skge.c 86.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
 * Ethernet adapters. Based on earlier sk98lin, e100 and
 * FreeBSD if_sk drivers.
 *
 * This driver intentionally does not support all the features
 * of the original driver such as link fail-over and link management because
 * those should be done at higher levels.
 *
10
 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/delay.h>
#include <linux/crc32.h>
A
Al Viro 已提交
39
#include <linux/dma-mapping.h>
40 41 42 43 44
#include <asm/irq.h>

#include "skge.h"

#define DRV_NAME		"skge"
45
#define DRV_VERSION		"1.0"
46 47 48 49 50 51
#define PFX			DRV_NAME " "

#define DEFAULT_TX_RING_SIZE	128
#define DEFAULT_RX_RING_SIZE	512
#define MAX_TX_RING_SIZE	1024
#define MAX_RX_RING_SIZE	4096
52 53
#define RX_COPY_THRESHOLD	128
#define RX_BUF_SIZE		1536
54 55 56 57
#define PHY_RETRIES	        1000
#define ETH_JUMBO_MTU		9000
#define TX_WATCHDOG		(5 * HZ)
#define NAPI_WEIGHT		64
58
#define BLINK_MS		250
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

static const u32 default_msg
	= NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
	  | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;

static int debug = -1;	/* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

static const struct pci_device_id skge_id_table[] = {
74 75 76 77 78 79 80 81 82
	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
83
	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
84 85 86 87 88 89 90
	{ 0 }
};
MODULE_DEVICE_TABLE(pci, skge_id_table);

static int skge_up(struct net_device *dev);
static int skge_down(struct net_device *dev);
static void skge_tx_clean(struct skge_port *skge);
91 92
static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
93 94 95 96 97 98
static void genesis_get_stats(struct skge_port *skge, u64 *data);
static void yukon_get_stats(struct skge_port *skge, u64 *data);
static void yukon_init(struct skge_hw *hw, int port);
static void yukon_reset(struct skge_hw *hw, int port);
static void genesis_mac_init(struct skge_hw *hw, int port);
static void genesis_reset(struct skge_hw *hw, int port);
99
static void genesis_link_up(struct skge_port *skge);
100

101
/* Avoid conditionals by using array */
102 103 104 105
static const int txqaddr[] = { Q_XA1, Q_XA2 };
static const int rxqaddr[] = { Q_R1, Q_R2 };
static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
106
static const u32 portirqmask[] = { IS_PORT_1, IS_PORT_2 };
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

/* Don't need to look at whole 16K.
 * last interesting register is descriptor poll timer.
 */
#define SKGE_REGS_LEN	(29*128)

static int skge_get_regs_len(struct net_device *dev)
{
	return SKGE_REGS_LEN;
}

/*
 * Returns copy of control register region
 * I/O region is divided into banks and certain regions are unreadable
 */
static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
			  void *p)
{
	const struct skge_port *skge = netdev_priv(dev);
	unsigned long offs;
	const void __iomem *io = skge->hw->regs;
	static const unsigned long bankmap
		= (1<<0) | (1<<2) | (1<<8) | (1<<9)
		  | (1<<12) | (1<<13) | (1<<14) | (1<<15) | (1<<16)
		  | (1<<17) | (1<<20) | (1<<21) | (1<<22) | (1<<23)
		  | (1<<24)  | (1<<25) | (1<<26) | (1<<27) | (1<<28);

	regs->version = 1;
	for (offs = 0; offs < regs->len; offs += 128) {
		u32 len = min_t(u32, 128, regs->len - offs);

		if (bankmap & (1<<(offs/128)))
			memcpy_fromio(p + offs, io + offs, len);
		else
			memset(p + offs, 0, len);
	}
}

/* Wake on Lan only supported on Yukon chps with rev 1 or above */
static int wol_supported(const struct skge_hw *hw)
{
	return !((hw->chip_id == CHIP_ID_GENESIS ||
149
		  (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
}

static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct skge_port *skge = netdev_priv(dev);

	wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
	wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
}

static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

165
	if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
		return -EOPNOTSUPP;

	if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
		return -EOPNOTSUPP;

	skge->wol = wol->wolopts == WAKE_MAGIC;

	if (skge->wol) {
		memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);

		skge_write16(hw, WOL_CTRL_STAT,
			     WOL_CTL_ENA_PME_ON_MAGIC_PKT |
			     WOL_CTL_ENA_MAGIC_PKT_UNIT);
	} else
		skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);

	return 0;
}

185 186 187 188 189 190 191
/* Determine supported/adverised modes based on hardware.
 * Note: ethtoool ADVERTISED_xxx == SUPPORTED_xxx
 */
static u32 skge_supported_modes(const struct skge_hw *hw)
{
	u32 supported;

192
	if (hw->copper) {
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
		supported = SUPPORTED_10baseT_Half
			| SUPPORTED_10baseT_Full
			| SUPPORTED_100baseT_Half
			| SUPPORTED_100baseT_Full
			| SUPPORTED_1000baseT_Half
			| SUPPORTED_1000baseT_Full
			| SUPPORTED_Autoneg| SUPPORTED_TP;

		if (hw->chip_id == CHIP_ID_GENESIS)
			supported &= ~(SUPPORTED_10baseT_Half
					     | SUPPORTED_10baseT_Full
					     | SUPPORTED_100baseT_Half
					     | SUPPORTED_100baseT_Full);

		else if (hw->chip_id == CHIP_ID_YUKON)
			supported &= ~SUPPORTED_1000baseT_Half;
	} else
		supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
			| SUPPORTED_Autoneg;

	return supported;
}
215 216 217 218 219 220 221 222

static int skge_get_settings(struct net_device *dev,
			     struct ethtool_cmd *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

	ecmd->transceiver = XCVR_INTERNAL;
223
	ecmd->supported = skge_supported_modes(hw);
224

225
	if (hw->copper) {
226 227
		ecmd->port = PORT_TP;
		ecmd->phy_address = hw->phy_addr;
228
	} else
229 230 231 232 233 234 235 236 237 238 239 240 241
		ecmd->port = PORT_FIBRE;

	ecmd->advertising = skge->advertising;
	ecmd->autoneg = skge->autoneg;
	ecmd->speed = skge->speed;
	ecmd->duplex = skge->duplex;
	return 0;
}

static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	const struct skge_hw *hw = skge->hw;
242
	u32 supported = skge_supported_modes(hw);
243 244

	if (ecmd->autoneg == AUTONEG_ENABLE) {
245 246 247
		ecmd->advertising = supported;
		skge->duplex = -1;
		skge->speed = -1;
248
	} else {
249 250
		u32 setting;

251
		switch (ecmd->speed) {
252
		case SPEED_1000:
253 254 255 256 257 258
			if (ecmd->duplex == DUPLEX_FULL)
				setting = SUPPORTED_1000baseT_Full;
			else if (ecmd->duplex == DUPLEX_HALF)
				setting = SUPPORTED_1000baseT_Half;
			else
				return -EINVAL;
259 260
			break;
		case SPEED_100:
261 262 263 264 265 266 267 268
			if (ecmd->duplex == DUPLEX_FULL)
				setting = SUPPORTED_100baseT_Full;
			else if (ecmd->duplex == DUPLEX_HALF)
				setting = SUPPORTED_100baseT_Half;
			else
				return -EINVAL;
			break;

269
		case SPEED_10:
270 271 272 273 274
			if (ecmd->duplex == DUPLEX_FULL)
				setting = SUPPORTED_10baseT_Full;
			else if (ecmd->duplex == DUPLEX_HALF)
				setting = SUPPORTED_10baseT_Half;
			else
275 276 277 278 279
				return -EINVAL;
			break;
		default:
			return -EINVAL;
		}
280 281 282 283 284 285

		if ((setting & supported) == 0)
			return -EINVAL;

		skge->speed = ecmd->speed;
		skge->duplex = ecmd->duplex;
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	}

	skge->autoneg = ecmd->autoneg;
	skge->advertising = ecmd->advertising;

	if (netif_running(dev)) {
		skge_down(dev);
		skge_up(dev);
	}
	return (0);
}

static void skge_get_drvinfo(struct net_device *dev,
			     struct ethtool_drvinfo *info)
{
	struct skge_port *skge = netdev_priv(dev);

	strcpy(info->driver, DRV_NAME);
	strcpy(info->version, DRV_VERSION);
	strcpy(info->fw_version, "N/A");
	strcpy(info->bus_info, pci_name(skge->hw->pdev));
}

static const struct skge_stat {
	char 	   name[ETH_GSTRING_LEN];
	u16	   xmac_offset;
	u16	   gma_offset;
} skge_stats[] = {
	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },

	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },

	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },

	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
};

static int skge_get_stats_count(struct net_device *dev)
{
	return ARRAY_SIZE(skge_stats);
}

static void skge_get_ethtool_stats(struct net_device *dev,
				   struct ethtool_stats *stats, u64 *data)
{
	struct skge_port *skge = netdev_priv(dev);

	if (skge->hw->chip_id == CHIP_ID_GENESIS)
		genesis_get_stats(skge, data);
	else
		yukon_get_stats(skge, data);
}

/* Use hardware MIB variables for critical path statistics and
 * transmit feedback not reported at interrupt.
 * Other errors are accounted for in interrupt handler.
 */
static struct net_device_stats *skge_get_stats(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	u64 data[ARRAY_SIZE(skge_stats)];

	if (skge->hw->chip_id == CHIP_ID_GENESIS)
		genesis_get_stats(skge, data);
	else
		yukon_get_stats(skge, data);

	skge->net_stats.tx_bytes = data[0];
	skge->net_stats.rx_bytes = data[1];
	skge->net_stats.tx_packets = data[2] + data[4] + data[6];
	skge->net_stats.rx_packets = data[3] + data[5] + data[7];
	skge->net_stats.multicast = data[5] + data[7];
	skge->net_stats.collisions = data[10];
	skge->net_stats.tx_aborted_errors = data[12];

	return &skge->net_stats;
}

static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
	int i;

385
	switch (stringset) {
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	case ETH_SS_STATS:
		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
			memcpy(data + i * ETH_GSTRING_LEN,
			       skge_stats[i].name, ETH_GSTRING_LEN);
		break;
	}
}

static void skge_get_ring_param(struct net_device *dev,
				struct ethtool_ringparam *p)
{
	struct skge_port *skge = netdev_priv(dev);

	p->rx_max_pending = MAX_RX_RING_SIZE;
	p->tx_max_pending = MAX_TX_RING_SIZE;
	p->rx_mini_max_pending = 0;
	p->rx_jumbo_max_pending = 0;

	p->rx_pending = skge->rx_ring.count;
	p->tx_pending = skge->tx_ring.count;
	p->rx_mini_pending = 0;
	p->rx_jumbo_pending = 0;
}

static int skge_set_ring_param(struct net_device *dev,
			       struct ethtool_ringparam *p)
{
	struct skge_port *skge = netdev_priv(dev);

	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
	    p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
		return -EINVAL;

	skge->rx_ring.count = p->rx_pending;
	skge->tx_ring.count = p->tx_pending;

	if (netif_running(dev)) {
		skge_down(dev);
		skge_up(dev);
	}

	return 0;
}

static u32 skge_get_msglevel(struct net_device *netdev)
{
	struct skge_port *skge = netdev_priv(netdev);
	return skge->msg_enable;
}

static void skge_set_msglevel(struct net_device *netdev, u32 value)
{
	struct skge_port *skge = netdev_priv(netdev);
	skge->msg_enable = value;
}

static int skge_nway_reset(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
		return -EINVAL;

	spin_lock_bh(&hw->phy_lock);
	if (hw->chip_id == CHIP_ID_GENESIS) {
		genesis_reset(hw, port);
		genesis_mac_init(hw, port);
	} else {
		yukon_reset(hw, port);
		yukon_init(hw, port);
	}
	spin_unlock_bh(&hw->phy_lock);
	return 0;
}

static int skge_set_sg(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

	if (hw->chip_id == CHIP_ID_GENESIS && data)
		return -EOPNOTSUPP;
	return ethtool_op_set_sg(dev, data);
}

static int skge_set_tx_csum(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

	if (hw->chip_id == CHIP_ID_GENESIS && data)
		return -EOPNOTSUPP;

	return ethtool_op_set_tx_csum(dev, data);
}

static u32 skge_get_rx_csum(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	return skge->rx_csum;
}

/* Only Yukon supports checksum offload. */
static int skge_set_rx_csum(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);

	if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
		return -EOPNOTSUPP;

	skge->rx_csum = data;
	return 0;
}

static void skge_get_pauseparam(struct net_device *dev,
				struct ethtool_pauseparam *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);

	ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
		|| (skge->flow_control == FLOW_MODE_SYMMETRIC);
	ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
		|| (skge->flow_control == FLOW_MODE_SYMMETRIC);

	ecmd->autoneg = skge->autoneg;
}

static int skge_set_pauseparam(struct net_device *dev,
			       struct ethtool_pauseparam *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);

	skge->autoneg = ecmd->autoneg;
	if (ecmd->rx_pause && ecmd->tx_pause)
		skge->flow_control = FLOW_MODE_SYMMETRIC;
524
	else if (ecmd->rx_pause && !ecmd->tx_pause)
525
		skge->flow_control = FLOW_MODE_REM_SEND;
526
	else if (!ecmd->rx_pause && ecmd->tx_pause)
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
		skge->flow_control = FLOW_MODE_LOC_SEND;
	else
		skge->flow_control = FLOW_MODE_NONE;

	if (netif_running(dev)) {
		skge_down(dev);
		skge_up(dev);
	}
	return 0;
}

/* Chip internal frequency for clock calculations */
static inline u32 hwkhz(const struct skge_hw *hw)
{
	if (hw->chip_id == CHIP_ID_GENESIS)
		return 53215; /* or:  53.125 MHz */
	else
		return 78215; /* or:  78.125 MHz */
}

/* Chip hz to microseconds */
static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
{
	return (ticks * 1000) / hwkhz(hw);
}

/* Microseconds to chip hz */
static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
{
	return hwkhz(hw) * usec / 1000;
}

static int skge_get_coalesce(struct net_device *dev,
			     struct ethtool_coalesce *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	ecmd->rx_coalesce_usecs = 0;
	ecmd->tx_coalesce_usecs = 0;

	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
		u32 msk = skge_read32(hw, B2_IRQM_MSK);

		if (msk & rxirqmask[port])
			ecmd->rx_coalesce_usecs = delay;
		if (msk & txirqmask[port])
			ecmd->tx_coalesce_usecs = delay;
	}

	return 0;
}

/* Note: interrupt timer is per board, but can turn on/off per port */
static int skge_set_coalesce(struct net_device *dev,
			     struct ethtool_coalesce *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u32 msk = skge_read32(hw, B2_IRQM_MSK);
	u32 delay = 25;

	if (ecmd->rx_coalesce_usecs == 0)
		msk &= ~rxirqmask[port];
	else if (ecmd->rx_coalesce_usecs < 25 ||
		 ecmd->rx_coalesce_usecs > 33333)
		return -EINVAL;
	else {
		msk |= rxirqmask[port];
		delay = ecmd->rx_coalesce_usecs;
	}

	if (ecmd->tx_coalesce_usecs == 0)
		msk &= ~txirqmask[port];
	else if (ecmd->tx_coalesce_usecs < 25 ||
		 ecmd->tx_coalesce_usecs > 33333)
		return -EINVAL;
	else {
		msk |= txirqmask[port];
		delay = min(delay, ecmd->rx_coalesce_usecs);
	}

	skge_write32(hw, B2_IRQM_MSK, msk);
	if (msk == 0)
		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
	else {
		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
	}
	return 0;
}

622 623
enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
static void skge_led(struct skge_port *skge, enum led_mode mode)
624
{
625 626 627 628
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	spin_lock_bh(&hw->phy_lock);
629
	if (hw->chip_id == CHIP_ID_GENESIS) {
630 631 632 633 634 635 636
		switch (mode) {
		case LED_MODE_OFF:
			xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
			break;
637

638 639 640
		case LED_MODE_ON:
			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
641

642 643
			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
644

645
			break;
646

647 648 649 650
		case LED_MODE_TST:
			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
651

652 653 654
			xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
			break;
		}
655
	} else {
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
		switch (mode) {
		case LED_MODE_OFF:
			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
				     PHY_M_LED_MO_10(MO_LED_OFF)   |
				     PHY_M_LED_MO_100(MO_LED_OFF)  |
				     PHY_M_LED_MO_1000(MO_LED_OFF) |
				     PHY_M_LED_MO_RX(MO_LED_OFF));
			break;
		case LED_MODE_ON:
			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
				     PHY_M_LED_PULS_DUR(PULS_170MS) |
				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
				     PHY_M_LEDC_TX_CTRL |
				     PHY_M_LEDC_DP_CTRL);
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686
			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
				     PHY_M_LED_MO_RX(MO_LED_OFF) |
				     (skge->speed == SPEED_100 ?
				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
			break;
		case LED_MODE_TST:
			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
				     PHY_M_LED_MO_10(MO_LED_ON)   |
				     PHY_M_LED_MO_100(MO_LED_ON)  |
				     PHY_M_LED_MO_1000(MO_LED_ON) |
				     PHY_M_LED_MO_RX(MO_LED_ON));
		}
687
	}
688
	spin_unlock_bh(&hw->phy_lock);
689 690 691 692 693 694
}

/* blink LED's for finding board */
static int skge_phys_id(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);
695 696
	unsigned long ms;
	enum led_mode mode = LED_MODE_TST;
697

698
	if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
699 700 701
		ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
	else
		ms = data * 1000;
702

703 704 705
	while (ms > 0) {
		skge_led(skge, mode);
		mode ^= LED_MODE_TST;
706

707 708 709 710
		if (msleep_interruptible(BLINK_MS))
			break;
		ms -= BLINK_MS;
	}
711

712 713
	/* back to regular LED state */
	skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763

	return 0;
}

static struct ethtool_ops skge_ethtool_ops = {
	.get_settings	= skge_get_settings,
	.set_settings	= skge_set_settings,
	.get_drvinfo	= skge_get_drvinfo,
	.get_regs_len	= skge_get_regs_len,
	.get_regs	= skge_get_regs,
	.get_wol	= skge_get_wol,
	.set_wol	= skge_set_wol,
	.get_msglevel	= skge_get_msglevel,
	.set_msglevel	= skge_set_msglevel,
	.nway_reset	= skge_nway_reset,
	.get_link	= ethtool_op_get_link,
	.get_ringparam	= skge_get_ring_param,
	.set_ringparam	= skge_set_ring_param,
	.get_pauseparam = skge_get_pauseparam,
	.set_pauseparam = skge_set_pauseparam,
	.get_coalesce	= skge_get_coalesce,
	.set_coalesce	= skge_set_coalesce,
	.get_sg		= ethtool_op_get_sg,
	.set_sg		= skge_set_sg,
	.get_tx_csum	= ethtool_op_get_tx_csum,
	.set_tx_csum	= skge_set_tx_csum,
	.get_rx_csum	= skge_get_rx_csum,
	.set_rx_csum	= skge_set_rx_csum,
	.get_strings	= skge_get_strings,
	.phys_id	= skge_phys_id,
	.get_stats_count = skge_get_stats_count,
	.get_ethtool_stats = skge_get_ethtool_stats,
};

/*
 * Allocate ring elements and chain them together
 * One-to-one association of board descriptors with ring elements
 */
static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
{
	struct skge_tx_desc *d;
	struct skge_element *e;
	int i;

	ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
	if (!ring->start)
		return -ENOMEM;

	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
		e->desc = d;
764
		e->skb = NULL;
765 766 767 768 769 770 771 772 773 774 775 776 777
		if (i == ring->count - 1) {
			e->next = ring->start;
			d->next_offset = base;
		} else {
			e->next = e + 1;
			d->next_offset = base + (i+1) * sizeof(*d);
		}
	}
	ring->to_use = ring->to_clean = ring->start;

	return 0;
}

778
static struct sk_buff *skge_rx_alloc(struct net_device *dev, unsigned int size)
779
{
780
	struct sk_buff *skb = dev_alloc_skb(size);
781

782 783 784
	if (likely(skb)) {
		skb->dev = dev;
		skb_reserve(skb, NET_IP_ALIGN);
785
	}
786 787
	return skb;
}
788

789 790 791 792 793 794
/* Allocate and setup a new buffer for receiving */
static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
			  struct sk_buff *skb, unsigned int bufsize)
{
	struct skge_rx_desc *rd = e->desc;
	u64 map;
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813

	map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
			     PCI_DMA_FROMDEVICE);

	rd->dma_lo = map;
	rd->dma_hi = map >> 32;
	e->skb = skb;
	rd->csum1_start = ETH_HLEN;
	rd->csum2_start = ETH_HLEN;
	rd->csum1 = 0;
	rd->csum2 = 0;

	wmb();

	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
	pci_unmap_addr_set(e, mapaddr, map);
	pci_unmap_len_set(e, maplen, bufsize);
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/* Resume receiving using existing skb,
 * Note: DMA address is not changed by chip.
 * 	 MTU not changed while receiver active.
 */
static void skge_rx_reuse(struct skge_element *e, unsigned int size)
{
	struct skge_rx_desc *rd = e->desc;

	rd->csum2 = 0;
	rd->csum2_start = ETH_HLEN;

	wmb();

	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
}


/* Free all  buffers in receive ring, assumes receiver stopped */
832 833 834 835 836 837
static void skge_rx_clean(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	struct skge_ring *ring = &skge->rx_ring;
	struct skge_element *e;

838 839
	e = ring->start;
	do {
840 841
		struct skge_rx_desc *rd = e->desc;
		rd->control = 0;
842 843 844 845 846 847 848 849 850
		if (e->skb) {
			pci_unmap_single(hw->pdev,
					 pci_unmap_addr(e, mapaddr),
					 pci_unmap_len(e, maplen),
					 PCI_DMA_FROMDEVICE);
			dev_kfree_skb(e->skb);
			e->skb = NULL;
		}
	} while ((e = e->next) != ring->start);
851 852
}

853

854
/* Allocate buffers for receive ring
855
 * For receive:  to_clean is next received frame.
856 857 858 859 860
 */
static int skge_rx_fill(struct skge_port *skge)
{
	struct skge_ring *ring = &skge->rx_ring;
	struct skge_element *e;
861
	unsigned int bufsize = skge->rx_buf_size;
862

863 864 865
	e = ring->start;
	do {
		struct sk_buff *skb = skge_rx_alloc(skge->netdev, bufsize);
866

867 868 869 870 871
		if (!skb)
			return -ENOMEM;

		skge_rx_setup(skge, e, skb, bufsize);
	} while ( (e = e->next) != ring->start);
872

873 874
	ring->to_clean = ring->start;
	return 0;
875 876 877 878
}

static void skge_link_up(struct skge_port *skge)
{
879
	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
880 881
		    LED_BLK_OFF|LED_SYNC_OFF|LED_ON);

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	netif_carrier_on(skge->netdev);
	if (skge->tx_avail > MAX_SKB_FRAGS + 1)
		netif_wake_queue(skge->netdev);

	if (netif_msg_link(skge))
		printk(KERN_INFO PFX
		       "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
		       skge->netdev->name, skge->speed,
		       skge->duplex == DUPLEX_FULL ? "full" : "half",
		       (skge->flow_control == FLOW_MODE_NONE) ? "none" :
		       (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
		       (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
		       (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
		       "unknown");
}

static void skge_link_down(struct skge_port *skge)
{
900
	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
901 902 903 904 905 906 907
	netif_carrier_off(skge->netdev);
	netif_stop_queue(skge->netdev);

	if (netif_msg_link(skge))
		printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
}

908
static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
909 910 911 912
{
	int i;
	u16 v;

913 914
	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
	v = xm_read16(hw, port, XM_PHY_DATA);
915

916 917 918 919 920 921
	/* Need to wait for external PHY */
	for (i = 0; i < PHY_RETRIES; i++) {
		udelay(1);
		if (xm_read16(hw, port, XM_MMU_CMD)
		    & XM_MMU_PHY_RDY)
			goto ready;
922 923
	}

924 925 926 927 928 929
	printk(KERN_WARNING PFX "%s: phy read timed out\n",
	       hw->dev[port]->name);
	return 0;
 ready:
	v = xm_read16(hw, port, XM_PHY_DATA);

930 931 932
	return v;
}

933
static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
934 935 936
{
	int i;

937
	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
938
	for (i = 0; i < PHY_RETRIES; i++) {
939
		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
940
			goto ready;
941
		udelay(1);
942 943 944 945 946 947
	}
	printk(KERN_WARNING PFX "%s: phy write failed to come ready\n",
	       hw->dev[port]->name);


 ready:
948
	xm_write16(hw, port, XM_PHY_DATA, val);
949 950
	for (i = 0; i < PHY_RETRIES; i++) {
		udelay(1);
951
		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
			return;
	}
	printk(KERN_WARNING PFX "%s: phy write timed out\n",
		       hw->dev[port]->name);
}

static void genesis_init(struct skge_hw *hw)
{
	/* set blink source counter */
	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
	skge_write8(hw, B2_BSC_CTRL, BSC_START);

	/* configure mac arbiter */
	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);

	/* configure mac arbiter timeout values */
	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);

	skge_write8(hw, B3_MA_RCINI_RX1, 0);
	skge_write8(hw, B3_MA_RCINI_RX2, 0);
	skge_write8(hw, B3_MA_RCINI_TX1, 0);
	skge_write8(hw, B3_MA_RCINI_TX2, 0);

	/* configure packet arbiter timeout */
	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
}

static void genesis_reset(struct skge_hw *hw, int port)
{
988
	const u8 zero[8]  = { 0 };
989

990 991
	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);

992
	/* reset the statistics module */
993 994 995 996 997
	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
	xm_write16(hw, port, XM_IMSK, 0xffff);	/* disable XMAC IRQs */
	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
998

999 1000
	/* disable Broadcom PHY IRQ */
	xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1001

1002
	xm_outhash(hw, port, XM_HSM, zero);
1003 1004 1005
}


1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/* Convert mode to MII values  */
static const u16 phy_pause_map[] = {
	[FLOW_MODE_NONE] =	0,
	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
	[FLOW_MODE_REM_SEND]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
};


/* Check status of Broadcom phy link */
static void bcom_check_link(struct skge_hw *hw, int port)
1017
{
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	struct net_device *dev = hw->dev[port];
	struct skge_port *skge = netdev_priv(dev);
	u16 status;

	/* read twice because of latch */
	(void) xm_phy_read(hw, port, PHY_BCOM_STAT);
	status = xm_phy_read(hw, port, PHY_BCOM_STAT);

	if ((status & PHY_ST_LSYNC) == 0) {
		u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
		cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
		xm_write16(hw, port, XM_MMU_CMD, cmd);
		/* dummy read to ensure writing */
		(void) xm_read16(hw, port, XM_MMU_CMD);

		if (netif_carrier_ok(dev))
			skge_link_down(skge);
	} else {
		if (skge->autoneg == AUTONEG_ENABLE &&
		    (status & PHY_ST_AN_OVER)) {
			u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
			u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);

			if (lpa & PHY_B_AN_RF) {
				printk(KERN_NOTICE PFX "%s: remote fault\n",
				       dev->name);
				return;
			}

			/* Check Duplex mismatch */
1048
			switch (aux & PHY_B_AS_AN_RES_MSK) {
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
			case PHY_B_RES_1000FD:
				skge->duplex = DUPLEX_FULL;
				break;
			case PHY_B_RES_1000HD:
				skge->duplex = DUPLEX_HALF;
				break;
			default:
				printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
				       dev->name);
				return;
			}


			/* We are using IEEE 802.3z/D5.0 Table 37-4 */
			switch (aux & PHY_B_AS_PAUSE_MSK) {
			case PHY_B_AS_PAUSE_MSK:
				skge->flow_control = FLOW_MODE_SYMMETRIC;
				break;
			case PHY_B_AS_PRR:
				skge->flow_control = FLOW_MODE_REM_SEND;
				break;
			case PHY_B_AS_PRT:
				skge->flow_control = FLOW_MODE_LOC_SEND;
				break;
			default:
				skge->flow_control = FLOW_MODE_NONE;
			}

			skge->speed = SPEED_1000;
		}

		if (!netif_carrier_ok(dev))
			genesis_link_up(skge);
	}
}

/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
 * Phy on for 100 or 10Mbit operation
 */
static void bcom_phy_init(struct skge_port *skge, int jumbo)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1092
	int i;
1093
	u16 id1, r, ext, ctl;
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

	/* magic workaround patterns for Broadcom */
	static const struct {
		u16 reg;
		u16 val;
	} A1hack[] = {
		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
	}, C0hack[] = {
		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
	};

1109 1110 1111 1112 1113 1114 1115 1116
	/* read Id from external PHY (all have the same address) */
	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);

	/* Optimize MDIO transfer by suppressing preamble. */
	r = xm_read16(hw, port, XM_MMU_CMD);
	r |=  XM_MMU_NO_PRE;
	xm_write16(hw, port, XM_MMU_CMD,r);

1117
	switch (id1) {
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	case PHY_BCOM_ID1_C0:
		/*
		 * Workaround BCOM Errata for the C0 type.
		 * Write magic patterns to reserved registers.
		 */
		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
			xm_phy_write(hw, port,
				     C0hack[i].reg, C0hack[i].val);

		break;
	case PHY_BCOM_ID1_A1:
		/*
		 * Workaround BCOM Errata for the A1 type.
		 * Write magic patterns to reserved registers.
		 */
		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
			xm_phy_write(hw, port,
				     A1hack[i].reg, A1hack[i].val);
		break;
	}

	/*
	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
	 * Disable Power Management after reset.
	 */
	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
	r |= PHY_B_AC_DIS_PM;
	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);

	/* Dummy read */
	xm_read16(hw, port, XM_ISRC);

	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
	ctl = PHY_CT_SP1000;	/* always 1000mbit */

	if (skge->autoneg == AUTONEG_ENABLE) {
		/*
		 * Workaround BCOM Errata #1 for the C5 type.
		 * 1000Base-T Link Acquisition Failure in Slave Mode
		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
		 */
		u16 adv = PHY_B_1000C_RD;
		if (skge->advertising & ADVERTISED_1000baseT_Half)
			adv |= PHY_B_1000C_AHD;
		if (skge->advertising & ADVERTISED_1000baseT_Full)
			adv |= PHY_B_1000C_AFD;
		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);

		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
	} else {
		if (skge->duplex == DUPLEX_FULL)
			ctl |= PHY_CT_DUP_MD;
		/* Force to slave */
		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
	}

	/* Set autonegotiation pause parameters */
	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);

	/* Handle Jumbo frames */
	if (jumbo) {
		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);

		ext |= PHY_B_PEC_HIGH_LA;

	}

	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);

	/* Use link status change interrrupt */
	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);

	bcom_check_link(hw, port);
}

static void genesis_mac_init(struct skge_hw *hw, int port)
{
	struct net_device *dev = hw->dev[port];
	struct skge_port *skge = netdev_priv(dev);
	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
	int i;
	u32 r;
	const u8 zero[6]  = { 0 };

	/* Clear MIB counters */
	xm_write16(hw, port, XM_STAT_CMD,
			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
	/* Clear two times according to Errata #3 */
	xm_write16(hw, port, XM_STAT_CMD,
			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1211 1212

	/* Unreset the XMAC. */
1213
	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1214 1215 1216 1217 1218 1219

	/*
	 * Perform additional initialization for external PHYs,
	 * namely for the 1000baseTX cards that use the XMAC's
	 * GMII mode.
	 */
1220
	/* Take external Phy out of reset */
1221 1222 1223 1224 1225 1226 1227 1228 1229
	r = skge_read32(hw, B2_GP_IO);
	if (port == 0)
		r |= GP_DIR_0|GP_IO_0;
	else
		r |= GP_DIR_2|GP_IO_2;

	skge_write32(hw, B2_GP_IO, r);
	skge_read32(hw, B2_GP_IO);

1230
	/* Enable GMII interfac */
1231 1232
	xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);

1233
	bcom_phy_init(skge, jumbo);
1234

1235 1236
	/* Set Station Address */
	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1237

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	/* We don't use match addresses so clear */
	for (i = 1; i < 16; i++)
		xm_outaddr(hw, port, XM_EXM(i), zero);

	/* configure Rx High Water Mark (XM_RX_HI_WM) */
	xm_write16(hw, port, XM_RX_HI_WM, 1450);

	/* We don't need the FCS appended to the packet. */
	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
	if (jumbo)
		r |= XM_RX_BIG_PK_OK;
1249

1250
	if (skge->duplex == DUPLEX_HALF) {
1251
		/*
1252 1253 1254
		 * If in manual half duplex mode the other side might be in
		 * full duplex mode, so ignore if a carrier extension is not seen
		 * on frames received
1255
		 */
1256
		r |= XM_RX_DIS_CEXT;
1257
	}
1258
	xm_write16(hw, port, XM_RX_CMD, r);
1259 1260 1261


	/* We want short frames padded to 60 bytes. */
1262 1263 1264 1265 1266 1267 1268
	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);

	/*
	 * Bump up the transmit threshold. This helps hold off transmit
	 * underruns when we're blasting traffic from both ports at once.
	 */
	xm_write16(hw, port, XM_TX_THR, 512);
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

	/*
	 * Enable the reception of all error frames. This is is
	 * a necessary evil due to the design of the XMAC. The
	 * XMAC's receive FIFO is only 8K in size, however jumbo
	 * frames can be up to 9000 bytes in length. When bad
	 * frame filtering is enabled, the XMAC's RX FIFO operates
	 * in 'store and forward' mode. For this to work, the
	 * entire frame has to fit into the FIFO, but that means
	 * that jumbo frames larger than 8192 bytes will be
	 * truncated. Disabling all bad frame filtering causes
	 * the RX FIFO to operate in streaming mode, in which
	 * case the XMAC will start transfering frames out of the
	 * RX FIFO as soon as the FIFO threshold is reached.
	 */
1284
	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1285 1286 1287


	/*
1288 1289 1290
	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1291
	 */
1292 1293 1294 1295 1296 1297 1298 1299
	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);

	/*
	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
	 *	  and 'Octets Tx OK Hi Cnt Ov'.
	 */
	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

	/* Configure MAC arbiter */
	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);

	/* configure timeout values */
	skge_write8(hw, B3_MA_TOINI_RX1, 72);
	skge_write8(hw, B3_MA_TOINI_RX2, 72);
	skge_write8(hw, B3_MA_TOINI_TX1, 72);
	skge_write8(hw, B3_MA_TOINI_TX2, 72);

	skge_write8(hw, B3_MA_RCINI_RX1, 0);
	skge_write8(hw, B3_MA_RCINI_RX2, 0);
	skge_write8(hw, B3_MA_RCINI_TX1, 0);
	skge_write8(hw, B3_MA_RCINI_TX2, 0);

	/* Configure Rx MAC FIFO */
1316 1317 1318
	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1319 1320

	/* Configure Tx MAC FIFO */
1321 1322 1323
	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1324

1325
	if (jumbo) {
1326
		/* Enable frame flushing if jumbo frames used */
1327
		skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1328 1329 1330
	} else {
		/* enable timeout timers if normal frames */
		skge_write16(hw, B3_PA_CTRL,
1331
			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1332 1333 1334 1335 1336 1337 1338
	}
}

static void genesis_stop(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1339
	u32 reg;
1340

1341 1342
	genesis_reset(hw, port);

1343 1344 1345 1346 1347 1348 1349 1350
	/* Clear Tx packet arbiter timeout IRQ */
	skge_write16(hw, B3_PA_CTRL,
		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);

	/*
	 * If the transfer stucks at the MAC the STOP command will not
	 * terminate if we don't flush the XMAC's transmit FIFO !
	 */
1351 1352
	xm_write32(hw, port, XM_MODE,
			xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1353 1354 1355


	/* Reset the MAC */
1356
	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1357 1358

	/* For external PHYs there must be special handling */
1359 1360 1361 1362 1363 1364 1365
	reg = skge_read32(hw, B2_GP_IO);
	if (port == 0) {
		reg |= GP_DIR_0;
		reg &= ~GP_IO_0;
	} else {
		reg |= GP_DIR_2;
		reg &= ~GP_IO_2;
1366
	}
1367 1368
	skge_write32(hw, B2_GP_IO, reg);
	skge_read32(hw, B2_GP_IO);
1369

1370 1371
	xm_write16(hw, port, XM_MMU_CMD,
			xm_read16(hw, port, XM_MMU_CMD)
1372 1373
			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));

1374
	xm_read16(hw, port, XM_MMU_CMD);
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
}


static void genesis_get_stats(struct skge_port *skge, u64 *data)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	int i;
	unsigned long timeout = jiffies + HZ;

1385
	xm_write16(hw, port,
1386 1387 1388
			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);

	/* wait for update to complete */
1389
	while (xm_read16(hw, port, XM_STAT_CMD)
1390 1391 1392 1393 1394 1395 1396
	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
		if (time_after(jiffies, timeout))
			break;
		udelay(10);
	}

	/* special case for 64 bit octet counter */
1397 1398 1399 1400
	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
		| xm_read32(hw, port, XM_TXO_OK_LO);
	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
		| xm_read32(hw, port, XM_RXO_OK_LO);
1401 1402

	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1403
		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1404 1405 1406 1407 1408
}

static void genesis_mac_intr(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
1409
	u16 status = xm_read16(hw, port, XM_ISRC);
1410

1411 1412 1413
	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
		       skge->netdev->name, status);
1414 1415

	if (status & XM_IS_TXF_UR) {
1416
		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1417 1418 1419
		++skge->net_stats.tx_fifo_errors;
	}
	if (status & XM_IS_RXF_OV) {
1420
		xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1421 1422 1423 1424
		++skge->net_stats.rx_fifo_errors;
	}
}

1425
static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1426 1427 1428
{
	int i;

1429 1430
	gma_write16(hw, port, GM_SMI_DATA, val);
	gma_write16(hw, port, GM_SMI_CTRL,
1431 1432 1433 1434
			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
	for (i = 0; i < PHY_RETRIES; i++) {
		udelay(1);

1435
		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1436 1437 1438 1439
			break;
	}
}

1440
static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1441 1442 1443
{
	int i;

1444
	gma_write16(hw, port, GM_SMI_CTRL,
1445 1446 1447 1448 1449
			 GM_SMI_CT_PHY_AD(hw->phy_addr)
			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);

	for (i = 0; i < PHY_RETRIES; i++) {
		udelay(1);
1450
		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1451 1452 1453 1454 1455 1456 1457
			goto ready;
	}

	printk(KERN_WARNING PFX "%s: phy read timeout\n",
	       hw->dev[port]->name);
	return 0;
 ready:
1458
	return gma_read16(hw, port, GM_SMI_DATA);
1459 1460 1461 1462 1463 1464 1465 1466 1467
}

static void genesis_link_up(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u16 cmd;
	u32 mode, msk;

1468
	cmd = xm_read16(hw, port, XM_MMU_CMD);
1469 1470 1471 1472 1473 1474 1475

	/*
	 * enabling pause frame reception is required for 1000BT
	 * because the XMAC is not reset if the link is going down
	 */
	if (skge->flow_control == FLOW_MODE_NONE ||
	    skge->flow_control == FLOW_MODE_LOC_SEND)
1476
		/* Disable Pause Frame Reception */
1477 1478 1479 1480 1481
		cmd |= XM_MMU_IGN_PF;
	else
		/* Enable Pause Frame Reception */
		cmd &= ~XM_MMU_IGN_PF;

1482
	xm_write16(hw, port, XM_MMU_CMD, cmd);
1483

1484
	mode = xm_read32(hw, port, XM_MODE);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
	    skge->flow_control == FLOW_MODE_LOC_SEND) {
		/*
		 * Configure Pause Frame Generation
		 * Use internal and external Pause Frame Generation.
		 * Sending pause frames is edge triggered.
		 * Send a Pause frame with the maximum pause time if
		 * internal oder external FIFO full condition occurs.
		 * Send a zero pause time frame to re-start transmission.
		 */
		/* XM_PAUSE_DA = '010000C28001' (default) */
		/* XM_MAC_PTIME = 0xffff (maximum) */
		/* remember this value is defined in big endian (!) */
1498
		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1499 1500

		mode |= XM_PAUSE_MODE;
1501
		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1502 1503 1504 1505 1506 1507 1508 1509
	} else {
		/*
		 * disable pause frame generation is required for 1000BT
		 * because the XMAC is not reset if the link is going down
		 */
		/* Disable Pause Mode in Mode Register */
		mode &= ~XM_PAUSE_MODE;

1510
		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1511 1512
	}

1513
	xm_write32(hw, port, XM_MODE, mode);
1514 1515

	msk = XM_DEF_MSK;
1516 1517
	/* disable GP0 interrupt bit for external Phy */
	msk |= XM_IS_INP_ASS;
1518

1519 1520
	xm_write16(hw, port, XM_IMSK, msk);
	xm_read16(hw, port, XM_ISRC);
1521 1522

	/* get MMU Command Reg. */
1523
	cmd = xm_read16(hw, port, XM_MMU_CMD);
1524
	if (skge->duplex == DUPLEX_FULL)
1525 1526
		cmd |= XM_MMU_GMII_FD;

1527 1528 1529 1530 1531 1532 1533 1534
	/*
	 * Workaround BCOM Errata (#10523) for all BCom Phys
	 * Enable Power Management after link up
	 */
	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
		     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
		     & ~PHY_B_AC_DIS_PM);
	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1535 1536

	/* enable Rx/Tx */
1537
	xm_write16(hw, port, XM_MMU_CMD,
1538 1539 1540 1541 1542
			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
	skge_link_up(skge);
}


1543
static inline void bcom_phy_intr(struct skge_port *skge)
1544 1545 1546
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1547 1548 1549
	u16 isrc;

	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1550 1551 1552
	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
		       skge->netdev->name, isrc);
1553

1554 1555 1556
	if (isrc & PHY_B_IS_PSE)
		printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
		       hw->dev[port]->name);
1557 1558 1559 1560

	/* Workaround BCom Errata:
	 *	enable and disable loopback mode if "NO HCD" occurs.
	 */
1561
	if (isrc & PHY_B_IS_NO_HDCL) {
1562 1563
		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1564
				  ctrl | PHY_CT_LOOP);
1565
		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1566 1567 1568
				  ctrl & ~PHY_CT_LOOP);
	}

1569 1570
	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
		bcom_check_link(hw, port);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

}

/* Marvell Phy Initailization */
static void yukon_init(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
	u16 ctrl, ct1000, adv;

	if (skge->autoneg == AUTONEG_ENABLE) {
1581
		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1582 1583 1584 1585 1586

		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
			  PHY_M_EC_MAC_S_MSK);
		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);

1587
		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1588

1589
		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1590 1591
	}

1592
	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1593 1594 1595 1596
	if (skge->autoneg == AUTONEG_DISABLE)
		ctrl &= ~PHY_CT_ANE;

	ctrl |= PHY_CT_RESET;
1597
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1598 1599 1600

	ctrl = 0;
	ct1000 = 0;
1601
	adv = PHY_AN_CSMA;
1602 1603

	if (skge->autoneg == AUTONEG_ENABLE) {
1604
		if (hw->copper) {
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
			if (skge->advertising & ADVERTISED_1000baseT_Full)
				ct1000 |= PHY_M_1000C_AFD;
			if (skge->advertising & ADVERTISED_1000baseT_Half)
				ct1000 |= PHY_M_1000C_AHD;
			if (skge->advertising & ADVERTISED_100baseT_Full)
				adv |= PHY_M_AN_100_FD;
			if (skge->advertising & ADVERTISED_100baseT_Half)
				adv |= PHY_M_AN_100_HD;
			if (skge->advertising & ADVERTISED_10baseT_Full)
				adv |= PHY_M_AN_10_FD;
			if (skge->advertising & ADVERTISED_10baseT_Half)
				adv |= PHY_M_AN_10_HD;
1617
		} else	/* special defines for FIBER (88E1011S only) */
1618 1619
			adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;

1620 1621 1622
		/* Set Flow-control capabilities */
		adv |= phy_pause_map[skge->flow_control];

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		/* Restart Auto-negotiation */
		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
	} else {
		/* forced speed/duplex settings */
		ct1000 = PHY_M_1000C_MSE;

		if (skge->duplex == DUPLEX_FULL)
			ctrl |= PHY_CT_DUP_MD;

		switch (skge->speed) {
		case SPEED_1000:
			ctrl |= PHY_CT_SP1000;
			break;
		case SPEED_100:
			ctrl |= PHY_CT_SP100;
			break;
		}

		ctrl |= PHY_CT_RESET;
	}

1644
	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1645

1646 1647
	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1648 1649 1650

	/* Enable phy interrupt on autonegotiation complete (or link up) */
	if (skge->autoneg == AUTONEG_ENABLE)
1651
		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1652
	else
1653
		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1654 1655 1656 1657
}

static void yukon_reset(struct skge_hw *hw, int port)
{
1658 1659 1660 1661 1662
	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1663

1664 1665
	gma_write16(hw, port, GM_RX_CTRL,
			 gma_read16(hw, port, GM_RX_CTRL)
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
}

static void yukon_mac_init(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
	int i;
	u32 reg;
	const u8 *addr = hw->dev[port]->dev_addr;

	/* WA code for COMA mode -- set PHY reset */
	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1678 1679 1680 1681 1682
	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
		reg = skge_read32(hw, B2_GP_IO);
		reg |= GP_DIR_9 | GP_IO_9;
		skge_write32(hw, B2_GP_IO, reg);
	}
1683 1684

	/* hard reset */
1685 1686
	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1687 1688 1689

	/* WA code for COMA mode -- clear PHY reset */
	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1690 1691 1692 1693 1694 1695
	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
		reg = skge_read32(hw, B2_GP_IO);
		reg |= GP_DIR_9;
		reg &= ~GP_IO_9;
		skge_write32(hw, B2_GP_IO, reg);
	}
1696 1697 1698 1699

	/* Set hardware config mode */
	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1700
	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1701 1702

	/* Clear GMC reset */
1703 1704 1705
	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1706 1707
	if (skge->autoneg == AUTONEG_DISABLE) {
		reg = GM_GPCR_AU_ALL_DIS;
1708 1709
		gma_write16(hw, port, GM_GP_CTRL,
				 gma_read16(hw, port, GM_GP_CTRL) | reg);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724

		switch (skge->speed) {
		case SPEED_1000:
			reg |= GM_GPCR_SPEED_1000;
			/* fallthru */
		case SPEED_100:
			reg |= GM_GPCR_SPEED_100;
		}

		if (skge->duplex == DUPLEX_FULL)
			reg |= GM_GPCR_DUP_FULL;
	} else
		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
	switch (skge->flow_control) {
	case FLOW_MODE_NONE:
1725
		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1726 1727 1728 1729 1730 1731 1732
		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
		break;
	case FLOW_MODE_LOC_SEND:
		/* disable Rx flow-control */
		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
	}

1733
	gma_write16(hw, port, GM_GP_CTRL, reg);
1734
	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
1735 1736 1737 1738

	yukon_init(hw, port);

	/* MIB clear */
1739 1740
	reg = gma_read16(hw, port, GM_PHY_ADDR);
	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1741 1742

	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1743 1744
		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
	gma_write16(hw, port, GM_PHY_ADDR, reg);
1745 1746

	/* transmit control */
1747
	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1748 1749

	/* receive control reg: unicast + multicast + no FCS  */
1750
	gma_write16(hw, port, GM_RX_CTRL,
1751 1752 1753
			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);

	/* transmit flow control */
1754
	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1755 1756

	/* transmit parameter */
1757
	gma_write16(hw, port, GM_TX_PARAM,
1758 1759 1760 1761 1762 1763 1764 1765 1766
			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));

	/* serial mode register */
	reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
	if (hw->dev[port]->mtu > 1500)
		reg |= GM_SMOD_JUMBO_ENA;

1767
	gma_write16(hw, port, GM_SERIAL_MODE, reg);
1768 1769

	/* physical address: used for pause frames */
1770
	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1771
	/* virtual address for data */
1772
	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1773 1774

	/* enable interrupt mask for counter overflows */
1775 1776 1777
	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1778 1779 1780 1781

	/* Initialize Mac Fifo */

	/* Configure Rx MAC FIFO */
1782
	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1783 1784
	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1785
	    hw->chip_rev >= CHIP_REV_YU_LITE_A3)
1786
		reg &= ~GMF_RX_F_FL_ON;
1787 1788
	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
1789 1790 1791 1792 1793 1794
	/*
	 * because Pause Packet Truncation in GMAC is not working
	 * we have to increase the Flush Threshold to 64 bytes
	 * in order to flush pause packets in Rx FIFO on Yukon-1
	 */
	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
1795 1796

	/* Configure Tx MAC FIFO */
1797 1798
	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1799 1800 1801 1802 1803 1804 1805
}

static void yukon_stop(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

1806 1807
	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
	yukon_reset(hw, port);
1808

1809 1810
	gma_write16(hw, port, GM_GP_CTRL,
			 gma_read16(hw, port, GM_GP_CTRL)
1811
			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
1812
	gma_read16(hw, port, GM_GP_CTRL);
1813

1814 1815 1816 1817 1818 1819 1820 1821 1822
	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
		u32 io = skge_read32(hw, B2_GP_IO);

		io |= GP_DIR_9 | GP_IO_9;
		skge_write32(hw, B2_GP_IO, io);
		skge_read32(hw, B2_GP_IO);
	}

1823
	/* set GPHY Control reset */
1824 1825
	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1826 1827 1828 1829 1830 1831 1832 1833
}

static void yukon_get_stats(struct skge_port *skge, u64 *data)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	int i;

1834 1835 1836 1837
	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
		| gma_read32(hw, port, GM_TXO_OK_LO);
	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
		| gma_read32(hw, port, GM_RXO_OK_LO);
1838 1839

	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1840
		data[i] = gma_read32(hw, port,
1841 1842 1843 1844 1845
					  skge_stats[i].gma_offset);
}

static void yukon_mac_intr(struct skge_hw *hw, int port)
{
1846 1847
	struct net_device *dev = hw->dev[port];
	struct skge_port *skge = netdev_priv(dev);
1848
	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
1849

1850 1851 1852 1853
	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
		       dev->name, status);

1854 1855
	if (status & GM_IS_RX_FF_OR) {
		++skge->net_stats.rx_fifo_errors;
1856
		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
1857
	}
1858

1859 1860
	if (status & GM_IS_TX_FF_UR) {
		++skge->net_stats.tx_fifo_errors;
1861
		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
1862 1863 1864 1865 1866 1867
	}

}

static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
{
1868
	switch (aux & PHY_M_PS_SPEED_MSK) {
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	case PHY_M_PS_SPEED_1000:
		return SPEED_1000;
	case PHY_M_PS_SPEED_100:
		return SPEED_100;
	default:
		return SPEED_10;
	}
}

static void yukon_link_up(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u16 reg;

	/* Enable Transmit FIFO Underrun */
1885
	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
1886

1887
	reg = gma_read16(hw, port, GM_GP_CTRL);
1888 1889 1890 1891 1892
	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
		reg |= GM_GPCR_DUP_FULL;

	/* enable Rx/Tx */
	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1893
	gma_write16(hw, port, GM_GP_CTRL, reg);
1894

1895
	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1896 1897 1898 1899 1900 1901 1902
	skge_link_up(skge);
}

static void yukon_link_down(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1903
	u16 ctrl;
1904

1905
	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
1906 1907 1908 1909

	ctrl = gma_read16(hw, port, GM_GP_CTRL);
	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
	gma_write16(hw, port, GM_GP_CTRL, ctrl);
1910

1911
	if (skge->flow_control == FLOW_MODE_REM_SEND) {
1912
		/* restore Asymmetric Pause bit */
1913 1914
		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
				  gm_phy_read(hw, port,
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
						   PHY_MARV_AUNE_ADV)
				  | PHY_M_AN_ASP);

	}

	yukon_reset(hw, port);
	skge_link_down(skge);

	yukon_init(hw, port);
}

static void yukon_phy_intr(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	const char *reason = NULL;
	u16 istatus, phystat;

1933 1934
	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
1935 1936 1937 1938

	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
		       skge->netdev->name, istatus, phystat);
1939 1940

	if (istatus & PHY_M_IS_AN_COMPL) {
1941
		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
1942 1943 1944 1945 1946
		    & PHY_M_AN_RF) {
			reason = "remote fault";
			goto failed;
		}

1947
		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
			reason = "master/slave fault";
			goto failed;
		}

		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
			reason = "speed/duplex";
			goto failed;
		}

		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
			? DUPLEX_FULL : DUPLEX_HALF;
		skge->speed = yukon_speed(hw, phystat);

		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
		switch (phystat & PHY_M_PS_PAUSE_MSK) {
		case PHY_M_PS_PAUSE_MSK:
			skge->flow_control = FLOW_MODE_SYMMETRIC;
			break;
		case PHY_M_PS_RX_P_EN:
			skge->flow_control = FLOW_MODE_REM_SEND;
			break;
		case PHY_M_PS_TX_P_EN:
			skge->flow_control = FLOW_MODE_LOC_SEND;
			break;
		default:
			skge->flow_control = FLOW_MODE_NONE;
		}

		if (skge->flow_control == FLOW_MODE_NONE ||
		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
1978
			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1979
		else
1980
			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
		yukon_link_up(skge);
		return;
	}

	if (istatus & PHY_M_IS_LSP_CHANGE)
		skge->speed = yukon_speed(hw, phystat);

	if (istatus & PHY_M_IS_DUP_CHANGE)
		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
	if (istatus & PHY_M_IS_LST_CHANGE) {
		if (phystat & PHY_M_PS_LINK_UP)
			yukon_link_up(skge);
		else
			yukon_link_down(skge);
	}
	return;
 failed:
	printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
	       skge->netdev->name, reason);

	/* XXX restart autonegotiation? */
}

static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
{
	u32 end;

	start /= 8;
	len /= 8;
	end = start + len - 1;

	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
	skge_write32(hw, RB_ADDR(q, RB_START), start);
	skge_write32(hw, RB_ADDR(q, RB_WP), start);
	skge_write32(hw, RB_ADDR(q, RB_RP), start);
	skge_write32(hw, RB_ADDR(q, RB_END), end);

	if (q == Q_R1 || q == Q_R2) {
		/* Set thresholds on receive queue's */
		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
			     start + (2*len)/3);
		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
			     start + (len/3));
	} else {
		/* Enable store & forward on Tx queue's because
		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
		 */
		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
	}

	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
}

/* Setup Bus Memory Interface */
static void skge_qset(struct skge_port *skge, u16 q,
		      const struct skge_element *e)
{
	struct skge_hw *hw = skge->hw;
	u32 watermark = 0x600;
	u64 base = skge->dma + (e->desc - skge->mem);

	/* optimization to reduce window on 32bit/33mhz */
	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
		watermark /= 2;

	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
}

static int skge_up(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u32 chunk, ram_addr;
	size_t rx_size, tx_size;
	int err;

	if (netif_msg_ifup(skge))
		printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);

2064 2065 2066 2067 2068 2069
	if (dev->mtu > RX_BUF_SIZE)
		skge->rx_buf_size = dev->mtu + ETH_HLEN + NET_IP_ALIGN;
	else
		skge->rx_buf_size = RX_BUF_SIZE;


2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
	skge->mem_size = tx_size + rx_size;
	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
	if (!skge->mem)
		return -ENOMEM;

	memset(skge->mem, 0, skge->mem_size);

	if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
		goto free_pci_mem;

2082 2083
	err = skge_rx_fill(skge);
	if (err)
2084 2085 2086 2087 2088 2089 2090 2091
		goto free_rx_ring;

	if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
				   skge->dma + rx_size)))
		goto free_rx_ring;

	skge->tx_avail = skge->tx_ring.count - 1;

2092 2093 2094 2095
	/* Enable IRQ from port */
	hw->intr_mask |= portirqmask[port];
	skge_write32(hw, B0_IMSK, hw->intr_mask);

2096
	/* Initialze MAC */
2097
	spin_lock_bh(&hw->phy_lock);
2098 2099 2100 2101
	if (hw->chip_id == CHIP_ID_GENESIS)
		genesis_mac_init(hw, port);
	else
		yukon_mac_init(hw, port);
2102
	spin_unlock_bh(&hw->phy_lock);
2103 2104

	/* Configure RAMbuffers */
2105
	chunk = hw->ram_size / ((hw->ports + 1)*2);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	ram_addr = hw->ram_offset + 2 * chunk * port;

	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);

	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);

	/* Start receiver BMU */
	wmb();
	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2118
	skge_led(skge, LED_MODE_ON);
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

	return 0;

 free_rx_ring:
	skge_rx_clean(skge);
	kfree(skge->rx_ring.start);
 free_pci_mem:
	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);

	return err;
}

static int skge_down(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	if (netif_msg_ifdown(skge))
		printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);

	netif_stop_queue(dev);

2142 2143 2144 2145 2146 2147 2148 2149 2150
	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
	if (hw->chip_id == CHIP_ID_GENESIS)
		genesis_stop(skge);
	else
		yukon_stop(skge);

	hw->intr_mask &= ~portirqmask[skge->port];
	skge_write32(hw, B0_IMSK, hw->intr_mask);

2151 2152 2153 2154 2155 2156 2157
	/* Stop transmitter */
	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
		     RB_RST_SET|RB_DIS_OP_MD);


	/* Disable Force Sync bit and Enable Alloc bit */
2158
	skge_write8(hw, SK_REG(port, TXA_CTRL),
2159 2160 2161
		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);

	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2162 2163
	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

	/* Reset PCI FIFO */
	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);

	/* Reset the RAM Buffer async Tx queue */
	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
	/* stop receiver */
	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
		     RB_RST_SET|RB_DIS_OP_MD);
	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);

	if (hw->chip_id == CHIP_ID_GENESIS) {
2178 2179
		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2180
	} else {
2181 2182
		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2183 2184
	}

2185
	skge_led(skge, LED_MODE_OFF);
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213

	skge_tx_clean(skge);
	skge_rx_clean(skge);

	kfree(skge->rx_ring.start);
	kfree(skge->tx_ring.start);
	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
	return 0;
}

static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	struct skge_ring *ring = &skge->tx_ring;
	struct skge_element *e;
	struct skge_tx_desc *td;
	int i;
	u32 control, len;
	u64 map;
	unsigned long flags;

	skb = skb_padto(skb, ETH_ZLEN);
	if (!skb)
		return NETDEV_TX_OK;

	local_irq_save(flags);
	if (!spin_trylock(&skge->tx_lock)) {
2214 2215 2216 2217
 		/* Collision - tell upper layer to requeue */
 		local_irq_restore(flags);
 		return NETDEV_TX_LOCKED;
 	}
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

	if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
		netif_stop_queue(dev);
		spin_unlock_irqrestore(&skge->tx_lock, flags);

		printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
		       dev->name);
		return NETDEV_TX_BUSY;
	}

	e = ring->to_use;
	td = e->desc;
	e->skb = skb;
	len = skb_headlen(skb);
	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
	pci_unmap_addr_set(e, mapaddr, map);
	pci_unmap_len_set(e, maplen, len);

	td->dma_lo = map;
	td->dma_hi = map >> 32;

	if (skb->ip_summed == CHECKSUM_HW) {
		const struct iphdr *ip
			= (const struct iphdr *) (skb->data + ETH_HLEN);
		int offset = skb->h.raw - skb->data;

		/* This seems backwards, but it is what the sk98lin
		 * does.  Looks like hardware is wrong?
		 */
		if (ip->protocol == IPPROTO_UDP
2248
	            && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
			control = BMU_TCP_CHECK;
		else
			control = BMU_UDP_CHECK;

		td->csum_offs = 0;
		td->csum_start = offset;
		td->csum_write = offset + skb->csum;
	} else
		control = BMU_CHECK;

	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
		control |= BMU_EOF| BMU_IRQ_EOF;
	else {
		struct skge_tx_desc *tf = td;

		control |= BMU_STFWD;
		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

			map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
					   frag->size, PCI_DMA_TODEVICE);

			e = e->next;
			e->skb = NULL;
			tf = e->desc;
			tf->dma_lo = map;
			tf->dma_hi = (u64) map >> 32;
			pci_unmap_addr_set(e, mapaddr, map);
			pci_unmap_len_set(e, maplen, frag->size);

			tf->control = BMU_OWN | BMU_SW | control | frag->size;
		}
		tf->control |= BMU_EOF | BMU_IRQ_EOF;
	}
	/* Make sure all the descriptors written */
	wmb();
	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
	wmb();

	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);

	if (netif_msg_tx_queued(skge))
A
Al Viro 已提交
2291
		printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
		       dev->name, e - ring->start, skb->len);

	ring->to_use = e->next;
	skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
	if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
		pr_debug("%s: transmit queue full\n", dev->name);
		netif_stop_queue(dev);
	}

	dev->trans_start = jiffies;
	spin_unlock_irqrestore(&skge->tx_lock, flags);

	return NETDEV_TX_OK;
}

static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
{
2309
	/* This ring element can be skb or fragment */
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	if (e->skb) {
		pci_unmap_single(hw->pdev,
			       pci_unmap_addr(e, mapaddr),
			       pci_unmap_len(e, maplen),
			       PCI_DMA_TODEVICE);
		dev_kfree_skb_any(e->skb);
		e->skb = NULL;
	} else {
		pci_unmap_page(hw->pdev,
			       pci_unmap_addr(e, mapaddr),
			       pci_unmap_len(e, maplen),
			       PCI_DMA_TODEVICE);
	}
}

static void skge_tx_clean(struct skge_port *skge)
{
	struct skge_ring *ring = &skge->tx_ring;
	struct skge_element *e;
	unsigned long flags;

	spin_lock_irqsave(&skge->tx_lock, flags);
	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
		++skge->tx_avail;
		skge_tx_free(skge->hw, e);
	}
	ring->to_clean = e;
	spin_unlock_irqrestore(&skge->tx_lock, flags);
}

static void skge_tx_timeout(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	if (netif_msg_timer(skge))
		printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);

	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
	skge_tx_clean(skge);
}

static int skge_change_mtu(struct net_device *dev, int new_mtu)
{
	int err = 0;
2354
	int running = netif_running(dev);
2355

2356
	if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2357 2358 2359
		return -EINVAL;


2360
	if (running)
2361
		skge_down(dev);
2362 2363
	dev->mtu = new_mtu;
	if (running)
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
		skge_up(dev);

	return err;
}

static void genesis_set_multicast(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	int i, count = dev->mc_count;
	struct dev_mc_list *list = dev->mc_list;
	u32 mode;
	u8 filter[8];

2379
	mode = xm_read32(hw, port, XM_MODE);
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	mode |= XM_MD_ENA_HASH;
	if (dev->flags & IFF_PROMISC)
		mode |= XM_MD_ENA_PROM;
	else
		mode &= ~XM_MD_ENA_PROM;

	if (dev->flags & IFF_ALLMULTI)
		memset(filter, 0xff, sizeof(filter));
	else {
		memset(filter, 0, sizeof(filter));
2390
		for (i = 0; list && i < count; i++, list = list->next) {
2391 2392 2393
			u32 crc, bit;
			crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
			bit = ~crc & 0x3f;
2394 2395 2396 2397
			filter[bit/8] |= 1 << (bit%8);
		}
	}

2398
	xm_write32(hw, port, XM_MODE, mode);
2399
	xm_outhash(hw, port, XM_HSM, filter);
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
}

static void yukon_set_multicast(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	struct dev_mc_list *list = dev->mc_list;
	u16 reg;
	u8 filter[8];

	memset(filter, 0, sizeof(filter));

2413
	reg = gma_read16(hw, port, GM_RX_CTRL);
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	reg |= GM_RXCR_UCF_ENA;

	if (dev->flags & IFF_PROMISC) 		/* promiscious */
		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
		memset(filter, 0xff, sizeof(filter));
	else if (dev->mc_count == 0)		/* no multicast */
		reg &= ~GM_RXCR_MCF_ENA;
	else {
		int i;
		reg |= GM_RXCR_MCF_ENA;

2426
		for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2427 2428 2429 2430 2431 2432
			u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
			filter[bit/8] |= 1 << (bit%8);
		}
	}


2433
	gma_write16(hw, port, GM_MC_ADDR_H1,
2434
			 (u16)filter[0] | ((u16)filter[1] << 8));
2435
	gma_write16(hw, port, GM_MC_ADDR_H2,
2436
			 (u16)filter[2] | ((u16)filter[3] << 8));
2437
	gma_write16(hw, port, GM_MC_ADDR_H3,
2438
			 (u16)filter[4] | ((u16)filter[5] << 8));
2439
	gma_write16(hw, port, GM_MC_ADDR_H4,
2440 2441
			 (u16)filter[6] | ((u16)filter[7] << 8));

2442
	gma_write16(hw, port, GM_RX_CTRL, reg);
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
}

static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
{
	if (hw->chip_id == CHIP_ID_GENESIS)
		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
	else
		return (status & GMR_FS_ANY_ERR) ||
			(status & GMR_FS_RX_OK) == 0;
}

static void skge_rx_error(struct skge_port *skge, int slot,
			  u32 control, u32 status)
{
	if (netif_msg_rx_err(skge))
		printk(KERN_DEBUG PFX "%s: rx err, slot %d control 0x%x status 0x%x\n",
		       skge->netdev->name, slot, control, status);

2461
	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2462
		skge->net_stats.rx_length_errors++;
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
	else if (skge->hw->chip_id == CHIP_ID_GENESIS) {
		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
			skge->net_stats.rx_length_errors++;
		if (status & XMR_FS_FRA_ERR)
			skge->net_stats.rx_frame_errors++;
		if (status & XMR_FS_FCS_ERR)
			skge->net_stats.rx_crc_errors++;
	} else {
		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
			skge->net_stats.rx_length_errors++;
		if (status & GMR_FS_FRAGMENT)
			skge->net_stats.rx_frame_errors++;
		if (status & GMR_FS_CRC_ERR)
			skge->net_stats.rx_crc_errors++;
	}
}

/* Get receive buffer from descriptor.
 * Handles copy of small buffers and reallocation failures
 */
static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
					  struct skge_element *e,
					  unsigned int len)
{
	struct sk_buff *nskb, *skb;

	if (len < RX_COPY_THRESHOLD) {
		nskb = skge_rx_alloc(skge->netdev, len + NET_IP_ALIGN);
		if (unlikely(!nskb))
			return NULL;

		pci_dma_sync_single_for_cpu(skge->hw->pdev,
					    pci_unmap_addr(e, mapaddr),
					    len, PCI_DMA_FROMDEVICE);
		memcpy(nskb->data, e->skb->data, len);
		pci_dma_sync_single_for_device(skge->hw->pdev,
					       pci_unmap_addr(e, mapaddr),
					       len, PCI_DMA_FROMDEVICE);

		if (skge->rx_csum) {
			struct skge_rx_desc *rd = e->desc;
			nskb->csum = le16_to_cpu(rd->csum2);
			nskb->ip_summed = CHECKSUM_HW;
2506
		}
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
		skge_rx_reuse(e, skge->rx_buf_size);
		return nskb;
	} else {
		nskb = skge_rx_alloc(skge->netdev, skge->rx_buf_size);
		if (unlikely(!nskb))
			return NULL;

		pci_unmap_single(skge->hw->pdev,
				 pci_unmap_addr(e, mapaddr),
				 pci_unmap_len(e, maplen),
				 PCI_DMA_FROMDEVICE);
		skb = e->skb;
		if (skge->rx_csum) {
			struct skge_rx_desc *rd = e->desc;
			skb->csum = le16_to_cpu(rd->csum2);
			skb->ip_summed = CHECKSUM_HW;
		}

		skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
		return skb;
2527 2528 2529
	}
}

2530

2531 2532 2533 2534 2535 2536 2537 2538
static int skge_poll(struct net_device *dev, int *budget)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	struct skge_ring *ring = &skge->rx_ring;
	struct skge_element *e;
	unsigned int to_do = min(dev->quota, *budget);
	unsigned int work_done = 0;
2539

2540
	for (e = ring->to_clean; work_done < to_do; e = e->next) {
2541
		struct skge_rx_desc *rd = e->desc;
2542
		struct sk_buff *skb;
2543 2544 2545 2546 2547 2548 2549 2550 2551
		u32 control, len, status;

		rmb();
		control = rd->control;
		if (control & BMU_OWN)
			break;

		len = control & BMU_BBC;
		status = rd->status;
2552 2553 2554

		if (unlikely((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
			     || bad_phy_status(hw, status))) {
2555
			skge_rx_error(skge, e - ring->start, control, status);
2556
			skge_rx_reuse(e, skge->rx_buf_size);
2557 2558 2559 2560
			continue;
		}

		if (netif_msg_rx_status(skge))
A
Al Viro 已提交
2561
		    printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2562 2563
			   dev->name, e - ring->start, rd->status, len);

2564 2565 2566 2567
		skb = skge_rx_get(skge, e, len);
		if (likely(skb)) {
			skb_put(skb, len);
			skb->protocol = eth_type_trans(skb, dev);
2568

2569 2570
			dev->last_rx = jiffies;
			netif_receive_skb(skb);
2571

2572 2573 2574
			++work_done;
		} else
			skge_rx_reuse(e, skge->rx_buf_size);
2575 2576 2577 2578 2579 2580 2581 2582
	}
	ring->to_clean = e;

	/* restart receiver */
	wmb();
	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
		    CSR_START | CSR_IRQ_CL_F);

2583 2584 2585 2586 2587
	*budget -= work_done;
	dev->quota -= work_done;

	if (work_done >=  to_do)
		return 1; /* not done */
2588

2589 2590 2591 2592 2593 2594
	local_irq_disable();
	__netif_rx_complete(dev);
	hw->intr_mask |= portirqmask[skge->port];
	skge_write32(hw, B0_IMSK, hw->intr_mask);
	local_irq_enable();
	return 0;
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
}

static inline void skge_tx_intr(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	struct skge_ring *ring = &skge->tx_ring;
	struct skge_element *e;

	spin_lock(&skge->tx_lock);
2605
	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2606 2607 2608 2609 2610 2611 2612 2613 2614
		struct skge_tx_desc *td = e->desc;
		u32 control;

		rmb();
		control = td->control;
		if (control & BMU_OWN)
			break;

		if (unlikely(netif_msg_tx_done(skge)))
A
Al Viro 已提交
2615
			printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n",
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
			       dev->name, e - ring->start, td->status);

		skge_tx_free(hw, e);
		e->skb = NULL;
		++skge->tx_avail;
	}
	ring->to_clean = e;
	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);

	if (skge->tx_avail > MAX_SKB_FRAGS + 1)
		netif_wake_queue(dev);

	spin_unlock(&skge->tx_lock);
}

2631 2632 2633
/* Parity errors seem to happen when Genesis is connected to a switch
 * with no other ports present. Heartbeat error??
 */
2634 2635
static void skge_mac_parity(struct skge_hw *hw, int port)
{
2636 2637 2638 2639 2640 2641
	struct net_device *dev = hw->dev[port];

	if (dev) {
		struct skge_port *skge = netdev_priv(dev);
		++skge->net_stats.tx_heartbeat_errors;
	}
2642 2643

	if (hw->chip_id == CHIP_ID_GENESIS)
2644
		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2645 2646 2647
			     MFF_CLR_PERR);
	else
		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2648
		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2649
			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
2650 2651 2652 2653 2654 2655 2656
			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
}

static void skge_pci_clear(struct skge_hw *hw)
{
	u16 status;

2657
	pci_read_config_word(hw->pdev, PCI_STATUS, &status);
2658
	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2659 2660
	pci_write_config_word(hw->pdev, PCI_STATUS,
			      status | PCI_STATUS_ERROR_BITS);
2661 2662 2663 2664 2665
	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}

static void skge_mac_intr(struct skge_hw *hw, int port)
{
2666
	if (hw->chip_id == CHIP_ID_GENESIS)
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
		genesis_mac_intr(hw, port);
	else
		yukon_mac_intr(hw, port);
}

/* Handle device specific framing and timeout interrupts */
static void skge_error_irq(struct skge_hw *hw)
{
	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);

	if (hw->chip_id == CHIP_ID_GENESIS) {
		/* clear xmac errors */
		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2680
			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
2681
		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2682
			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
	} else {
		/* Timestamp (unused) overflow */
		if (hwstatus & IS_IRQ_TIST_OV)
			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
	}

	if (hwstatus & IS_RAM_RD_PAR) {
		printk(KERN_ERR PFX "Ram read data parity error\n");
		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
	}

	if (hwstatus & IS_RAM_WR_PAR) {
		printk(KERN_ERR PFX "Ram write data parity error\n");
		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
	}

	if (hwstatus & IS_M1_PAR_ERR)
		skge_mac_parity(hw, 0);

	if (hwstatus & IS_M2_PAR_ERR)
		skge_mac_parity(hw, 1);

	if (hwstatus & IS_R1_PAR_ERR)
		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);

	if (hwstatus & IS_R2_PAR_ERR)
		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);

	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
		printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
		       hwstatus);

		skge_pci_clear(hw);

2717
		/* if error still set then just ignore it */
2718 2719
		hwstatus = skge_read32(hw, B0_HWE_ISRC);
		if (hwstatus & IS_IRQ_STAT) {
2720
			pr_debug("IRQ status %x: still set ignoring hardware errors\n",
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
			       hwstatus);
			hw->intr_mask &= ~IS_HW_ERR;
		}
	}
}

/*
 * Interrrupt from PHY are handled in tasklet (soft irq)
 * because accessing phy registers requires spin wait which might
 * cause excess interrupt latency.
 */
static void skge_extirq(unsigned long data)
{
	struct skge_hw *hw = (struct skge_hw *) data;
	int port;

	spin_lock(&hw->phy_lock);
	for (port = 0; port < 2; port++) {
		struct net_device *dev = hw->dev[port];

		if (dev && netif_running(dev)) {
			struct skge_port *skge = netdev_priv(dev);

			if (hw->chip_id != CHIP_ID_GENESIS)
				yukon_phy_intr(skge);
2746
			else
2747
				bcom_phy_intr(skge);
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
		}
	}
	spin_unlock(&hw->phy_lock);

	local_irq_disable();
	hw->intr_mask |= IS_EXT_REG;
	skge_write32(hw, B0_IMSK, hw->intr_mask);
	local_irq_enable();
}

static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
{
	struct skge_hw *hw = dev_id;
	u32 status = skge_read32(hw, B0_SP_ISRC);

	if (status == 0 || status == ~0) /* hotplug or shared irq */
		return IRQ_NONE;

	status &= hw->intr_mask;
2767
	if (status & IS_R1_F) {
2768
		hw->intr_mask &= ~IS_R1_F;
2769
		netif_rx_schedule(hw->dev[0]);
2770 2771
	}

2772
	if (status & IS_R2_F) {
2773
		hw->intr_mask &= ~IS_R2_F;
2774
		netif_rx_schedule(hw->dev[1]);
2775 2776 2777 2778 2779 2780 2781 2782
	}

	if (status & IS_XA1_F)
		skge_tx_intr(hw->dev[0]);

	if (status & IS_XA2_F)
		skge_tx_intr(hw->dev[1]);

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
	if (status & IS_PA_TO_RX1) {
		struct skge_port *skge = netdev_priv(hw->dev[0]);
		++skge->net_stats.rx_over_errors;
		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
	}

	if (status & IS_PA_TO_RX2) {
		struct skge_port *skge = netdev_priv(hw->dev[1]);
		++skge->net_stats.rx_over_errors;
		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
	}

	if (status & IS_PA_TO_TX1)
		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);

	if (status & IS_PA_TO_TX2)
		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);

2801 2802
	if (status & IS_MAC1)
		skge_mac_intr(hw, 0);
2803

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
	if (status & IS_MAC2)
		skge_mac_intr(hw, 1);

	if (status & IS_HW_ERR)
		skge_error_irq(hw);

	if (status & IS_EXT_REG) {
		hw->intr_mask &= ~IS_EXT_REG;
		tasklet_schedule(&hw->ext_tasklet);
	}

2815
	skge_write32(hw, B0_IMSK, hw->intr_mask);
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void skge_netpoll(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	disable_irq(dev->irq);
	skge_intr(dev->irq, skge->hw, NULL);
	enable_irq(dev->irq);
}
#endif

static int skge_set_mac_address(struct net_device *dev, void *p)
{
	struct skge_port *skge = netdev_priv(dev);
	struct sockaddr *addr = p;
	int err = 0;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	skge_down(dev);
	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
	memcpy_toio(skge->hw->regs + B2_MAC_1 + skge->port*8,
		    dev->dev_addr, ETH_ALEN);
	memcpy_toio(skge->hw->regs + B2_MAC_2 + skge->port*8,
		    dev->dev_addr, ETH_ALEN);
	if (dev->flags & IFF_UP)
		err = skge_up(dev);
	return err;
}

static const struct {
	u8 id;
	const char *name;
} skge_chips[] = {
	{ CHIP_ID_GENESIS,	"Genesis" },
	{ CHIP_ID_YUKON,	 "Yukon" },
	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
};

static const char *skge_board_name(const struct skge_hw *hw)
{
	int i;
	static char buf[16];

	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
		if (skge_chips[i].id == hw->chip_id)
			return skge_chips[i].name;

	snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
	return buf;
}


/*
 * Setup the board data structure, but don't bring up
 * the port(s)
 */
static int skge_reset(struct skge_hw *hw)
{
	u16 ctst;
2882
	u8 t8, mac_cfg, pmd_type, phy_type;
2883
	int i;
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900

	ctst = skge_read16(hw, B0_CTST);

	/* do a SW reset */
	skge_write8(hw, B0_CTST, CS_RST_SET);
	skge_write8(hw, B0_CTST, CS_RST_CLR);

	/* clear PCI errors, if any */
	skge_pci_clear(hw);

	skge_write8(hw, B0_CTST, CS_MRST_CLR);

	/* restore CLK_RUN bits (for Yukon-Lite) */
	skge_write16(hw, B0_CTST,
		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));

	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
2901 2902 2903
	phy_type = skge_read8(hw, B2_E_1) & 0xf;
	pmd_type = skge_read8(hw, B2_PMD_TYP);
	hw->copper = (pmd_type == 'T' || pmd_type == '1');
2904

2905
	switch (hw->chip_id) {
2906
	case CHIP_ID_GENESIS:
2907
		switch (phy_type) {
2908 2909 2910 2911 2912
		case SK_PHY_BCOM:
			hw->phy_addr = PHY_ADDR_BCOM;
			break;
		default:
			printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
2913
			       pci_name(hw->pdev), phy_type);
2914 2915 2916 2917 2918 2919 2920
			return -EOPNOTSUPP;
		}
		break;

	case CHIP_ID_YUKON:
	case CHIP_ID_YUKON_LITE:
	case CHIP_ID_YUKON_LP:
2921 2922
		if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
			hw->copper = 1;
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932

		hw->phy_addr = PHY_ADDR_MARV;
		break;

	default:
		printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
		       pci_name(hw->pdev), hw->chip_id);
		return -EOPNOTSUPP;
	}

2933 2934 2935
	mac_cfg = skge_read8(hw, B2_MAC_CFG);
	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951

	/* read the adapters RAM size */
	t8 = skge_read8(hw, B2_E_0);
	if (hw->chip_id == CHIP_ID_GENESIS) {
		if (t8 == 3) {
			/* special case: 4 x 64k x 36, offset = 0x80000 */
			hw->ram_size = 0x100000;
			hw->ram_offset = 0x80000;
		} else
			hw->ram_size = t8 * 512;
	}
	else if (t8 == 0)
		hw->ram_size = 0x20000;
	else
		hw->ram_size = t8 * 4096;

2952
	hw->intr_mask = IS_HW_ERR | IS_EXT_REG;
2953 2954 2955 2956 2957 2958
	if (hw->chip_id == CHIP_ID_GENESIS)
		genesis_init(hw);
	else {
		/* switch power to VCC (WA for VAUX problem) */
		skge_write8(hw, B0_POWER_CTRL,
			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
2959 2960 2961 2962 2963 2964 2965
		/* avoid boards with stuck Hardware error bits */
		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
			printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
			hw->intr_mask &= ~IS_HW_ERR;
		}

2966
		for (i = 0; i < hw->ports; i++) {
2967 2968
			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
2969 2970 2971 2972 2973 2974 2975 2976 2977
		}
	}

	/* turn off hardware timer (unused) */
	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
	skge_write8(hw, B0_LED, LED_STAT_ON);

	/* enable the Tx Arbiters */
2978
	for (i = 0; i < hw->ports; i++)
2979
		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008

	/* Initialize ram interface */
	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);

	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);

	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);

	/* Set interrupt moderation for Transmit only
	 * Receive interrupts avoided by NAPI
	 */
	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
	skge_write32(hw, B2_IRQM_CTRL, TIM_START);

	skge_write32(hw, B0_IMSK, hw->intr_mask);

	spin_lock_bh(&hw->phy_lock);
3009
	for (i = 0; i < hw->ports; i++) {
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
		if (hw->chip_id == CHIP_ID_GENESIS)
			genesis_reset(hw, i);
		else
			yukon_reset(hw, i);
	}
	spin_unlock_bh(&hw->phy_lock);

	return 0;
}

/* Initialize network device */
3021 3022
static struct net_device *skge_devinit(struct skge_hw *hw, int port,
				       int highmem)
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
{
	struct skge_port *skge;
	struct net_device *dev = alloc_etherdev(sizeof(*skge));

	if (!dev) {
		printk(KERN_ERR "skge etherdev alloc failed");
		return NULL;
	}

	SET_MODULE_OWNER(dev);
	SET_NETDEV_DEV(dev, &hw->pdev->dev);
	dev->open = skge_up;
	dev->stop = skge_down;
	dev->hard_start_xmit = skge_xmit_frame;
	dev->get_stats = skge_get_stats;
	if (hw->chip_id == CHIP_ID_GENESIS)
		dev->set_multicast_list = genesis_set_multicast;
	else
		dev->set_multicast_list = yukon_set_multicast;

	dev->set_mac_address = skge_set_mac_address;
	dev->change_mtu = skge_change_mtu;
	SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
	dev->tx_timeout = skge_tx_timeout;
	dev->watchdog_timeo = TX_WATCHDOG;
	dev->poll = skge_poll;
	dev->weight = NAPI_WEIGHT;
#ifdef CONFIG_NET_POLL_CONTROLLER
	dev->poll_controller = skge_netpoll;
#endif
	dev->irq = hw->pdev->irq;
	dev->features = NETIF_F_LLTX;
3055 3056
	if (highmem)
		dev->features |= NETIF_F_HIGHDMA;
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069

	skge = netdev_priv(dev);
	skge->netdev = dev;
	skge->hw = hw;
	skge->msg_enable = netif_msg_init(debug, default_msg);
	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;

	/* Auto speed and flow control */
	skge->autoneg = AUTONEG_ENABLE;
	skge->flow_control = FLOW_MODE_SYMMETRIC;
	skge->duplex = -1;
	skge->speed = -1;
3070
	skge->advertising = skge_supported_modes(hw);
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176

	hw->dev[port] = dev;

	skge->port = port;

	spin_lock_init(&skge->tx_lock);

	if (hw->chip_id != CHIP_ID_GENESIS) {
		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
		skge->rx_csum = 1;
	}

	/* read the mac address */
	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);

	/* device is off until link detection */
	netif_carrier_off(dev);
	netif_stop_queue(dev);

	return dev;
}

static void __devinit skge_show_addr(struct net_device *dev)
{
	const struct skge_port *skge = netdev_priv(dev);

	if (netif_msg_probe(skge))
		printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
		       dev->name,
		       dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
		       dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
}

static int __devinit skge_probe(struct pci_dev *pdev,
				const struct pci_device_id *ent)
{
	struct net_device *dev, *dev1;
	struct skge_hw *hw;
	int err, using_dac = 0;

	if ((err = pci_enable_device(pdev))) {
		printk(KERN_ERR PFX "%s cannot enable PCI device\n",
		       pci_name(pdev));
		goto err_out;
	}

	if ((err = pci_request_regions(pdev, DRV_NAME))) {
		printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
		       pci_name(pdev));
		goto err_out_disable_pdev;
	}

	pci_set_master(pdev);

	if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
		using_dac = 1;
	else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
		printk(KERN_ERR PFX "%s no usable DMA configuration\n",
		       pci_name(pdev));
		goto err_out_free_regions;
	}

#ifdef __BIG_ENDIAN
	/* byte swap decriptors in hardware */
	{
		u32 reg;

		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
		reg |= PCI_REV_DESC;
		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
	}
#endif

	err = -ENOMEM;
	hw = kmalloc(sizeof(*hw), GFP_KERNEL);
	if (!hw) {
		printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
		       pci_name(pdev));
		goto err_out_free_regions;
	}

	memset(hw, 0, sizeof(*hw));
	hw->pdev = pdev;
	spin_lock_init(&hw->phy_lock);
	tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);

	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
	if (!hw->regs) {
		printk(KERN_ERR PFX "%s: cannot map device registers\n",
		       pci_name(pdev));
		goto err_out_free_hw;
	}

	if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
		printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
		       pci_name(pdev), pdev->irq);
		goto err_out_iounmap;
	}
	pci_set_drvdata(pdev, hw);

	err = skge_reset(hw);
	if (err)
		goto err_out_free_irq;

	printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n",
	       pci_resource_start(pdev, 0), pdev->irq,
3177
	       skge_board_name(hw), hw->chip_rev);
3178

3179
	if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
		goto err_out_led_off;

	if ((err = register_netdev(dev))) {
		printk(KERN_ERR PFX "%s: cannot register net device\n",
		       pci_name(pdev));
		goto err_out_free_netdev;
	}

	skge_show_addr(dev);

3190
	if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
		if (register_netdev(dev1) == 0)
			skge_show_addr(dev1);
		else {
			/* Failure to register second port need not be fatal */
			printk(KERN_WARNING PFX "register of second port failed\n");
			hw->dev[1] = NULL;
			free_netdev(dev1);
		}
	}

	return 0;

err_out_free_netdev:
	free_netdev(dev);
err_out_led_off:
	skge_write16(hw, B0_LED, LED_STAT_OFF);
err_out_free_irq:
	free_irq(pdev->irq, hw);
err_out_iounmap:
	iounmap(hw->regs);
err_out_free_hw:
	kfree(hw);
err_out_free_regions:
	pci_release_regions(pdev);
err_out_disable_pdev:
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
err_out:
	return err;
}

static void __devexit skge_remove(struct pci_dev *pdev)
{
	struct skge_hw *hw  = pci_get_drvdata(pdev);
	struct net_device *dev0, *dev1;

3227
	if (!hw)
3228 3229 3230 3231 3232 3233 3234
		return;

	if ((dev1 = hw->dev[1]))
		unregister_netdev(dev1);
	dev0 = hw->dev[0];
	unregister_netdev(dev0);

3235 3236 3237 3238 3239
	skge_write32(hw, B0_IMSK, 0);
	skge_write16(hw, B0_LED, LED_STAT_OFF);
	skge_pci_clear(hw);
	skge_write8(hw, B0_CTST, CS_RST_SET);

3240 3241 3242 3243 3244 3245 3246 3247
	tasklet_kill(&hw->ext_tasklet);

	free_irq(pdev->irq, hw);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
	if (dev1)
		free_netdev(dev1);
	free_netdev(dev0);
3248

3249 3250 3251 3252 3253 3254
	iounmap(hw->regs);
	kfree(hw);
	pci_set_drvdata(pdev, NULL);
}

#ifdef CONFIG_PM
3255
static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3256 3257 3258 3259
{
	struct skge_hw *hw  = pci_get_drvdata(pdev);
	int i, wol = 0;

3260
	for (i = 0; i < 2; i++) {
3261 3262 3263 3264 3265 3266
		struct net_device *dev = hw->dev[i];

		if (dev) {
			struct skge_port *skge = netdev_priv(dev);
			if (netif_running(dev)) {
				netif_carrier_off(dev);
3267 3268 3269 3270
				if (skge->wol)
					netif_stop_queue(dev);
				else
					skge_down(dev);
3271 3272 3273 3274 3275 3276 3277
			}
			netif_device_detach(dev);
			wol |= skge->wol;
		}
	}

	pci_save_state(pdev);
3278
	pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
	pci_disable_device(pdev);
	pci_set_power_state(pdev, pci_choose_state(pdev, state));

	return 0;
}

static int skge_resume(struct pci_dev *pdev)
{
	struct skge_hw *hw  = pci_get_drvdata(pdev);
	int i;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	pci_enable_wake(pdev, PCI_D0, 0);

	skge_reset(hw);

3296
	for (i = 0; i < 2; i++) {
3297 3298 3299
		struct net_device *dev = hw->dev[i];
		if (dev) {
			netif_device_attach(dev);
3300
			if (netif_running(dev))
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
				skge_up(dev);
		}
	}
	return 0;
}
#endif

static struct pci_driver skge_driver = {
	.name =         DRV_NAME,
	.id_table =     skge_id_table,
	.probe =        skge_probe,
	.remove =       __devexit_p(skge_remove),
#ifdef CONFIG_PM
	.suspend = 	skge_suspend,
	.resume = 	skge_resume,
#endif
};

static int __init skge_init_module(void)
{
	return pci_module_init(&skge_driver);
}

static void __exit skge_cleanup_module(void)
{
	pci_unregister_driver(&skge_driver);
}

module_init(skge_init_module);
module_exit(skge_cleanup_module);