cpuset.c 76.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46
#include <linux/sched.h>
47
#include <linux/sched/mm.h>
48
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
49
#include <linux/seq_file.h>
50
#include <linux/security.h>
L
Linus Torvalds 已提交
51 52 53 54 55
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
56
#include <linux/time64.h>
L
Linus Torvalds 已提交
57 58 59
#include <linux/backing-dev.h>
#include <linux/sort.h>

60
#include <linux/uaccess.h>
A
Arun Sharma 已提交
61
#include <linux/atomic.h>
62
#include <linux/mutex.h>
63
#include <linux/cgroup.h>
64
#include <linux/wait.h>
L
Linus Torvalds 已提交
65

66
DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
67
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
68

69 70 71 72 73
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
74
	time64_t time;		/* clock (secs) when val computed */
75 76 77
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
78
struct cpuset {
79 80
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
81
	unsigned long flags;		/* "unsigned long" so bitops work */
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

103 104 105 106 107 108 109
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
110

111 112 113 114 115 116 117 118 119 120 121 122
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

123
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
124

125 126 127 128 129 130
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
131 132
	/* partition number for rebuild_sched_domains() */
	int pn;
133

134 135
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
136 137
};

138
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
139
{
140
	return css ? container_of(css, struct cpuset, css) : NULL;
141 142 143 144 145
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
146
	return css_cs(task_css(task, cpuset_cgrp_id));
147 148
}

149
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
150
{
T
Tejun Heo 已提交
151
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
152 153
}

154 155 156 157 158 159 160 161 162 163 164 165 166
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
167 168
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
169
	CS_ONLINE,
L
Linus Torvalds 已提交
170 171
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
172
	CS_MEM_HARDWALL,
173
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
174
	CS_SCHED_LOAD_BALANCE,
175 176
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
177 178 179
} cpuset_flagbits_t;

/* convenient tests for these bits */
180
static inline bool is_cpuset_online(struct cpuset *cs)
T
Tejun Heo 已提交
181
{
182
	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
T
Tejun Heo 已提交
183 184
}

L
Linus Torvalds 已提交
185 186
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
187
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
188 189 190 191
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
192
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
193 194
}

195 196 197 198 199
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
200 201 202 203 204
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

205 206
static inline int is_memory_migrate(const struct cpuset *cs)
{
207
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
208 209
}

210 211 212 213 214 215 216 217 218 219
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
220
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
221 222
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
223 224
};

225 226 227
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
228
 * @pos_css: used for iteration
229 230 231 232 233
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
234 235 236
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
237

238 239 240
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
241
 * @pos_css: used for iteration
242 243 244
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
245
 * with RCU read locked.  The caller may modify @pos_css by calling
246 247
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
248
 */
249 250 251
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
252

L
Linus Torvalds 已提交
253
/*
254 255 256 257
 * There are two global locks guarding cpuset structures - cpuset_mutex and
 * callback_lock. We also require taking task_lock() when dereferencing a
 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 * comment.
258
 *
259
 * A task must hold both locks to modify cpusets.  If a task holds
260
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
261
 * is the only task able to also acquire callback_lock and be able to
262 263 264
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
265 266
 * callback routines can briefly acquire callback_lock to query cpusets.
 * Once it is ready to make the changes, it takes callback_lock, blocking
267
 * everyone else.
268 269
 *
 * Calls to the kernel memory allocator can not be made while holding
270
 * callback_lock, as that would risk double tripping on callback_lock
271 272 273
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
274
 * If a task is only holding callback_lock, then it has read-only
275 276
 * access to cpusets.
 *
277 278 279
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
280
 *
281
 * The cpuset_common_file_read() handlers only hold callback_lock across
282 283 284
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
285 286
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
287 288
 */

289
static DEFINE_MUTEX(cpuset_mutex);
290
static DEFINE_SPINLOCK(callback_lock);
291

292 293
static struct workqueue_struct *cpuset_migrate_mm_wq;

294 295 296 297 298 299
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

300 301
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

302 303
/*
 * This is ugly, but preserves the userspace API for existing cpuset
304
 * users. If someone tries to mount the "cpuset" filesystem, we
305 306
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
307 308
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
309
{
310
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
311
	struct dentry *ret = ERR_PTR(-ENODEV);
312 313 314 315
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
316 317
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
318 319 320
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
321 322 323 324
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
325
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
326 327 328
};

/*
329
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
330
 * are online.  If none are online, walk up the cpuset hierarchy
331
 * until we find one that does have some online cpus.
L
Linus Torvalds 已提交
332 333
 *
 * One way or another, we guarantee to return some non-empty subset
334
 * of cpu_online_mask.
L
Linus Torvalds 已提交
335
 *
336
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
337
 */
338
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
339
{
340
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
T
Tejun Heo 已提交
341
		cs = parent_cs(cs);
342 343 344 345 346 347 348 349 350 351 352 353
		if (unlikely(!cs)) {
			/*
			 * The top cpuset doesn't have any online cpu as a
			 * consequence of a race between cpuset_hotplug_work
			 * and cpu hotplug notifier.  But we know the top
			 * cpuset's effective_cpus is on its way to to be
			 * identical to cpu_online_mask.
			 */
			cpumask_copy(pmask, cpu_online_mask);
			return;
		}
	}
354
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
355 356 357 358
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
359 360
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
361
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
362 363
 *
 * One way or another, we guarantee to return some non-empty subset
364
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
365
 *
366
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
367
 */
368
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
369
{
370
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
371
		cs = parent_cs(cs);
372
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
373 374
}

375 376 377
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
378
 * Call with callback_lock or cpuset_mutex held.
379 380 381 382 383
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
384
		task_set_spread_page(tsk);
385
	else
386 387
		task_clear_spread_page(tsk);

388
	if (is_spread_slab(cs))
389
		task_set_spread_slab(tsk);
390
	else
391
		task_clear_spread_slab(tsk);
392 393
}

L
Linus Torvalds 已提交
394 395 396 397 398
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
399
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
400 401 402 403
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
404
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
405 406 407 408 409
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

410 411 412 413
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
414
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
415
{
416 417 418 419 420 421
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

422 423 424 425
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
426

427 428
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
429
	return trial;
430 431 432 433 434 435

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
436 437 438 439 440 441 442 443
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
444
	free_cpumask_var(trial->effective_cpus);
445
	free_cpumask_var(trial->cpus_allowed);
446 447 448
	kfree(trial);
}

L
Linus Torvalds 已提交
449 450 451 452 453 454 455
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
456
 * cpuset_mutex held.
L
Linus Torvalds 已提交
457 458 459 460 461 462 463 464 465 466 467 468
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

469
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
470
{
471
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
472
	struct cpuset *c, *par;
473 474 475
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
476 477

	/* Each of our child cpusets must be a subset of us */
478
	ret = -EBUSY;
479
	cpuset_for_each_child(c, css, cur)
480 481
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
482 483

	/* Remaining checks don't apply to root cpuset */
484
	ret = 0;
485
	if (cur == &top_cpuset)
486
		goto out;
L
Linus Torvalds 已提交
487

T
Tejun Heo 已提交
488
	par = parent_cs(cur);
489

490
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
491
	ret = -EACCES;
492 493
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
	    !is_cpuset_subset(trial, par))
494
		goto out;
L
Linus Torvalds 已提交
495

496 497 498 499
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
500
	ret = -EINVAL;
501
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
502 503
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
504
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
505
			goto out;
L
Linus Torvalds 已提交
506 507 508
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
509
			goto out;
L
Linus Torvalds 已提交
510 511
	}

512 513
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
514
	 * be changed to have empty cpus_allowed or mems_allowed.
515
	 */
516
	ret = -ENOSPC;
517
	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
518 519 520 521 522 523 524
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
525

526 527 528 529 530 531 532 533 534 535
	/*
	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
	 * tasks.
	 */
	ret = -EBUSY;
	if (is_cpu_exclusive(cur) &&
	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
				       trial->cpus_allowed))
		goto out;

536 537 538 539
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
540 541
}

542
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
543
/*
544
 * Helper routine for generate_sched_domains().
545
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
546 547 548
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
549
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
550 551
}

552 553 554 555 556 557 558 559
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

560 561
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
562
{
563
	struct cpuset *cp;
564
	struct cgroup_subsys_state *pos_css;
565

566
	rcu_read_lock();
567
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
568 569
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
570
			pos_css = css_rightmost_descendant(pos_css);
571
			continue;
572
		}
573 574 575 576

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
577
	rcu_read_unlock();
578 579
}

P
Paolo Bonzini 已提交
580 581 582 583 584 585 586
/* Must be called with cpuset_mutex held.  */
static inline int nr_cpusets(void)
{
	/* jump label reference count + the top-level cpuset */
	return static_key_count(&cpusets_enabled_key.key) + 1;
}

P
Paul Jackson 已提交
587
/*
588 589 590 591 592
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
593
 * The output of this function needs to be passed to kernel/sched/core.c
594 595 596
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
597
 *
L
Li Zefan 已提交
598
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
599 600 601 602 603 604 605
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
606
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
607 608
 *
 * The three key local variables below are:
609
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
610 611 612 613 614 615 616 617 618 619 620 621
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
622
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
641
static int generate_sched_domains(cpumask_var_t **domains,
642
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
643 644 645 646 647
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
648
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
649
	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
650
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
651
	int ndoms = 0;		/* number of sched domains in result */
652
	int nslot;		/* next empty doms[] struct cpumask slot */
653
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
654 655

	doms = NULL;
656
	dattr = NULL;
657
	csa = NULL;
P
Paul Jackson 已提交
658

659 660 661 662
	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
		goto done;
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);

P
Paul Jackson 已提交
663 664
	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
665 666
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
667
		if (!doms)
668 669
			goto done;

670 671 672
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
673
			update_domain_attr_tree(dattr, &top_cpuset);
674
		}
675 676
		cpumask_and(doms[0], top_cpuset.effective_cpus,
				     non_isolated_cpus);
677 678

		goto done;
P
Paul Jackson 已提交
679 680
	}

681
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
682 683 684 685
	if (!csa)
		goto done;
	csn = 0;

686
	rcu_read_lock();
687
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
688 689
		if (cp == &top_cpuset)
			continue;
690
		/*
691 692 693 694 695 696
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
697
		 */
698
		if (!cpumask_empty(cp->cpus_allowed) &&
699 700
		    !(is_sched_load_balance(cp) &&
		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
701
			continue;
702

703 704 705 706
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
707
		pos_css = css_rightmost_descendant(pos_css);
708 709
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

738 739 740 741
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
742
	doms = alloc_sched_domains(ndoms);
743
	if (!doms)
744 745 746 747 748 749
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
750
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
751 752 753

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
754
		struct cpumask *dp;
P
Paul Jackson 已提交
755 756
		int apn = a->pn;

757 758 759 760 761
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

762
		dp = doms[nslot];
763 764 765 766

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
767 768
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
769
				warnings--;
P
Paul Jackson 已提交
770
			}
771 772
			continue;
		}
P
Paul Jackson 已提交
773

774
		cpumask_clear(dp);
775 776 777 778 779 780
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
781
				cpumask_or(dp, dp, b->effective_cpus);
782
				cpumask_and(dp, dp, non_isolated_cpus);
783 784 785 786 787
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
788 789
			}
		}
790
		nslot++;
P
Paul Jackson 已提交
791 792 793
	}
	BUG_ON(nslot != ndoms);

794
done:
795
	free_cpumask_var(non_isolated_cpus);
796 797
	kfree(csa);

798 799 800 801 802 803 804
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

805 806 807 808 809 810 811 812
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
813 814 815 816 817
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
818
 *
819
 * Call with cpuset_mutex held.  Takes get_online_cpus().
820
 */
821
static void rebuild_sched_domains_locked(void)
822 823
{
	struct sched_domain_attr *attr;
824
	cpumask_var_t *doms;
825 826
	int ndoms;

827
	lockdep_assert_held(&cpuset_mutex);
828
	get_online_cpus();
829

830 831 832 833 834
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
835
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
836 837
		goto out;

838 839 840 841 842
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
843
out:
844
	put_online_cpus();
845
}
846
#else /* !CONFIG_SMP */
847
static void rebuild_sched_domains_locked(void)
848 849 850
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
851

852 853
void rebuild_sched_domains(void)
{
854
	mutex_lock(&cpuset_mutex);
855
	rebuild_sched_domains_locked();
856
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
857 858
}

859 860 861 862
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
863 864 865
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
866
 */
867
static void update_tasks_cpumask(struct cpuset *cs)
868
{
869 870 871 872 873
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
874
		set_cpus_allowed_ptr(task, cs->effective_cpus);
875
	css_task_iter_end(&it);
876 877
}

878
/*
879 880 881 882 883 884
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
885
 *
886
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
887 888 889
 *
 * Called with cpuset_mutex held
 */
890
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
891 892
{
	struct cpuset *cp;
893
	struct cgroup_subsys_state *pos_css;
894
	bool need_rebuild_sched_domains = false;
895 896

	rcu_read_lock();
897 898 899 900 901
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

902 903 904 905
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
906 907
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    cpumask_empty(new_cpus))
908 909
			cpumask_copy(new_cpus, parent->effective_cpus);

910 911 912 913
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
914
		}
915

916
		if (!css_tryget_online(&cp->css))
917 918 919
			continue;
		rcu_read_unlock();

920
		spin_lock_irq(&callback_lock);
921
		cpumask_copy(cp->effective_cpus, new_cpus);
922
		spin_unlock_irq(&callback_lock);
923

924
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
925 926
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

927
		update_tasks_cpumask(cp);
928

929 930 931 932 933 934 935 936
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

937 938 939 940
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
941 942 943

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
944 945
}

C
Cliff Wickman 已提交
946 947 948
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
949
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
950 951
 * @buf: buffer of cpu numbers written to this cpuset
 */
952 953
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
954
{
C
Cliff Wickman 已提交
955
	int retval;
L
Linus Torvalds 已提交
956

957
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
958 959 960
	if (cs == &top_cpuset)
		return -EACCES;

961
	/*
962
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
963 964 965
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
966
	 */
967
	if (!*buf) {
968
		cpumask_clear(trialcs->cpus_allowed);
969
	} else {
970
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
971 972
		if (retval < 0)
			return retval;
973

974 975
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
976
			return -EINVAL;
977
	}
P
Paul Jackson 已提交
978

P
Paul Menage 已提交
979
	/* Nothing to do if the cpus didn't change */
980
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
981
		return 0;
C
Cliff Wickman 已提交
982

983 984 985 986
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

987
	spin_lock_irq(&callback_lock);
988
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
989
	spin_unlock_irq(&callback_lock);
P
Paul Jackson 已提交
990

991 992
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
993
	return 0;
L
Linus Torvalds 已提交
994 995
}

996
/*
997 998 999 1000 1001
 * Migrate memory region from one set of nodes to another.  This is
 * performed asynchronously as it can be called from process migration path
 * holding locks involved in process management.  All mm migrations are
 * performed in the queued order and can be waited for by flushing
 * cpuset_migrate_mm_wq.
1002 1003
 */

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
struct cpuset_migrate_mm_work {
	struct work_struct	work;
	struct mm_struct	*mm;
	nodemask_t		from;
	nodemask_t		to;
};

static void cpuset_migrate_mm_workfn(struct work_struct *work)
{
	struct cpuset_migrate_mm_work *mwork =
		container_of(work, struct cpuset_migrate_mm_work, work);

	/* on a wq worker, no need to worry about %current's mems_allowed */
	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
	mmput(mwork->mm);
	kfree(mwork);
}

1022 1023 1024
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
1025
	struct cpuset_migrate_mm_work *mwork;
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
	if (mwork) {
		mwork->mm = mm;
		mwork->from = *from;
		mwork->to = *to;
		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
		queue_work(cpuset_migrate_mm_wq, &mwork->work);
	} else {
		mmput(mm);
	}
}
1038

1039
static void cpuset_post_attach(void)
1040 1041
{
	flush_workqueue(cpuset_migrate_mm_wq);
1042 1043
}

1044
/*
1045 1046 1047 1048
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
1049 1050 1051 1052
 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
 * and rebind an eventual tasks' mempolicy. If the task is allocating in
 * parallel, it might temporarily see an empty intersection, which results in
 * a seqlock check and retry before OOM or allocation failure.
1053 1054 1055 1056
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1057 1058
	task_lock(tsk);

1059 1060
	local_irq_disable();
	write_seqcount_begin(&tsk->mems_allowed_seq);
1061

1062
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1063
	mpol_rebind_task(tsk, newmems);
1064
	tsk->mems_allowed = *newmems;
1065

1066 1067
	write_seqcount_end(&tsk->mems_allowed_seq);
	local_irq_enable();
1068

1069
	task_unlock(tsk);
1070 1071
}

1072 1073
static void *cpuset_being_rebound;

1074 1075 1076 1077
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1078 1079 1080
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1081
 */
1082
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1083
{
1084
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1085 1086
	struct css_task_iter it;
	struct task_struct *task;
1087

1088
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1089

1090
	guarantee_online_mems(cs, &newmems);
1091

1092
	/*
1093 1094 1095 1096
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1097
	 * the global cpuset_mutex, we know that no other rebind effort
1098
	 * will be contending for the global variable cpuset_being_rebound.
1099
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1100
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1101
	 */
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1118 1119
		else
			mmput(mm);
1120 1121
	}
	css_task_iter_end(&it);
1122

1123 1124 1125 1126 1127 1128
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1129
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1130
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1131 1132
}

1133
/*
1134 1135 1136
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1137
 *
1138 1139
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1140
 *
1141
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1142 1143 1144
 *
 * Called with cpuset_mutex held
 */
1145
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1146 1147
{
	struct cpuset *cp;
1148
	struct cgroup_subsys_state *pos_css;
1149 1150

	rcu_read_lock();
1151 1152 1153 1154 1155
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1156 1157 1158 1159
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
1160 1161
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    nodes_empty(*new_mems))
1162 1163
			*new_mems = parent->effective_mems;

1164 1165 1166 1167
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1168
		}
1169

1170
		if (!css_tryget_online(&cp->css))
1171 1172 1173
			continue;
		rcu_read_unlock();

1174
		spin_lock_irq(&callback_lock);
1175
		cp->effective_mems = *new_mems;
1176
		spin_unlock_irq(&callback_lock);
1177

1178
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1179
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1180

1181
		update_tasks_nodemask(cp);
1182 1183 1184 1185 1186 1187 1188

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1189 1190 1191
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1192 1193 1194 1195
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1196
 *
1197
 * Call with cpuset_mutex held. May take callback_lock during call.
1198 1199 1200 1201
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1202 1203
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1204 1205 1206 1207
{
	int retval;

	/*
1208
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1209 1210
	 * it's read-only
	 */
1211 1212 1213 1214
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1215 1216 1217 1218 1219 1220 1221 1222

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1223
		nodes_clear(trialcs->mems_allowed);
1224
	} else {
1225
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1226 1227 1228
		if (retval < 0)
			goto done;

1229
		if (!nodes_subset(trialcs->mems_allowed,
1230 1231
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1232 1233
			goto done;
		}
1234
	}
1235 1236

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1237 1238 1239
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1240
	retval = validate_change(cs, trialcs);
1241 1242 1243
	if (retval < 0)
		goto done;

1244
	spin_lock_irq(&callback_lock);
1245
	cs->mems_allowed = trialcs->mems_allowed;
1246
	spin_unlock_irq(&callback_lock);
1247

1248
	/* use trialcs->mems_allowed as a temp variable */
1249
	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1250 1251 1252 1253
done:
	return retval;
}

1254 1255
int current_cpuset_is_being_rebound(void)
{
1256 1257 1258 1259 1260 1261 1262
	int ret;

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1263 1264
}

1265
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1266
{
1267
#ifdef CONFIG_SMP
1268
	if (val < -1 || val >= sched_domain_level_max)
1269
		return -EINVAL;
1270
#endif
1271 1272 1273

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1274 1275
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1276
			rebuild_sched_domains_locked();
1277 1278 1279 1280 1281
	}

	return 0;
}

1282
/**
1283 1284 1285
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1286 1287 1288
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1289
 */
1290
static void update_tasks_flags(struct cpuset *cs)
1291
{
1292 1293 1294 1295 1296 1297 1298
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1299 1300
}

L
Linus Torvalds 已提交
1301 1302
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1303 1304 1305
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1306
 *
1307
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1308 1309
 */

1310 1311
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1312
{
1313
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1314
	int balance_flag_changed;
1315 1316
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1317

1318 1319 1320 1321
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1322
	if (turning_on)
1323
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1324
	else
1325
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1326

1327
	err = validate_change(cs, trialcs);
1328
	if (err < 0)
1329
		goto out;
P
Paul Jackson 已提交
1330 1331

	balance_flag_changed = (is_sched_load_balance(cs) !=
1332
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1333

1334 1335 1336
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1337
	spin_lock_irq(&callback_lock);
1338
	cs->flags = trialcs->flags;
1339
	spin_unlock_irq(&callback_lock);
1340

1341
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1342
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1343

1344
	if (spread_flag_changed)
1345
		update_tasks_flags(cs);
1346 1347 1348
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1349 1350
}

1351
/*
A
Adrian Bunk 已提交
1352
 * Frequency meter - How fast is some event occurring?
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
1397
#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
1413 1414 1415 1416 1417
	time64_t now;
	u32 ticks;

	now = ktime_get_seconds();
	ticks = now - fmp->time;
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1452 1453
static struct cpuset *cpuset_attach_old_cs;

1454
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1455
static int cpuset_can_attach(struct cgroup_taskset *tset)
1456
{
1457 1458
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1459 1460
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1461

1462
	/* used later by cpuset_attach() */
1463 1464
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
	cs = css_cs(css);
1465

1466 1467
	mutex_lock(&cpuset_mutex);

1468
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1469
	ret = -ENOSPC;
1470
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1471
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1472
		goto out_unlock;
1473

1474
	cgroup_taskset_for_each(task, css, tset) {
1475 1476
		ret = task_can_attach(task, cs->cpus_allowed);
		if (ret)
1477 1478 1479 1480
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1481
	}
1482

1483 1484 1485 1486 1487
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1488 1489 1490 1491
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1492
}
1493

1494
static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1495
{
1496 1497 1498 1499 1500 1501
	struct cgroup_subsys_state *css;
	struct cpuset *cs;

	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1502
	mutex_lock(&cpuset_mutex);
1503
	css_cs(css)->attach_in_progress--;
1504
	mutex_unlock(&cpuset_mutex);
1505
}
L
Linus Torvalds 已提交
1506

1507
/*
1508
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1509 1510 1511 1512 1513
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1514
static void cpuset_attach(struct cgroup_taskset *tset)
1515
{
1516
	/* static buf protected by cpuset_mutex */
1517
	static nodemask_t cpuset_attach_nodemask_to;
1518
	struct task_struct *task;
1519
	struct task_struct *leader;
1520 1521
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1522
	struct cpuset *oldcs = cpuset_attach_old_cs;
1523

1524 1525 1526
	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1527 1528
	mutex_lock(&cpuset_mutex);

1529 1530 1531 1532
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1533
		guarantee_online_cpus(cs, cpus_attach);
1534

1535
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1536

1537
	cgroup_taskset_for_each(task, css, tset) {
1538 1539 1540 1541 1542 1543 1544 1545 1546
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1547

1548
	/*
1549 1550
	 * Change mm for all threadgroup leaders. This is expensive and may
	 * sleep and should be moved outside migration path proper.
1551
	 */
1552
	cpuset_attach_nodemask_to = cs->effective_mems;
1553
	cgroup_taskset_for_each_leader(leader, css, tset) {
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
		struct mm_struct *mm = get_task_mm(leader);

		if (mm) {
			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);

			/*
			 * old_mems_allowed is the same with mems_allowed
			 * here, except if this task is being moved
			 * automatically due to hotplug.  In that case
			 * @mems_allowed has been updated and is empty, so
			 * @old_mems_allowed is the right nodesets that we
			 * migrate mm from.
			 */
1567
			if (is_memory_migrate(cs))
1568 1569
				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
						  &cpuset_attach_nodemask_to);
1570 1571
			else
				mmput(mm);
1572
		}
1573
	}
1574

1575
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1576

1577
	cs->attach_in_progress--;
1578 1579
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1580 1581

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1582 1583 1584 1585 1586
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1587
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1588 1589
	FILE_CPULIST,
	FILE_MEMLIST,
1590 1591
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
L
Linus Torvalds 已提交
1592 1593
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1594
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1595
	FILE_SCHED_LOAD_BALANCE,
1596
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1597 1598
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1599 1600
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1601 1602
} cpuset_filetype_t;

1603 1604
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1605
{
1606
	struct cpuset *cs = css_cs(css);
1607
	cpuset_filetype_t type = cft->private;
1608
	int retval = 0;
1609

1610
	mutex_lock(&cpuset_mutex);
1611 1612
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1613
		goto out_unlock;
1614
	}
1615 1616

	switch (type) {
L
Linus Torvalds 已提交
1617
	case FILE_CPU_EXCLUSIVE:
1618
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1619 1620
		break;
	case FILE_MEM_EXCLUSIVE:
1621
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1622
		break;
1623 1624 1625
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1626
	case FILE_SCHED_LOAD_BALANCE:
1627
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1628
		break;
1629
	case FILE_MEMORY_MIGRATE:
1630
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1631
		break;
1632
	case FILE_MEMORY_PRESSURE_ENABLED:
1633
		cpuset_memory_pressure_enabled = !!val;
1634
		break;
1635
	case FILE_SPREAD_PAGE:
1636
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1637 1638
		break;
	case FILE_SPREAD_SLAB:
1639
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1640
		break;
L
Linus Torvalds 已提交
1641 1642
	default:
		retval = -EINVAL;
1643
		break;
L
Linus Torvalds 已提交
1644
	}
1645 1646
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1647 1648 1649
	return retval;
}

1650 1651
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1652
{
1653
	struct cpuset *cs = css_cs(css);
1654
	cpuset_filetype_t type = cft->private;
1655
	int retval = -ENODEV;
1656

1657 1658 1659
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1660

1661 1662 1663 1664 1665 1666 1667 1668
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1669 1670
out_unlock:
	mutex_unlock(&cpuset_mutex);
1671 1672 1673
	return retval;
}

1674 1675 1676
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1677 1678
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1679
{
1680
	struct cpuset *cs = css_cs(of_css(of));
1681
	struct cpuset *trialcs;
1682
	int retval = -ENODEV;
1683

1684 1685
	buf = strstrip(buf);

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1696 1697 1698 1699 1700 1701 1702 1703
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1704
	 */
1705 1706
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1707 1708
	flush_work(&cpuset_hotplug_work);

1709 1710 1711
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1712

1713
	trialcs = alloc_trial_cpuset(cs);
1714 1715
	if (!trialcs) {
		retval = -ENOMEM;
1716
		goto out_unlock;
1717
	}
1718

1719
	switch (of_cft(of)->private) {
1720
	case FILE_CPULIST:
1721
		retval = update_cpumask(cs, trialcs, buf);
1722 1723
		break;
	case FILE_MEMLIST:
1724
		retval = update_nodemask(cs, trialcs, buf);
1725 1726 1727 1728 1729
		break;
	default:
		retval = -EINVAL;
		break;
	}
1730 1731

	free_trial_cpuset(trialcs);
1732 1733
out_unlock:
	mutex_unlock(&cpuset_mutex);
1734 1735
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1736
	flush_workqueue(cpuset_migrate_mm_wq);
1737
	return retval ?: nbytes;
1738 1739
}

L
Linus Torvalds 已提交
1740 1741 1742 1743 1744 1745 1746 1747
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1748
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1749
{
1750 1751
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1752
	int ret = 0;
L
Linus Torvalds 已提交
1753

1754
	spin_lock_irq(&callback_lock);
L
Linus Torvalds 已提交
1755 1756 1757

	switch (type) {
	case FILE_CPULIST:
1758
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
L
Linus Torvalds 已提交
1759 1760
		break;
	case FILE_MEMLIST:
1761
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
L
Linus Torvalds 已提交
1762
		break;
1763
	case FILE_EFFECTIVE_CPULIST:
1764
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1765 1766
		break;
	case FILE_EFFECTIVE_MEMLIST:
1767
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1768
		break;
L
Linus Torvalds 已提交
1769
	default:
1770
		ret = -EINVAL;
L
Linus Torvalds 已提交
1771 1772
	}

1773
	spin_unlock_irq(&callback_lock);
1774
	return ret;
L
Linus Torvalds 已提交
1775 1776
}

1777
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1778
{
1779
	struct cpuset *cs = css_cs(css);
1780 1781 1782 1783 1784 1785
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1786 1787
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1803 1804 1805

	/* Unreachable but makes gcc happy */
	return 0;
1806
}
L
Linus Torvalds 已提交
1807

1808
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1809
{
1810
	struct cpuset *cs = css_cs(css);
1811 1812 1813 1814 1815 1816 1817
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1818 1819 1820

	/* Unrechable but makes gcc happy */
	return 0;
1821 1822
}

L
Linus Torvalds 已提交
1823 1824 1825 1826 1827

/*
 * for the common functions, 'private' gives the type of file
 */

1828 1829 1830
static struct cftype files[] = {
	{
		.name = "cpus",
1831
		.seq_show = cpuset_common_seq_show,
1832
		.write = cpuset_write_resmask,
1833
		.max_write_len = (100U + 6 * NR_CPUS),
1834 1835 1836 1837 1838
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1839
		.seq_show = cpuset_common_seq_show,
1840
		.write = cpuset_write_resmask,
1841
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1842 1843 1844
		.private = FILE_MEMLIST,
	},

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1871 1872 1873 1874 1875 1876 1877
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1878 1879 1880 1881 1882 1883 1884 1885 1886
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1887 1888
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1917

1918 1919 1920 1921 1922 1923 1924
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1925

1926 1927
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1928 1929

/*
1930
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1931
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1932 1933
 */

1934 1935
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1936
{
T
Tejun Heo 已提交
1937
	struct cpuset *cs;
L
Linus Torvalds 已提交
1938

1939
	if (!parent_css)
1940
		return &top_cpuset.css;
1941

T
Tejun Heo 已提交
1942
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1943
	if (!cs)
1944
		return ERR_PTR(-ENOMEM);
1945 1946 1947 1948
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1949

P
Paul Jackson 已提交
1950
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1951
	cpumask_clear(cs->cpus_allowed);
1952
	nodes_clear(cs->mems_allowed);
1953 1954
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1955
	fmeter_init(&cs->fmeter);
1956
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1957

T
Tejun Heo 已提交
1958
	return &cs->css;
1959 1960 1961 1962 1963 1964

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1965 1966
}

1967
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1968
{
1969
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1970
	struct cpuset *parent = parent_cs(cs);
1971
	struct cpuset *tmp_cs;
1972
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1973 1974 1975 1976

	if (!parent)
		return 0;

1977 1978
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1979
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1980 1981 1982 1983
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1984

1985
	cpuset_inc();
1986

1987
	spin_lock_irq(&callback_lock);
1988
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1989 1990 1991
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
1992
	spin_unlock_irq(&callback_lock);
1993

1994
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1995
		goto out_unlock;
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
2010
	rcu_read_lock();
2011
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2012 2013
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
2014
			goto out_unlock;
2015
		}
2016
	}
2017
	rcu_read_unlock();
2018

2019
	spin_lock_irq(&callback_lock);
2020
	cs->mems_allowed = parent->mems_allowed;
2021
	cs->effective_mems = parent->mems_allowed;
2022
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2023
	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
D
Dan Carpenter 已提交
2024
	spin_unlock_irq(&callback_lock);
2025 2026
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
2027 2028 2029
	return 0;
}

2030 2031 2032 2033 2034 2035
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

2036
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2037
{
2038
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2039

2040
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2041 2042 2043 2044

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2045
	cpuset_dec();
T
Tejun Heo 已提交
2046
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2047

2048
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2049 2050
}

2051
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2052
{
2053
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2054

2055
	free_cpumask_var(cs->effective_cpus);
2056
	free_cpumask_var(cs->cpus_allowed);
2057
	kfree(cs);
L
Linus Torvalds 已提交
2058 2059
}

2060 2061 2062
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
2063
	spin_lock_irq(&callback_lock);
2064

2065
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2066 2067 2068 2069 2070 2071 2072 2073
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

2074
	spin_unlock_irq(&callback_lock);
2075 2076 2077
	mutex_unlock(&cpuset_mutex);
}

2078 2079 2080 2081 2082
/*
 * Make sure the new task conform to the current state of its parent,
 * which could have been changed by cpuset just after it inherits the
 * state from the parent and before it sits on the cgroup's task list.
 */
2083
static void cpuset_fork(struct task_struct *task)
2084 2085 2086 2087 2088 2089 2090 2091
{
	if (task_css_is_root(task, cpuset_cgrp_id))
		return;

	set_cpus_allowed_ptr(task, &current->cpus_allowed);
	task->mems_allowed = current->mems_allowed;
}

2092
struct cgroup_subsys cpuset_cgrp_subsys = {
2093 2094 2095 2096 2097 2098 2099
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
2100
	.post_attach	= cpuset_post_attach,
2101
	.bind		= cpuset_bind,
2102
	.fork		= cpuset_fork,
2103
	.legacy_cftypes	= files,
2104
	.early_init	= true,
2105 2106
};

L
Linus Torvalds 已提交
2107 2108 2109 2110 2111 2112 2113 2114
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2115
	int err = 0;
L
Linus Torvalds 已提交
2116

N
Nicholas Mc Guire 已提交
2117 2118
	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2119

2120
	cpumask_setall(top_cpuset.cpus_allowed);
2121
	nodes_setall(top_cpuset.mems_allowed);
2122 2123
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2124

2125
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2126
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2127
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2128 2129 2130

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2131 2132
		return err;

N
Nicholas Mc Guire 已提交
2133
	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2134

2135
	return 0;
L
Linus Torvalds 已提交
2136 2137
}

2138
/*
2139
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2140 2141
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2142 2143
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2144
 */
2145 2146 2147 2148 2149 2150 2151 2152
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2153
	parent = parent_cs(cs);
2154
	while (cpumask_empty(parent->cpus_allowed) ||
2155
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2156
		parent = parent_cs(parent);
2157

2158
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2159
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2160 2161
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2162
	}
2163 2164
}

2165 2166 2167 2168
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2169 2170 2171
{
	bool is_empty;

2172
	spin_lock_irq(&callback_lock);
2173 2174 2175 2176
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2177
	spin_unlock_irq(&callback_lock);
2178 2179 2180 2181 2182

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2183
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2184
		update_tasks_cpumask(cs);
2185
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2204 2205 2206 2207
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2208
{
2209 2210 2211 2212 2213
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2214
	spin_lock_irq(&callback_lock);
2215 2216
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2217
	spin_unlock_irq(&callback_lock);
2218

2219
	if (cpus_updated)
2220
		update_tasks_cpumask(cs);
2221
	if (mems_updated)
2222 2223 2224
		update_tasks_nodemask(cs);
}

2225
/**
2226
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2227
 * @cs: cpuset in interest
2228
 *
2229 2230 2231
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2232
 */
2233
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2234
{
2235 2236 2237 2238
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2239 2240
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2241

2242
	mutex_lock(&cpuset_mutex);
2243

2244 2245 2246 2247 2248 2249 2250 2251 2252
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2253 2254
	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2255

2256 2257
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2258

2259
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2260 2261
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
2262
	else
2263 2264
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
2265

2266
	mutex_unlock(&cpuset_mutex);
2267 2268
}

2269
/**
2270
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2271
 *
2272 2273 2274 2275 2276
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2277
 *
2278
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2279 2280
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2281
 *
2282 2283
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2284
 */
2285
static void cpuset_hotplug_workfn(struct work_struct *work)
2286
{
2287 2288
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2289
	bool cpus_updated, mems_updated;
2290
	bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2291

2292
	mutex_lock(&cpuset_mutex);
2293

2294 2295 2296
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2297

2298 2299
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2300

2301 2302
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
2303
		spin_lock_irq(&callback_lock);
2304 2305
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2306
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2307
		spin_unlock_irq(&callback_lock);
2308 2309
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2310

2311 2312
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
2313
		spin_lock_irq(&callback_lock);
2314 2315
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2316
		top_cpuset.effective_mems = new_mems;
2317
		spin_unlock_irq(&callback_lock);
2318
		update_tasks_nodemask(&top_cpuset);
2319
	}
2320

2321 2322
	mutex_unlock(&cpuset_mutex);

2323 2324
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2325
		struct cpuset *cs;
2326
		struct cgroup_subsys_state *pos_css;
2327

2328
		rcu_read_lock();
2329
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2330
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2331 2332
				continue;
			rcu_read_unlock();
2333

2334
			cpuset_hotplug_update_tasks(cs);
2335

2336 2337 2338 2339 2340
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2341

2342
	/* rebuild sched domains if cpus_allowed has changed */
2343 2344
	if (cpus_updated)
		rebuild_sched_domains();
2345 2346
}

2347
void cpuset_update_active_cpus(void)
2348
{
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2361 2362
}

2363
/*
2364 2365
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2366
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2367
 */
2368 2369
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2370
{
2371
	schedule_work(&cpuset_hotplug_work);
2372
	return NOTIFY_OK;
2373
}
2374 2375 2376 2377 2378

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2379

L
Linus Torvalds 已提交
2380 2381 2382 2383
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2384
 */
L
Linus Torvalds 已提交
2385 2386
void __init cpuset_init_smp(void)
{
2387
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2388
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2389
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2390

2391 2392 2393
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2394
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2395 2396 2397

	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
	BUG_ON(!cpuset_migrate_mm_wq);
L
Linus Torvalds 已提交
2398 2399 2400 2401 2402
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2403
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2404
 *
2405
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2406
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2407
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2408 2409 2410
 * tasks cpuset.
 **/

2411
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2412
{
2413 2414 2415
	unsigned long flags;

	spin_lock_irqsave(&callback_lock, flags);
2416
	rcu_read_lock();
2417
	guarantee_online_cpus(task_cs(tsk), pmask);
2418
	rcu_read_unlock();
2419
	spin_unlock_irqrestore(&callback_lock, flags);
L
Linus Torvalds 已提交
2420 2421
}

2422
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2423 2424
{
	rcu_read_lock();
2425
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2441 2442 2443
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2444 2445 2446
	 */
}

2447
void __init cpuset_init_current_mems_allowed(void)
L
Linus Torvalds 已提交
2448
{
2449
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2450 2451
}

2452 2453 2454 2455 2456 2457
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2458
 * subset of node_states[N_MEMORY], even if this means going outside the
2459 2460 2461 2462 2463 2464
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;
2465
	unsigned long flags;
2466

2467
	spin_lock_irqsave(&callback_lock, flags);
2468
	rcu_read_lock();
2469
	guarantee_online_mems(task_cs(tsk), &mask);
2470
	rcu_read_unlock();
2471
	spin_unlock_irqrestore(&callback_lock, flags);
2472 2473 2474 2475

	return mask;
}

2476
/**
2477 2478
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2479
 *
2480
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2481
 */
2482
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2483
{
2484
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2485 2486
}

2487
/*
2488 2489
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
2490
 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2491
 * (an unusual configuration), then returns the root cpuset.
2492
 */
2493
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2494
{
T
Tejun Heo 已提交
2495 2496
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2497 2498 2499
	return cs;
}

2500
/**
2501
 * cpuset_node_allowed - Can we allocate on a memory node?
2502
 * @node: is this an allowed node?
2503
 * @gfp_mask: memory allocation flags
2504
 *
2505 2506 2507 2508
 * If we're in interrupt, yes, we can always allocate.  If @node is set in
 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
 * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2509 2510 2511
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2512 2513
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2514
 * GFP_KERNEL allocations are not so marked, so can escape to the
2515
 * nearest enclosing hardwalled ancestor cpuset.
2516
 *
2517
 * Scanning up parent cpusets requires callback_lock.  The
2518 2519 2520 2521
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2522
 * cpuset are short of memory, might require taking the callback_lock.
2523
 *
2524
 * The first call here from mm/page_alloc:get_page_from_freelist()
2525 2526 2527
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2528 2529 2530 2531 2532 2533
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2534 2535
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2536
 *	TIF_MEMDIE   - any node ok
2537
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2538
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2539
 */
2540
bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2541
{
2542
	struct cpuset *cs;		/* current cpuset ancestors */
2543
	int allowed;			/* is allocation in zone z allowed? */
2544
	unsigned long flags;
2545

2546
	if (in_interrupt())
2547
		return true;
2548
	if (node_isset(node, current->mems_allowed))
2549
		return true;
2550 2551 2552 2553 2554
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2555
		return true;
2556
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2557
		return false;
2558

2559
	if (current->flags & PF_EXITING) /* Let dying task have memory */
2560
		return true;
2561

2562
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2563
	spin_lock_irqsave(&callback_lock, flags);
2564

2565
	rcu_read_lock();
2566
	cs = nearest_hardwall_ancestor(task_cs(current));
2567
	allowed = node_isset(node, cs->mems_allowed);
2568
	rcu_read_unlock();
2569

2570
	spin_unlock_irqrestore(&callback_lock, flags);
2571
	return allowed;
L
Linus Torvalds 已提交
2572 2573
}

2574
/**
2575 2576
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2601
static int cpuset_spread_node(int *rotor)
2602
{
2603
	return *rotor = next_node_in(*rotor, current->mems_allowed);
2604
}
2605 2606 2607

int cpuset_mem_spread_node(void)
{
2608 2609 2610 2611
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2612 2613 2614 2615 2616
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2617 2618 2619 2620
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2621 2622 2623
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2624 2625
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2626
/**
2627 2628 2629 2630 2631 2632 2633 2634
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2635 2636
 **/

2637 2638
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2639
{
2640
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2641 2642
}

2643
/**
2644
 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2645
 *
2646
 * Description: Prints current's name, cpuset name, and cached copy of its
2647
 * mems_allowed to the kernel log.
2648
 */
2649
void cpuset_print_current_mems_allowed(void)
2650
{
2651
	struct cgroup *cgrp;
2652

2653
	rcu_read_lock();
2654

2655 2656
	cgrp = task_cs(current)->css.cgroup;
	pr_info("%s cpuset=", current->comm);
T
Tejun Heo 已提交
2657
	pr_cont_cgroup_name(cgrp);
2658 2659
	pr_cont(" mems_allowed=%*pbl\n",
		nodemask_pr_args(&current->mems_allowed));
2660

2661
	rcu_read_unlock();
2662 2663
}

2664 2665 2666 2667 2668 2669
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2670
int cpuset_memory_pressure_enabled __read_mostly;
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2692
	rcu_read_lock();
2693
	fmeter_markevent(&task_cs(current)->fmeter);
2694
	rcu_read_unlock();
2695 2696
}

2697
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2698 2699 2700 2701
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2702 2703
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2704
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2705
 *    anyway.
L
Linus Torvalds 已提交
2706
 */
Z
Zefan Li 已提交
2707 2708
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
L
Linus Torvalds 已提交
2709
{
2710
	char *buf;
2711
	struct cgroup_subsys_state *css;
2712
	int retval;
L
Linus Torvalds 已提交
2713

2714
	retval = -ENOMEM;
T
Tejun Heo 已提交
2715
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2716
	if (!buf)
2717 2718
		goto out;

2719
	css = task_get_css(tsk, cpuset_cgrp_id);
2720 2721
	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
				current->nsproxy->cgroup_ns);
2722
	css_put(css);
2723
	if (retval >= PATH_MAX)
2724 2725
		retval = -ENAMETOOLONG;
	if (retval < 0)
Z
Zefan Li 已提交
2726
		goto out_free;
2727
	seq_puts(m, buf);
L
Linus Torvalds 已提交
2728
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2729
	retval = 0;
2730
out_free:
L
Linus Torvalds 已提交
2731
	kfree(buf);
2732
out:
L
Linus Torvalds 已提交
2733 2734
	return retval;
}
2735
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2736

2737
/* Display task mems_allowed in /proc/<pid>/status file. */
2738 2739
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2740 2741 2742 2743
	seq_printf(m, "Mems_allowed:\t%*pb\n",
		   nodemask_pr_args(&task->mems_allowed));
	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
		   nodemask_pr_args(&task->mems_allowed));
L
Linus Torvalds 已提交
2744
}