sched_rt.c 40.4 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#ifdef CONFIG_RT_GROUP_SCHED

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

10 11
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
12 13 14
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#else /* CONFIG_RT_GROUP_SCHED */

30 31
#define rt_entity_is_task(rt_se) (1)

32 33 34 35 36
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
52
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
53

54
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
55
{
56
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
57
}
I
Ingo Molnar 已提交
58

S
Steven Rostedt 已提交
59 60
static inline void rt_set_overload(struct rq *rq)
{
61 62 63
	if (!rq->online)
		return;

64
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
65 66 67 68 69 70 71 72
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
73
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
74
}
I
Ingo Molnar 已提交
75

S
Steven Rostedt 已提交
76 77
static inline void rt_clear_overload(struct rq *rq)
{
78 79 80
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
81
	/* the order here really doesn't matter */
82
	atomic_dec(&rq->rd->rto_count);
83
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
84
}
85

86
static void update_rt_migration(struct rt_rq *rt_rq)
87
{
88
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 90 91
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
92
		}
93 94 95
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
96
	}
97
}
S
Steven Rostedt 已提交
98

99 100
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
101 102 103 104 105 106
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
107 108 109 110 111 112 113 114
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
115 116 117 118 119 120
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
121 122 123 124 125 126
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

127 128 129 130 131 132 133 134 135 136 137 138
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

139 140 141 142 143
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

144 145
#else

146
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
147
{
P
Peter Zijlstra 已提交
148 149
}

150 151 152 153
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

154
static inline
155 156 157 158
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

159
static inline
160 161 162
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
163

S
Steven Rostedt 已提交
164 165
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
166 167 168 169 170
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

171
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
172

P
Peter Zijlstra 已提交
173
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
174 175
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
176
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
177

P
Peter Zijlstra 已提交
178 179 180 181 182 183
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
184 185 186
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
187
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
188 189 190 191 192 193 194 195 196 197 198 199

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
200
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
201
{
202
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
P
Peter Zijlstra 已提交
203 204
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

205 206 207
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
			enqueue_rt_entity(rt_se);
208
		if (rt_rq->highest_prio.curr < curr->prio)
209
			resched_task(curr);
P
Peter Zijlstra 已提交
210 211 212
	}
}

P
Peter Zijlstra 已提交
213
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
214 215 216 217 218 219 220
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

238
#ifdef CONFIG_SMP
239
static inline const struct cpumask *sched_rt_period_mask(void)
240 241 242
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
243
#else
244
static inline const struct cpumask *sched_rt_period_mask(void)
245
{
246
	return cpu_online_mask;
247 248
}
#endif
P
Peter Zijlstra 已提交
249

250 251
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
252
{
253 254
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
255

P
Peter Zijlstra 已提交
256 257 258 259 260
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

261
#else /* !CONFIG_RT_GROUP_SCHED */
262 263 264

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
265 266 267 268 269 270
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
284
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
285
{
286 287
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
288 289
}

P
Peter Zijlstra 已提交
290
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
291 292 293
{
}

P
Peter Zijlstra 已提交
294 295 296 297
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
298

299
static inline const struct cpumask *sched_rt_period_mask(void)
300
{
301
	return cpu_online_mask;
302 303 304 305 306 307 308 309
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
310 311 312 313 314
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

315
#endif /* CONFIG_RT_GROUP_SCHED */
316

P
Peter Zijlstra 已提交
317
#ifdef CONFIG_SMP
318 319 320
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
321
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
322 323 324 325 326 327
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

328
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
329 330 331

	spin_lock(&rt_b->rt_runtime_lock);
	rt_period = ktime_to_ns(rt_b->rt_period);
332
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
333 334 335 336 337 338 339
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

		spin_lock(&iter->rt_runtime_lock);
340 341 342 343 344
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
345 346 347
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

348 349 350 351
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
352 353
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
354
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
355 356 357 358 359 360 361 362 363 364
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
				spin_unlock(&iter->rt_runtime_lock);
				break;
			}
		}
P
Peter Zijlstra 已提交
365
next:
P
Peter Zijlstra 已提交
366 367 368 369 370 371
		spin_unlock(&iter->rt_runtime_lock);
	}
	spin_unlock(&rt_b->rt_runtime_lock);

	return more;
}
P
Peter Zijlstra 已提交
372

373 374 375
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
391 392 393 394 395
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
396 397 398 399 400
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
		spin_unlock(&rt_rq->rt_runtime_lock);

401 402 403 404 405
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
406 407
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

408 409 410
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
411
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
412 413 414
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

415 416 417
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
418
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
				continue;

			spin_lock(&iter->rt_runtime_lock);
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
			spin_unlock(&iter->rt_runtime_lock);

			if (!want)
				break;
		}

		spin_lock(&rt_rq->rt_runtime_lock);
437 438 439 440
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
441 442
		BUG_ON(want);
balanced:
443 444 445 446
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
		rt_rq->rt_runtime = RUNTIME_INF;
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__disable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static void __enable_runtime(struct rq *rq)
{
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

469 470 471
	/*
	 * Reset each runqueue's bandwidth settings
	 */
P
Peter Zijlstra 已提交
472 473 474 475 476 477 478
	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
479
		rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__enable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

494 495 496 497 498 499 500 501 502 503 504 505
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
		spin_unlock(&rt_rq->rt_runtime_lock);
		more = do_balance_runtime(rt_rq);
		spin_lock(&rt_rq->rt_runtime_lock);
	}

	return more;
}
506
#else /* !CONFIG_SMP */
507 508 509 510
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
511
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
512

513 514 515
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
516
	const struct cpumask *span;
517

518
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
519 520 521
		return 1;

	span = sched_rt_period_mask();
522
	for_each_cpu(i, span) {
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

		spin_lock(&rq->lock);
		if (rt_rq->rt_time) {
			u64 runtime;

			spin_lock(&rt_rq->rt_runtime_lock);
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
			spin_unlock(&rt_rq->rt_runtime_lock);
543 544
		} else if (rt_rq->rt_nr_running)
			idle = 0;
545 546 547 548 549 550 551 552

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
		spin_unlock(&rq->lock);
	}

	return idle;
}
P
Peter Zijlstra 已提交
553

P
Peter Zijlstra 已提交
554 555
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
556
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
557 558 559
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
560
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
561 562 563 564 565
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
566
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
567
{
P
Peter Zijlstra 已提交
568
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
569 570

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
571
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
572

P
Peter Zijlstra 已提交
573 574 575
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

576 577 578 579
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
580

P
Peter Zijlstra 已提交
581
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
582
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
583
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
584
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
585 586
			return 1;
		}
P
Peter Zijlstra 已提交
587 588 589 590 591
	}

	return 0;
}

I
Ingo Molnar 已提交
592 593 594 595
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
596
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
597 598
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
599 600
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
601 602 603 604 605
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

606
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
607 608
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
609 610

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
611 612

	curr->se.sum_exec_runtime += delta_exec;
613 614
	account_group_exec_runtime(curr, delta_exec);

615
	curr->se.exec_start = rq->clock;
616
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
617

618 619 620
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
621 622 623
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

624
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
625
			spin_lock(&rt_rq->rt_runtime_lock);
626 627 628
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
629
			spin_unlock(&rt_rq->rt_runtime_lock);
630
		}
D
Dhaval Giani 已提交
631
	}
I
Ingo Molnar 已提交
632 633
}

634
#if defined CONFIG_SMP
635 636 637 638

static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);

static inline int next_prio(struct rq *rq)
639
{
640 641 642 643 644 645 646 647
	struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);

	if (next && rt_prio(next->prio))
		return next->prio;
	else
		return MAX_RT_PRIO;
}

648 649
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
650
{
G
Gregory Haskins 已提交
651
	struct rq *rq = rq_of_rt_rq(rt_rq);
652

653
	if (prio < prev_prio) {
G
Gregory Haskins 已提交
654

655 656
		/*
		 * If the new task is higher in priority than anything on the
657 658
		 * run-queue, we know that the previous high becomes our
		 * next-highest.
659
		 */
660
		rt_rq->highest_prio.next = prev_prio;
661 662

		if (rq->online)
G
Gregory Haskins 已提交
663
			cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
I
Ingo Molnar 已提交
664

665 666 667 668 669 670 671 672 673 674 675 676
	} else if (prio == rt_rq->highest_prio.curr)
		/*
		 * If the next task is equal in priority to the highest on
		 * the run-queue, then we implicitly know that the next highest
		 * task cannot be any lower than current
		 */
		rt_rq->highest_prio.next = prio;
	else if (prio < rt_rq->highest_prio.next)
		/*
		 * Otherwise, we need to recompute next-highest
		 */
		rt_rq->highest_prio.next = next_prio(rq);
677
}
678

679 680 681 682
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
683

684 685 686 687 688
	if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
		rt_rq->highest_prio.next = next_prio(rq);

	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
689 690
}

691 692
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
693
static inline
694 695 696 697 698
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
699

700
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
717
	if (rt_rq->rt_nr_running) {
718

719
		WARN_ON(prio < prev_prio);
720

721
		/*
722 723
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
724
		 */
725
		if (prio == prev_prio) {
726 727 728
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
729
				sched_find_first_bit(array->bitmap);
730 731
		}

732
	} else
733
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
734

735 736
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
737

738 739 740 741 742 743
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
744

745
#ifdef CONFIG_RT_GROUP_SCHED
746 747 748 749 750 751 752 753 754 755 756 757 758 759

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
760 761 762 763
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
802 803
}

804
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
805
{
P
Peter Zijlstra 已提交
806 807 808
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
809
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
810

811 812 813 814 815 816 817
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
818
		return;
819

820
	list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
821
	__set_bit(rt_se_prio(rt_se), array->bitmap);
822

P
Peter Zijlstra 已提交
823 824 825
	inc_rt_tasks(rt_se, rt_rq);
}

826
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
842
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
843
{
844
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
845

846 847 848 849 850 851 852
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
			__dequeue_rt_entity(rt_se);
	}
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
		__enqueue_rt_entity(rt_se);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
			__enqueue_rt_entity(rt_se);
873
	}
I
Ingo Molnar 已提交
874 875 876 877 878
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
879 880 881 882 883 884 885
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

886
	enqueue_rt_entity(rt_se);
887

888 889 890
	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);

891
	inc_cpu_load(rq, p->se.load.weight);
P
Peter Zijlstra 已提交
892 893
}

894
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
895
{
P
Peter Zijlstra 已提交
896
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
897

898
	update_curr_rt(rq);
899
	dequeue_rt_entity(rt_se);
900

901 902
	dequeue_pushable_task(rq, p);

903
	dec_cpu_load(rq, p->se.load.weight);
I
Ingo Molnar 已提交
904 905 906 907 908 909
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
910 911
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
912
{
913
	if (on_rt_rq(rt_se)) {
914 915 916 917 918 919 920
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
921
	}
P
Peter Zijlstra 已提交
922 923
}

924
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
925
{
P
Peter Zijlstra 已提交
926 927
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
928

P
Peter Zijlstra 已提交
929 930
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
931
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
932
	}
I
Ingo Molnar 已提交
933 934
}

P
Peter Zijlstra 已提交
935
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
936
{
937
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
938 939
}

940
#ifdef CONFIG_SMP
941 942
static int find_lowest_rq(struct task_struct *task);

943 944
static int select_task_rq_rt(struct task_struct *p, int sync)
{
945 946 947
	struct rq *rq = task_rq(p);

	/*
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
963
	 */
964
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
965
	    (p->rt.nr_cpus_allowed > 1)) {
966 967 968 969 970 971 972 973 974
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
975 976
	return task_cpu(p);
}
977 978 979 980 981 982

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

983
	if (p->rt.nr_cpus_allowed != 1
984 985
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
986

987 988
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
989 990 991 992 993 994 995 996 997 998

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

999 1000
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1001 1002 1003
/*
 * Preempt the current task with a newly woken task if needed:
 */
1004
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
1005
{
1006
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1007
		resched_task(rq->curr);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1024 1025
	if (p->prio == rq->curr->prio && !need_resched())
		check_preempt_equal_prio(rq, p);
1026
#endif
I
Ingo Molnar 已提交
1027 1028
}

P
Peter Zijlstra 已提交
1029 1030
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1031
{
P
Peter Zijlstra 已提交
1032 1033
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1034 1035 1036 1037
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1038
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1039 1040

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1041
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1042

P
Peter Zijlstra 已提交
1043 1044
	return next;
}
I
Ingo Molnar 已提交
1045

1046
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1047 1048 1049 1050
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1051

P
Peter Zijlstra 已提交
1052 1053 1054 1055 1056
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
1057
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1058 1059 1060 1061
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1062
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1063 1064 1065 1066 1067
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1080
#ifdef CONFIG_SMP
1081 1082 1083 1084 1085
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1086
#endif
1087

P
Peter Zijlstra 已提交
1088
	return p;
I
Ingo Molnar 已提交
1089 1090
}

1091
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1092
{
1093
	update_curr_rt(rq);
I
Ingo Molnar 已提交
1094
	p->se.exec_start = 0;
1095 1096 1097 1098 1099 1100 1101

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
	if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1102 1103
}

1104
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1105

S
Steven Rostedt 已提交
1106 1107 1108 1109 1110
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

1111 1112 1113
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1114
	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
1115
	    (p->rt.nr_cpus_allowed > 1))
1116 1117 1118 1119
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1120
/* Return the second highest RT task, NULL otherwise */
1121
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1122
{
P
Peter Zijlstra 已提交
1123 1124 1125 1126
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1127 1128
	int idx;

P
Peter Zijlstra 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1148 1149
	}

S
Steven Rostedt 已提交
1150 1151 1152
	return next;
}

1153
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1154

1155 1156
static inline int pick_optimal_cpu(int this_cpu,
				   const struct cpumask *mask)
G
Gregory Haskins 已提交
1157 1158 1159 1160
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
1161
	if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask))
G
Gregory Haskins 已提交
1162 1163
		return this_cpu;

1164 1165
	first = cpumask_first(mask);
	if (first < nr_cpu_ids)
G
Gregory Haskins 已提交
1166 1167 1168 1169 1170 1171 1172 1173
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1174
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1175 1176
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
1177
	cpumask_var_t domain_mask;
G
Gregory Haskins 已提交
1178

1179 1180
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1181

1182 1183
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1193
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

1203 1204 1205 1206
	if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) {
		for_each_domain(cpu, sd) {
			if (sd->flags & SD_WAKE_AFFINE) {
				int best_cpu;
G
Gregory Haskins 已提交
1207

1208 1209 1210
				cpumask_and(domain_mask,
					    sched_domain_span(sd),
					    lowest_mask);
G
Gregory Haskins 已提交
1211

1212 1213
				best_cpu = pick_optimal_cpu(this_cpu,
							    domain_mask);
G
Gregory Haskins 已提交
1214

1215 1216 1217 1218 1219
				if (best_cpu != -1) {
					free_cpumask_var(domain_mask);
					return best_cpu;
				}
			}
G
Gregory Haskins 已提交
1220
		}
1221
		free_cpumask_var(domain_mask);
G
Gregory Haskins 已提交
1222 1223 1224 1225 1226 1227 1228 1229
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
1230 1231 1232
}

/* Will lock the rq it finds */
1233
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1234 1235 1236
{
	struct rq *lowest_rq = NULL;
	int tries;
1237
	int cpu;
S
Steven Rostedt 已提交
1238

1239 1240 1241
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1242
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1243 1244
			break;

1245 1246
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1247
		/* if the prio of this runqueue changed, try again */
1248
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1249 1250 1251 1252 1253 1254
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1255
			if (unlikely(task_rq(task) != rq ||
1256 1257
				     !cpumask_test_cpu(lowest_rq->cpu,
						       &task->cpus_allowed) ||
1258
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
1259
				     !task->se.on_rq)) {
1260

S
Steven Rostedt 已提交
1261 1262 1263 1264 1265 1266 1267
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1268
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1269 1270 1271
			break;

		/* try again */
1272
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1273 1274 1275 1276 1277 1278
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->rt.nr_cpus_allowed <= 1);

	BUG_ON(!p->se.on_rq);
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1299 1300 1301 1302 1303
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1304
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1305 1306 1307 1308
{
	struct task_struct *next_task;
	struct rq *lowest_rq;

G
Gregory Haskins 已提交
1309 1310 1311
	if (!rq->rt.overloaded)
		return 0;

1312
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1313 1314 1315 1316
	if (!next_task)
		return 0;

 retry:
1317
	if (unlikely(next_task == rq->curr)) {
1318
		WARN_ON(1);
S
Steven Rostedt 已提交
1319
		return 0;
1320
	}
S
Steven Rostedt 已提交
1321 1322 1323 1324 1325 1326

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1327 1328
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1329 1330 1331
		return 0;
	}

1332
	/* We might release rq lock */
S
Steven Rostedt 已提交
1333 1334 1335
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1336
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1337 1338 1339
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1340
		 * find lock_lowest_rq releases rq->lock
1341 1342 1343 1344 1345
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1346
		 */
1347
		task = pick_next_pushable_task(rq);
1348 1349 1350 1351 1352 1353 1354 1355 1356
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
			 * If we get here, the task hasnt moved at all, but
			 * it has failed to push.  We will not try again,
			 * since the other cpus will pull from us when they
			 * are ready.
			 */
			dequeue_pushable_task(rq, next_task);
			goto out;
S
Steven Rostedt 已提交
1357
		}
1358

1359 1360 1361 1362
		if (!task)
			/* No more tasks, just exit */
			goto out;

1363
		/*
1364
		 * Something has shifted, try again.
1365
		 */
1366 1367 1368
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1369 1370
	}

1371
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1372 1373 1374 1375 1376
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

1377
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1378 1379 1380 1381

out:
	put_task_struct(next_task);

1382
	return 1;
S
Steven Rostedt 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1392 1393
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1394
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1395
	struct task_struct *p;
1396 1397
	struct rq *src_rq;

1398
	if (likely(!rt_overloaded(this_rq)))
1399 1400
		return 0;

1401
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1402 1403 1404 1405
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1418 1419 1420
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1421
		 * alter this_rq
1422
		 */
1423
		double_lock_balance(this_rq, src_rq);
1424 1425 1426 1427

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1428 1429
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1430 1431 1432 1433 1434 1435 1436

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1437
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1438 1439 1440 1441 1442 1443 1444 1445 1446
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1447
			 * current task on the run queue
1448
			 */
1449
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1450
				goto skip;
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
			 */
		}
M
Mike Galbraith 已提交
1464
 skip:
1465
		double_unlock_balance(this_rq, src_rq);
1466 1467 1468 1469 1470
	}

	return ret;
}

1471
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1472 1473
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1474
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1475 1476 1477
		pull_rt_task(rq);
}

1478
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1479
{
1480
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1481 1482
}

1483 1484 1485 1486
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1487
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1488
{
1489
	if (!task_running(rq, p) &&
1490
	    !test_tsk_need_resched(rq->curr) &&
1491
	    has_pushable_tasks(rq) &&
1492
	    p->rt.nr_cpus_allowed > 1)
1493 1494 1495
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
1496
static unsigned long
I
Ingo Molnar 已提交
1497
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1498 1499 1500
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1501
{
1502 1503
	/* don't touch RT tasks */
	return 0;
1504 1505 1506 1507 1508 1509
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1510 1511
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1512
}
1513

1514
static void set_cpus_allowed_rt(struct task_struct *p,
1515
				const struct cpumask *new_mask)
1516
{
1517
	int weight = cpumask_weight(new_mask);
1518 1519 1520 1521 1522 1523 1524

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1525
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1526 1527
		struct rq *rq = task_rq(p);

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
		if (!task_current(rq, p)) {
			/*
			 * Make sure we dequeue this task from the pushable list
			 * before going further.  It will either remain off of
			 * the list because we are no longer pushable, or it
			 * will be requeued.
			 */
			if (p->rt.nr_cpus_allowed > 1)
				dequeue_pushable_task(rq, p);

			/*
			 * Requeue if our weight is changing and still > 1
			 */
			if (weight > 1)
				enqueue_pushable_task(rq, p);

		}

P
Peter Zijlstra 已提交
1546
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1547
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1548
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1549 1550 1551 1552
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

1553
		update_rt_migration(&rq->rt);
1554 1555
	}

1556
	cpumask_copy(&p->cpus_allowed, new_mask);
P
Peter Zijlstra 已提交
1557
	p->rt.nr_cpus_allowed = weight;
1558
}
1559

1560
/* Assumes rq->lock is held */
1561
static void rq_online_rt(struct rq *rq)
1562 1563 1564
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1565

P
Peter Zijlstra 已提交
1566 1567
	__enable_runtime(rq);

1568
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1569 1570 1571
}

/* Assumes rq->lock is held */
1572
static void rq_offline_rt(struct rq *rq)
1573 1574 1575
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1576

P
Peter Zijlstra 已提交
1577 1578
	__disable_runtime(rq);

1579
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1580
}
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
1599 1600 1601 1602 1603 1604

static inline void init_sched_rt_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
1605
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1606
					GFP_KERNEL, cpu_to_node(i));
1607
}
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1656 1657 1658
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1659
		 */
1660
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1661 1662 1663 1664 1665
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1666
#endif /* CONFIG_SMP */
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1693
		if (p->rt.timeout > next)
1694
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1695 1696
	}
}
I
Ingo Molnar 已提交
1697

P
Peter Zijlstra 已提交
1698
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1699
{
1700 1701
	update_curr_rt(rq);

1702 1703
	watchdog(rq, p);

I
Ingo Molnar 已提交
1704 1705 1706 1707 1708 1709 1710
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1711
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1712 1713
		return;

P
Peter Zijlstra 已提交
1714
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1715

1716 1717 1718 1719
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1720
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1721
		requeue_task_rt(rq, p, 0);
1722 1723
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1724 1725
}

1726 1727 1728 1729 1730
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
1731 1732 1733

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1734 1735
}

1736
static const struct sched_class rt_sched_class = {
1737
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1747
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1748 1749
	.select_task_rq		= select_task_rq_rt,

I
Ingo Molnar 已提交
1750
	.load_balance		= load_balance_rt,
1751
	.move_one_task		= move_one_task_rt,
1752
	.set_cpus_allowed       = set_cpus_allowed_rt,
1753 1754
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1755 1756 1757
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1758
	.switched_from		= switched_from_rt,
1759
#endif
I
Ingo Molnar 已提交
1760

1761
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1762
	.task_tick		= task_tick_rt,
1763 1764 1765

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1766
};
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
	struct rt_rq *rt_rq;

	rcu_read_lock();
	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1780
#endif /* CONFIG_SCHED_DEBUG */
1781