skge.c 88.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/*
 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
 * Ethernet adapters. Based on earlier sk98lin, e100 and
 * FreeBSD if_sk drivers.
 *
 * This driver intentionally does not support all the features
 * of the original driver such as link fail-over and link management because
 * those should be done at higher levels.
 *
 * Copyright (C) 2004, Stephen Hemminger <shemminger@osdl.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/delay.h>
#include <linux/crc32.h>
A
Al Viro 已提交
39
#include <linux/dma-mapping.h>
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
#include <asm/irq.h>

#include "skge.h"

#define DRV_NAME		"skge"
#define DRV_VERSION		"0.6"
#define PFX			DRV_NAME " "

#define DEFAULT_TX_RING_SIZE	128
#define DEFAULT_RX_RING_SIZE	512
#define MAX_TX_RING_SIZE	1024
#define MAX_RX_RING_SIZE	4096
#define PHY_RETRIES	        1000
#define ETH_JUMBO_MTU		9000
#define TX_WATCHDOG		(5 * HZ)
#define NAPI_WEIGHT		64
#define BLINK_HZ		(HZ/4)
#define LINK_POLL_HZ		(HZ/10)

MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

static const u32 default_msg
	= NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
	  | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;

static int debug = -1;	/* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

static const struct pci_device_id skge_id_table[] = {
73 74 75 76 77 78 79 80 81 82 83
	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) }, /* SK-9Exx  */
	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1032) },
	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
84 85 86 87 88 89 90
	{ 0 }
};
MODULE_DEVICE_TABLE(pci, skge_id_table);

static int skge_up(struct net_device *dev);
static int skge_down(struct net_device *dev);
static void skge_tx_clean(struct skge_port *skge);
91 92
static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
static void genesis_get_stats(struct skge_port *skge, u64 *data);
static void yukon_get_stats(struct skge_port *skge, u64 *data);
static void yukon_init(struct skge_hw *hw, int port);
static void yukon_reset(struct skge_hw *hw, int port);
static void genesis_mac_init(struct skge_hw *hw, int port);
static void genesis_reset(struct skge_hw *hw, int port);

static const int txqaddr[] = { Q_XA1, Q_XA2 };
static const int rxqaddr[] = { Q_R1, Q_R2 };
static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };

/* Don't need to look at whole 16K.
 * last interesting register is descriptor poll timer.
 */
#define SKGE_REGS_LEN	(29*128)

static int skge_get_regs_len(struct net_device *dev)
{
	return SKGE_REGS_LEN;
}

/*
 * Returns copy of control register region
 * I/O region is divided into banks and certain regions are unreadable
 */
static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
			  void *p)
{
	const struct skge_port *skge = netdev_priv(dev);
	unsigned long offs;
	const void __iomem *io = skge->hw->regs;
	static const unsigned long bankmap
		= (1<<0) | (1<<2) | (1<<8) | (1<<9)
		  | (1<<12) | (1<<13) | (1<<14) | (1<<15) | (1<<16)
		  | (1<<17) | (1<<20) | (1<<21) | (1<<22) | (1<<23)
		  | (1<<24)  | (1<<25) | (1<<26) | (1<<27) | (1<<28);

	regs->version = 1;
	for (offs = 0; offs < regs->len; offs += 128) {
		u32 len = min_t(u32, 128, regs->len - offs);

		if (bankmap & (1<<(offs/128)))
			memcpy_fromio(p + offs, io + offs, len);
		else
			memset(p + offs, 0, len);
	}
}

/* Wake on Lan only supported on Yukon chps with rev 1 or above */
static int wol_supported(const struct skge_hw *hw)
{
	return !((hw->chip_id == CHIP_ID_GENESIS ||
		  (hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0)));
}

static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct skge_port *skge = netdev_priv(dev);

	wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
	wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
}

static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

162
	if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
		return -EOPNOTSUPP;

	if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
		return -EOPNOTSUPP;

	skge->wol = wol->wolopts == WAKE_MAGIC;

	if (skge->wol) {
		memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);

		skge_write16(hw, WOL_CTRL_STAT,
			     WOL_CTL_ENA_PME_ON_MAGIC_PKT |
			     WOL_CTL_ENA_MAGIC_PKT_UNIT);
	} else
		skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);

	return 0;
}


static int skge_get_settings(struct net_device *dev,
			     struct ethtool_cmd *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

	ecmd->transceiver = XCVR_INTERNAL;

	if (iscopper(hw)) {
		if (hw->chip_id == CHIP_ID_GENESIS)
			ecmd->supported = SUPPORTED_1000baseT_Full
				| SUPPORTED_1000baseT_Half
				| SUPPORTED_Autoneg | SUPPORTED_TP;
		else {
			ecmd->supported = SUPPORTED_10baseT_Half
				| SUPPORTED_10baseT_Full
				| SUPPORTED_100baseT_Half
				| SUPPORTED_100baseT_Full
				| SUPPORTED_1000baseT_Half
				| SUPPORTED_1000baseT_Full
				| SUPPORTED_Autoneg| SUPPORTED_TP;

			if (hw->chip_id == CHIP_ID_YUKON)
				ecmd->supported &= ~SUPPORTED_1000baseT_Half;

			else if (hw->chip_id == CHIP_ID_YUKON_FE)
				ecmd->supported &= ~(SUPPORTED_1000baseT_Half
						     | SUPPORTED_1000baseT_Full);
		}

		ecmd->port = PORT_TP;
		ecmd->phy_address = hw->phy_addr;
	} else {
		ecmd->supported = SUPPORTED_1000baseT_Full
			| SUPPORTED_FIBRE
			| SUPPORTED_Autoneg;

		ecmd->port = PORT_FIBRE;
	}

	ecmd->advertising = skge->advertising;
	ecmd->autoneg = skge->autoneg;
	ecmd->speed = skge->speed;
	ecmd->duplex = skge->duplex;
	return 0;
}

static u32 skge_modes(const struct skge_hw *hw)
{
	u32 modes = ADVERTISED_Autoneg
		| ADVERTISED_1000baseT_Full | ADVERTISED_1000baseT_Half
		| ADVERTISED_100baseT_Full | ADVERTISED_100baseT_Half
		| ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half;

	if (iscopper(hw)) {
		modes |= ADVERTISED_TP;
239
		switch (hw->chip_id) {
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
		case CHIP_ID_GENESIS:
			modes &= ~(ADVERTISED_100baseT_Full
				   | ADVERTISED_100baseT_Half
				   | ADVERTISED_10baseT_Full
				   | ADVERTISED_10baseT_Half);
			break;

		case CHIP_ID_YUKON:
			modes &= ~ADVERTISED_1000baseT_Half;
			break;

		case CHIP_ID_YUKON_FE:
			modes &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
			break;
		}
	} else {
		modes |= ADVERTISED_FIBRE;
		modes &= ~ADVERTISED_1000baseT_Half;
	}
	return modes;
}

static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	const struct skge_hw *hw = skge->hw;

	if (ecmd->autoneg == AUTONEG_ENABLE) {
		if (ecmd->advertising & skge_modes(hw))
			return -EINVAL;
	} else {
271
		switch (ecmd->speed) {
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
		case SPEED_1000:
			if (hw->chip_id == CHIP_ID_YUKON_FE)
				return -EINVAL;
			break;
		case SPEED_100:
		case SPEED_10:
			if (iscopper(hw) || hw->chip_id == CHIP_ID_GENESIS)
				return -EINVAL;
			break;
		default:
			return -EINVAL;
		}
	}

	skge->autoneg = ecmd->autoneg;
	skge->speed = ecmd->speed;
	skge->duplex = ecmd->duplex;
	skge->advertising = ecmd->advertising;

	if (netif_running(dev)) {
		skge_down(dev);
		skge_up(dev);
	}
	return (0);
}

static void skge_get_drvinfo(struct net_device *dev,
			     struct ethtool_drvinfo *info)
{
	struct skge_port *skge = netdev_priv(dev);

	strcpy(info->driver, DRV_NAME);
	strcpy(info->version, DRV_VERSION);
	strcpy(info->fw_version, "N/A");
	strcpy(info->bus_info, pci_name(skge->hw->pdev));
}

static const struct skge_stat {
	char 	   name[ETH_GSTRING_LEN];
	u16	   xmac_offset;
	u16	   gma_offset;
} skge_stats[] = {
	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },

	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },

	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },

	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
};

static int skge_get_stats_count(struct net_device *dev)
{
	return ARRAY_SIZE(skge_stats);
}

static void skge_get_ethtool_stats(struct net_device *dev,
				   struct ethtool_stats *stats, u64 *data)
{
	struct skge_port *skge = netdev_priv(dev);

	if (skge->hw->chip_id == CHIP_ID_GENESIS)
		genesis_get_stats(skge, data);
	else
		yukon_get_stats(skge, data);
}

/* Use hardware MIB variables for critical path statistics and
 * transmit feedback not reported at interrupt.
 * Other errors are accounted for in interrupt handler.
 */
static struct net_device_stats *skge_get_stats(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	u64 data[ARRAY_SIZE(skge_stats)];

	if (skge->hw->chip_id == CHIP_ID_GENESIS)
		genesis_get_stats(skge, data);
	else
		yukon_get_stats(skge, data);

	skge->net_stats.tx_bytes = data[0];
	skge->net_stats.rx_bytes = data[1];
	skge->net_stats.tx_packets = data[2] + data[4] + data[6];
	skge->net_stats.rx_packets = data[3] + data[5] + data[7];
	skge->net_stats.multicast = data[5] + data[7];
	skge->net_stats.collisions = data[10];
	skge->net_stats.tx_aborted_errors = data[12];

	return &skge->net_stats;
}

static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
	int i;

385
	switch (stringset) {
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	case ETH_SS_STATS:
		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
			memcpy(data + i * ETH_GSTRING_LEN,
			       skge_stats[i].name, ETH_GSTRING_LEN);
		break;
	}
}

static void skge_get_ring_param(struct net_device *dev,
				struct ethtool_ringparam *p)
{
	struct skge_port *skge = netdev_priv(dev);

	p->rx_max_pending = MAX_RX_RING_SIZE;
	p->tx_max_pending = MAX_TX_RING_SIZE;
	p->rx_mini_max_pending = 0;
	p->rx_jumbo_max_pending = 0;

	p->rx_pending = skge->rx_ring.count;
	p->tx_pending = skge->tx_ring.count;
	p->rx_mini_pending = 0;
	p->rx_jumbo_pending = 0;
}

static int skge_set_ring_param(struct net_device *dev,
			       struct ethtool_ringparam *p)
{
	struct skge_port *skge = netdev_priv(dev);

	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
	    p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
		return -EINVAL;

	skge->rx_ring.count = p->rx_pending;
	skge->tx_ring.count = p->tx_pending;

	if (netif_running(dev)) {
		skge_down(dev);
		skge_up(dev);
	}

	return 0;
}

static u32 skge_get_msglevel(struct net_device *netdev)
{
	struct skge_port *skge = netdev_priv(netdev);
	return skge->msg_enable;
}

static void skge_set_msglevel(struct net_device *netdev, u32 value)
{
	struct skge_port *skge = netdev_priv(netdev);
	skge->msg_enable = value;
}

static int skge_nway_reset(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
		return -EINVAL;

	spin_lock_bh(&hw->phy_lock);
	if (hw->chip_id == CHIP_ID_GENESIS) {
		genesis_reset(hw, port);
		genesis_mac_init(hw, port);
	} else {
		yukon_reset(hw, port);
		yukon_init(hw, port);
	}
	spin_unlock_bh(&hw->phy_lock);
	return 0;
}

static int skge_set_sg(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

	if (hw->chip_id == CHIP_ID_GENESIS && data)
		return -EOPNOTSUPP;
	return ethtool_op_set_sg(dev, data);
}

static int skge_set_tx_csum(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

	if (hw->chip_id == CHIP_ID_GENESIS && data)
		return -EOPNOTSUPP;

	return ethtool_op_set_tx_csum(dev, data);
}

static u32 skge_get_rx_csum(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	return skge->rx_csum;
}

/* Only Yukon supports checksum offload. */
static int skge_set_rx_csum(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);

	if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
		return -EOPNOTSUPP;

	skge->rx_csum = data;
	return 0;
}

/* Only Yukon II supports TSO (not implemented yet) */
static int skge_set_tso(struct net_device *dev, u32 data)
{
	if (data)
		return -EOPNOTSUPP;
	return 0;
}

static void skge_get_pauseparam(struct net_device *dev,
				struct ethtool_pauseparam *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);

	ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
		|| (skge->flow_control == FLOW_MODE_SYMMETRIC);
	ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
		|| (skge->flow_control == FLOW_MODE_SYMMETRIC);

	ecmd->autoneg = skge->autoneg;
}

static int skge_set_pauseparam(struct net_device *dev,
			       struct ethtool_pauseparam *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);

	skge->autoneg = ecmd->autoneg;
	if (ecmd->rx_pause && ecmd->tx_pause)
		skge->flow_control = FLOW_MODE_SYMMETRIC;
532
	else if (ecmd->rx_pause && !ecmd->tx_pause)
533
		skge->flow_control = FLOW_MODE_REM_SEND;
534
	else if (!ecmd->rx_pause && ecmd->tx_pause)
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
		skge->flow_control = FLOW_MODE_LOC_SEND;
	else
		skge->flow_control = FLOW_MODE_NONE;

	if (netif_running(dev)) {
		skge_down(dev);
		skge_up(dev);
	}
	return 0;
}

/* Chip internal frequency for clock calculations */
static inline u32 hwkhz(const struct skge_hw *hw)
{
	if (hw->chip_id == CHIP_ID_GENESIS)
		return 53215; /* or:  53.125 MHz */
	else if (hw->chip_id == CHIP_ID_YUKON_EC)
		return 125000; /* or: 125.000 MHz */
	else
		return 78215; /* or:  78.125 MHz */
}

/* Chip hz to microseconds */
static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
{
	return (ticks * 1000) / hwkhz(hw);
}

/* Microseconds to chip hz */
static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
{
	return hwkhz(hw) * usec / 1000;
}

static int skge_get_coalesce(struct net_device *dev,
			     struct ethtool_coalesce *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	ecmd->rx_coalesce_usecs = 0;
	ecmd->tx_coalesce_usecs = 0;

	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
		u32 msk = skge_read32(hw, B2_IRQM_MSK);

		if (msk & rxirqmask[port])
			ecmd->rx_coalesce_usecs = delay;
		if (msk & txirqmask[port])
			ecmd->tx_coalesce_usecs = delay;
	}

	return 0;
}

/* Note: interrupt timer is per board, but can turn on/off per port */
static int skge_set_coalesce(struct net_device *dev,
			     struct ethtool_coalesce *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u32 msk = skge_read32(hw, B2_IRQM_MSK);
	u32 delay = 25;

	if (ecmd->rx_coalesce_usecs == 0)
		msk &= ~rxirqmask[port];
	else if (ecmd->rx_coalesce_usecs < 25 ||
		 ecmd->rx_coalesce_usecs > 33333)
		return -EINVAL;
	else {
		msk |= rxirqmask[port];
		delay = ecmd->rx_coalesce_usecs;
	}

	if (ecmd->tx_coalesce_usecs == 0)
		msk &= ~txirqmask[port];
	else if (ecmd->tx_coalesce_usecs < 25 ||
		 ecmd->tx_coalesce_usecs > 33333)
		return -EINVAL;
	else {
		msk |= txirqmask[port];
		delay = min(delay, ecmd->rx_coalesce_usecs);
	}

	skge_write32(hw, B2_IRQM_MSK, msk);
	if (msk == 0)
		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
	else {
		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
	}
	return 0;
}

static void skge_led_on(struct skge_hw *hw, int port)
{
	if (hw->chip_id == CHIP_ID_GENESIS) {
635
		skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
636 637
		skge_write8(hw, B0_LED, LED_STAT_ON);

638 639 640
		skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
		skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
		skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
641 642 643

		switch (hw->phy_type) {
		case SK_PHY_BCOM:
644
			xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
645 646 647
					  PHY_B_PEC_LED_ON);
			break;
		case SK_PHY_LONE:
648
			xm_phy_write(hw, port, PHY_LONE_LED_CFG,
649 650 651
					  0x0800);
			break;
		default:
652 653 654
			skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
			skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
655 656
		}
	} else {
657 658
		gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
		gm_phy_write(hw, port, PHY_MARV_LED_OVER,
659 660 661 662 663 664 665 666 667 668 669
				  PHY_M_LED_MO_DUP(MO_LED_ON)  |
				  PHY_M_LED_MO_10(MO_LED_ON)   |
				  PHY_M_LED_MO_100(MO_LED_ON)  |
				  PHY_M_LED_MO_1000(MO_LED_ON) |
				  PHY_M_LED_MO_RX(MO_LED_ON));
	}
}

static void skge_led_off(struct skge_hw *hw, int port)
{
	if (hw->chip_id == CHIP_ID_GENESIS) {
670
		skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
671 672
		skge_write8(hw, B0_LED, LED_STAT_OFF);

673 674
		skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
		skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
675 676 677

		switch (hw->phy_type) {
		case SK_PHY_BCOM:
678
			xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
679 680 681
					  PHY_B_PEC_LED_OFF);
			break;
		case SK_PHY_LONE:
682
			xm_phy_write(hw, port, PHY_LONE_LED_CFG,
683 684 685
					  PHY_L_LC_LEDT);
			break;
		default:
686 687
			skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
688 689
		}
	} else {
690 691
		gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
		gm_phy_write(hw, port, PHY_MARV_LED_OVER,
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
				  PHY_M_LED_MO_DUP(MO_LED_OFF)  |
				  PHY_M_LED_MO_10(MO_LED_OFF)   |
				  PHY_M_LED_MO_100(MO_LED_OFF)  |
				  PHY_M_LED_MO_1000(MO_LED_OFF) |
				  PHY_M_LED_MO_RX(MO_LED_OFF));
	}
}

static void skge_blink_timer(unsigned long data)
{
	struct skge_port *skge = (struct skge_port *) data;
	struct skge_hw *hw = skge->hw;
	unsigned long flags;

	spin_lock_irqsave(&hw->phy_lock, flags);
	if (skge->blink_on)
		skge_led_on(hw, skge->port);
	else
		skge_led_off(hw, skge->port);
	spin_unlock_irqrestore(&hw->phy_lock, flags);

	skge->blink_on = !skge->blink_on;
	mod_timer(&skge->led_blink, jiffies + BLINK_HZ);
}

/* blink LED's for finding board */
static int skge_phys_id(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);

722
	if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
		data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);

	/* start blinking */
	skge->blink_on = 1;
	mod_timer(&skge->led_blink, jiffies+1);

	msleep_interruptible(data * 1000);
	del_timer_sync(&skge->led_blink);

	skge_led_off(skge->hw, skge->port);

	return 0;
}

static struct ethtool_ops skge_ethtool_ops = {
	.get_settings	= skge_get_settings,
	.set_settings	= skge_set_settings,
	.get_drvinfo	= skge_get_drvinfo,
	.get_regs_len	= skge_get_regs_len,
	.get_regs	= skge_get_regs,
	.get_wol	= skge_get_wol,
	.set_wol	= skge_set_wol,
	.get_msglevel	= skge_get_msglevel,
	.set_msglevel	= skge_set_msglevel,
	.nway_reset	= skge_nway_reset,
	.get_link	= ethtool_op_get_link,
	.get_ringparam	= skge_get_ring_param,
	.set_ringparam	= skge_set_ring_param,
	.get_pauseparam = skge_get_pauseparam,
	.set_pauseparam = skge_set_pauseparam,
	.get_coalesce	= skge_get_coalesce,
	.set_coalesce	= skge_set_coalesce,
	.get_tso	= ethtool_op_get_tso,
	.set_tso	= skge_set_tso,
	.get_sg		= ethtool_op_get_sg,
	.set_sg		= skge_set_sg,
	.get_tx_csum	= ethtool_op_get_tx_csum,
	.set_tx_csum	= skge_set_tx_csum,
	.get_rx_csum	= skge_get_rx_csum,
	.set_rx_csum	= skge_set_rx_csum,
	.get_strings	= skge_get_strings,
	.phys_id	= skge_phys_id,
	.get_stats_count = skge_get_stats_count,
	.get_ethtool_stats = skge_get_ethtool_stats,
};

/*
 * Allocate ring elements and chain them together
 * One-to-one association of board descriptors with ring elements
 */
static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
{
	struct skge_tx_desc *d;
	struct skge_element *e;
	int i;

	ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
	if (!ring->start)
		return -ENOMEM;

	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
		e->desc = d;
		if (i == ring->count - 1) {
			e->next = ring->start;
			d->next_offset = base;
		} else {
			e->next = e + 1;
			d->next_offset = base + (i+1) * sizeof(*d);
		}
	}
	ring->to_use = ring->to_clean = ring->start;

	return 0;
}

/* Setup buffer for receiving */
static inline int skge_rx_alloc(struct skge_port *skge,
				struct skge_element *e)
{
	unsigned long bufsize = skge->netdev->mtu + ETH_HLEN; /* VLAN? */
	struct skge_rx_desc *rd = e->desc;
	struct sk_buff *skb;
	u64 map;

	skb = dev_alloc_skb(bufsize + NET_IP_ALIGN);
	if (unlikely(!skb)) {
		printk(KERN_DEBUG PFX "%s: out of memory for receive\n",
		       skge->netdev->name);
		return -ENOMEM;
	}

	skb->dev = skge->netdev;
	skb_reserve(skb, NET_IP_ALIGN);

	map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
			     PCI_DMA_FROMDEVICE);

	rd->dma_lo = map;
	rd->dma_hi = map >> 32;
	e->skb = skb;
	rd->csum1_start = ETH_HLEN;
	rd->csum2_start = ETH_HLEN;
	rd->csum1 = 0;
	rd->csum2 = 0;

	wmb();

	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
	pci_unmap_addr_set(e, mapaddr, map);
	pci_unmap_len_set(e, maplen, bufsize);
	return 0;
}

/* Free all unused buffers in receive ring, assumes receiver stopped */
static void skge_rx_clean(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	struct skge_ring *ring = &skge->rx_ring;
	struct skge_element *e;

	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
		struct skge_rx_desc *rd = e->desc;
		rd->control = 0;

		pci_unmap_single(hw->pdev,
				 pci_unmap_addr(e, mapaddr),
				 pci_unmap_len(e, maplen),
				 PCI_DMA_FROMDEVICE);
		dev_kfree_skb(e->skb);
		e->skb = NULL;
	}
	ring->to_clean = e;
}

/* Allocate buffers for receive ring
 * For receive: to_use   is refill location
 *              to_clean is next received frame.
 *
 * if (to_use == to_clean)
 *	 then ring all frames in ring need buffers
 * if (to_use->next == to_clean)
 *	 then ring all frames in ring have buffers
 */
static int skge_rx_fill(struct skge_port *skge)
{
	struct skge_ring *ring = &skge->rx_ring;
	struct skge_element *e;
	int ret = 0;

	for (e = ring->to_use; e->next != ring->to_clean; e = e->next) {
		if (skge_rx_alloc(skge, e)) {
			ret = 1;
			break;
		}

	}
	ring->to_use = e;

	return ret;
}

static void skge_link_up(struct skge_port *skge)
{
	netif_carrier_on(skge->netdev);
	if (skge->tx_avail > MAX_SKB_FRAGS + 1)
		netif_wake_queue(skge->netdev);

	if (netif_msg_link(skge))
		printk(KERN_INFO PFX
		       "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
		       skge->netdev->name, skge->speed,
		       skge->duplex == DUPLEX_FULL ? "full" : "half",
		       (skge->flow_control == FLOW_MODE_NONE) ? "none" :
		       (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
		       (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
		       (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
		       "unknown");
}

static void skge_link_down(struct skge_port *skge)
{
	netif_carrier_off(skge->netdev);
	netif_stop_queue(skge->netdev);

	if (netif_msg_link(skge))
		printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
}

911
static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
912 913 914 915
{
	int i;
	u16 v;

916 917
	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
	v = xm_read16(hw, port, XM_PHY_DATA);
918 919 920
	if (hw->phy_type != SK_PHY_XMAC) {
		for (i = 0; i < PHY_RETRIES; i++) {
			udelay(1);
921
			if (xm_read16(hw, port, XM_MMU_CMD)
922 923 924 925 926 927 928 929
			    & XM_MMU_PHY_RDY)
				goto ready;
		}

		printk(KERN_WARNING PFX "%s: phy read timed out\n",
		       hw->dev[port]->name);
		return 0;
	ready:
930
		v = xm_read16(hw, port, XM_PHY_DATA);
931 932 933 934 935
	}

	return v;
}

936
static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
937 938 939
{
	int i;

940
	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
941
	for (i = 0; i < PHY_RETRIES; i++) {
942
		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
943 944 945 946 947 948 949 950
			goto ready;
		cpu_relax();
	}
	printk(KERN_WARNING PFX "%s: phy write failed to come ready\n",
	       hw->dev[port]->name);


 ready:
951
	xm_write16(hw, port, XM_PHY_DATA, val);
952 953
	for (i = 0; i < PHY_RETRIES; i++) {
		udelay(1);
954
		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
			return;
	}
	printk(KERN_WARNING PFX "%s: phy write timed out\n",
		       hw->dev[port]->name);
}

static void genesis_init(struct skge_hw *hw)
{
	/* set blink source counter */
	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
	skge_write8(hw, B2_BSC_CTRL, BSC_START);

	/* configure mac arbiter */
	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);

	/* configure mac arbiter timeout values */
	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);

	skge_write8(hw, B3_MA_RCINI_RX1, 0);
	skge_write8(hw, B3_MA_RCINI_RX2, 0);
	skge_write8(hw, B3_MA_RCINI_TX1, 0);
	skge_write8(hw, B3_MA_RCINI_TX2, 0);

	/* configure packet arbiter timeout */
	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
}

static void genesis_reset(struct skge_hw *hw, int port)
{
	int i;
	u64 zero = 0;

	/* reset the statistics module */
995 996 997 998 999
	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
	xm_write16(hw, port, XM_IMSK, 0xffff);	/* disable XMAC IRQs */
	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1000 1001 1002

	/* disable all PHY IRQs */
	if  (hw->phy_type == SK_PHY_BCOM)
1003
		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1004

1005
	xm_outhash(hw, port, XM_HSM, (u8 *) &zero);
1006
	for (i = 0; i < 15; i++)
1007 1008
		xm_outaddr(hw, port, XM_EXM(i), (u8 *) &zero);
	xm_outhash(hw, port, XM_SRC_CHK, (u8 *) &zero);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
}


static void genesis_mac_init(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
	int i;
	u32 r;
	u16 id1;
	u16 ctrl1, ctrl2, ctrl3, ctrl4, ctrl5;

	/* magic workaround patterns for Broadcom */
	static const struct {
		u16 reg;
		u16 val;
	} A1hack[] = {
		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
	}, C0hack[] = {
		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
	};


	/* initialize Rx, Tx and Link LED */
1036 1037
	skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
	skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
1038

1039 1040
	skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
	skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
1041 1042

	/* Unreset the XMAC. */
1043
	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

	/*
	 * Perform additional initialization for external PHYs,
	 * namely for the 1000baseTX cards that use the XMAC's
	 * GMII mode.
	 */
	spin_lock_bh(&hw->phy_lock);
	if (hw->phy_type != SK_PHY_XMAC) {
		/* Take PHY out of reset. */
		r = skge_read32(hw, B2_GP_IO);
		if (port == 0)
			r |= GP_DIR_0|GP_IO_0;
		else
			r |= GP_DIR_2|GP_IO_2;

		skge_write32(hw, B2_GP_IO, r);
		skge_read32(hw, B2_GP_IO);

		/* Enable GMII mode on the XMAC. */
1063
		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1064

1065
		id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1066 1067

		/* Optimize MDIO transfer by suppressing preamble. */
1068 1069
		xm_write16(hw, port, XM_MMU_CMD,
				xm_read16(hw, port, XM_MMU_CMD)
1070 1071 1072 1073 1074 1075 1076 1077
				| XM_MMU_NO_PRE);

		if (id1 == PHY_BCOM_ID1_C0) {
			/*
			 * Workaround BCOM Errata for the C0 type.
			 * Write magic patterns to reserved registers.
			 */
			for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1078
				xm_phy_write(hw, port,
1079 1080 1081 1082 1083 1084 1085 1086
					  C0hack[i].reg, C0hack[i].val);

		} else if (id1 == PHY_BCOM_ID1_A1) {
			/*
			 * Workaround BCOM Errata for the A1 type.
			 * Write magic patterns to reserved registers.
			 */
			for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1087
				xm_phy_write(hw, port,
1088 1089 1090 1091 1092 1093 1094
					  A1hack[i].reg, A1hack[i].val);
		}

		/*
		 * Workaround BCOM Errata (#10523) for all BCom PHYs.
		 * Disable Power Management after reset.
		 */
1095 1096
		r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r | PHY_B_AC_DIS_PM);
1097 1098 1099
	}

	/* Dummy read */
1100
	xm_read16(hw, port, XM_ISRC);
1101

1102 1103
	r = xm_read32(hw, port, XM_MODE);
	xm_write32(hw, port, XM_MODE, r|XM_MD_CSA);
1104 1105

	/* We don't need the FCS appended to the packet. */
1106 1107
	r = xm_read16(hw, port, XM_RX_CMD);
	xm_write16(hw, port, XM_RX_CMD, r | XM_RX_STRIP_FCS);
1108 1109

	/* We want short frames padded to 60 bytes. */
1110 1111
	r = xm_read16(hw, port, XM_TX_CMD);
	xm_write16(hw, port, XM_TX_CMD, r | XM_TX_AUTO_PAD);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

	/*
	 * Enable the reception of all error frames. This is is
	 * a necessary evil due to the design of the XMAC. The
	 * XMAC's receive FIFO is only 8K in size, however jumbo
	 * frames can be up to 9000 bytes in length. When bad
	 * frame filtering is enabled, the XMAC's RX FIFO operates
	 * in 'store and forward' mode. For this to work, the
	 * entire frame has to fit into the FIFO, but that means
	 * that jumbo frames larger than 8192 bytes will be
	 * truncated. Disabling all bad frame filtering causes
	 * the RX FIFO to operate in streaming mode, in which
	 * case the XMAC will start transfering frames out of the
	 * RX FIFO as soon as the FIFO threshold is reached.
	 */
1127 1128
	r = xm_read32(hw, port, XM_MODE);
	xm_write32(hw, port, XM_MODE,
1129 1130 1131
		     XM_MD_RX_CRCE|XM_MD_RX_LONG|XM_MD_RX_RUNT|
		     XM_MD_RX_ERR|XM_MD_RX_IRLE);

1132 1133
	xm_outaddr(hw, port, XM_SA, hw->dev[port]->dev_addr);
	xm_outaddr(hw, port, XM_EXM(0), hw->dev[port]->dev_addr);
1134 1135 1136 1137 1138

	/*
	 * Bump up the transmit threshold. This helps hold off transmit
	 * underruns when we're blasting traffic from both ports at once.
	 */
1139
	xm_write16(hw, port, XM_TX_THR, 512);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

	/* Configure MAC arbiter */
	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);

	/* configure timeout values */
	skge_write8(hw, B3_MA_TOINI_RX1, 72);
	skge_write8(hw, B3_MA_TOINI_RX2, 72);
	skge_write8(hw, B3_MA_TOINI_TX1, 72);
	skge_write8(hw, B3_MA_TOINI_TX2, 72);

	skge_write8(hw, B3_MA_RCINI_RX1, 0);
	skge_write8(hw, B3_MA_RCINI_RX2, 0);
	skge_write8(hw, B3_MA_RCINI_TX1, 0);
	skge_write8(hw, B3_MA_RCINI_TX2, 0);

	/* Configure Rx MAC FIFO */
1156 1157 1158
	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1159 1160

	/* Configure Tx MAC FIFO */
1161 1162 1163
	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1164 1165 1166

	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
		/* Enable frame flushing if jumbo frames used */
1167
		skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1168 1169 1170 1171 1172 1173 1174
	} else {
		/* enable timeout timers if normal frames */
		skge_write16(hw, B3_PA_CTRL,
			     port == 0 ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
	}


1175
	r = xm_read16(hw, port, XM_RX_CMD);
1176
	if (hw->dev[port]->mtu > ETH_DATA_LEN)
1177
		xm_write16(hw, port, XM_RX_CMD, r | XM_RX_BIG_PK_OK);
1178
	else
1179
		xm_write16(hw, port, XM_RX_CMD, r & ~(XM_RX_BIG_PK_OK));
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

	switch (hw->phy_type) {
	case SK_PHY_XMAC:
		if (skge->autoneg == AUTONEG_ENABLE) {
			ctrl1 = PHY_X_AN_FD | PHY_X_AN_HD;

			switch (skge->flow_control) {
			case FLOW_MODE_NONE:
				ctrl1 |= PHY_X_P_NO_PAUSE;
				break;
			case FLOW_MODE_LOC_SEND:
				ctrl1 |= PHY_X_P_ASYM_MD;
				break;
			case FLOW_MODE_SYMMETRIC:
				ctrl1 |= PHY_X_P_SYM_MD;
				break;
			case FLOW_MODE_REM_SEND:
				ctrl1 |= PHY_X_P_BOTH_MD;
				break;
			}

1201
			xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl1);
1202 1203 1204 1205 1206 1207 1208
			ctrl2 = PHY_CT_ANE | PHY_CT_RE_CFG;
		} else {
			ctrl2 = 0;
			if (skge->duplex == DUPLEX_FULL)
				ctrl2 |= PHY_CT_DUP_MD;
		}

1209
		xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl2);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		break;

	case SK_PHY_BCOM:
		ctrl1 = PHY_CT_SP1000;
		ctrl2 = 0;
		ctrl3 = PHY_SEL_TYPE;
		ctrl4 = PHY_B_PEC_EN_LTR;
		ctrl5 = PHY_B_AC_TX_TST;

		if (skge->autoneg == AUTONEG_ENABLE) {
			/*
			 * Workaround BCOM Errata #1 for the C5 type.
			 * 1000Base-T Link Acquisition Failure in Slave Mode
			 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
			 */
			ctrl2 |= PHY_B_1000C_RD;
			if (skge->advertising & ADVERTISED_1000baseT_Half)
				ctrl2 |= PHY_B_1000C_AHD;
			if (skge->advertising & ADVERTISED_1000baseT_Full)
				ctrl2 |= PHY_B_1000C_AFD;

			/* Set Flow-control capabilities */
			switch (skge->flow_control) {
			case FLOW_MODE_NONE:
				ctrl3 |= PHY_B_P_NO_PAUSE;
				break;
			case FLOW_MODE_LOC_SEND:
				ctrl3 |= PHY_B_P_ASYM_MD;
				break;
			case FLOW_MODE_SYMMETRIC:
				ctrl3 |= PHY_B_P_SYM_MD;
				break;
			case FLOW_MODE_REM_SEND:
				ctrl3 |= PHY_B_P_BOTH_MD;
				break;
			}

			/* Restart Auto-negotiation */
			ctrl1 |= PHY_CT_ANE | PHY_CT_RE_CFG;
		} else {
			if (skge->duplex == DUPLEX_FULL)
				ctrl1 |= PHY_CT_DUP_MD;

			ctrl2 |= PHY_B_1000C_MSE;	/* set it to Slave */
		}

1256 1257
		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, ctrl2);
		xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, ctrl3);
1258 1259 1260 1261 1262

		if (skge->netdev->mtu > ETH_DATA_LEN) {
			ctrl4 |= PHY_B_PEC_HIGH_LA;
			ctrl5 |= PHY_B_AC_LONG_PACK;

1263
			xm_phy_write(hw, port,PHY_BCOM_AUX_CTRL, ctrl5);
1264 1265
		}

1266 1267
		xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ctrl4);
		xm_phy_write(hw, port, PHY_BCOM_CTRL, ctrl1);
1268 1269 1270 1271 1272
		break;
	}
	spin_unlock_bh(&hw->phy_lock);

	/* Clear MIB counters */
1273
	xm_write16(hw, port, XM_STAT_CMD,
1274 1275
			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
	/* Clear two times according to Errata #3 */
1276
	xm_write16(hw, port, XM_STAT_CMD,
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
			XM_SC_CLR_RXC | XM_SC_CLR_TXC);

	/* Start polling for link status */
	mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
}

static void genesis_stop(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	/* Clear Tx packet arbiter timeout IRQ */
	skge_write16(hw, B3_PA_CTRL,
		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);

	/*
	 * If the transfer stucks at the MAC the STOP command will not
	 * terminate if we don't flush the XMAC's transmit FIFO !
	 */
1296 1297
	xm_write32(hw, port, XM_MODE,
			xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1298 1299 1300


	/* Reset the MAC */
1301
	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

	/* For external PHYs there must be special handling */
	if (hw->phy_type != SK_PHY_XMAC) {
		u32 reg = skge_read32(hw, B2_GP_IO);

		if (port == 0) {
			reg |= GP_DIR_0;
			reg &= ~GP_IO_0;
		} else {
			reg |= GP_DIR_2;
			reg &= ~GP_IO_2;
		}
		skge_write32(hw, B2_GP_IO, reg);
		skge_read32(hw, B2_GP_IO);
	}

1318 1319
	xm_write16(hw, port, XM_MMU_CMD,
			xm_read16(hw, port, XM_MMU_CMD)
1320 1321
			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));

1322
	xm_read16(hw, port, XM_MMU_CMD);
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
}


static void genesis_get_stats(struct skge_port *skge, u64 *data)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	int i;
	unsigned long timeout = jiffies + HZ;

1333
	xm_write16(hw, port,
1334 1335 1336
			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);

	/* wait for update to complete */
1337
	while (xm_read16(hw, port, XM_STAT_CMD)
1338 1339 1340 1341 1342 1343 1344
	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
		if (time_after(jiffies, timeout))
			break;
		udelay(10);
	}

	/* special case for 64 bit octet counter */
1345 1346 1347 1348
	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
		| xm_read32(hw, port, XM_TXO_OK_LO);
	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
		| xm_read32(hw, port, XM_RXO_OK_LO);
1349 1350

	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1351
		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1352 1353 1354 1355 1356
}

static void genesis_mac_intr(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
1357
	u16 status = xm_read16(hw, port, XM_ISRC);
1358 1359 1360 1361 1362

	pr_debug("genesis_intr status %x\n", status);
	if (hw->phy_type == SK_PHY_XMAC) {
		/* LInk down, start polling for state change */
		if (status & XM_IS_INP_ASS) {
1363 1364
			xm_write16(hw, port, XM_IMSK,
					xm_read16(hw, port, XM_IMSK) | XM_IS_INP_ASS);
1365 1366 1367 1368 1369 1370 1371
			mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
		}
		else if (status & XM_IS_AND)
			mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
	}

	if (status & XM_IS_TXF_UR) {
1372
		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1373 1374 1375
		++skge->net_stats.tx_fifo_errors;
	}
	if (status & XM_IS_RXF_OV) {
1376
		xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1377 1378 1379 1380
		++skge->net_stats.rx_fifo_errors;
	}
}

1381
static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1382 1383 1384
{
	int i;

1385 1386
	gma_write16(hw, port, GM_SMI_DATA, val);
	gma_write16(hw, port, GM_SMI_CTRL,
1387 1388 1389 1390
			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
	for (i = 0; i < PHY_RETRIES; i++) {
		udelay(1);

1391
		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1392 1393 1394 1395
			break;
	}
}

1396
static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1397 1398 1399
{
	int i;

1400
	gma_write16(hw, port, GM_SMI_CTRL,
1401 1402 1403 1404 1405
			 GM_SMI_CT_PHY_AD(hw->phy_addr)
			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);

	for (i = 0; i < PHY_RETRIES; i++) {
		udelay(1);
1406
		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1407 1408 1409 1410 1411 1412 1413
			goto ready;
	}

	printk(KERN_WARNING PFX "%s: phy read timeout\n",
	       hw->dev[port]->name);
	return 0;
 ready:
1414
	return gma_read16(hw, port, GM_SMI_DATA);
1415 1416 1417 1418 1419 1420 1421 1422 1423
}

static void genesis_link_down(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	pr_debug("genesis_link_down\n");

1424 1425
	xm_write16(hw, port, XM_MMU_CMD,
			xm_read16(hw, port, XM_MMU_CMD)
1426 1427 1428
			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));

	/* dummy read to ensure writing */
1429
	(void) xm_read16(hw, port, XM_MMU_CMD);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

	skge_link_down(skge);
}

static void genesis_link_up(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u16 cmd;
	u32 mode, msk;

	pr_debug("genesis_link_up\n");
1442
	cmd = xm_read16(hw, port, XM_MMU_CMD);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

	/*
	 * enabling pause frame reception is required for 1000BT
	 * because the XMAC is not reset if the link is going down
	 */
	if (skge->flow_control == FLOW_MODE_NONE ||
	    skge->flow_control == FLOW_MODE_LOC_SEND)
		cmd |= XM_MMU_IGN_PF;
	else
		/* Enable Pause Frame Reception */
		cmd &= ~XM_MMU_IGN_PF;

1455
	xm_write16(hw, port, XM_MMU_CMD, cmd);
1456

1457
	mode = xm_read32(hw, port, XM_MODE);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
	    skge->flow_control == FLOW_MODE_LOC_SEND) {
		/*
		 * Configure Pause Frame Generation
		 * Use internal and external Pause Frame Generation.
		 * Sending pause frames is edge triggered.
		 * Send a Pause frame with the maximum pause time if
		 * internal oder external FIFO full condition occurs.
		 * Send a zero pause time frame to re-start transmission.
		 */
		/* XM_PAUSE_DA = '010000C28001' (default) */
		/* XM_MAC_PTIME = 0xffff (maximum) */
		/* remember this value is defined in big endian (!) */
1471
		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1472 1473

		mode |= XM_PAUSE_MODE;
1474
		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1475 1476 1477 1478 1479 1480 1481 1482
	} else {
		/*
		 * disable pause frame generation is required for 1000BT
		 * because the XMAC is not reset if the link is going down
		 */
		/* Disable Pause Mode in Mode Register */
		mode &= ~XM_PAUSE_MODE;

1483
		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1484 1485
	}

1486
	xm_write32(hw, port, XM_MODE, mode);
1487 1488 1489 1490 1491

	msk = XM_DEF_MSK;
	if (hw->phy_type != SK_PHY_XMAC)
		msk |= XM_IS_INP_ASS;	/* disable GP0 interrupt bit */

1492 1493
	xm_write16(hw, port, XM_IMSK, msk);
	xm_read16(hw, port, XM_ISRC);
1494 1495

	/* get MMU Command Reg. */
1496
	cmd = xm_read16(hw, port, XM_MMU_CMD);
1497 1498 1499 1500 1501 1502 1503 1504
	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
		cmd |= XM_MMU_GMII_FD;

	if (hw->phy_type == SK_PHY_BCOM) {
		/*
		 * Workaround BCOM Errata (#10523) for all BCom Phys
		 * Enable Power Management after link up
		 */
1505 1506
		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
				  xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1507
				  & ~PHY_B_AC_DIS_PM);
1508
		xm_phy_write(hw, port, PHY_BCOM_INT_MASK,
1509 1510 1511 1512
				  PHY_B_DEF_MSK);
	}

	/* enable Rx/Tx */
1513
	xm_write16(hw, port, XM_MMU_CMD,
1514 1515 1516 1517 1518 1519 1520 1521 1522
			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
	skge_link_up(skge);
}


static void genesis_bcom_intr(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1523
	u16 stat = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1524 1525 1526 1527 1528 1529 1530

	pr_debug("genesis_bcom intr stat=%x\n", stat);

	/* Workaround BCom Errata:
	 *	enable and disable loopback mode if "NO HCD" occurs.
	 */
	if (stat & PHY_B_IS_NO_HDCL) {
1531 1532
		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1533
				  ctrl | PHY_CT_LOOP);
1534
		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1535 1536 1537
				  ctrl & ~PHY_CT_LOOP);
	}

1538
	stat = xm_phy_read(hw, port, PHY_BCOM_STAT);
1539
	if (stat & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) {
1540
		u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
		if ( !(aux & PHY_B_AS_LS) && netif_carrier_ok(skge->netdev))
			genesis_link_down(skge);

		else if (stat & PHY_B_IS_LST_CHANGE) {
			if (aux & PHY_B_AS_AN_C) {
				switch (aux & PHY_B_AS_AN_RES_MSK) {
				case PHY_B_RES_1000FD:
					skge->duplex = DUPLEX_FULL;
					break;
				case PHY_B_RES_1000HD:
					skge->duplex = DUPLEX_HALF;
					break;
				}

				switch (aux & PHY_B_AS_PAUSE_MSK) {
				case PHY_B_AS_PAUSE_MSK:
					skge->flow_control = FLOW_MODE_SYMMETRIC;
					break;
				case PHY_B_AS_PRR:
					skge->flow_control = FLOW_MODE_REM_SEND;
					break;
				case PHY_B_AS_PRT:
					skge->flow_control = FLOW_MODE_LOC_SEND;
					break;
				default:
					skge->flow_control = FLOW_MODE_NONE;
				}
				skge->speed = SPEED_1000;
			}
			genesis_link_up(skge);
		}
		else
			mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
	}
}

/* Perodic poll of phy status to check for link transistion  */
static void skge_link_timer(unsigned long __arg)
{
	struct skge_port *skge = (struct skge_port *) __arg;
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	if (hw->chip_id != CHIP_ID_GENESIS || !netif_running(skge->netdev))
		return;

	spin_lock_bh(&hw->phy_lock);
	if (hw->phy_type == SK_PHY_BCOM)
		genesis_bcom_intr(skge);
	else {
		int i;
		for (i = 0; i < 3; i++)
1593
			if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
				break;

		if (i == 3)
			mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
		else
			genesis_link_up(skge);
	}
	spin_unlock_bh(&hw->phy_lock);
}

/* Marvell Phy Initailization */
static void yukon_init(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
	u16 ctrl, ct1000, adv;
	u16 ledctrl, ledover;

	pr_debug("yukon_init\n");
	if (skge->autoneg == AUTONEG_ENABLE) {
1613
		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
			  PHY_M_EC_MAC_S_MSK);
		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);

		/* on PHY 88E1111 there is a change for downshift control */
		if (hw->chip_id == CHIP_ID_YUKON_EC)
			ectrl |= PHY_M_EC_M_DSC_2(0) | PHY_M_EC_DOWN_S_ENA;
		else
			ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);

1625
		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1626 1627
	}

1628
	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1629 1630 1631 1632
	if (skge->autoneg == AUTONEG_DISABLE)
		ctrl &= ~PHY_CT_ANE;

	ctrl |= PHY_CT_RESET;
1633
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

	ctrl = 0;
	ct1000 = 0;
	adv = PHY_SEL_TYPE;

	if (skge->autoneg == AUTONEG_ENABLE) {
		if (iscopper(hw)) {
			if (skge->advertising & ADVERTISED_1000baseT_Full)
				ct1000 |= PHY_M_1000C_AFD;
			if (skge->advertising & ADVERTISED_1000baseT_Half)
				ct1000 |= PHY_M_1000C_AHD;
			if (skge->advertising & ADVERTISED_100baseT_Full)
				adv |= PHY_M_AN_100_FD;
			if (skge->advertising & ADVERTISED_100baseT_Half)
				adv |= PHY_M_AN_100_HD;
			if (skge->advertising & ADVERTISED_10baseT_Full)
				adv |= PHY_M_AN_10_FD;
			if (skge->advertising & ADVERTISED_10baseT_Half)
				adv |= PHY_M_AN_10_HD;

			/* Set Flow-control capabilities */
			switch (skge->flow_control) {
			case FLOW_MODE_NONE:
				adv |= PHY_B_P_NO_PAUSE;
				break;
			case FLOW_MODE_LOC_SEND:
				adv |= PHY_B_P_ASYM_MD;
				break;
			case FLOW_MODE_SYMMETRIC:
				adv |= PHY_B_P_SYM_MD;
				break;
			case FLOW_MODE_REM_SEND:
				adv |= PHY_B_P_BOTH_MD;
				break;
			}
		} else {	/* special defines for FIBER (88E1011S only) */
			adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;

			/* Set Flow-control capabilities */
			switch (skge->flow_control) {
			case FLOW_MODE_NONE:
				adv |= PHY_M_P_NO_PAUSE_X;
				break;
			case FLOW_MODE_LOC_SEND:
				adv |= PHY_M_P_ASYM_MD_X;
				break;
			case FLOW_MODE_SYMMETRIC:
				adv |= PHY_M_P_SYM_MD_X;
				break;
			case FLOW_MODE_REM_SEND:
				adv |= PHY_M_P_BOTH_MD_X;
				break;
			}
		}
		/* Restart Auto-negotiation */
		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
	} else {
		/* forced speed/duplex settings */
		ct1000 = PHY_M_1000C_MSE;

		if (skge->duplex == DUPLEX_FULL)
			ctrl |= PHY_CT_DUP_MD;

		switch (skge->speed) {
		case SPEED_1000:
			ctrl |= PHY_CT_SP1000;
			break;
		case SPEED_100:
			ctrl |= PHY_CT_SP100;
			break;
		}

		ctrl |= PHY_CT_RESET;
	}

	if (hw->chip_id != CHIP_ID_YUKON_FE)
1710
		gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1711

1712 1713
	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1714 1715 1716 1717 1718 1719 1720 1721 1722

	/* Setup Phy LED's */
	ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
	ledover = 0;

	if (hw->chip_id == CHIP_ID_YUKON_FE) {
		/* on 88E3082 these bits are at 11..9 (shifted left) */
		ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;

1723 1724
		gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR,
				  ((gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR)
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

				    & ~PHY_M_FELP_LED1_MSK)
				   | PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL)));
	} else {
		/* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
		ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;

		/* turn off the Rx LED (LED_RX) */
		ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
	}

	/* disable blink mode (LED_DUPLEX) on collisions */
	ctrl |= PHY_M_LEDC_DP_CTRL;
1738
	gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
1739 1740 1741 1742 1743 1744 1745

	if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) {
		/* turn on 100 Mbps LED (LED_LINK100) */
		ledover |= PHY_M_LED_MO_100(MO_LED_ON);
	}

	if (ledover)
1746
		gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
1747 1748 1749

	/* Enable phy interrupt on autonegotiation complete (or link up) */
	if (skge->autoneg == AUTONEG_ENABLE)
1750
		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
1751
	else
1752
		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
1753 1754 1755 1756
}

static void yukon_reset(struct skge_hw *hw, int port)
{
1757 1758 1759 1760 1761
	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1762

1763 1764
	gma_write16(hw, port, GM_RX_CTRL,
			 gma_read16(hw, port, GM_RX_CTRL)
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
}

static void yukon_mac_init(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
	int i;
	u32 reg;
	const u8 *addr = hw->dev[port]->dev_addr;

	/* WA code for COMA mode -- set PHY reset */
	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
	    chip_rev(hw) == CHIP_REV_YU_LITE_A3)
		skge_write32(hw, B2_GP_IO,
			     (skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9));

	/* hard reset */
1782 1783
	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797

	/* WA code for COMA mode -- clear PHY reset */
	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
	    chip_rev(hw) == CHIP_REV_YU_LITE_A3)
		skge_write32(hw, B2_GP_IO,
			     (skge_read32(hw, B2_GP_IO) | GP_DIR_9)
			     & ~GP_IO_9);

	/* Set hardware config mode */
	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
	reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;

	/* Clear GMC reset */
1798 1799 1800
	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1801 1802
	if (skge->autoneg == AUTONEG_DISABLE) {
		reg = GM_GPCR_AU_ALL_DIS;
1803 1804
		gma_write16(hw, port, GM_GP_CTRL,
				 gma_read16(hw, port, GM_GP_CTRL) | reg);
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

		switch (skge->speed) {
		case SPEED_1000:
			reg |= GM_GPCR_SPEED_1000;
			/* fallthru */
		case SPEED_100:
			reg |= GM_GPCR_SPEED_100;
		}

		if (skge->duplex == DUPLEX_FULL)
			reg |= GM_GPCR_DUP_FULL;
	} else
		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
	switch (skge->flow_control) {
	case FLOW_MODE_NONE:
1820
		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1821 1822 1823 1824 1825 1826 1827
		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
		break;
	case FLOW_MODE_LOC_SEND:
		/* disable Rx flow-control */
		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
	}

1828
	gma_write16(hw, port, GM_GP_CTRL, reg);
1829 1830 1831 1832 1833 1834 1835
	skge_read16(hw, GMAC_IRQ_SRC);

	spin_lock_bh(&hw->phy_lock);
	yukon_init(hw, port);
	spin_unlock_bh(&hw->phy_lock);

	/* MIB clear */
1836 1837
	reg = gma_read16(hw, port, GM_PHY_ADDR);
	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1838 1839

	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1840 1841
		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
	gma_write16(hw, port, GM_PHY_ADDR, reg);
1842 1843

	/* transmit control */
1844
	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1845 1846

	/* receive control reg: unicast + multicast + no FCS  */
1847
	gma_write16(hw, port, GM_RX_CTRL,
1848 1849 1850
			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);

	/* transmit flow control */
1851
	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1852 1853

	/* transmit parameter */
1854
	gma_write16(hw, port, GM_TX_PARAM,
1855 1856 1857 1858 1859 1860 1861 1862 1863
			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));

	/* serial mode register */
	reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
	if (hw->dev[port]->mtu > 1500)
		reg |= GM_SMOD_JUMBO_ENA;

1864
	gma_write16(hw, port, GM_SERIAL_MODE, reg);
1865 1866

	/* physical address: used for pause frames */
1867
	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1868
	/* virtual address for data */
1869
	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1870 1871

	/* enable interrupt mask for counter overflows */
1872 1873 1874
	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1875 1876 1877 1878

	/* Initialize Mac Fifo */

	/* Configure Rx MAC FIFO */
1879
	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1880 1881 1882 1883
	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
	    chip_rev(hw) == CHIP_REV_YU_LITE_A3)
		reg &= ~GMF_RX_F_FL_ON;
1884 1885 1886
	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
1887 1888

	/* Configure Tx MAC FIFO */
1889 1890
	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
}

static void yukon_stop(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
	    chip_rev(hw) == CHIP_REV_YU_LITE_A3) {
		skge_write32(hw, B2_GP_IO,
			     skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9);
	}

1904 1905
	gma_write16(hw, port, GM_GP_CTRL,
			 gma_read16(hw, port, GM_GP_CTRL)
1906
			 & ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA));
1907
	gma_read16(hw, port, GM_GP_CTRL);
1908 1909

	/* set GPHY Control reset */
1910 1911
	gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET);
	gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET);
1912 1913 1914 1915 1916 1917 1918 1919
}

static void yukon_get_stats(struct skge_port *skge, u64 *data)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	int i;

1920 1921 1922 1923
	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
		| gma_read32(hw, port, GM_TXO_OK_LO);
	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
		| gma_read32(hw, port, GM_RXO_OK_LO);
1924 1925

	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1926
		data[i] = gma_read32(hw, port,
1927 1928 1929 1930 1931 1932
					  skge_stats[i].gma_offset);
}

static void yukon_mac_intr(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
1933
	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
1934 1935 1936 1937

	pr_debug("yukon_intr status %x\n", status);
	if (status & GM_IS_RX_FF_OR) {
		++skge->net_stats.rx_fifo_errors;
1938
		gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO);
1939 1940 1941
	}
	if (status & GM_IS_TX_FF_UR) {
		++skge->net_stats.tx_fifo_errors;
1942
		gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU);
1943 1944 1945 1946 1947 1948 1949 1950 1951
	}

}

static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
{
	if (hw->chip_id == CHIP_ID_YUKON_FE)
		return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;

1952
	switch (aux & PHY_M_PS_SPEED_MSK) {
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	case PHY_M_PS_SPEED_1000:
		return SPEED_1000;
	case PHY_M_PS_SPEED_100:
		return SPEED_100;
	default:
		return SPEED_10;
	}
}

static void yukon_link_up(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u16 reg;

	pr_debug("yukon_link_up\n");

	/* Enable Transmit FIFO Underrun */
	skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK);

1973
	reg = gma_read16(hw, port, GM_GP_CTRL);
1974 1975 1976 1977 1978
	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
		reg |= GM_GPCR_DUP_FULL;

	/* enable Rx/Tx */
	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1979
	gma_write16(hw, port, GM_GP_CTRL, reg);
1980

1981
	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
1982 1983 1984 1985 1986 1987 1988 1989 1990
	skge_link_up(skge);
}

static void yukon_link_down(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	pr_debug("yukon_link_down\n");
1991 1992 1993
	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
	gm_phy_write(hw, port, GM_GP_CTRL,
			  gm_phy_read(hw, port, GM_GP_CTRL)
1994 1995 1996 1997 1998
			  & ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA));

	if (hw->chip_id != CHIP_ID_YUKON_FE &&
	    skge->flow_control == FLOW_MODE_REM_SEND) {
		/* restore Asymmetric Pause bit */
1999 2000
		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
				  gm_phy_read(hw, port,
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
						   PHY_MARV_AUNE_ADV)
				  | PHY_M_AN_ASP);

	}

	yukon_reset(hw, port);
	skge_link_down(skge);

	yukon_init(hw, port);
}

static void yukon_phy_intr(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	const char *reason = NULL;
	u16 istatus, phystat;

2019 2020
	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2021 2022 2023
	pr_debug("yukon phy intr istat=%x phy_stat=%x\n", istatus, phystat);

	if (istatus & PHY_M_IS_AN_COMPL) {
2024
		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2025 2026 2027 2028 2029 2030
		    & PHY_M_AN_RF) {
			reason = "remote fault";
			goto failed;
		}

		if (!(hw->chip_id == CHIP_ID_YUKON_FE || hw->chip_id == CHIP_ID_YUKON_EC)
2031
		    && (gm_phy_read(hw, port, PHY_MARV_1000T_STAT)
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
			& PHY_B_1000S_MSF)) {
			reason = "master/slave fault";
			goto failed;
		}

		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
			reason = "speed/duplex";
			goto failed;
		}

		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
			? DUPLEX_FULL : DUPLEX_HALF;
		skge->speed = yukon_speed(hw, phystat);

		/* Tx & Rx Pause Enabled bits are at 9..8 */
		if (hw->chip_id == CHIP_ID_YUKON_XL)
			phystat >>= 6;

		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
		switch (phystat & PHY_M_PS_PAUSE_MSK) {
		case PHY_M_PS_PAUSE_MSK:
			skge->flow_control = FLOW_MODE_SYMMETRIC;
			break;
		case PHY_M_PS_RX_P_EN:
			skge->flow_control = FLOW_MODE_REM_SEND;
			break;
		case PHY_M_PS_TX_P_EN:
			skge->flow_control = FLOW_MODE_LOC_SEND;
			break;
		default:
			skge->flow_control = FLOW_MODE_NONE;
		}

		if (skge->flow_control == FLOW_MODE_NONE ||
		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2067
			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2068
		else
2069
			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
		yukon_link_up(skge);
		return;
	}

	if (istatus & PHY_M_IS_LSP_CHANGE)
		skge->speed = yukon_speed(hw, phystat);

	if (istatus & PHY_M_IS_DUP_CHANGE)
		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
	if (istatus & PHY_M_IS_LST_CHANGE) {
		if (phystat & PHY_M_PS_LINK_UP)
			yukon_link_up(skge);
		else
			yukon_link_down(skge);
	}
	return;
 failed:
	printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
	       skge->netdev->name, reason);

	/* XXX restart autonegotiation? */
}

static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
{
	u32 end;

	start /= 8;
	len /= 8;
	end = start + len - 1;

	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
	skge_write32(hw, RB_ADDR(q, RB_START), start);
	skge_write32(hw, RB_ADDR(q, RB_WP), start);
	skge_write32(hw, RB_ADDR(q, RB_RP), start);
	skge_write32(hw, RB_ADDR(q, RB_END), end);

	if (q == Q_R1 || q == Q_R2) {
		/* Set thresholds on receive queue's */
		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
			     start + (2*len)/3);
		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
			     start + (len/3));
	} else {
		/* Enable store & forward on Tx queue's because
		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
		 */
		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
	}

	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
}

/* Setup Bus Memory Interface */
static void skge_qset(struct skge_port *skge, u16 q,
		      const struct skge_element *e)
{
	struct skge_hw *hw = skge->hw;
	u32 watermark = 0x600;
	u64 base = skge->dma + (e->desc - skge->mem);

	/* optimization to reduce window on 32bit/33mhz */
	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
		watermark /= 2;

	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
}

static int skge_up(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u32 chunk, ram_addr;
	size_t rx_size, tx_size;
	int err;

	if (netif_msg_ifup(skge))
		printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);

	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
	skge->mem_size = tx_size + rx_size;
	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
	if (!skge->mem)
		return -ENOMEM;

	memset(skge->mem, 0, skge->mem_size);

	if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
		goto free_pci_mem;

	if (skge_rx_fill(skge))
		goto free_rx_ring;

	if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
				   skge->dma + rx_size)))
		goto free_rx_ring;

	skge->tx_avail = skge->tx_ring.count - 1;

	/* Initialze MAC */
	if (hw->chip_id == CHIP_ID_GENESIS)
		genesis_mac_init(hw, port);
	else
		yukon_mac_init(hw, port);

	/* Configure RAMbuffers */
	chunk = hw->ram_size / (isdualport(hw) ? 4 : 2);
	ram_addr = hw->ram_offset + 2 * chunk * port;

	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);

	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);

	/* Start receiver BMU */
	wmb();
	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);

	pr_debug("skge_up completed\n");
	return 0;

 free_rx_ring:
	skge_rx_clean(skge);
	kfree(skge->rx_ring.start);
 free_pci_mem:
	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);

	return err;
}

static int skge_down(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	if (netif_msg_ifdown(skge))
		printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);

	netif_stop_queue(dev);

	del_timer_sync(&skge->led_blink);
	del_timer_sync(&skge->link_check);

	/* Stop transmitter */
	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
		     RB_RST_SET|RB_DIS_OP_MD);

	if (hw->chip_id == CHIP_ID_GENESIS)
		genesis_stop(skge);
	else
		yukon_stop(skge);

	/* Disable Force Sync bit and Enable Alloc bit */
2232
	skge_write8(hw, SK_REG(port, TXA_CTRL),
2233 2234 2235
		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);

	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2236 2237
	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

	/* Reset PCI FIFO */
	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);

	/* Reset the RAM Buffer async Tx queue */
	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
	/* stop receiver */
	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
		     RB_RST_SET|RB_DIS_OP_MD);
	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);

	if (hw->chip_id == CHIP_ID_GENESIS) {
2252 2253 2254 2255
		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
		skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_STOP);
		skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_STOP);
2256
	} else {
2257 2258
		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	}

	/* turn off led's */
	skge_write16(hw, B0_LED, LED_STAT_OFF);

	skge_tx_clean(skge);
	skge_rx_clean(skge);

	kfree(skge->rx_ring.start);
	kfree(skge->tx_ring.start);
	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
	return 0;
}

static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	struct skge_ring *ring = &skge->tx_ring;
	struct skge_element *e;
	struct skge_tx_desc *td;
	int i;
	u32 control, len;
	u64 map;
	unsigned long flags;

	skb = skb_padto(skb, ETH_ZLEN);
	if (!skb)
		return NETDEV_TX_OK;

	local_irq_save(flags);
	if (!spin_trylock(&skge->tx_lock)) {
2291 2292 2293 2294
 		/* Collision - tell upper layer to requeue */
 		local_irq_restore(flags);
 		return NETDEV_TX_LOCKED;
 	}
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

	if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
		netif_stop_queue(dev);
		spin_unlock_irqrestore(&skge->tx_lock, flags);

		printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
		       dev->name);
		return NETDEV_TX_BUSY;
	}

	e = ring->to_use;
	td = e->desc;
	e->skb = skb;
	len = skb_headlen(skb);
	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
	pci_unmap_addr_set(e, mapaddr, map);
	pci_unmap_len_set(e, maplen, len);

	td->dma_lo = map;
	td->dma_hi = map >> 32;

	if (skb->ip_summed == CHECKSUM_HW) {
		const struct iphdr *ip
			= (const struct iphdr *) (skb->data + ETH_HLEN);
		int offset = skb->h.raw - skb->data;

		/* This seems backwards, but it is what the sk98lin
		 * does.  Looks like hardware is wrong?
		 */
		if (ip->protocol == IPPROTO_UDP
	            && chip_rev(hw) == 0 && hw->chip_id == CHIP_ID_YUKON)
			control = BMU_TCP_CHECK;
		else
			control = BMU_UDP_CHECK;

		td->csum_offs = 0;
		td->csum_start = offset;
		td->csum_write = offset + skb->csum;
	} else
		control = BMU_CHECK;

	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
		control |= BMU_EOF| BMU_IRQ_EOF;
	else {
		struct skge_tx_desc *tf = td;

		control |= BMU_STFWD;
		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

			map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
					   frag->size, PCI_DMA_TODEVICE);

			e = e->next;
			e->skb = NULL;
			tf = e->desc;
			tf->dma_lo = map;
			tf->dma_hi = (u64) map >> 32;
			pci_unmap_addr_set(e, mapaddr, map);
			pci_unmap_len_set(e, maplen, frag->size);

			tf->control = BMU_OWN | BMU_SW | control | frag->size;
		}
		tf->control |= BMU_EOF | BMU_IRQ_EOF;
	}
	/* Make sure all the descriptors written */
	wmb();
	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
	wmb();

	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);

	if (netif_msg_tx_queued(skge))
A
Al Viro 已提交
2368
		printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
		       dev->name, e - ring->start, skb->len);

	ring->to_use = e->next;
	skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
	if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
		pr_debug("%s: transmit queue full\n", dev->name);
		netif_stop_queue(dev);
	}

	dev->trans_start = jiffies;
	spin_unlock_irqrestore(&skge->tx_lock, flags);

	return NETDEV_TX_OK;
}

static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
{
	if (e->skb) {
		pci_unmap_single(hw->pdev,
			       pci_unmap_addr(e, mapaddr),
			       pci_unmap_len(e, maplen),
			       PCI_DMA_TODEVICE);
		dev_kfree_skb_any(e->skb);
		e->skb = NULL;
	} else {
		pci_unmap_page(hw->pdev,
			       pci_unmap_addr(e, mapaddr),
			       pci_unmap_len(e, maplen),
			       PCI_DMA_TODEVICE);
	}
}

static void skge_tx_clean(struct skge_port *skge)
{
	struct skge_ring *ring = &skge->tx_ring;
	struct skge_element *e;
	unsigned long flags;

	spin_lock_irqsave(&skge->tx_lock, flags);
	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
		++skge->tx_avail;
		skge_tx_free(skge->hw, e);
	}
	ring->to_clean = e;
	spin_unlock_irqrestore(&skge->tx_lock, flags);
}

static void skge_tx_timeout(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	if (netif_msg_timer(skge))
		printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);

	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
	skge_tx_clean(skge);
}

static int skge_change_mtu(struct net_device *dev, int new_mtu)
{
	int err = 0;

2431
	if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
		return -EINVAL;

	dev->mtu = new_mtu;

	if (netif_running(dev)) {
		skge_down(dev);
		skge_up(dev);
	}

	return err;
}

static void genesis_set_multicast(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	int i, count = dev->mc_count;
	struct dev_mc_list *list = dev->mc_list;
	u32 mode;
	u8 filter[8];

2454
	mode = xm_read32(hw, port, XM_MODE);
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	mode |= XM_MD_ENA_HASH;
	if (dev->flags & IFF_PROMISC)
		mode |= XM_MD_ENA_PROM;
	else
		mode &= ~XM_MD_ENA_PROM;

	if (dev->flags & IFF_ALLMULTI)
		memset(filter, 0xff, sizeof(filter));
	else {
		memset(filter, 0, sizeof(filter));
2465
		for (i = 0; list && i < count; i++, list = list->next) {
2466 2467 2468 2469 2470 2471 2472
			u32 crc = crc32_le(~0, list->dmi_addr, ETH_ALEN);
			u8 bit = 63 - (crc & 63);

			filter[bit/8] |= 1 << (bit%8);
		}
	}

2473
	xm_outhash(hw, port, XM_HSM, filter);
2474

2475
	xm_write32(hw, port, XM_MODE, mode);
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
}

static void yukon_set_multicast(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	struct dev_mc_list *list = dev->mc_list;
	u16 reg;
	u8 filter[8];

	memset(filter, 0, sizeof(filter));

2489
	reg = gma_read16(hw, port, GM_RX_CTRL);
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
	reg |= GM_RXCR_UCF_ENA;

	if (dev->flags & IFF_PROMISC) 		/* promiscious */
		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
		memset(filter, 0xff, sizeof(filter));
	else if (dev->mc_count == 0)		/* no multicast */
		reg &= ~GM_RXCR_MCF_ENA;
	else {
		int i;
		reg |= GM_RXCR_MCF_ENA;

2502
		for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2503 2504 2505 2506 2507 2508
			u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
			filter[bit/8] |= 1 << (bit%8);
		}
	}


2509
	gma_write16(hw, port, GM_MC_ADDR_H1,
2510
			 (u16)filter[0] | ((u16)filter[1] << 8));
2511
	gma_write16(hw, port, GM_MC_ADDR_H2,
2512
			 (u16)filter[2] | ((u16)filter[3] << 8));
2513
	gma_write16(hw, port, GM_MC_ADDR_H3,
2514
			 (u16)filter[4] | ((u16)filter[5] << 8));
2515
	gma_write16(hw, port, GM_MC_ADDR_H4,
2516 2517
			 (u16)filter[6] | ((u16)filter[7] << 8));

2518
	gma_write16(hw, port, GM_RX_CTRL, reg);
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
}

static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
{
	if (hw->chip_id == CHIP_ID_GENESIS)
		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
	else
		return (status & GMR_FS_ANY_ERR) ||
			(status & GMR_FS_RX_OK) == 0;
}

static void skge_rx_error(struct skge_port *skge, int slot,
			  u32 control, u32 status)
{
	if (netif_msg_rx_err(skge))
		printk(KERN_DEBUG PFX "%s: rx err, slot %d control 0x%x status 0x%x\n",
		       skge->netdev->name, slot, control, status);

	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
	    || (control & BMU_BBC) > skge->netdev->mtu + VLAN_ETH_HLEN)
		skge->net_stats.rx_length_errors++;
	else {
		if (skge->hw->chip_id == CHIP_ID_GENESIS) {
			if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
				skge->net_stats.rx_length_errors++;
			if (status & XMR_FS_FRA_ERR)
				skge->net_stats.rx_frame_errors++;
			if (status & XMR_FS_FCS_ERR)
				skge->net_stats.rx_crc_errors++;
		} else {
			if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
				skge->net_stats.rx_length_errors++;
			if (status & GMR_FS_FRAGMENT)
				skge->net_stats.rx_frame_errors++;
			if (status & GMR_FS_CRC_ERR)
				skge->net_stats.rx_crc_errors++;
		}
	}
}

static int skge_poll(struct net_device *dev, int *budget)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	struct skge_ring *ring = &skge->rx_ring;
	struct skge_element *e;
	unsigned int to_do = min(dev->quota, *budget);
	unsigned int work_done = 0;
	int done;
	static const u32 irqmask[] = { IS_PORT_1, IS_PORT_2 };

	for (e = ring->to_clean; e != ring->to_use && work_done < to_do;
	     e = e->next) {
		struct skge_rx_desc *rd = e->desc;
		struct sk_buff *skb = e->skb;
		u32 control, len, status;

		rmb();
		control = rd->control;
		if (control & BMU_OWN)
			break;

		len = control & BMU_BBC;
		e->skb = NULL;

		pci_unmap_single(hw->pdev,
				 pci_unmap_addr(e, mapaddr),
				 pci_unmap_len(e, maplen),
				 PCI_DMA_FROMDEVICE);

		status = rd->status;
		if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
		     || len > dev->mtu + VLAN_ETH_HLEN
		     || bad_phy_status(hw, status)) {
			skge_rx_error(skge, e - ring->start, control, status);
			dev_kfree_skb(skb);
			continue;
		}

		if (netif_msg_rx_status(skge))
A
Al Viro 已提交
2599
		    printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
			   dev->name, e - ring->start, rd->status, len);

		skb_put(skb, len);
		skb->protocol = eth_type_trans(skb, dev);

		if (skge->rx_csum) {
			skb->csum = le16_to_cpu(rd->csum2);
			skb->ip_summed = CHECKSUM_HW;
		}

		dev->last_rx = jiffies;
		netif_receive_skb(skb);

		++work_done;
	}
	ring->to_clean = e;

	*budget -= work_done;
	dev->quota -= work_done;
	done = work_done < to_do;

	if (skge_rx_fill(skge))
		done = 0;

	/* restart receiver */
	wmb();
	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
		    CSR_START | CSR_IRQ_CL_F);

	if (done) {
		local_irq_disable();
		hw->intr_mask |= irqmask[skge->port];
		/* Order is important since data can get interrupted */
		skge_write32(hw, B0_IMSK, hw->intr_mask);
		__netif_rx_complete(dev);
		local_irq_enable();
	}

	return !done;
}

static inline void skge_tx_intr(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	struct skge_ring *ring = &skge->tx_ring;
	struct skge_element *e;

	spin_lock(&skge->tx_lock);
2649
	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2650 2651 2652 2653 2654 2655 2656 2657 2658
		struct skge_tx_desc *td = e->desc;
		u32 control;

		rmb();
		control = td->control;
		if (control & BMU_OWN)
			break;

		if (unlikely(netif_msg_tx_done(skge)))
A
Al Viro 已提交
2659
			printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n",
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
			       dev->name, e - ring->start, td->status);

		skge_tx_free(hw, e);
		e->skb = NULL;
		++skge->tx_avail;
	}
	ring->to_clean = e;
	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);

	if (skge->tx_avail > MAX_SKB_FRAGS + 1)
		netif_wake_queue(dev);

	spin_unlock(&skge->tx_lock);
}

static void skge_mac_parity(struct skge_hw *hw, int port)
{
	printk(KERN_ERR PFX "%s: mac data parity error\n",
	       hw->dev[port] ? hw->dev[port]->name
	       : (port == 0 ? "(port A)": "(port B"));

	if (hw->chip_id == CHIP_ID_GENESIS)
2682
		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2683 2684 2685
			     MFF_CLR_PERR);
	else
		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2686
		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2687 2688 2689 2690 2691 2692 2693 2694
			    (hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0)
			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
}

static void skge_pci_clear(struct skge_hw *hw)
{
	u16 status;

2695
	pci_read_config_word(hw->pdev, PCI_STATUS, &status);
2696
	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2697 2698
	pci_write_config_word(hw->pdev, PCI_STATUS,
			      status | PCI_STATUS_ERROR_BITS);
2699 2700 2701 2702 2703
	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}

static void skge_mac_intr(struct skge_hw *hw, int port)
{
2704
	if (hw->chip_id == CHIP_ID_GENESIS)
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
		genesis_mac_intr(hw, port);
	else
		yukon_mac_intr(hw, port);
}

/* Handle device specific framing and timeout interrupts */
static void skge_error_irq(struct skge_hw *hw)
{
	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);

	if (hw->chip_id == CHIP_ID_GENESIS) {
		/* clear xmac errors */
		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2718
			skge_write16(hw, SK_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT);
2719
		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2720
			skge_write16(hw, SK_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT);
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	} else {
		/* Timestamp (unused) overflow */
		if (hwstatus & IS_IRQ_TIST_OV)
			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);

		if (hwstatus & IS_IRQ_SENSOR) {
			/* no sensors on 32-bit Yukon */
			if (!(skge_read16(hw, B0_CTST) & CS_BUS_SLOT_SZ)) {
				printk(KERN_ERR PFX "ignoring bogus sensor interrups\n");
				skge_write32(hw, B0_HWE_IMSK,
					     IS_ERR_MSK & ~IS_IRQ_SENSOR);
			} else
				printk(KERN_WARNING PFX "sensor interrupt\n");
		}


	}

	if (hwstatus & IS_RAM_RD_PAR) {
		printk(KERN_ERR PFX "Ram read data parity error\n");
		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
	}

	if (hwstatus & IS_RAM_WR_PAR) {
		printk(KERN_ERR PFX "Ram write data parity error\n");
		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
	}

	if (hwstatus & IS_M1_PAR_ERR)
		skge_mac_parity(hw, 0);

	if (hwstatus & IS_M2_PAR_ERR)
		skge_mac_parity(hw, 1);

	if (hwstatus & IS_R1_PAR_ERR)
		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);

	if (hwstatus & IS_R2_PAR_ERR)
		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);

	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
		printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
		       hwstatus);

		skge_pci_clear(hw);

		hwstatus = skge_read32(hw, B0_HWE_ISRC);
		if (hwstatus & IS_IRQ_STAT) {
			printk(KERN_WARNING PFX "IRQ status %x: still set ignoring hardware errors\n",
			       hwstatus);
			hw->intr_mask &= ~IS_HW_ERR;
		}
	}
}

/*
 * Interrrupt from PHY are handled in tasklet (soft irq)
 * because accessing phy registers requires spin wait which might
 * cause excess interrupt latency.
 */
static void skge_extirq(unsigned long data)
{
	struct skge_hw *hw = (struct skge_hw *) data;
	int port;

	spin_lock(&hw->phy_lock);
	for (port = 0; port < 2; port++) {
		struct net_device *dev = hw->dev[port];

		if (dev && netif_running(dev)) {
			struct skge_port *skge = netdev_priv(dev);

			if (hw->chip_id != CHIP_ID_GENESIS)
				yukon_phy_intr(skge);
			else if (hw->phy_type == SK_PHY_BCOM)
				genesis_bcom_intr(skge);
		}
	}
	spin_unlock(&hw->phy_lock);

	local_irq_disable();
	hw->intr_mask |= IS_EXT_REG;
	skge_write32(hw, B0_IMSK, hw->intr_mask);
	local_irq_enable();
}

static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
{
	struct skge_hw *hw = dev_id;
	u32 status = skge_read32(hw, B0_SP_ISRC);

	if (status == 0 || status == ~0) /* hotplug or shared irq */
		return IRQ_NONE;

	status &= hw->intr_mask;

	if ((status & IS_R1_F) && netif_rx_schedule_prep(hw->dev[0])) {
		status &= ~IS_R1_F;
		hw->intr_mask &= ~IS_R1_F;
		skge_write32(hw, B0_IMSK, hw->intr_mask);
		__netif_rx_schedule(hw->dev[0]);
	}

	if ((status & IS_R2_F) && netif_rx_schedule_prep(hw->dev[1])) {
		status &= ~IS_R2_F;
		hw->intr_mask &= ~IS_R2_F;
		skge_write32(hw, B0_IMSK, hw->intr_mask);
		__netif_rx_schedule(hw->dev[1]);
	}

	if (status & IS_XA1_F)
		skge_tx_intr(hw->dev[0]);

	if (status & IS_XA2_F)
		skge_tx_intr(hw->dev[1]);

	if (status & IS_MAC1)
		skge_mac_intr(hw, 0);
2839

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	if (status & IS_MAC2)
		skge_mac_intr(hw, 1);

	if (status & IS_HW_ERR)
		skge_error_irq(hw);

	if (status & IS_EXT_REG) {
		hw->intr_mask &= ~IS_EXT_REG;
		tasklet_schedule(&hw->ext_tasklet);
	}

	if (status)
		skge_write32(hw, B0_IMSK, hw->intr_mask);

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void skge_netpoll(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	disable_irq(dev->irq);
	skge_intr(dev->irq, skge->hw, NULL);
	enable_irq(dev->irq);
}
#endif

static int skge_set_mac_address(struct net_device *dev, void *p)
{
	struct skge_port *skge = netdev_priv(dev);
	struct sockaddr *addr = p;
	int err = 0;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	skge_down(dev);
	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
	memcpy_toio(skge->hw->regs + B2_MAC_1 + skge->port*8,
		    dev->dev_addr, ETH_ALEN);
	memcpy_toio(skge->hw->regs + B2_MAC_2 + skge->port*8,
		    dev->dev_addr, ETH_ALEN);
	if (dev->flags & IFF_UP)
		err = skge_up(dev);
	return err;
}

static const struct {
	u8 id;
	const char *name;
} skge_chips[] = {
	{ CHIP_ID_GENESIS,	"Genesis" },
	{ CHIP_ID_YUKON,	 "Yukon" },
	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
	{ CHIP_ID_YUKON_XL,	 "Yukon-2 XL"},
	{ CHIP_ID_YUKON_EC,	 "YUKON-2 EC"},
	{ CHIP_ID_YUKON_FE,	 "YUKON-2 FE"},
};

static const char *skge_board_name(const struct skge_hw *hw)
{
	int i;
	static char buf[16];

	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
		if (skge_chips[i].id == hw->chip_id)
			return skge_chips[i].name;

	snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
	return buf;
}


/*
 * Setup the board data structure, but don't bring up
 * the port(s)
 */
static int skge_reset(struct skge_hw *hw)
{
	u16 ctst;
	u8 t8;
	int i, ports;

	ctst = skge_read16(hw, B0_CTST);

	/* do a SW reset */
	skge_write8(hw, B0_CTST, CS_RST_SET);
	skge_write8(hw, B0_CTST, CS_RST_CLR);

	/* clear PCI errors, if any */
	skge_pci_clear(hw);

	skge_write8(hw, B0_CTST, CS_MRST_CLR);

	/* restore CLK_RUN bits (for Yukon-Lite) */
	skge_write16(hw, B0_CTST,
		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));

	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
	hw->pmd_type = skge_read8(hw, B2_PMD_TYP);

2944
	switch (hw->chip_id) {
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
	case CHIP_ID_GENESIS:
		switch (hw->phy_type) {
		case SK_PHY_XMAC:
			hw->phy_addr = PHY_ADDR_XMAC;
			break;
		case SK_PHY_BCOM:
			hw->phy_addr = PHY_ADDR_BCOM;
			break;
		default:
			printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
			       pci_name(hw->pdev), hw->phy_type);
			return -EOPNOTSUPP;
		}
		break;

	case CHIP_ID_YUKON:
	case CHIP_ID_YUKON_LITE:
	case CHIP_ID_YUKON_LP:
		if (hw->phy_type < SK_PHY_MARV_COPPER && hw->pmd_type != 'S')
			hw->phy_type = SK_PHY_MARV_COPPER;

		hw->phy_addr = PHY_ADDR_MARV;
		if (!iscopper(hw))
			hw->phy_type = SK_PHY_MARV_FIBER;

		break;

	default:
		printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
		       pci_name(hw->pdev), hw->chip_id);
		return -EOPNOTSUPP;
	}

	hw->mac_cfg = skge_read8(hw, B2_MAC_CFG);
	ports = isdualport(hw) ? 2 : 1;

	/* read the adapters RAM size */
	t8 = skge_read8(hw, B2_E_0);
	if (hw->chip_id == CHIP_ID_GENESIS) {
		if (t8 == 3) {
			/* special case: 4 x 64k x 36, offset = 0x80000 */
			hw->ram_size = 0x100000;
			hw->ram_offset = 0x80000;
		} else
			hw->ram_size = t8 * 512;
	}
	else if (t8 == 0)
		hw->ram_size = 0x20000;
	else
		hw->ram_size = t8 * 4096;

	if (hw->chip_id == CHIP_ID_GENESIS)
		genesis_init(hw);
	else {
		/* switch power to VCC (WA for VAUX problem) */
		skge_write8(hw, B0_POWER_CTRL,
			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
		for (i = 0; i < ports; i++) {
3003 3004
			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
		}
	}

	/* turn off hardware timer (unused) */
	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
	skge_write8(hw, B0_LED, LED_STAT_ON);

	/* enable the Tx Arbiters */
	for (i = 0; i < ports; i++)
3015
		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279

	/* Initialize ram interface */
	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);

	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);

	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);

	/* Set interrupt moderation for Transmit only
	 * Receive interrupts avoided by NAPI
	 */
	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
	skge_write32(hw, B2_IRQM_CTRL, TIM_START);

	hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
	if (isdualport(hw))
		hw->intr_mask |= IS_PORT_2;
	skge_write32(hw, B0_IMSK, hw->intr_mask);

	if (hw->chip_id != CHIP_ID_GENESIS)
		skge_write8(hw, GMAC_IRQ_MSK, 0);

	spin_lock_bh(&hw->phy_lock);
	for (i = 0; i < ports; i++) {
		if (hw->chip_id == CHIP_ID_GENESIS)
			genesis_reset(hw, i);
		else
			yukon_reset(hw, i);
	}
	spin_unlock_bh(&hw->phy_lock);

	return 0;
}

/* Initialize network device */
static struct net_device *skge_devinit(struct skge_hw *hw, int port)
{
	struct skge_port *skge;
	struct net_device *dev = alloc_etherdev(sizeof(*skge));

	if (!dev) {
		printk(KERN_ERR "skge etherdev alloc failed");
		return NULL;
	}

	SET_MODULE_OWNER(dev);
	SET_NETDEV_DEV(dev, &hw->pdev->dev);
	dev->open = skge_up;
	dev->stop = skge_down;
	dev->hard_start_xmit = skge_xmit_frame;
	dev->get_stats = skge_get_stats;
	if (hw->chip_id == CHIP_ID_GENESIS)
		dev->set_multicast_list = genesis_set_multicast;
	else
		dev->set_multicast_list = yukon_set_multicast;

	dev->set_mac_address = skge_set_mac_address;
	dev->change_mtu = skge_change_mtu;
	SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
	dev->tx_timeout = skge_tx_timeout;
	dev->watchdog_timeo = TX_WATCHDOG;
	dev->poll = skge_poll;
	dev->weight = NAPI_WEIGHT;
#ifdef CONFIG_NET_POLL_CONTROLLER
	dev->poll_controller = skge_netpoll;
#endif
	dev->irq = hw->pdev->irq;
	dev->features = NETIF_F_LLTX;

	skge = netdev_priv(dev);
	skge->netdev = dev;
	skge->hw = hw;
	skge->msg_enable = netif_msg_init(debug, default_msg);
	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;

	/* Auto speed and flow control */
	skge->autoneg = AUTONEG_ENABLE;
	skge->flow_control = FLOW_MODE_SYMMETRIC;
	skge->duplex = -1;
	skge->speed = -1;
	skge->advertising = skge_modes(hw);

	hw->dev[port] = dev;

	skge->port = port;

	spin_lock_init(&skge->tx_lock);

	init_timer(&skge->link_check);
	skge->link_check.function = skge_link_timer;
	skge->link_check.data = (unsigned long) skge;

	init_timer(&skge->led_blink);
	skge->led_blink.function = skge_blink_timer;
	skge->led_blink.data = (unsigned long) skge;

	if (hw->chip_id != CHIP_ID_GENESIS) {
		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
		skge->rx_csum = 1;
	}

	/* read the mac address */
	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);

	/* device is off until link detection */
	netif_carrier_off(dev);
	netif_stop_queue(dev);

	return dev;
}

static void __devinit skge_show_addr(struct net_device *dev)
{
	const struct skge_port *skge = netdev_priv(dev);

	if (netif_msg_probe(skge))
		printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
		       dev->name,
		       dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
		       dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
}

static int __devinit skge_probe(struct pci_dev *pdev,
				const struct pci_device_id *ent)
{
	struct net_device *dev, *dev1;
	struct skge_hw *hw;
	int err, using_dac = 0;

	if ((err = pci_enable_device(pdev))) {
		printk(KERN_ERR PFX "%s cannot enable PCI device\n",
		       pci_name(pdev));
		goto err_out;
	}

	if ((err = pci_request_regions(pdev, DRV_NAME))) {
		printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
		       pci_name(pdev));
		goto err_out_disable_pdev;
	}

	pci_set_master(pdev);

	if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
		using_dac = 1;
	else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
		printk(KERN_ERR PFX "%s no usable DMA configuration\n",
		       pci_name(pdev));
		goto err_out_free_regions;
	}

#ifdef __BIG_ENDIAN
	/* byte swap decriptors in hardware */
	{
		u32 reg;

		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
		reg |= PCI_REV_DESC;
		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
	}
#endif

	err = -ENOMEM;
	hw = kmalloc(sizeof(*hw), GFP_KERNEL);
	if (!hw) {
		printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
		       pci_name(pdev));
		goto err_out_free_regions;
	}

	memset(hw, 0, sizeof(*hw));
	hw->pdev = pdev;
	spin_lock_init(&hw->phy_lock);
	tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);

	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
	if (!hw->regs) {
		printk(KERN_ERR PFX "%s: cannot map device registers\n",
		       pci_name(pdev));
		goto err_out_free_hw;
	}

	if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
		printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
		       pci_name(pdev), pdev->irq);
		goto err_out_iounmap;
	}
	pci_set_drvdata(pdev, hw);

	err = skge_reset(hw);
	if (err)
		goto err_out_free_irq;

	printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n",
	       pci_resource_start(pdev, 0), pdev->irq,
	       skge_board_name(hw), chip_rev(hw));

	if ((dev = skge_devinit(hw, 0)) == NULL)
		goto err_out_led_off;

	if (using_dac)
		dev->features |= NETIF_F_HIGHDMA;

	if ((err = register_netdev(dev))) {
		printk(KERN_ERR PFX "%s: cannot register net device\n",
		       pci_name(pdev));
		goto err_out_free_netdev;
	}

	skge_show_addr(dev);

	if (isdualport(hw) && (dev1 = skge_devinit(hw, 1))) {
		if (using_dac)
			dev1->features |= NETIF_F_HIGHDMA;

		if (register_netdev(dev1) == 0)
			skge_show_addr(dev1);
		else {
			/* Failure to register second port need not be fatal */
			printk(KERN_WARNING PFX "register of second port failed\n");
			hw->dev[1] = NULL;
			free_netdev(dev1);
		}
	}

	return 0;

err_out_free_netdev:
	free_netdev(dev);
err_out_led_off:
	skge_write16(hw, B0_LED, LED_STAT_OFF);
err_out_free_irq:
	free_irq(pdev->irq, hw);
err_out_iounmap:
	iounmap(hw->regs);
err_out_free_hw:
	kfree(hw);
err_out_free_regions:
	pci_release_regions(pdev);
err_out_disable_pdev:
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
err_out:
	return err;
}

static void __devexit skge_remove(struct pci_dev *pdev)
{
	struct skge_hw *hw  = pci_get_drvdata(pdev);
	struct net_device *dev0, *dev1;

3280
	if (!hw)
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
		return;

	if ((dev1 = hw->dev[1]))
		unregister_netdev(dev1);
	dev0 = hw->dev[0];
	unregister_netdev(dev0);

	tasklet_kill(&hw->ext_tasklet);

	free_irq(pdev->irq, hw);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
	if (dev1)
		free_netdev(dev1);
	free_netdev(dev0);
	skge_write16(hw, B0_LED, LED_STAT_OFF);
	iounmap(hw->regs);
	kfree(hw);
	pci_set_drvdata(pdev, NULL);
}

#ifdef CONFIG_PM
static int skge_suspend(struct pci_dev *pdev, u32 state)
{
	struct skge_hw *hw  = pci_get_drvdata(pdev);
	int i, wol = 0;

3308
	for (i = 0; i < 2; i++) {
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
		struct net_device *dev = hw->dev[i];

		if (dev) {
			struct skge_port *skge = netdev_priv(dev);
			if (netif_running(dev)) {
				netif_carrier_off(dev);
				skge_down(dev);
			}
			netif_device_detach(dev);
			wol |= skge->wol;
		}
	}

	pci_save_state(pdev);
	pci_enable_wake(pdev, state, wol);
	pci_disable_device(pdev);
	pci_set_power_state(pdev, pci_choose_state(pdev, state));

	return 0;
}

static int skge_resume(struct pci_dev *pdev)
{
	struct skge_hw *hw  = pci_get_drvdata(pdev);
	int i;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	pci_enable_wake(pdev, PCI_D0, 0);

	skge_reset(hw);

3341
	for (i = 0; i < 2; i++) {
3342 3343 3344
		struct net_device *dev = hw->dev[i];
		if (dev) {
			netif_device_attach(dev);
3345
			if (netif_running(dev))
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
				skge_up(dev);
		}
	}
	return 0;
}
#endif

static struct pci_driver skge_driver = {
	.name =         DRV_NAME,
	.id_table =     skge_id_table,
	.probe =        skge_probe,
	.remove =       __devexit_p(skge_remove),
#ifdef CONFIG_PM
	.suspend = 	skge_suspend,
	.resume = 	skge_resume,
#endif
};

static int __init skge_init_module(void)
{
	return pci_module_init(&skge_driver);
}

static void __exit skge_cleanup_module(void)
{
	pci_unregister_driver(&skge_driver);
}

module_init(skge_init_module);
module_exit(skge_cleanup_module);