mips.c 37.6 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: MIPS specific KVM APIs
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10
 */
11 12 13

#include <linux/errno.h>
#include <linux/err.h>
14
#include <linux/kdebug.h>
15 16 17 18
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/bootmem.h>
19
#include <asm/fpu.h>
20 21 22
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
23
#include <asm/pgtable.h>
24 25 26

#include <linux/kvm_host.h>

27 28
#include "interrupt.h"
#include "commpage.h"
29 30 31 32 33 34 35 36

#define CREATE_TRACE_POINTS
#include "trace.h"

#ifndef VECTORSPACING
#define VECTORSPACING 0x100	/* for EI/VI mode */
#endif

37
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38
struct kvm_stats_debugfs_item debugfs_entries[] = {
39 40 41 42 43 44 45 46 47 48 49 50 51
	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
52
	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
53
	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
54
	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
55
	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56
	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58
	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
59 60 61 62 63 64
	{NULL}
};

static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
{
	int i;
65

66 67 68 69
	for_each_possible_cpu(i) {
		vcpu->arch.guest_kernel_asid[i] = 0;
		vcpu->arch.guest_user_asid[i] = 0;
	}
70

71 72 73
	return 0;
}

74 75 76
/*
 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
 * Config7, so we are "runnable" if interrupts are pending
77 78 79 80 81 82 83 84 85 86 87
 */
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
	return !!(vcpu->arch.pending_exceptions);
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

88
int kvm_arch_hardware_enable(void)
89 90 91 92 93 94 95 96 97 98 99
{
	return 0;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
100
	*(int *)rtn = 0;
101 102 103 104 105 106
}

static void kvm_mips_init_tlbs(struct kvm *kvm)
{
	unsigned long wired;

107 108 109 110
	/*
	 * Add a wired entry to the TLB, it is used to map the commpage to
	 * the Guest kernel
	 */
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
	wired = read_c0_wired();
	write_c0_wired(wired + 1);
	mtc0_tlbw_hazard();
	kvm->arch.commpage_tlb = wired;

	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
		  kvm->arch.commpage_tlb);
}

static void kvm_mips_init_vm_percpu(void *arg)
{
	struct kvm *kvm = (struct kvm *)arg;

	kvm_mips_init_tlbs(kvm);
	kvm_mips_callbacks->vm_init(kvm);

}

int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
	if (atomic_inc_return(&kvm_mips_instance) == 1) {
132 133
		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
			  __func__);
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
	}

	return 0;
}

void kvm_mips_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	/* Put the pages we reserved for the guest pmap */
	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
			kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
	}
150
	kfree(kvm->arch.guest_pmap);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_arch_vcpu_free(vcpu);
	}

	mutex_lock(&kvm->lock);

	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);

	mutex_unlock(&kvm->lock);
}

static void kvm_mips_uninit_tlbs(void *arg)
{
	/* Restore wired count */
	write_c0_wired(0);
	mtc0_tlbw_hazard();
	/* Clear out all the TLBs */
	kvm_local_flush_tlb_all();
}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
	kvm_mips_free_vcpus(kvm);

	/* If this is the last instance, restore wired count */
	if (atomic_dec_return(&kvm_mips_instance) == 0) {
181 182
		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
			  __func__);
183 184 185 186
		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
	}
}

187 188
long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
			unsigned long arg)
189
{
190
	return -ENOIOCTLCMD;
191 192
}

193 194
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
195 196 197 198 199
{
	return 0;
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
200 201 202
				   struct kvm_memory_slot *memslot,
				   struct kvm_userspace_memory_region *mem,
				   enum kvm_mr_change change)
203 204 205 206 207
{
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
208 209 210
				   struct kvm_userspace_memory_region *mem,
				   const struct kvm_memory_slot *old,
				   enum kvm_mr_change change)
211 212
{
	unsigned long npages = 0;
213
	int i;
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
		  __func__, kvm, mem->slot, mem->guest_phys_addr,
		  mem->memory_size, mem->userspace_addr);

	/* Setup Guest PMAP table */
	if (!kvm->arch.guest_pmap) {
		if (mem->slot == 0)
			npages = mem->memory_size >> PAGE_SHIFT;

		if (npages) {
			kvm->arch.guest_pmap_npages = npages;
			kvm->arch.guest_pmap =
			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);

			if (!kvm->arch.guest_pmap) {
				kvm_err("Failed to allocate guest PMAP");
231
				return;
232 233
			}

234 235
			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
				  npages, kvm->arch.guest_pmap);
236 237

			/* Now setup the page table */
238
			for (i = 0; i < npages; i++)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
		}
	}
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err, size, offset;
	void *gebase;
	int i;

	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);

	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);

	if (err)
		goto out_free_cpu;

262
	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
263

264 265
	/*
	 * Allocate space for host mode exception handlers that handle
266 267
	 * guest mode exits
	 */
268
	if (cpu_has_veic || cpu_has_vint)
269
		size = 0x200 + VECTORSPACING * 64;
270
	else
271
		size = 0x4000;
272 273 274 275 276 277 278 279 280 281

	/* Save Linux EBASE */
	vcpu->arch.host_ebase = (void *)read_c0_ebase();

	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);

	if (!gebase) {
		err = -ENOMEM;
		goto out_free_cpu;
	}
282 283
	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
		  ALIGN(size, PAGE_SIZE), gebase);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

	/* Save new ebase */
	vcpu->arch.guest_ebase = gebase;

	/* Copy L1 Guest Exception handler to correct offset */

	/* TLB Refill, EXL = 0 */
	memcpy(gebase, mips32_exception,
	       mips32_exceptionEnd - mips32_exception);

	/* General Exception Entry point */
	memcpy(gebase + 0x180, mips32_exception,
	       mips32_exceptionEnd - mips32_exception);

	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
	for (i = 0; i < 8; i++) {
		kvm_debug("L1 Vectored handler @ %p\n",
			  gebase + 0x200 + (i * VECTORSPACING));
		memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
		       mips32_exceptionEnd - mips32_exception);
	}

	/* General handler, relocate to unmapped space for sanity's sake */
	offset = 0x2000;
308 309 310
	kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
		  gebase + offset,
		  mips32_GuestExceptionEnd - mips32_GuestException);
311 312 313 314 315

	memcpy(gebase + offset, mips32_GuestException,
	       mips32_GuestExceptionEnd - mips32_GuestException);

	/* Invalidate the icache for these ranges */
316 317
	local_flush_icache_range((unsigned long)gebase,
				(unsigned long)gebase + ALIGN(size, PAGE_SIZE));
318

319 320 321 322
	/*
	 * Allocate comm page for guest kernel, a TLB will be reserved for
	 * mapping GVA @ 0xFFFF8000 to this page
	 */
323 324 325 326 327 328 329
	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);

	if (!vcpu->arch.kseg0_commpage) {
		err = -ENOMEM;
		goto out_free_gebase;
	}

330
	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
331 332 333 334 335 336
	kvm_mips_commpage_init(vcpu);

	/* Init */
	vcpu->arch.last_sched_cpu = -1;

	/* Start off the timer */
337
	kvm_mips_init_count(vcpu);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

	return vcpu;

out_free_gebase:
	kfree(gebase);

out_free_cpu:
	kfree(vcpu);

out:
	return ERR_PTR(err);
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	hrtimer_cancel(&vcpu->arch.comparecount_timer);

	kvm_vcpu_uninit(vcpu);

	kvm_mips_dump_stats(vcpu);

359 360
	kfree(vcpu->arch.guest_ebase);
	kfree(vcpu->arch.kseg0_commpage);
361
	kfree(vcpu);
362 363 364 365 366 367 368
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

369 370
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
371
{
372
	return -ENOIOCTLCMD;
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r = 0;
	sigset_t sigsaved;

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	if (vcpu->mmio_needed) {
		if (!vcpu->mmio_is_write)
			kvm_mips_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
	}

389 390
	lose_fpu(1);

391
	local_irq_disable();
392 393 394 395 396 397
	/* Check if we have any exceptions/interrupts pending */
	kvm_mips_deliver_interrupts(vcpu,
				    kvm_read_c0_guest_cause(vcpu->arch.cop0));

	kvm_guest_enter();

398 399 400
	/* Disable hardware page table walking while in guest */
	htw_stop();

401 402
	r = __kvm_mips_vcpu_run(run, vcpu);

403 404 405
	/* Re-enable HTW before enabling interrupts */
	htw_start();

406 407 408 409 410 411 412 413 414
	kvm_guest_exit();
	local_irq_enable();

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	return r;
}

415 416
int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
			     struct kvm_mips_interrupt *irq)
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
{
	int intr = (int)irq->irq;
	struct kvm_vcpu *dvcpu = NULL;

	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
			  (int)intr);

	if (irq->cpu == -1)
		dvcpu = vcpu;
	else
		dvcpu = vcpu->kvm->vcpus[irq->cpu];

	if (intr == 2 || intr == 3 || intr == 4) {
		kvm_mips_callbacks->queue_io_int(dvcpu, irq);

	} else if (intr == -2 || intr == -3 || intr == -4) {
		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
	} else {
		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
			irq->cpu, irq->irq);
		return -EINVAL;
	}

	dvcpu->arch.wait = 0;

443
	if (waitqueue_active(&dvcpu->wq))
444 445 446 447 448
		wake_up_interruptible(&dvcpu->wq);

	return 0;
}

449 450
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
451
{
452
	return -ENOIOCTLCMD;
453 454
}

455 456
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
457
{
458
	return -ENOIOCTLCMD;
459 460
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static u64 kvm_mips_get_one_regs[] = {
	KVM_REG_MIPS_R0,
	KVM_REG_MIPS_R1,
	KVM_REG_MIPS_R2,
	KVM_REG_MIPS_R3,
	KVM_REG_MIPS_R4,
	KVM_REG_MIPS_R5,
	KVM_REG_MIPS_R6,
	KVM_REG_MIPS_R7,
	KVM_REG_MIPS_R8,
	KVM_REG_MIPS_R9,
	KVM_REG_MIPS_R10,
	KVM_REG_MIPS_R11,
	KVM_REG_MIPS_R12,
	KVM_REG_MIPS_R13,
	KVM_REG_MIPS_R14,
	KVM_REG_MIPS_R15,
	KVM_REG_MIPS_R16,
	KVM_REG_MIPS_R17,
	KVM_REG_MIPS_R18,
	KVM_REG_MIPS_R19,
	KVM_REG_MIPS_R20,
	KVM_REG_MIPS_R21,
	KVM_REG_MIPS_R22,
	KVM_REG_MIPS_R23,
	KVM_REG_MIPS_R24,
	KVM_REG_MIPS_R25,
	KVM_REG_MIPS_R26,
	KVM_REG_MIPS_R27,
	KVM_REG_MIPS_R28,
	KVM_REG_MIPS_R29,
	KVM_REG_MIPS_R30,
	KVM_REG_MIPS_R31,

	KVM_REG_MIPS_HI,
	KVM_REG_MIPS_LO,
	KVM_REG_MIPS_PC,

	KVM_REG_MIPS_CP0_INDEX,
	KVM_REG_MIPS_CP0_CONTEXT,
501
	KVM_REG_MIPS_CP0_USERLOCAL,
502 503
	KVM_REG_MIPS_CP0_PAGEMASK,
	KVM_REG_MIPS_CP0_WIRED,
504
	KVM_REG_MIPS_CP0_HWRENA,
505
	KVM_REG_MIPS_CP0_BADVADDR,
506
	KVM_REG_MIPS_CP0_COUNT,
507
	KVM_REG_MIPS_CP0_ENTRYHI,
508
	KVM_REG_MIPS_CP0_COMPARE,
509 510
	KVM_REG_MIPS_CP0_STATUS,
	KVM_REG_MIPS_CP0_CAUSE,
511
	KVM_REG_MIPS_CP0_EPC,
512
	KVM_REG_MIPS_CP0_PRID,
513 514 515 516
	KVM_REG_MIPS_CP0_CONFIG,
	KVM_REG_MIPS_CP0_CONFIG1,
	KVM_REG_MIPS_CP0_CONFIG2,
	KVM_REG_MIPS_CP0_CONFIG3,
517 518
	KVM_REG_MIPS_CP0_CONFIG4,
	KVM_REG_MIPS_CP0_CONFIG5,
519
	KVM_REG_MIPS_CP0_CONFIG7,
520 521 522 523
	KVM_REG_MIPS_CP0_ERROREPC,

	KVM_REG_MIPS_COUNT_CTL,
	KVM_REG_MIPS_COUNT_RESUME,
524
	KVM_REG_MIPS_COUNT_HZ,
525 526 527 528 529 530
};

static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
J
James Hogan 已提交
531
	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
532
	int ret;
533
	s64 v;
J
James Hogan 已提交
534
	unsigned int idx;
535 536

	switch (reg->id) {
J
James Hogan 已提交
537
	/* General purpose registers */
538 539 540 541 542 543 544 545 546 547 548 549 550
	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
		break;
	case KVM_REG_MIPS_HI:
		v = (long)vcpu->arch.hi;
		break;
	case KVM_REG_MIPS_LO:
		v = (long)vcpu->arch.lo;
		break;
	case KVM_REG_MIPS_PC:
		v = (long)vcpu->arch.pc;
		break;

J
James Hogan 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
	/* Floating point registers */
	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
		/* Odd singles in top of even double when FR=0 */
		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
			v = get_fpr32(&fpu->fpr[idx], 0);
		else
			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
		break;
	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
		/* Can't access odd doubles in FR=0 mode */
		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		v = get_fpr64(&fpu->fpr[idx], 0);
		break;
	case KVM_REG_MIPS_FCR_IR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		v = boot_cpu_data.fpu_id;
		break;
	case KVM_REG_MIPS_FCR_CSR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		v = fpu->fcr31;
		break;

	/* Co-processor 0 registers */
583 584 585 586 587 588
	case KVM_REG_MIPS_CP0_INDEX:
		v = (long)kvm_read_c0_guest_index(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		v = (long)kvm_read_c0_guest_context(cop0);
		break;
589 590 591
	case KVM_REG_MIPS_CP0_USERLOCAL:
		v = (long)kvm_read_c0_guest_userlocal(cop0);
		break;
592 593 594 595 596 597
	case KVM_REG_MIPS_CP0_PAGEMASK:
		v = (long)kvm_read_c0_guest_pagemask(cop0);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		v = (long)kvm_read_c0_guest_wired(cop0);
		break;
598 599 600
	case KVM_REG_MIPS_CP0_HWRENA:
		v = (long)kvm_read_c0_guest_hwrena(cop0);
		break;
601 602 603 604 605 606
	case KVM_REG_MIPS_CP0_BADVADDR:
		v = (long)kvm_read_c0_guest_badvaddr(cop0);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		v = (long)kvm_read_c0_guest_entryhi(cop0);
		break;
607 608 609
	case KVM_REG_MIPS_CP0_COMPARE:
		v = (long)kvm_read_c0_guest_compare(cop0);
		break;
610 611 612 613 614 615
	case KVM_REG_MIPS_CP0_STATUS:
		v = (long)kvm_read_c0_guest_status(cop0);
		break;
	case KVM_REG_MIPS_CP0_CAUSE:
		v = (long)kvm_read_c0_guest_cause(cop0);
		break;
616 617 618
	case KVM_REG_MIPS_CP0_EPC:
		v = (long)kvm_read_c0_guest_epc(cop0);
		break;
619 620 621
	case KVM_REG_MIPS_CP0_PRID:
		v = (long)kvm_read_c0_guest_prid(cop0);
		break;
622 623 624 625 626 627 628 629 630 631 632 633
	case KVM_REG_MIPS_CP0_CONFIG:
		v = (long)kvm_read_c0_guest_config(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG1:
		v = (long)kvm_read_c0_guest_config1(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG2:
		v = (long)kvm_read_c0_guest_config2(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG3:
		v = (long)kvm_read_c0_guest_config3(cop0);
		break;
634 635 636 637 638 639
	case KVM_REG_MIPS_CP0_CONFIG4:
		v = (long)kvm_read_c0_guest_config4(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG5:
		v = (long)kvm_read_c0_guest_config5(cop0);
		break;
640 641 642
	case KVM_REG_MIPS_CP0_CONFIG7:
		v = (long)kvm_read_c0_guest_config7(cop0);
		break;
643 644 645
	case KVM_REG_MIPS_CP0_ERROREPC:
		v = (long)kvm_read_c0_guest_errorepc(cop0);
		break;
646 647
	/* registers to be handled specially */
	case KVM_REG_MIPS_CP0_COUNT:
648 649
	case KVM_REG_MIPS_COUNT_CTL:
	case KVM_REG_MIPS_COUNT_RESUME:
650
	case KVM_REG_MIPS_COUNT_HZ:
651 652 653 654
		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
		if (ret)
			return ret;
		break;
655 656 657
	default:
		return -EINVAL;
	}
658 659
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
660

661 662 663 664
		return put_user(v, uaddr64);
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		u32 v32 = (u32)v;
665

666 667 668 669
		return put_user(v32, uaddr32);
	} else {
		return -EINVAL;
	}
670 671 672 673 674 675
}

static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
J
James Hogan 已提交
676 677 678
	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
	s64 v;
	unsigned int idx;
679

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;

		if (get_user(v, uaddr64) != 0)
			return -EFAULT;
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		s32 v32;

		if (get_user(v32, uaddr32) != 0)
			return -EFAULT;
		v = (s64)v32;
	} else {
		return -EINVAL;
	}
695 696

	switch (reg->id) {
J
James Hogan 已提交
697
	/* General purpose registers */
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
	case KVM_REG_MIPS_R0:
		/* Silently ignore requests to set $0 */
		break;
	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
		break;
	case KVM_REG_MIPS_HI:
		vcpu->arch.hi = v;
		break;
	case KVM_REG_MIPS_LO:
		vcpu->arch.lo = v;
		break;
	case KVM_REG_MIPS_PC:
		vcpu->arch.pc = v;
		break;

J
James Hogan 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
	/* Floating point registers */
	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
		/* Odd singles in top of even double when FR=0 */
		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
			set_fpr32(&fpu->fpr[idx], 0, v);
		else
			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
		break;
	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
		/* Can't access odd doubles in FR=0 mode */
		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
			return -EINVAL;
		set_fpr64(&fpu->fpr[idx], 0, v);
		break;
	case KVM_REG_MIPS_FCR_IR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		/* Read-only */
		break;
	case KVM_REG_MIPS_FCR_CSR:
		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
			return -EINVAL;
		fpu->fcr31 = v;
		break;

	/* Co-processor 0 registers */
746 747 748 749 750 751
	case KVM_REG_MIPS_CP0_INDEX:
		kvm_write_c0_guest_index(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		kvm_write_c0_guest_context(cop0, v);
		break;
752 753 754
	case KVM_REG_MIPS_CP0_USERLOCAL:
		kvm_write_c0_guest_userlocal(cop0, v);
		break;
755 756 757 758 759 760
	case KVM_REG_MIPS_CP0_PAGEMASK:
		kvm_write_c0_guest_pagemask(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		kvm_write_c0_guest_wired(cop0, v);
		break;
761 762 763
	case KVM_REG_MIPS_CP0_HWRENA:
		kvm_write_c0_guest_hwrena(cop0, v);
		break;
764 765 766 767 768 769 770 771 772
	case KVM_REG_MIPS_CP0_BADVADDR:
		kvm_write_c0_guest_badvaddr(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		kvm_write_c0_guest_entryhi(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_STATUS:
		kvm_write_c0_guest_status(cop0, v);
		break;
773 774 775
	case KVM_REG_MIPS_CP0_EPC:
		kvm_write_c0_guest_epc(cop0, v);
		break;
776 777 778
	case KVM_REG_MIPS_CP0_PRID:
		kvm_write_c0_guest_prid(cop0, v);
		break;
779 780 781
	case KVM_REG_MIPS_CP0_ERROREPC:
		kvm_write_c0_guest_errorepc(cop0, v);
		break;
782 783 784
	/* registers to be handled specially */
	case KVM_REG_MIPS_CP0_COUNT:
	case KVM_REG_MIPS_CP0_COMPARE:
785
	case KVM_REG_MIPS_CP0_CAUSE:
786 787 788 789 790 791
	case KVM_REG_MIPS_CP0_CONFIG:
	case KVM_REG_MIPS_CP0_CONFIG1:
	case KVM_REG_MIPS_CP0_CONFIG2:
	case KVM_REG_MIPS_CP0_CONFIG3:
	case KVM_REG_MIPS_CP0_CONFIG4:
	case KVM_REG_MIPS_CP0_CONFIG5:
792 793
	case KVM_REG_MIPS_COUNT_CTL:
	case KVM_REG_MIPS_COUNT_RESUME:
794
	case KVM_REG_MIPS_COUNT_HZ:
795
		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
796 797 798 799 800 801
	default:
		return -EINVAL;
	}
	return 0;
}

J
James Hogan 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r = 0;

	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
		return -EINVAL;
	if (cap->flags)
		return -EINVAL;
	if (cap->args[0])
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_MIPS_FPU:
		vcpu->arch.fpu_enabled = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

826 827
long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
			 unsigned long arg)
828 829 830 831 832 833
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
834 835 836
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
837

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_mips_set_reg(vcpu, &reg);
		else
			return kvm_mips_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		u64 __user *reg_dest;
		struct kvm_reg_list reg_list;
		unsigned n;

		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		reg_dest = user_list->reg;
		if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
				 sizeof(kvm_mips_get_one_regs)))
			return -EFAULT;
		return 0;
	}
865 866 867 868 869 870 871
	case KVM_NMI:
		/* Treat the NMI as a CPU reset */
		r = kvm_mips_reset_vcpu(vcpu);
		break;
	case KVM_INTERRUPT:
		{
			struct kvm_mips_interrupt irq;
872

873 874 875 876 877 878 879 880 881 882
			r = -EFAULT;
			if (copy_from_user(&irq, argp, sizeof(irq)))
				goto out;

			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
				  irq.irq);

			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
			break;
		}
J
James Hogan 已提交
883 884 885 886 887 888 889 890 891
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;

		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			goto out;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
892
	default:
893
		r = -ENOIOCTLCMD;
894 895 896 897 898 899
	}

out:
	return r;
}

900
/* Get (and clear) the dirty memory log for a memory slot. */
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	struct kvm_memory_slot *memslot;
	unsigned long ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		memslot = &kvm->memslots->memslots[log->slot];

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

922 923
		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
			 ga_end);
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;

}

long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
	long r;

	switch (ioctl) {
	default:
942
		r = -ENOIOCTLCMD;
943 944 945 946 947 948 949 950 951 952 953 954
	}

	return r;
}

int kvm_arch_init(void *opaque)
{
	if (kvm_mips_callbacks) {
		kvm_err("kvm: module already exists\n");
		return -EEXIST;
	}

955
	return kvm_mips_emulation_init(&kvm_mips_callbacks);
956 957 958 959 960 961 962
}

void kvm_arch_exit(void)
{
	kvm_mips_callbacks = NULL;
}

963 964
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
965
{
966
	return -ENOIOCTLCMD;
967 968
}

969 970
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
971
{
972
	return -ENOIOCTLCMD;
973 974
}

975
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
976 977 978 979 980
{
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
981
	return -ENOIOCTLCMD;
982 983 984 985
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
986
	return -ENOIOCTLCMD;
987 988 989 990 991 992 993
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}

994
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
995 996 997 998
{
	int r;

	switch (ext) {
999
	case KVM_CAP_ONE_REG:
J
James Hogan 已提交
1000
	case KVM_CAP_ENABLE_CAP:
1001 1002
		r = 1;
		break;
1003 1004 1005
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
J
James Hogan 已提交
1006 1007 1008
	case KVM_CAP_MIPS_FPU:
		r = !!cpu_has_fpu;
		break;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	default:
		r = 0;
		break;
	}
	return r;
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
	return kvm_mips_pending_timer(vcpu);
}

int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
{
	int i;
	struct mips_coproc *cop0;

	if (!vcpu)
		return -1;

1029 1030 1031
	kvm_debug("VCPU Register Dump:\n");
	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1032 1033

	for (i = 0; i < 32; i += 4) {
1034
		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1035 1036 1037 1038
		       vcpu->arch.gprs[i],
		       vcpu->arch.gprs[i + 1],
		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
	}
1039 1040
	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1041 1042

	cop0 = vcpu->arch.cop0;
1043 1044 1045
	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
		  kvm_read_c0_guest_status(cop0),
		  kvm_read_c0_guest_cause(cop0));
1046

1047
	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1048 1049 1050 1051 1052 1053 1054 1055

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

1056
	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1057
		vcpu->arch.gprs[i] = regs->gpr[i];
1058
	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1059 1060 1061 1062
	vcpu->arch.hi = regs->hi;
	vcpu->arch.lo = regs->lo;
	vcpu->arch.pc = regs->pc;

1063
	return 0;
1064 1065 1066 1067 1068 1069
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

1070
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1071
		regs->gpr[i] = vcpu->arch.gprs[i];
1072 1073 1074 1075 1076

	regs->hi = vcpu->arch.hi;
	regs->lo = vcpu->arch.lo;
	regs->pc = vcpu->arch.pc;

1077
	return 0;
1078 1079
}

1080
static void kvm_mips_comparecount_func(unsigned long data)
1081 1082 1083 1084 1085 1086
{
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;

	kvm_mips_callbacks->queue_timer_int(vcpu);

	vcpu->arch.wait = 0;
1087
	if (waitqueue_active(&vcpu->wq))
1088 1089 1090
		wake_up_interruptible(&vcpu->wq);
}

1091
/* low level hrtimer wake routine */
1092
static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1093 1094 1095 1096 1097
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
	kvm_mips_comparecount_func((unsigned long) vcpu);
1098
	return kvm_mips_count_timeout(vcpu);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	kvm_mips_callbacks->vcpu_init(vcpu);
	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
		     HRTIMER_MODE_REL);
	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
	return 0;
}

1110 1111
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
{
	return 0;
}

/* Initial guest state */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	return kvm_mips_callbacks->vcpu_setup(vcpu);
}

1122
static void kvm_mips_set_c0_status(void)
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
{
	uint32_t status = read_c0_status();

	if (cpu_has_dsp)
		status |= (ST0_MX);

	write_c0_status(status);
	ehb();
}

/*
 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
 */
int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	uint32_t cause = vcpu->arch.host_cp0_cause;
	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
	uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

1145 1146 1147
	/* re-enable HTW before enabling interrupts */
	htw_start();

1148 1149 1150 1151
	/* Set a default exit reason */
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

1152 1153 1154 1155
	/*
	 * Set the appropriate status bits based on host CPU features,
	 * before we hit the scheduler
	 */
1156 1157 1158 1159 1160 1161 1162
	kvm_mips_set_c0_status();

	local_irq_enable();

	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
			cause, opc, run, vcpu);

1163 1164
	/*
	 * Do a privilege check, if in UM most of these exit conditions end up
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	 * causing an exception to be delivered to the Guest Kernel
	 */
	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
	if (er == EMULATE_PRIV_FAIL) {
		goto skip_emul;
	} else if (er == EMULATE_FAIL) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		goto skip_emul;
	}

	switch (exccode) {
	case T_INT:
		kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);

		++vcpu->stat.int_exits;
		trace_kvm_exit(vcpu, INT_EXITS);

1183
		if (need_resched())
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
			cond_resched();

		ret = RESUME_GUEST;
		break;

	case T_COP_UNUSABLE:
		kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);

		++vcpu->stat.cop_unusable_exits;
		trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
		/* XXXKYMA: Might need to return to user space */
1196
		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
			ret = RESUME_HOST;
		break;

	case T_TLB_MOD:
		++vcpu->stat.tlbmod_exits;
		trace_kvm_exit(vcpu, TLBMOD_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
		break;

	case T_TLB_ST_MISS:
1207 1208 1209
		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
			  badvaddr);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

		++vcpu->stat.tlbmiss_st_exits;
		trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
		break;

	case T_TLB_LD_MISS:
		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
			  cause, opc, badvaddr);

		++vcpu->stat.tlbmiss_ld_exits;
		trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
		break;

	case T_ADDR_ERR_ST:
		++vcpu->stat.addrerr_st_exits;
		trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
		break;

	case T_ADDR_ERR_LD:
		++vcpu->stat.addrerr_ld_exits;
		trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
		break;

	case T_SYSCALL:
		++vcpu->stat.syscall_exits;
		trace_kvm_exit(vcpu, SYSCALL_EXITS);
		ret = kvm_mips_callbacks->handle_syscall(vcpu);
		break;

	case T_RES_INST:
		++vcpu->stat.resvd_inst_exits;
		trace_kvm_exit(vcpu, RESVD_INST_EXITS);
		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
		break;

	case T_BREAK:
		++vcpu->stat.break_inst_exits;
		trace_kvm_exit(vcpu, BREAK_INST_EXITS);
		ret = kvm_mips_callbacks->handle_break(vcpu);
		break;

1255 1256 1257 1258 1259 1260
	case T_TRAP:
		++vcpu->stat.trap_inst_exits;
		trace_kvm_exit(vcpu, TRAP_INST_EXITS);
		ret = kvm_mips_callbacks->handle_trap(vcpu);
		break;

1261 1262 1263 1264 1265 1266
	case T_MSAFPE:
		++vcpu->stat.msa_fpe_exits;
		trace_kvm_exit(vcpu, MSA_FPE_EXITS);
		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
		break;

1267 1268 1269 1270 1271 1272
	case T_FPE:
		++vcpu->stat.fpe_exits;
		trace_kvm_exit(vcpu, FPE_EXITS);
		ret = kvm_mips_callbacks->handle_fpe(vcpu);
		break;

1273
	case T_MSADIS:
1274 1275
		++vcpu->stat.msa_disabled_exits;
		trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1276 1277 1278
		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
		break;

1279
	default:
1280 1281 1282
		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
			kvm_read_c0_guest_status(vcpu->arch.cop0));
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		kvm_arch_vcpu_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		break;

	}

skip_emul:
	local_irq_disable();

	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
		kvm_mips_deliver_interrupts(vcpu, cause);

	if (!(ret & RESUME_HOST)) {
1297
		/* Only check for signals if not already exiting to userspace */
1298 1299 1300 1301 1302 1303 1304 1305
		if (signal_pending(current)) {
			run->exit_reason = KVM_EXIT_INTR;
			ret = (-EINTR << 2) | RESUME_HOST;
			++vcpu->stat.signal_exits;
			trace_kvm_exit(vcpu, SIGNAL_EXITS);
		}
	}

1306 1307
	if (ret == RESUME_GUEST) {
		/*
1308 1309
		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
		 * is live), restore FCR31 / MSACSR.
1310 1311
		 *
		 * This should be before returning to the guest exception
1312 1313
		 * vector, as it may well cause an [MSA] FP exception if there
		 * are pending exception bits unmasked. (see
1314 1315 1316 1317 1318
		 * kvm_mips_csr_die_notifier() for how that is handled).
		 */
		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
		    read_c0_status() & ST0_CU1)
			__kvm_restore_fcsr(&vcpu->arch);
1319 1320 1321 1322

		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
		    read_c0_config5() & MIPS_CONF5_MSAEN)
			__kvm_restore_msacsr(&vcpu->arch);
1323 1324
	}

1325 1326 1327
	/* Disable HTW before returning to guest or host */
	htw_stop();

1328 1329 1330
	return ret;
}

1331 1332 1333 1334 1335 1336 1337 1338
/* Enable FPU for guest and restore context */
void kvm_own_fpu(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned int sr, cfg5;

	preempt_disable();

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	sr = kvm_read_c0_guest_status(cop0);

	/*
	 * If MSA state is already live, it is undefined how it interacts with
	 * FR=0 FPU state, and we don't want to hit reserved instruction
	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
	 * play it safe and save it first.
	 *
	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
	 * get called when guest CU1 is set, however we can't trust the guest
	 * not to clobber the status register directly via the commpage.
	 */
	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
	    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
		kvm_lose_fpu(vcpu);

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	/*
	 * Enable FPU for guest
	 * We set FR and FRE according to guest context
	 */
	change_c0_status(ST0_CU1 | ST0_FR, sr);
	if (cpu_has_fre) {
		cfg5 = kvm_read_c0_guest_config5(cop0);
		change_c0_config5(MIPS_CONF5_FRE, cfg5);
	}
	enable_fpu_hazard();

	/* If guest FPU state not active, restore it now */
	if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
		__kvm_restore_fpu(&vcpu->arch);
		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
	}

	preempt_enable();
}

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
#ifdef CONFIG_CPU_HAS_MSA
/* Enable MSA for guest and restore context */
void kvm_own_msa(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned int sr, cfg5;

	preempt_disable();

	/*
	 * Enable FPU if enabled in guest, since we're restoring FPU context
	 * anyway. We set FR and FRE according to guest context.
	 */
	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
		sr = kvm_read_c0_guest_status(cop0);

		/*
		 * If FR=0 FPU state is already live, it is undefined how it
		 * interacts with MSA state, so play it safe and save it first.
		 */
		if (!(sr & ST0_FR) &&
		    (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
				KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
			kvm_lose_fpu(vcpu);

		change_c0_status(ST0_CU1 | ST0_FR, sr);
		if (sr & ST0_CU1 && cpu_has_fre) {
			cfg5 = kvm_read_c0_guest_config5(cop0);
			change_c0_config5(MIPS_CONF5_FRE, cfg5);
		}
	}

	/* Enable MSA for guest */
	set_c0_config5(MIPS_CONF5_MSAEN);
	enable_fpu_hazard();

	switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
	case KVM_MIPS_FPU_FPU:
		/*
		 * Guest FPU state already loaded, only restore upper MSA state
		 */
		__kvm_restore_msa_upper(&vcpu->arch);
		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
		break;
	case 0:
		/* Neither FPU or MSA already active, restore full MSA state */
		__kvm_restore_msa(&vcpu->arch);
		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
		if (kvm_mips_guest_has_fpu(&vcpu->arch))
			vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
		break;
	default:
		break;
	}

	preempt_enable();
}
#endif

/* Drop FPU & MSA without saving it */
1435 1436 1437
void kvm_drop_fpu(struct kvm_vcpu *vcpu)
{
	preempt_disable();
1438 1439 1440 1441
	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
		disable_msa();
		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
	}
1442 1443 1444 1445 1446 1447 1448
	if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
		clear_c0_status(ST0_CU1 | ST0_FR);
		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
	}
	preempt_enable();
}

1449
/* Save and disable FPU & MSA */
1450 1451 1452
void kvm_lose_fpu(struct kvm_vcpu *vcpu)
{
	/*
1453 1454 1455
	 * FPU & MSA get disabled in root context (hardware) when it is disabled
	 * in guest context (software), but the register state in the hardware
	 * may still be in use. This is why we explicitly re-enable the hardware
1456 1457 1458 1459
	 * before saving.
	 */

	preempt_disable();
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
		set_c0_config5(MIPS_CONF5_MSAEN);
		enable_fpu_hazard();

		__kvm_save_msa(&vcpu->arch);

		/* Disable MSA & FPU */
		disable_msa();
		if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
			clear_c0_status(ST0_CU1 | ST0_FR);
		vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
	} else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
		set_c0_status(ST0_CU1);
		enable_fpu_hazard();

		__kvm_save_fpu(&vcpu->arch);
		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;

		/* Disable FPU */
		clear_c0_status(ST0_CU1 | ST0_FR);
	}
	preempt_enable();
}

/*
1485 1486 1487
 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
 * exception if cause bits are set in the value being written.
1488 1489 1490 1491 1492 1493 1494 1495
 */
static int kvm_mips_csr_die_notify(struct notifier_block *self,
				   unsigned long cmd, void *ptr)
{
	struct die_args *args = (struct die_args *)ptr;
	struct pt_regs *regs = args->regs;
	unsigned long pc;

1496 1497
	/* Only interested in FPE and MSAFPE */
	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
		return NOTIFY_DONE;

	/* Return immediately if guest context isn't active */
	if (!(current->flags & PF_VCPU))
		return NOTIFY_DONE;

	/* Should never get here from user mode */
	BUG_ON(user_mode(regs));

	pc = instruction_pointer(regs);
	switch (cmd) {
	case DIE_FP:
		/* match 2nd instruction in __kvm_restore_fcsr */
		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
			return NOTIFY_DONE;
		break;
1514 1515 1516 1517 1518 1519 1520
	case DIE_MSAFP:
		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
		if (!cpu_has_msa ||
		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
			return NOTIFY_DONE;
		break;
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	}

	/* Move PC forward a little and continue executing */
	instruction_pointer(regs) += 4;

	return NOTIFY_STOP;
}

static struct notifier_block kvm_mips_csr_die_notifier = {
	.notifier_call = kvm_mips_csr_die_notify,
};

1533 1534 1535 1536 1537 1538 1539 1540 1541
int __init kvm_mips_init(void)
{
	int ret;

	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (ret)
		return ret;

1542 1543
	register_die_notifier(&kvm_mips_csr_die_notifier);

1544 1545 1546
	/*
	 * On MIPS, kernel modules are executed from "mapped space", which
	 * requires TLBs. The TLB handling code is statically linked with
1547
	 * the rest of the kernel (tlb.c) to avoid the possibility of
1548 1549 1550
	 * double faulting. The issue is that the TLB code references
	 * routines that are part of the the KVM module, which are only
	 * available once the module is loaded.
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	 */
	kvm_mips_gfn_to_pfn = gfn_to_pfn;
	kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
	kvm_mips_is_error_pfn = is_error_pfn;

	return 0;
}

void __exit kvm_mips_exit(void)
{
	kvm_exit();

	kvm_mips_gfn_to_pfn = NULL;
	kvm_mips_release_pfn_clean = NULL;
	kvm_mips_is_error_pfn = NULL;
1566 1567

	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1568 1569 1570 1571 1572 1573
}

module_init(kvm_mips_init);
module_exit(kvm_mips_exit);

EXPORT_TRACEPOINT_SYMBOL(kvm_exit);