mips.c 27.8 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: MIPS specific KVM APIs
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10
 */
11 12 13 14 15 16 17

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/bootmem.h>
18
#include <asm/fpu.h>
19 20 21
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
22
#include <asm/pgtable.h>
23 24 25

#include <linux/kvm_host.h>

26 27
#include "interrupt.h"
#include "commpage.h"
28 29 30 31 32 33 34 35

#define CREATE_TRACE_POINTS
#include "trace.h"

#ifndef VECTORSPACING
#define VECTORSPACING 0x100	/* for EI/VI mode */
#endif

36
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
37
struct kvm_stats_debugfs_item debugfs_entries[] = {
38 39 40 41 42 43 44 45 46 47 48 49 50
	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
51
	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
52
	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
53
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
54
	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
55 56 57 58 59 60
	{NULL}
};

static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
{
	int i;
61

62 63 64 65
	for_each_possible_cpu(i) {
		vcpu->arch.guest_kernel_asid[i] = 0;
		vcpu->arch.guest_user_asid[i] = 0;
	}
66

67 68 69
	return 0;
}

70 71 72
/*
 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
 * Config7, so we are "runnable" if interrupts are pending
73 74 75 76 77 78 79 80 81 82 83
 */
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
	return !!(vcpu->arch.pending_exceptions);
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

84
int kvm_arch_hardware_enable(void)
85 86 87 88 89 90 91 92 93 94 95
{
	return 0;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
96
	*(int *)rtn = 0;
97 98 99 100 101 102
}

static void kvm_mips_init_tlbs(struct kvm *kvm)
{
	unsigned long wired;

103 104 105 106
	/*
	 * Add a wired entry to the TLB, it is used to map the commpage to
	 * the Guest kernel
	 */
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
	wired = read_c0_wired();
	write_c0_wired(wired + 1);
	mtc0_tlbw_hazard();
	kvm->arch.commpage_tlb = wired;

	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
		  kvm->arch.commpage_tlb);
}

static void kvm_mips_init_vm_percpu(void *arg)
{
	struct kvm *kvm = (struct kvm *)arg;

	kvm_mips_init_tlbs(kvm);
	kvm_mips_callbacks->vm_init(kvm);

}

int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
	if (atomic_inc_return(&kvm_mips_instance) == 1) {
128 129
		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
			  __func__);
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
	}

	return 0;
}

void kvm_mips_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	/* Put the pages we reserved for the guest pmap */
	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
			kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
	}
146
	kfree(kvm->arch.guest_pmap);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_arch_vcpu_free(vcpu);
	}

	mutex_lock(&kvm->lock);

	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);

	mutex_unlock(&kvm->lock);
}

static void kvm_mips_uninit_tlbs(void *arg)
{
	/* Restore wired count */
	write_c0_wired(0);
	mtc0_tlbw_hazard();
	/* Clear out all the TLBs */
	kvm_local_flush_tlb_all();
}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
	kvm_mips_free_vcpus(kvm);

	/* If this is the last instance, restore wired count */
	if (atomic_dec_return(&kvm_mips_instance) == 0) {
177 178
		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
			  __func__);
179 180 181 182
		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
	}
}

183 184
long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
			unsigned long arg)
185
{
186
	return -ENOIOCTLCMD;
187 188
}

189 190
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
191 192 193 194 195
{
	return 0;
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
196 197 198
				   struct kvm_memory_slot *memslot,
				   struct kvm_userspace_memory_region *mem,
				   enum kvm_mr_change change)
199 200 201 202 203
{
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
204 205 206
				   struct kvm_userspace_memory_region *mem,
				   const struct kvm_memory_slot *old,
				   enum kvm_mr_change change)
207 208
{
	unsigned long npages = 0;
209
	int i;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
		  __func__, kvm, mem->slot, mem->guest_phys_addr,
		  mem->memory_size, mem->userspace_addr);

	/* Setup Guest PMAP table */
	if (!kvm->arch.guest_pmap) {
		if (mem->slot == 0)
			npages = mem->memory_size >> PAGE_SHIFT;

		if (npages) {
			kvm->arch.guest_pmap_npages = npages;
			kvm->arch.guest_pmap =
			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);

			if (!kvm->arch.guest_pmap) {
				kvm_err("Failed to allocate guest PMAP");
227
				return;
228 229
			}

230 231
			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
				  npages, kvm->arch.guest_pmap);
232 233

			/* Now setup the page table */
234
			for (i = 0; i < npages; i++)
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
		}
	}
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err, size, offset;
	void *gebase;
	int i;

	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);

	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);

	if (err)
		goto out_free_cpu;

258
	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
259

260 261
	/*
	 * Allocate space for host mode exception handlers that handle
262 263
	 * guest mode exits
	 */
264
	if (cpu_has_veic || cpu_has_vint)
265
		size = 0x200 + VECTORSPACING * 64;
266
	else
267
		size = 0x4000;
268 269 270 271 272 273 274 275 276 277

	/* Save Linux EBASE */
	vcpu->arch.host_ebase = (void *)read_c0_ebase();

	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);

	if (!gebase) {
		err = -ENOMEM;
		goto out_free_cpu;
	}
278 279
	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
		  ALIGN(size, PAGE_SIZE), gebase);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

	/* Save new ebase */
	vcpu->arch.guest_ebase = gebase;

	/* Copy L1 Guest Exception handler to correct offset */

	/* TLB Refill, EXL = 0 */
	memcpy(gebase, mips32_exception,
	       mips32_exceptionEnd - mips32_exception);

	/* General Exception Entry point */
	memcpy(gebase + 0x180, mips32_exception,
	       mips32_exceptionEnd - mips32_exception);

	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
	for (i = 0; i < 8; i++) {
		kvm_debug("L1 Vectored handler @ %p\n",
			  gebase + 0x200 + (i * VECTORSPACING));
		memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
		       mips32_exceptionEnd - mips32_exception);
	}

	/* General handler, relocate to unmapped space for sanity's sake */
	offset = 0x2000;
304 305 306
	kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
		  gebase + offset,
		  mips32_GuestExceptionEnd - mips32_GuestException);
307 308 309 310 311

	memcpy(gebase + offset, mips32_GuestException,
	       mips32_GuestExceptionEnd - mips32_GuestException);

	/* Invalidate the icache for these ranges */
312 313
	local_flush_icache_range((unsigned long)gebase,
				(unsigned long)gebase + ALIGN(size, PAGE_SIZE));
314

315 316 317 318
	/*
	 * Allocate comm page for guest kernel, a TLB will be reserved for
	 * mapping GVA @ 0xFFFF8000 to this page
	 */
319 320 321 322 323 324 325
	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);

	if (!vcpu->arch.kseg0_commpage) {
		err = -ENOMEM;
		goto out_free_gebase;
	}

326
	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
327 328 329 330 331 332
	kvm_mips_commpage_init(vcpu);

	/* Init */
	vcpu->arch.last_sched_cpu = -1;

	/* Start off the timer */
333
	kvm_mips_init_count(vcpu);
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

	return vcpu;

out_free_gebase:
	kfree(gebase);

out_free_cpu:
	kfree(vcpu);

out:
	return ERR_PTR(err);
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	hrtimer_cancel(&vcpu->arch.comparecount_timer);

	kvm_vcpu_uninit(vcpu);

	kvm_mips_dump_stats(vcpu);

355 356
	kfree(vcpu->arch.guest_ebase);
	kfree(vcpu->arch.kseg0_commpage);
357
	kfree(vcpu);
358 359 360 361 362 363 364
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

365 366
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
367
{
368
	return -ENOIOCTLCMD;
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r = 0;
	sigset_t sigsaved;

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	if (vcpu->mmio_needed) {
		if (!vcpu->mmio_is_write)
			kvm_mips_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
	}

385 386
	lose_fpu(1);

387
	local_irq_disable();
388 389 390 391 392 393
	/* Check if we have any exceptions/interrupts pending */
	kvm_mips_deliver_interrupts(vcpu,
				    kvm_read_c0_guest_cause(vcpu->arch.cop0));

	kvm_guest_enter();

394 395 396
	/* Disable hardware page table walking while in guest */
	htw_stop();

397 398
	r = __kvm_mips_vcpu_run(run, vcpu);

399 400 401
	/* Re-enable HTW before enabling interrupts */
	htw_start();

402 403 404 405 406 407 408 409 410
	kvm_guest_exit();
	local_irq_enable();

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	return r;
}

411 412
int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
			     struct kvm_mips_interrupt *irq)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
{
	int intr = (int)irq->irq;
	struct kvm_vcpu *dvcpu = NULL;

	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
			  (int)intr);

	if (irq->cpu == -1)
		dvcpu = vcpu;
	else
		dvcpu = vcpu->kvm->vcpus[irq->cpu];

	if (intr == 2 || intr == 3 || intr == 4) {
		kvm_mips_callbacks->queue_io_int(dvcpu, irq);

	} else if (intr == -2 || intr == -3 || intr == -4) {
		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
	} else {
		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
			irq->cpu, irq->irq);
		return -EINVAL;
	}

	dvcpu->arch.wait = 0;

439
	if (waitqueue_active(&dvcpu->wq))
440 441 442 443 444
		wake_up_interruptible(&dvcpu->wq);

	return 0;
}

445 446
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
447
{
448
	return -ENOIOCTLCMD;
449 450
}

451 452
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
453
{
454
	return -ENOIOCTLCMD;
455 456
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static u64 kvm_mips_get_one_regs[] = {
	KVM_REG_MIPS_R0,
	KVM_REG_MIPS_R1,
	KVM_REG_MIPS_R2,
	KVM_REG_MIPS_R3,
	KVM_REG_MIPS_R4,
	KVM_REG_MIPS_R5,
	KVM_REG_MIPS_R6,
	KVM_REG_MIPS_R7,
	KVM_REG_MIPS_R8,
	KVM_REG_MIPS_R9,
	KVM_REG_MIPS_R10,
	KVM_REG_MIPS_R11,
	KVM_REG_MIPS_R12,
	KVM_REG_MIPS_R13,
	KVM_REG_MIPS_R14,
	KVM_REG_MIPS_R15,
	KVM_REG_MIPS_R16,
	KVM_REG_MIPS_R17,
	KVM_REG_MIPS_R18,
	KVM_REG_MIPS_R19,
	KVM_REG_MIPS_R20,
	KVM_REG_MIPS_R21,
	KVM_REG_MIPS_R22,
	KVM_REG_MIPS_R23,
	KVM_REG_MIPS_R24,
	KVM_REG_MIPS_R25,
	KVM_REG_MIPS_R26,
	KVM_REG_MIPS_R27,
	KVM_REG_MIPS_R28,
	KVM_REG_MIPS_R29,
	KVM_REG_MIPS_R30,
	KVM_REG_MIPS_R31,

	KVM_REG_MIPS_HI,
	KVM_REG_MIPS_LO,
	KVM_REG_MIPS_PC,

	KVM_REG_MIPS_CP0_INDEX,
	KVM_REG_MIPS_CP0_CONTEXT,
497
	KVM_REG_MIPS_CP0_USERLOCAL,
498 499
	KVM_REG_MIPS_CP0_PAGEMASK,
	KVM_REG_MIPS_CP0_WIRED,
500
	KVM_REG_MIPS_CP0_HWRENA,
501
	KVM_REG_MIPS_CP0_BADVADDR,
502
	KVM_REG_MIPS_CP0_COUNT,
503
	KVM_REG_MIPS_CP0_ENTRYHI,
504
	KVM_REG_MIPS_CP0_COMPARE,
505 506
	KVM_REG_MIPS_CP0_STATUS,
	KVM_REG_MIPS_CP0_CAUSE,
507
	KVM_REG_MIPS_CP0_EPC,
508
	KVM_REG_MIPS_CP0_PRID,
509 510 511 512 513
	KVM_REG_MIPS_CP0_CONFIG,
	KVM_REG_MIPS_CP0_CONFIG1,
	KVM_REG_MIPS_CP0_CONFIG2,
	KVM_REG_MIPS_CP0_CONFIG3,
	KVM_REG_MIPS_CP0_CONFIG7,
514 515 516 517
	KVM_REG_MIPS_CP0_ERROREPC,

	KVM_REG_MIPS_COUNT_CTL,
	KVM_REG_MIPS_COUNT_RESUME,
518
	KVM_REG_MIPS_COUNT_HZ,
519 520 521 522 523 524
};

static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
525
	int ret;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	s64 v;

	switch (reg->id) {
	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
		break;
	case KVM_REG_MIPS_HI:
		v = (long)vcpu->arch.hi;
		break;
	case KVM_REG_MIPS_LO:
		v = (long)vcpu->arch.lo;
		break;
	case KVM_REG_MIPS_PC:
		v = (long)vcpu->arch.pc;
		break;

	case KVM_REG_MIPS_CP0_INDEX:
		v = (long)kvm_read_c0_guest_index(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		v = (long)kvm_read_c0_guest_context(cop0);
		break;
548 549 550
	case KVM_REG_MIPS_CP0_USERLOCAL:
		v = (long)kvm_read_c0_guest_userlocal(cop0);
		break;
551 552 553 554 555 556
	case KVM_REG_MIPS_CP0_PAGEMASK:
		v = (long)kvm_read_c0_guest_pagemask(cop0);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		v = (long)kvm_read_c0_guest_wired(cop0);
		break;
557 558 559
	case KVM_REG_MIPS_CP0_HWRENA:
		v = (long)kvm_read_c0_guest_hwrena(cop0);
		break;
560 561 562 563 564 565
	case KVM_REG_MIPS_CP0_BADVADDR:
		v = (long)kvm_read_c0_guest_badvaddr(cop0);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		v = (long)kvm_read_c0_guest_entryhi(cop0);
		break;
566 567 568
	case KVM_REG_MIPS_CP0_COMPARE:
		v = (long)kvm_read_c0_guest_compare(cop0);
		break;
569 570 571 572 573 574
	case KVM_REG_MIPS_CP0_STATUS:
		v = (long)kvm_read_c0_guest_status(cop0);
		break;
	case KVM_REG_MIPS_CP0_CAUSE:
		v = (long)kvm_read_c0_guest_cause(cop0);
		break;
575 576 577
	case KVM_REG_MIPS_CP0_EPC:
		v = (long)kvm_read_c0_guest_epc(cop0);
		break;
578 579 580
	case KVM_REG_MIPS_CP0_PRID:
		v = (long)kvm_read_c0_guest_prid(cop0);
		break;
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	case KVM_REG_MIPS_CP0_CONFIG:
		v = (long)kvm_read_c0_guest_config(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG1:
		v = (long)kvm_read_c0_guest_config1(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG2:
		v = (long)kvm_read_c0_guest_config2(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG3:
		v = (long)kvm_read_c0_guest_config3(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG7:
		v = (long)kvm_read_c0_guest_config7(cop0);
		break;
596 597 598
	case KVM_REG_MIPS_CP0_ERROREPC:
		v = (long)kvm_read_c0_guest_errorepc(cop0);
		break;
599 600
	/* registers to be handled specially */
	case KVM_REG_MIPS_CP0_COUNT:
601 602
	case KVM_REG_MIPS_COUNT_CTL:
	case KVM_REG_MIPS_COUNT_RESUME:
603
	case KVM_REG_MIPS_COUNT_HZ:
604 605 606 607
		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
		if (ret)
			return ret;
		break;
608 609 610
	default:
		return -EINVAL;
	}
611 612
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
613

614 615 616 617
		return put_user(v, uaddr64);
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		u32 v32 = (u32)v;
618

619 620 621 622
		return put_user(v32, uaddr32);
	} else {
		return -EINVAL;
	}
623 624 625 626 627 628 629 630
}

static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	u64 v;

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;

		if (get_user(v, uaddr64) != 0)
			return -EFAULT;
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		s32 v32;

		if (get_user(v32, uaddr32) != 0)
			return -EFAULT;
		v = (s64)v32;
	} else {
		return -EINVAL;
	}
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

	switch (reg->id) {
	case KVM_REG_MIPS_R0:
		/* Silently ignore requests to set $0 */
		break;
	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
		break;
	case KVM_REG_MIPS_HI:
		vcpu->arch.hi = v;
		break;
	case KVM_REG_MIPS_LO:
		vcpu->arch.lo = v;
		break;
	case KVM_REG_MIPS_PC:
		vcpu->arch.pc = v;
		break;

	case KVM_REG_MIPS_CP0_INDEX:
		kvm_write_c0_guest_index(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		kvm_write_c0_guest_context(cop0, v);
		break;
670 671 672
	case KVM_REG_MIPS_CP0_USERLOCAL:
		kvm_write_c0_guest_userlocal(cop0, v);
		break;
673 674 675 676 677 678
	case KVM_REG_MIPS_CP0_PAGEMASK:
		kvm_write_c0_guest_pagemask(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		kvm_write_c0_guest_wired(cop0, v);
		break;
679 680 681
	case KVM_REG_MIPS_CP0_HWRENA:
		kvm_write_c0_guest_hwrena(cop0, v);
		break;
682 683 684 685 686 687 688 689 690
	case KVM_REG_MIPS_CP0_BADVADDR:
		kvm_write_c0_guest_badvaddr(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		kvm_write_c0_guest_entryhi(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_STATUS:
		kvm_write_c0_guest_status(cop0, v);
		break;
691 692 693
	case KVM_REG_MIPS_CP0_EPC:
		kvm_write_c0_guest_epc(cop0, v);
		break;
694 695 696
	case KVM_REG_MIPS_CP0_PRID:
		kvm_write_c0_guest_prid(cop0, v);
		break;
697 698 699
	case KVM_REG_MIPS_CP0_ERROREPC:
		kvm_write_c0_guest_errorepc(cop0, v);
		break;
700 701 702
	/* registers to be handled specially */
	case KVM_REG_MIPS_CP0_COUNT:
	case KVM_REG_MIPS_CP0_COMPARE:
703
	case KVM_REG_MIPS_CP0_CAUSE:
704 705
	case KVM_REG_MIPS_COUNT_CTL:
	case KVM_REG_MIPS_COUNT_RESUME:
706
	case KVM_REG_MIPS_COUNT_HZ:
707
		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
708 709 710 711 712 713
	default:
		return -EINVAL;
	}
	return 0;
}

714 715
long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
			 unsigned long arg)
716 717 718 719 720 721
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
722 723 724
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
725

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_mips_set_reg(vcpu, &reg);
		else
			return kvm_mips_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		u64 __user *reg_dest;
		struct kvm_reg_list reg_list;
		unsigned n;

		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		reg_dest = user_list->reg;
		if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
				 sizeof(kvm_mips_get_one_regs)))
			return -EFAULT;
		return 0;
	}
753 754 755 756 757 758 759
	case KVM_NMI:
		/* Treat the NMI as a CPU reset */
		r = kvm_mips_reset_vcpu(vcpu);
		break;
	case KVM_INTERRUPT:
		{
			struct kvm_mips_interrupt irq;
760

761 762 763 764 765 766 767 768 769 770 771
			r = -EFAULT;
			if (copy_from_user(&irq, argp, sizeof(irq)))
				goto out;

			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
				  irq.irq);

			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
			break;
		}
	default:
772
		r = -ENOIOCTLCMD;
773 774 775 776 777 778
	}

out:
	return r;
}

779
/* Get (and clear) the dirty memory log for a memory slot. */
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	struct kvm_memory_slot *memslot;
	unsigned long ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		memslot = &kvm->memslots->memslots[log->slot];

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

801 802
		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
			 ga_end);
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;

}

long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
	long r;

	switch (ioctl) {
	default:
821
		r = -ENOIOCTLCMD;
822 823 824 825 826 827 828 829 830 831 832 833
	}

	return r;
}

int kvm_arch_init(void *opaque)
{
	if (kvm_mips_callbacks) {
		kvm_err("kvm: module already exists\n");
		return -EEXIST;
	}

834
	return kvm_mips_emulation_init(&kvm_mips_callbacks);
835 836 837 838 839 840 841
}

void kvm_arch_exit(void)
{
	kvm_mips_callbacks = NULL;
}

842 843
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
844
{
845
	return -ENOIOCTLCMD;
846 847
}

848 849
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
850
{
851
	return -ENOIOCTLCMD;
852 853
}

854
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
855 856 857 858 859
{
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
860
	return -ENOIOCTLCMD;
861 862 863 864
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
865
	return -ENOIOCTLCMD;
866 867 868 869 870 871 872
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}

873
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
874 875 876 877
{
	int r;

	switch (ext) {
878 879 880
	case KVM_CAP_ONE_REG:
		r = 1;
		break;
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
	default:
		r = 0;
		break;
	}
	return r;
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
	return kvm_mips_pending_timer(vcpu);
}

int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
{
	int i;
	struct mips_coproc *cop0;

	if (!vcpu)
		return -1;

904 905 906
	kvm_debug("VCPU Register Dump:\n");
	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
907 908

	for (i = 0; i < 32; i += 4) {
909
		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
910 911 912 913
		       vcpu->arch.gprs[i],
		       vcpu->arch.gprs[i + 1],
		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
	}
914 915
	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
916 917

	cop0 = vcpu->arch.cop0;
918 919 920
	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
		  kvm_read_c0_guest_status(cop0),
		  kvm_read_c0_guest_cause(cop0));
921

922
	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
923 924 925 926 927 928 929 930

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

931
	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
932
		vcpu->arch.gprs[i] = regs->gpr[i];
933
	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
934 935 936 937
	vcpu->arch.hi = regs->hi;
	vcpu->arch.lo = regs->lo;
	vcpu->arch.pc = regs->pc;

938
	return 0;
939 940 941 942 943 944
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

945
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
946
		regs->gpr[i] = vcpu->arch.gprs[i];
947 948 949 950 951

	regs->hi = vcpu->arch.hi;
	regs->lo = vcpu->arch.lo;
	regs->pc = vcpu->arch.pc;

952
	return 0;
953 954
}

955
static void kvm_mips_comparecount_func(unsigned long data)
956 957 958 959 960 961
{
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;

	kvm_mips_callbacks->queue_timer_int(vcpu);

	vcpu->arch.wait = 0;
962
	if (waitqueue_active(&vcpu->wq))
963 964 965
		wake_up_interruptible(&vcpu->wq);
}

966
/* low level hrtimer wake routine */
967
static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
968 969 970 971 972
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
	kvm_mips_comparecount_func((unsigned long) vcpu);
973
	return kvm_mips_count_timeout(vcpu);
974 975 976 977 978 979 980 981 982 983 984
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	kvm_mips_callbacks->vcpu_init(vcpu);
	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
		     HRTIMER_MODE_REL);
	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
	return 0;
}

985 986
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
987 988 989 990 991 992 993 994 995 996
{
	return 0;
}

/* Initial guest state */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	return kvm_mips_callbacks->vcpu_setup(vcpu);
}

997
static void kvm_mips_set_c0_status(void)
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
{
	uint32_t status = read_c0_status();

	if (cpu_has_dsp)
		status |= (ST0_MX);

	write_c0_status(status);
	ehb();
}

/*
 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
 */
int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	uint32_t cause = vcpu->arch.host_cp0_cause;
	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
	uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

1020 1021 1022
	/* re-enable HTW before enabling interrupts */
	htw_start();

1023 1024 1025 1026
	/* Set a default exit reason */
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

1027 1028 1029 1030
	/*
	 * Set the appropriate status bits based on host CPU features,
	 * before we hit the scheduler
	 */
1031 1032 1033 1034 1035 1036 1037
	kvm_mips_set_c0_status();

	local_irq_enable();

	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
			cause, opc, run, vcpu);

1038 1039
	/*
	 * Do a privilege check, if in UM most of these exit conditions end up
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	 * causing an exception to be delivered to the Guest Kernel
	 */
	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
	if (er == EMULATE_PRIV_FAIL) {
		goto skip_emul;
	} else if (er == EMULATE_FAIL) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		goto skip_emul;
	}

	switch (exccode) {
	case T_INT:
		kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);

		++vcpu->stat.int_exits;
		trace_kvm_exit(vcpu, INT_EXITS);

1058
		if (need_resched())
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
			cond_resched();

		ret = RESUME_GUEST;
		break;

	case T_COP_UNUSABLE:
		kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);

		++vcpu->stat.cop_unusable_exits;
		trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
		/* XXXKYMA: Might need to return to user space */
1071
		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
			ret = RESUME_HOST;
		break;

	case T_TLB_MOD:
		++vcpu->stat.tlbmod_exits;
		trace_kvm_exit(vcpu, TLBMOD_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
		break;

	case T_TLB_ST_MISS:
1082 1083 1084
		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
			  badvaddr);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

		++vcpu->stat.tlbmiss_st_exits;
		trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
		break;

	case T_TLB_LD_MISS:
		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
			  cause, opc, badvaddr);

		++vcpu->stat.tlbmiss_ld_exits;
		trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
		break;

	case T_ADDR_ERR_ST:
		++vcpu->stat.addrerr_st_exits;
		trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
		break;

	case T_ADDR_ERR_LD:
		++vcpu->stat.addrerr_ld_exits;
		trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
		break;

	case T_SYSCALL:
		++vcpu->stat.syscall_exits;
		trace_kvm_exit(vcpu, SYSCALL_EXITS);
		ret = kvm_mips_callbacks->handle_syscall(vcpu);
		break;

	case T_RES_INST:
		++vcpu->stat.resvd_inst_exits;
		trace_kvm_exit(vcpu, RESVD_INST_EXITS);
		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
		break;

	case T_BREAK:
		++vcpu->stat.break_inst_exits;
		trace_kvm_exit(vcpu, BREAK_INST_EXITS);
		ret = kvm_mips_callbacks->handle_break(vcpu);
		break;

1130 1131 1132 1133 1134 1135
	case T_TRAP:
		++vcpu->stat.trap_inst_exits;
		trace_kvm_exit(vcpu, TRAP_INST_EXITS);
		ret = kvm_mips_callbacks->handle_trap(vcpu);
		break;

1136 1137 1138 1139
	case T_MSADIS:
		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
		break;

1140
	default:
1141 1142 1143
		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
			kvm_read_c0_guest_status(vcpu->arch.cop0));
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
		kvm_arch_vcpu_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		break;

	}

skip_emul:
	local_irq_disable();

	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
		kvm_mips_deliver_interrupts(vcpu, cause);

	if (!(ret & RESUME_HOST)) {
1158
		/* Only check for signals if not already exiting to userspace */
1159 1160 1161 1162 1163 1164 1165 1166
		if (signal_pending(current)) {
			run->exit_reason = KVM_EXIT_INTR;
			ret = (-EINTR << 2) | RESUME_HOST;
			++vcpu->stat.signal_exits;
			trace_kvm_exit(vcpu, SIGNAL_EXITS);
		}
	}

1167 1168 1169
	/* Disable HTW before returning to guest or host */
	htw_stop();

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	return ret;
}

int __init kvm_mips_init(void)
{
	int ret;

	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (ret)
		return ret;

1182 1183 1184
	/*
	 * On MIPS, kernel modules are executed from "mapped space", which
	 * requires TLBs. The TLB handling code is statically linked with
1185
	 * the rest of the kernel (tlb.c) to avoid the possibility of
1186 1187 1188
	 * double faulting. The issue is that the TLB code references
	 * routines that are part of the the KVM module, which are only
	 * available once the module is loaded.
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	 */
	kvm_mips_gfn_to_pfn = gfn_to_pfn;
	kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
	kvm_mips_is_error_pfn = is_error_pfn;

	return 0;
}

void __exit kvm_mips_exit(void)
{
	kvm_exit();

	kvm_mips_gfn_to_pfn = NULL;
	kvm_mips_release_pfn_clean = NULL;
	kvm_mips_is_error_pfn = NULL;
}

module_init(kvm_mips_init);
module_exit(kvm_mips_exit);

EXPORT_TRACEPOINT_SYMBOL(kvm_exit);