_addr)) {
		printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n",
		       pci_name(pdev));
		err = -EIO;
		goto err_out_free_netdev;
	}

3366 3367
	err = register_netdev(dev);
	if (err) {
3368 3369 3370 3371 3372
		printk(KERN_ERR PFX "%s: cannot register net device\n",
		       pci_name(pdev));
		goto err_out_free_netdev;
	}

3373 3374 3375 3376 3377 3378
	err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
	if (err) {
		printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
		       dev->name, pdev->irq);
		goto err_out_unregister;
	}
3379 3380
	skge_show_addr(dev);

3381
	if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3382 3383 3384 3385 3386 3387 3388 3389 3390
		if (register_netdev(dev1) == 0)
			skge_show_addr(dev1);
		else {
			/* Failure to register second port need not be fatal */
			printk(KERN_WARNING PFX "register of second port failed\n");
			hw->dev[1] = NULL;
			free_netdev(dev1);
		}
	}
3391
	pci_set_drvdata(pdev, hw);
3392 3393 3394

	return 0;

3395 3396
err_out_unregister:
	unregister_netdev(dev);
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
err_out_free_netdev:
	free_netdev(dev);
err_out_led_off:
	skge_write16(hw, B0_LED, LED_STAT_OFF);
err_out_iounmap:
	iounmap(hw->regs);
err_out_free_hw:
	kfree(hw);
err_out_free_regions:
	pci_release_regions(pdev);
err_out_disable_pdev:
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
err_out:
	return err;
}

static void __devexit skge_remove(struct pci_dev *pdev)
{
	struct skge_hw *hw  = pci_get_drvdata(pdev);
	struct net_device *dev0, *dev1;

3419
	if (!hw)
3420 3421 3422 3423 3424 3425 3426
		return;

	if ((dev1 = hw->dev[1]))
		unregister_netdev(dev1);
	dev0 = hw->dev[0];
	unregister_netdev(dev0);

3427 3428
	spin_lock_irq(&hw->hw_lock);
	hw->intr_mask = 0;
3429
	skge_write32(hw, B0_IMSK, 0);
3430
	skge_read32(hw, B0_IMSK);
3431 3432
	spin_unlock_irq(&hw->hw_lock);

3433 3434 3435
	skge_write16(hw, B0_LED, LED_STAT_OFF);
	skge_write8(hw, B0_CTST, CS_RST_SET);

3436
	flush_scheduled_work();
3437 3438 3439 3440 3441 3442 3443

	free_irq(pdev->irq, hw);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
	if (dev1)
		free_netdev(dev1);
	free_netdev(dev0);
3444

3445 3446 3447 3448 3449 3450
	iounmap(hw->regs);
	kfree(hw);
	pci_set_drvdata(pdev, NULL);
}

#ifdef CONFIG_PM
3451
static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3452 3453 3454 3455
{
	struct skge_hw *hw  = pci_get_drvdata(pdev);
	int i, wol = 0;

3456 3457
	pci_save_state(pdev);
	for (i = 0; i < hw->ports; i++) {
3458 3459
		struct net_device *dev = hw->dev[i];

3460
		if (netif_running(dev)) {
3461
			struct skge_port *skge = netdev_priv(dev);
3462 3463 3464 3465 3466 3467

			netif_carrier_off(dev);
			if (skge->wol)
				netif_stop_queue(dev);
			else
				skge_down(dev);
3468 3469
			wol |= skge->wol;
		}
3470
		netif_device_detach(dev);
3471 3472
	}

3473
	skge_write32(hw, B0_IMSK, 0);
3474
	pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3475 3476 3477 3478 3479 3480 3481 3482
	pci_set_power_state(pdev, pci_choose_state(pdev, state));

	return 0;
}

static int skge_resume(struct pci_dev *pdev)
{
	struct skge_hw *hw  = pci_get_drvdata(pdev);
3483
	int i, err;
3484 3485 3486 3487 3488

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	pci_enable_wake(pdev, PCI_D0, 0);

3489 3490 3491
	err = skge_reset(hw);
	if (err)
		goto out;
3492

3493
	for (i = 0; i < hw->ports; i++) {
3494
		struct net_device *dev = hw->dev[i];
3495 3496 3497 3498 3499 3500 3501 3502

		netif_device_attach(dev);
		if (netif_running(dev)) {
			err = skge_up(dev);

			if (err) {
				printk(KERN_ERR PFX "%s: could not up: %d\n",
				       dev->name, err);
3503
				dev_close(dev);
3504 3505
				goto out;
			}
3506 3507
		}
	}
3508 3509
out:
	return err;
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
}
#endif

static struct pci_driver skge_driver = {
	.name =         DRV_NAME,
	.id_table =     skge_id_table,
	.probe =        skge_probe,
	.remove =       __devexit_p(skge_remove),
#ifdef CONFIG_PM
	.suspend = 	skge_suspend,
	.resume = 	skge_resume,
#endif
};

static int __init skge_init_module(void)
{
3526
	return pci_register_driver(&skge_driver);
3527 3528 3529 3530 3531 3532 3533 3534 3535
}

static void __exit skge_cleanup_module(void)
{
	pci_unregister_driver(&skge_driver);
}

module_init(skge_init_module);
module_exit(skge_cleanup_module);