mips.c 31.3 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: MIPS specific KVM APIs
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10
 */
11 12 13

#include <linux/errno.h>
#include <linux/err.h>
14
#include <linux/kdebug.h>
15 16 17 18
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/bootmem.h>
19
#include <asm/fpu.h>
20 21 22
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
23
#include <asm/pgtable.h>
24 25 26

#include <linux/kvm_host.h>

27 28
#include "interrupt.h"
#include "commpage.h"
29 30 31 32 33 34 35 36

#define CREATE_TRACE_POINTS
#include "trace.h"

#ifndef VECTORSPACING
#define VECTORSPACING 0x100	/* for EI/VI mode */
#endif

37
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38
struct kvm_stats_debugfs_item debugfs_entries[] = {
39 40 41 42 43 44 45 46 47 48 49 50 51
	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
52
	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
53
	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
54
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
55
	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
56 57 58 59 60 61
	{NULL}
};

static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
{
	int i;
62

63 64 65 66
	for_each_possible_cpu(i) {
		vcpu->arch.guest_kernel_asid[i] = 0;
		vcpu->arch.guest_user_asid[i] = 0;
	}
67

68 69 70
	return 0;
}

71 72 73
/*
 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
 * Config7, so we are "runnable" if interrupts are pending
74 75 76 77 78 79 80 81 82 83 84
 */
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
	return !!(vcpu->arch.pending_exceptions);
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

85
int kvm_arch_hardware_enable(void)
86 87 88 89 90 91 92 93 94 95 96
{
	return 0;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
97
	*(int *)rtn = 0;
98 99 100 101 102 103
}

static void kvm_mips_init_tlbs(struct kvm *kvm)
{
	unsigned long wired;

104 105 106 107
	/*
	 * Add a wired entry to the TLB, it is used to map the commpage to
	 * the Guest kernel
	 */
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
	wired = read_c0_wired();
	write_c0_wired(wired + 1);
	mtc0_tlbw_hazard();
	kvm->arch.commpage_tlb = wired;

	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
		  kvm->arch.commpage_tlb);
}

static void kvm_mips_init_vm_percpu(void *arg)
{
	struct kvm *kvm = (struct kvm *)arg;

	kvm_mips_init_tlbs(kvm);
	kvm_mips_callbacks->vm_init(kvm);

}

int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
	if (atomic_inc_return(&kvm_mips_instance) == 1) {
129 130
		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
			  __func__);
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
	}

	return 0;
}

void kvm_mips_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	/* Put the pages we reserved for the guest pmap */
	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
			kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
	}
147
	kfree(kvm->arch.guest_pmap);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_arch_vcpu_free(vcpu);
	}

	mutex_lock(&kvm->lock);

	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);

	mutex_unlock(&kvm->lock);
}

static void kvm_mips_uninit_tlbs(void *arg)
{
	/* Restore wired count */
	write_c0_wired(0);
	mtc0_tlbw_hazard();
	/* Clear out all the TLBs */
	kvm_local_flush_tlb_all();
}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
	kvm_mips_free_vcpus(kvm);

	/* If this is the last instance, restore wired count */
	if (atomic_dec_return(&kvm_mips_instance) == 0) {
178 179
		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
			  __func__);
180 181 182 183
		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
	}
}

184 185
long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
			unsigned long arg)
186
{
187
	return -ENOIOCTLCMD;
188 189
}

190 191
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
192 193 194 195 196
{
	return 0;
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
197 198 199
				   struct kvm_memory_slot *memslot,
				   struct kvm_userspace_memory_region *mem,
				   enum kvm_mr_change change)
200 201 202 203 204
{
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
205 206 207
				   struct kvm_userspace_memory_region *mem,
				   const struct kvm_memory_slot *old,
				   enum kvm_mr_change change)
208 209
{
	unsigned long npages = 0;
210
	int i;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
		  __func__, kvm, mem->slot, mem->guest_phys_addr,
		  mem->memory_size, mem->userspace_addr);

	/* Setup Guest PMAP table */
	if (!kvm->arch.guest_pmap) {
		if (mem->slot == 0)
			npages = mem->memory_size >> PAGE_SHIFT;

		if (npages) {
			kvm->arch.guest_pmap_npages = npages;
			kvm->arch.guest_pmap =
			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);

			if (!kvm->arch.guest_pmap) {
				kvm_err("Failed to allocate guest PMAP");
228
				return;
229 230
			}

231 232
			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
				  npages, kvm->arch.guest_pmap);
233 234

			/* Now setup the page table */
235
			for (i = 0; i < npages; i++)
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
		}
	}
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err, size, offset;
	void *gebase;
	int i;

	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);

	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);

	if (err)
		goto out_free_cpu;

259
	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
260

261 262
	/*
	 * Allocate space for host mode exception handlers that handle
263 264
	 * guest mode exits
	 */
265
	if (cpu_has_veic || cpu_has_vint)
266
		size = 0x200 + VECTORSPACING * 64;
267
	else
268
		size = 0x4000;
269 270 271 272 273 274 275 276 277 278

	/* Save Linux EBASE */
	vcpu->arch.host_ebase = (void *)read_c0_ebase();

	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);

	if (!gebase) {
		err = -ENOMEM;
		goto out_free_cpu;
	}
279 280
	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
		  ALIGN(size, PAGE_SIZE), gebase);
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

	/* Save new ebase */
	vcpu->arch.guest_ebase = gebase;

	/* Copy L1 Guest Exception handler to correct offset */

	/* TLB Refill, EXL = 0 */
	memcpy(gebase, mips32_exception,
	       mips32_exceptionEnd - mips32_exception);

	/* General Exception Entry point */
	memcpy(gebase + 0x180, mips32_exception,
	       mips32_exceptionEnd - mips32_exception);

	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
	for (i = 0; i < 8; i++) {
		kvm_debug("L1 Vectored handler @ %p\n",
			  gebase + 0x200 + (i * VECTORSPACING));
		memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
		       mips32_exceptionEnd - mips32_exception);
	}

	/* General handler, relocate to unmapped space for sanity's sake */
	offset = 0x2000;
305 306 307
	kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
		  gebase + offset,
		  mips32_GuestExceptionEnd - mips32_GuestException);
308 309 310 311 312

	memcpy(gebase + offset, mips32_GuestException,
	       mips32_GuestExceptionEnd - mips32_GuestException);

	/* Invalidate the icache for these ranges */
313 314
	local_flush_icache_range((unsigned long)gebase,
				(unsigned long)gebase + ALIGN(size, PAGE_SIZE));
315

316 317 318 319
	/*
	 * Allocate comm page for guest kernel, a TLB will be reserved for
	 * mapping GVA @ 0xFFFF8000 to this page
	 */
320 321 322 323 324 325 326
	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);

	if (!vcpu->arch.kseg0_commpage) {
		err = -ENOMEM;
		goto out_free_gebase;
	}

327
	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
328 329 330 331 332 333
	kvm_mips_commpage_init(vcpu);

	/* Init */
	vcpu->arch.last_sched_cpu = -1;

	/* Start off the timer */
334
	kvm_mips_init_count(vcpu);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

	return vcpu;

out_free_gebase:
	kfree(gebase);

out_free_cpu:
	kfree(vcpu);

out:
	return ERR_PTR(err);
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	hrtimer_cancel(&vcpu->arch.comparecount_timer);

	kvm_vcpu_uninit(vcpu);

	kvm_mips_dump_stats(vcpu);

356 357
	kfree(vcpu->arch.guest_ebase);
	kfree(vcpu->arch.kseg0_commpage);
358
	kfree(vcpu);
359 360 361 362 363 364 365
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

366 367
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
368
{
369
	return -ENOIOCTLCMD;
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r = 0;
	sigset_t sigsaved;

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	if (vcpu->mmio_needed) {
		if (!vcpu->mmio_is_write)
			kvm_mips_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
	}

386 387
	lose_fpu(1);

388
	local_irq_disable();
389 390 391 392 393 394
	/* Check if we have any exceptions/interrupts pending */
	kvm_mips_deliver_interrupts(vcpu,
				    kvm_read_c0_guest_cause(vcpu->arch.cop0));

	kvm_guest_enter();

395 396 397
	/* Disable hardware page table walking while in guest */
	htw_stop();

398 399
	r = __kvm_mips_vcpu_run(run, vcpu);

400 401 402
	/* Re-enable HTW before enabling interrupts */
	htw_start();

403 404 405 406 407 408 409 410 411
	kvm_guest_exit();
	local_irq_enable();

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	return r;
}

412 413
int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
			     struct kvm_mips_interrupt *irq)
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
{
	int intr = (int)irq->irq;
	struct kvm_vcpu *dvcpu = NULL;

	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
			  (int)intr);

	if (irq->cpu == -1)
		dvcpu = vcpu;
	else
		dvcpu = vcpu->kvm->vcpus[irq->cpu];

	if (intr == 2 || intr == 3 || intr == 4) {
		kvm_mips_callbacks->queue_io_int(dvcpu, irq);

	} else if (intr == -2 || intr == -3 || intr == -4) {
		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
	} else {
		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
			irq->cpu, irq->irq);
		return -EINVAL;
	}

	dvcpu->arch.wait = 0;

440
	if (waitqueue_active(&dvcpu->wq))
441 442 443 444 445
		wake_up_interruptible(&dvcpu->wq);

	return 0;
}

446 447
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
448
{
449
	return -ENOIOCTLCMD;
450 451
}

452 453
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
454
{
455
	return -ENOIOCTLCMD;
456 457
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
static u64 kvm_mips_get_one_regs[] = {
	KVM_REG_MIPS_R0,
	KVM_REG_MIPS_R1,
	KVM_REG_MIPS_R2,
	KVM_REG_MIPS_R3,
	KVM_REG_MIPS_R4,
	KVM_REG_MIPS_R5,
	KVM_REG_MIPS_R6,
	KVM_REG_MIPS_R7,
	KVM_REG_MIPS_R8,
	KVM_REG_MIPS_R9,
	KVM_REG_MIPS_R10,
	KVM_REG_MIPS_R11,
	KVM_REG_MIPS_R12,
	KVM_REG_MIPS_R13,
	KVM_REG_MIPS_R14,
	KVM_REG_MIPS_R15,
	KVM_REG_MIPS_R16,
	KVM_REG_MIPS_R17,
	KVM_REG_MIPS_R18,
	KVM_REG_MIPS_R19,
	KVM_REG_MIPS_R20,
	KVM_REG_MIPS_R21,
	KVM_REG_MIPS_R22,
	KVM_REG_MIPS_R23,
	KVM_REG_MIPS_R24,
	KVM_REG_MIPS_R25,
	KVM_REG_MIPS_R26,
	KVM_REG_MIPS_R27,
	KVM_REG_MIPS_R28,
	KVM_REG_MIPS_R29,
	KVM_REG_MIPS_R30,
	KVM_REG_MIPS_R31,

	KVM_REG_MIPS_HI,
	KVM_REG_MIPS_LO,
	KVM_REG_MIPS_PC,

	KVM_REG_MIPS_CP0_INDEX,
	KVM_REG_MIPS_CP0_CONTEXT,
498
	KVM_REG_MIPS_CP0_USERLOCAL,
499 500
	KVM_REG_MIPS_CP0_PAGEMASK,
	KVM_REG_MIPS_CP0_WIRED,
501
	KVM_REG_MIPS_CP0_HWRENA,
502
	KVM_REG_MIPS_CP0_BADVADDR,
503
	KVM_REG_MIPS_CP0_COUNT,
504
	KVM_REG_MIPS_CP0_ENTRYHI,
505
	KVM_REG_MIPS_CP0_COMPARE,
506 507
	KVM_REG_MIPS_CP0_STATUS,
	KVM_REG_MIPS_CP0_CAUSE,
508
	KVM_REG_MIPS_CP0_EPC,
509
	KVM_REG_MIPS_CP0_PRID,
510 511 512 513
	KVM_REG_MIPS_CP0_CONFIG,
	KVM_REG_MIPS_CP0_CONFIG1,
	KVM_REG_MIPS_CP0_CONFIG2,
	KVM_REG_MIPS_CP0_CONFIG3,
514 515
	KVM_REG_MIPS_CP0_CONFIG4,
	KVM_REG_MIPS_CP0_CONFIG5,
516
	KVM_REG_MIPS_CP0_CONFIG7,
517 518 519 520
	KVM_REG_MIPS_CP0_ERROREPC,

	KVM_REG_MIPS_COUNT_CTL,
	KVM_REG_MIPS_COUNT_RESUME,
521
	KVM_REG_MIPS_COUNT_HZ,
522 523 524 525 526 527
};

static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
528
	int ret;
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	s64 v;

	switch (reg->id) {
	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
		break;
	case KVM_REG_MIPS_HI:
		v = (long)vcpu->arch.hi;
		break;
	case KVM_REG_MIPS_LO:
		v = (long)vcpu->arch.lo;
		break;
	case KVM_REG_MIPS_PC:
		v = (long)vcpu->arch.pc;
		break;

	case KVM_REG_MIPS_CP0_INDEX:
		v = (long)kvm_read_c0_guest_index(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		v = (long)kvm_read_c0_guest_context(cop0);
		break;
551 552 553
	case KVM_REG_MIPS_CP0_USERLOCAL:
		v = (long)kvm_read_c0_guest_userlocal(cop0);
		break;
554 555 556 557 558 559
	case KVM_REG_MIPS_CP0_PAGEMASK:
		v = (long)kvm_read_c0_guest_pagemask(cop0);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		v = (long)kvm_read_c0_guest_wired(cop0);
		break;
560 561 562
	case KVM_REG_MIPS_CP0_HWRENA:
		v = (long)kvm_read_c0_guest_hwrena(cop0);
		break;
563 564 565 566 567 568
	case KVM_REG_MIPS_CP0_BADVADDR:
		v = (long)kvm_read_c0_guest_badvaddr(cop0);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		v = (long)kvm_read_c0_guest_entryhi(cop0);
		break;
569 570 571
	case KVM_REG_MIPS_CP0_COMPARE:
		v = (long)kvm_read_c0_guest_compare(cop0);
		break;
572 573 574 575 576 577
	case KVM_REG_MIPS_CP0_STATUS:
		v = (long)kvm_read_c0_guest_status(cop0);
		break;
	case KVM_REG_MIPS_CP0_CAUSE:
		v = (long)kvm_read_c0_guest_cause(cop0);
		break;
578 579 580
	case KVM_REG_MIPS_CP0_EPC:
		v = (long)kvm_read_c0_guest_epc(cop0);
		break;
581 582 583
	case KVM_REG_MIPS_CP0_PRID:
		v = (long)kvm_read_c0_guest_prid(cop0);
		break;
584 585 586 587 588 589 590 591 592 593 594 595
	case KVM_REG_MIPS_CP0_CONFIG:
		v = (long)kvm_read_c0_guest_config(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG1:
		v = (long)kvm_read_c0_guest_config1(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG2:
		v = (long)kvm_read_c0_guest_config2(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG3:
		v = (long)kvm_read_c0_guest_config3(cop0);
		break;
596 597 598 599 600 601
	case KVM_REG_MIPS_CP0_CONFIG4:
		v = (long)kvm_read_c0_guest_config4(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG5:
		v = (long)kvm_read_c0_guest_config5(cop0);
		break;
602 603 604
	case KVM_REG_MIPS_CP0_CONFIG7:
		v = (long)kvm_read_c0_guest_config7(cop0);
		break;
605 606 607
	case KVM_REG_MIPS_CP0_ERROREPC:
		v = (long)kvm_read_c0_guest_errorepc(cop0);
		break;
608 609
	/* registers to be handled specially */
	case KVM_REG_MIPS_CP0_COUNT:
610 611
	case KVM_REG_MIPS_COUNT_CTL:
	case KVM_REG_MIPS_COUNT_RESUME:
612
	case KVM_REG_MIPS_COUNT_HZ:
613 614 615 616
		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
		if (ret)
			return ret;
		break;
617 618 619
	default:
		return -EINVAL;
	}
620 621
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
622

623 624 625 626
		return put_user(v, uaddr64);
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		u32 v32 = (u32)v;
627

628 629 630 631
		return put_user(v32, uaddr32);
	} else {
		return -EINVAL;
	}
632 633 634 635 636 637 638 639
}

static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	u64 v;

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;

		if (get_user(v, uaddr64) != 0)
			return -EFAULT;
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		s32 v32;

		if (get_user(v32, uaddr32) != 0)
			return -EFAULT;
		v = (s64)v32;
	} else {
		return -EINVAL;
	}
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678

	switch (reg->id) {
	case KVM_REG_MIPS_R0:
		/* Silently ignore requests to set $0 */
		break;
	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
		break;
	case KVM_REG_MIPS_HI:
		vcpu->arch.hi = v;
		break;
	case KVM_REG_MIPS_LO:
		vcpu->arch.lo = v;
		break;
	case KVM_REG_MIPS_PC:
		vcpu->arch.pc = v;
		break;

	case KVM_REG_MIPS_CP0_INDEX:
		kvm_write_c0_guest_index(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		kvm_write_c0_guest_context(cop0, v);
		break;
679 680 681
	case KVM_REG_MIPS_CP0_USERLOCAL:
		kvm_write_c0_guest_userlocal(cop0, v);
		break;
682 683 684 685 686 687
	case KVM_REG_MIPS_CP0_PAGEMASK:
		kvm_write_c0_guest_pagemask(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		kvm_write_c0_guest_wired(cop0, v);
		break;
688 689 690
	case KVM_REG_MIPS_CP0_HWRENA:
		kvm_write_c0_guest_hwrena(cop0, v);
		break;
691 692 693 694 695 696 697 698 699
	case KVM_REG_MIPS_CP0_BADVADDR:
		kvm_write_c0_guest_badvaddr(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		kvm_write_c0_guest_entryhi(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_STATUS:
		kvm_write_c0_guest_status(cop0, v);
		break;
700 701 702
	case KVM_REG_MIPS_CP0_EPC:
		kvm_write_c0_guest_epc(cop0, v);
		break;
703 704 705
	case KVM_REG_MIPS_CP0_PRID:
		kvm_write_c0_guest_prid(cop0, v);
		break;
706 707 708
	case KVM_REG_MIPS_CP0_ERROREPC:
		kvm_write_c0_guest_errorepc(cop0, v);
		break;
709 710 711
	/* registers to be handled specially */
	case KVM_REG_MIPS_CP0_COUNT:
	case KVM_REG_MIPS_CP0_COMPARE:
712
	case KVM_REG_MIPS_CP0_CAUSE:
713 714 715 716 717 718
	case KVM_REG_MIPS_CP0_CONFIG:
	case KVM_REG_MIPS_CP0_CONFIG1:
	case KVM_REG_MIPS_CP0_CONFIG2:
	case KVM_REG_MIPS_CP0_CONFIG3:
	case KVM_REG_MIPS_CP0_CONFIG4:
	case KVM_REG_MIPS_CP0_CONFIG5:
719 720
	case KVM_REG_MIPS_COUNT_CTL:
	case KVM_REG_MIPS_COUNT_RESUME:
721
	case KVM_REG_MIPS_COUNT_HZ:
722
		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
723 724 725 726 727 728
	default:
		return -EINVAL;
	}
	return 0;
}

729 730
long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
			 unsigned long arg)
731 732 733 734 735 736
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
737 738 739
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
740

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_mips_set_reg(vcpu, &reg);
		else
			return kvm_mips_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		u64 __user *reg_dest;
		struct kvm_reg_list reg_list;
		unsigned n;

		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		reg_dest = user_list->reg;
		if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
				 sizeof(kvm_mips_get_one_regs)))
			return -EFAULT;
		return 0;
	}
768 769 770 771 772 773 774
	case KVM_NMI:
		/* Treat the NMI as a CPU reset */
		r = kvm_mips_reset_vcpu(vcpu);
		break;
	case KVM_INTERRUPT:
		{
			struct kvm_mips_interrupt irq;
775

776 777 778 779 780 781 782 783 784 785 786
			r = -EFAULT;
			if (copy_from_user(&irq, argp, sizeof(irq)))
				goto out;

			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
				  irq.irq);

			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
			break;
		}
	default:
787
		r = -ENOIOCTLCMD;
788 789 790 791 792 793
	}

out:
	return r;
}

794
/* Get (and clear) the dirty memory log for a memory slot. */
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	struct kvm_memory_slot *memslot;
	unsigned long ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		memslot = &kvm->memslots->memslots[log->slot];

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

816 817
		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
			 ga_end);
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;

}

long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
	long r;

	switch (ioctl) {
	default:
836
		r = -ENOIOCTLCMD;
837 838 839 840 841 842 843 844 845 846 847 848
	}

	return r;
}

int kvm_arch_init(void *opaque)
{
	if (kvm_mips_callbacks) {
		kvm_err("kvm: module already exists\n");
		return -EEXIST;
	}

849
	return kvm_mips_emulation_init(&kvm_mips_callbacks);
850 851 852 853 854 855 856
}

void kvm_arch_exit(void)
{
	kvm_mips_callbacks = NULL;
}

857 858
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
859
{
860
	return -ENOIOCTLCMD;
861 862
}

863 864
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
865
{
866
	return -ENOIOCTLCMD;
867 868
}

869
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
870 871 872 873 874
{
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
875
	return -ENOIOCTLCMD;
876 877 878 879
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
880
	return -ENOIOCTLCMD;
881 882 883 884 885 886 887
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}

888
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
889 890 891 892
{
	int r;

	switch (ext) {
893 894 895
	case KVM_CAP_ONE_REG:
		r = 1;
		break;
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
	default:
		r = 0;
		break;
	}
	return r;
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
	return kvm_mips_pending_timer(vcpu);
}

int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
{
	int i;
	struct mips_coproc *cop0;

	if (!vcpu)
		return -1;

919 920 921
	kvm_debug("VCPU Register Dump:\n");
	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
922 923

	for (i = 0; i < 32; i += 4) {
924
		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
925 926 927 928
		       vcpu->arch.gprs[i],
		       vcpu->arch.gprs[i + 1],
		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
	}
929 930
	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
931 932

	cop0 = vcpu->arch.cop0;
933 934 935
	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
		  kvm_read_c0_guest_status(cop0),
		  kvm_read_c0_guest_cause(cop0));
936

937
	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
938 939 940 941 942 943 944 945

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

946
	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
947
		vcpu->arch.gprs[i] = regs->gpr[i];
948
	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
949 950 951 952
	vcpu->arch.hi = regs->hi;
	vcpu->arch.lo = regs->lo;
	vcpu->arch.pc = regs->pc;

953
	return 0;
954 955 956 957 958 959
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

960
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
961
		regs->gpr[i] = vcpu->arch.gprs[i];
962 963 964 965 966

	regs->hi = vcpu->arch.hi;
	regs->lo = vcpu->arch.lo;
	regs->pc = vcpu->arch.pc;

967
	return 0;
968 969
}

970
static void kvm_mips_comparecount_func(unsigned long data)
971 972 973 974 975 976
{
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;

	kvm_mips_callbacks->queue_timer_int(vcpu);

	vcpu->arch.wait = 0;
977
	if (waitqueue_active(&vcpu->wq))
978 979 980
		wake_up_interruptible(&vcpu->wq);
}

981
/* low level hrtimer wake routine */
982
static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
983 984 985 986 987
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
	kvm_mips_comparecount_func((unsigned long) vcpu);
988
	return kvm_mips_count_timeout(vcpu);
989 990 991 992 993 994 995 996 997 998 999
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	kvm_mips_callbacks->vcpu_init(vcpu);
	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
		     HRTIMER_MODE_REL);
	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
	return 0;
}

1000 1001
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
{
	return 0;
}

/* Initial guest state */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	return kvm_mips_callbacks->vcpu_setup(vcpu);
}

1012
static void kvm_mips_set_c0_status(void)
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
{
	uint32_t status = read_c0_status();

	if (cpu_has_dsp)
		status |= (ST0_MX);

	write_c0_status(status);
	ehb();
}

/*
 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
 */
int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	uint32_t cause = vcpu->arch.host_cp0_cause;
	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
	uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

1035 1036 1037
	/* re-enable HTW before enabling interrupts */
	htw_start();

1038 1039 1040 1041
	/* Set a default exit reason */
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

1042 1043 1044 1045
	/*
	 * Set the appropriate status bits based on host CPU features,
	 * before we hit the scheduler
	 */
1046 1047 1048 1049 1050 1051 1052
	kvm_mips_set_c0_status();

	local_irq_enable();

	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
			cause, opc, run, vcpu);

1053 1054
	/*
	 * Do a privilege check, if in UM most of these exit conditions end up
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	 * causing an exception to be delivered to the Guest Kernel
	 */
	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
	if (er == EMULATE_PRIV_FAIL) {
		goto skip_emul;
	} else if (er == EMULATE_FAIL) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		goto skip_emul;
	}

	switch (exccode) {
	case T_INT:
		kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);

		++vcpu->stat.int_exits;
		trace_kvm_exit(vcpu, INT_EXITS);

1073
		if (need_resched())
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
			cond_resched();

		ret = RESUME_GUEST;
		break;

	case T_COP_UNUSABLE:
		kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);

		++vcpu->stat.cop_unusable_exits;
		trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
		/* XXXKYMA: Might need to return to user space */
1086
		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
			ret = RESUME_HOST;
		break;

	case T_TLB_MOD:
		++vcpu->stat.tlbmod_exits;
		trace_kvm_exit(vcpu, TLBMOD_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
		break;

	case T_TLB_ST_MISS:
1097 1098 1099
		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
			  badvaddr);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

		++vcpu->stat.tlbmiss_st_exits;
		trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
		break;

	case T_TLB_LD_MISS:
		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
			  cause, opc, badvaddr);

		++vcpu->stat.tlbmiss_ld_exits;
		trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
		break;

	case T_ADDR_ERR_ST:
		++vcpu->stat.addrerr_st_exits;
		trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
		break;

	case T_ADDR_ERR_LD:
		++vcpu->stat.addrerr_ld_exits;
		trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
		break;

	case T_SYSCALL:
		++vcpu->stat.syscall_exits;
		trace_kvm_exit(vcpu, SYSCALL_EXITS);
		ret = kvm_mips_callbacks->handle_syscall(vcpu);
		break;

	case T_RES_INST:
		++vcpu->stat.resvd_inst_exits;
		trace_kvm_exit(vcpu, RESVD_INST_EXITS);
		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
		break;

	case T_BREAK:
		++vcpu->stat.break_inst_exits;
		trace_kvm_exit(vcpu, BREAK_INST_EXITS);
		ret = kvm_mips_callbacks->handle_break(vcpu);
		break;

1145 1146 1147 1148 1149 1150
	case T_TRAP:
		++vcpu->stat.trap_inst_exits;
		trace_kvm_exit(vcpu, TRAP_INST_EXITS);
		ret = kvm_mips_callbacks->handle_trap(vcpu);
		break;

1151 1152 1153 1154
	case T_MSADIS:
		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
		break;

1155
	default:
1156 1157 1158
		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
			kvm_read_c0_guest_status(vcpu->arch.cop0));
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
		kvm_arch_vcpu_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		break;

	}

skip_emul:
	local_irq_disable();

	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
		kvm_mips_deliver_interrupts(vcpu, cause);

	if (!(ret & RESUME_HOST)) {
1173
		/* Only check for signals if not already exiting to userspace */
1174 1175 1176 1177 1178 1179 1180 1181
		if (signal_pending(current)) {
			run->exit_reason = KVM_EXIT_INTR;
			ret = (-EINTR << 2) | RESUME_HOST;
			++vcpu->stat.signal_exits;
			trace_kvm_exit(vcpu, SIGNAL_EXITS);
		}
	}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	if (ret == RESUME_GUEST) {
		/*
		 * If FPU is enabled (i.e. the guest's FPU context is live),
		 * restore FCR31.
		 *
		 * This should be before returning to the guest exception
		 * vector, as it may well cause an FP exception if there are
		 * pending exception bits unmasked. (see
		 * kvm_mips_csr_die_notifier() for how that is handled).
		 */
		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
		    read_c0_status() & ST0_CU1)
			__kvm_restore_fcsr(&vcpu->arch);
	}

1197 1198 1199
	/* Disable HTW before returning to guest or host */
	htw_stop();

1200 1201 1202
	return ret;
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
/* Enable FPU for guest and restore context */
void kvm_own_fpu(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned int sr, cfg5;

	preempt_disable();

	/*
	 * Enable FPU for guest
	 * We set FR and FRE according to guest context
	 */
	sr = kvm_read_c0_guest_status(cop0);
	change_c0_status(ST0_CU1 | ST0_FR, sr);
	if (cpu_has_fre) {
		cfg5 = kvm_read_c0_guest_config5(cop0);
		change_c0_config5(MIPS_CONF5_FRE, cfg5);
	}
	enable_fpu_hazard();

	/* If guest FPU state not active, restore it now */
	if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
		__kvm_restore_fpu(&vcpu->arch);
		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
	}

	preempt_enable();
}

/* Drop FPU without saving it */
void kvm_drop_fpu(struct kvm_vcpu *vcpu)
{
	preempt_disable();
	if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
		clear_c0_status(ST0_CU1 | ST0_FR);
		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
	}
	preempt_enable();
}

/* Save and disable FPU */
void kvm_lose_fpu(struct kvm_vcpu *vcpu)
{
	/*
	 * FPU gets disabled in root context (hardware) when it is disabled in
	 * guest context (software), but the register state in the hardware may
	 * still be in use. This is why we explicitly re-enable the hardware
	 * before saving.
	 */

	preempt_disable();
	if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
		set_c0_status(ST0_CU1);
		enable_fpu_hazard();

		__kvm_save_fpu(&vcpu->arch);
		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;

		/* Disable FPU */
		clear_c0_status(ST0_CU1 | ST0_FR);
	}
	preempt_enable();
}

/*
 * Step over a specific ctc1 to FCSR which is used to restore guest FCSR state
 * and may trigger a "harmless" FP exception if cause bits are set in the value
 * being written.
 */
static int kvm_mips_csr_die_notify(struct notifier_block *self,
				   unsigned long cmd, void *ptr)
{
	struct die_args *args = (struct die_args *)ptr;
	struct pt_regs *regs = args->regs;
	unsigned long pc;

	/* Only interested in FPE */
	if (cmd != DIE_FP)
		return NOTIFY_DONE;

	/* Return immediately if guest context isn't active */
	if (!(current->flags & PF_VCPU))
		return NOTIFY_DONE;

	/* Should never get here from user mode */
	BUG_ON(user_mode(regs));

	pc = instruction_pointer(regs);
	switch (cmd) {
	case DIE_FP:
		/* match 2nd instruction in __kvm_restore_fcsr */
		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
			return NOTIFY_DONE;
		break;
	}

	/* Move PC forward a little and continue executing */
	instruction_pointer(regs) += 4;

	return NOTIFY_STOP;
}

static struct notifier_block kvm_mips_csr_die_notifier = {
	.notifier_call = kvm_mips_csr_die_notify,
};

1309 1310 1311 1312 1313 1314 1315 1316 1317
int __init kvm_mips_init(void)
{
	int ret;

	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (ret)
		return ret;

1318 1319
	register_die_notifier(&kvm_mips_csr_die_notifier);

1320 1321 1322
	/*
	 * On MIPS, kernel modules are executed from "mapped space", which
	 * requires TLBs. The TLB handling code is statically linked with
1323
	 * the rest of the kernel (tlb.c) to avoid the possibility of
1324 1325 1326
	 * double faulting. The issue is that the TLB code references
	 * routines that are part of the the KVM module, which are only
	 * available once the module is loaded.
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	 */
	kvm_mips_gfn_to_pfn = gfn_to_pfn;
	kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
	kvm_mips_is_error_pfn = is_error_pfn;

	return 0;
}

void __exit kvm_mips_exit(void)
{
	kvm_exit();

	kvm_mips_gfn_to_pfn = NULL;
	kvm_mips_release_pfn_clean = NULL;
	kvm_mips_is_error_pfn = NULL;
1342 1343

	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1344 1345 1346 1347 1348 1349
}

module_init(kvm_mips_init);
module_exit(kvm_mips_exit);

EXPORT_TRACEPOINT_SYMBOL(kvm_exit);