sched_rt.c 40.2 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

#ifdef CONFIG_RT_GROUP_SCHED

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#else /* CONFIG_RT_GROUP_SCHED */

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
40
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
41

42
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
43
{
44
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
45
}
I
Ingo Molnar 已提交
46

S
Steven Rostedt 已提交
47 48
static inline void rt_set_overload(struct rq *rq)
{
49 50 51
	if (!rq->online)
		return;

52
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
53 54 55 56 57 58 59 60
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
61
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
62
}
I
Ingo Molnar 已提交
63

S
Steven Rostedt 已提交
64 65
static inline void rt_clear_overload(struct rq *rq)
{
66 67 68
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
69
	/* the order here really doesn't matter */
70
	atomic_dec(&rq->rd->rto_count);
71
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
72
}
73

74
static void update_rt_migration(struct rt_rq *rt_rq)
75
{
76 77 78 79
	if (rt_rq->rt_nr_migratory && (rt_rq->rt_nr_running > 1)) {
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
80
		}
81 82 83
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
84
	}
85
}
86

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

#else

117 118 119 120
static inline
void enqueue_pushable_task(struct rq *rq, struct task_struct *p) {}
static inline
void dequeue_pushable_task(struct rq *rq, struct task_struct *p) {}
121 122 123 124
static inline
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
static inline
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
125

S
Steven Rostedt 已提交
126 127
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
128 129 130 131 132
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

133
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
134

P
Peter Zijlstra 已提交
135
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
136 137
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
138
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
139

P
Peter Zijlstra 已提交
140 141 142 143 144 145
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
146 147 148
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
149
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
150 151 152 153 154 155 156 157 158 159 160 161

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
162
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
163
{
164
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
P
Peter Zijlstra 已提交
165 166
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

167 168 169
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
			enqueue_rt_entity(rt_se);
170
		if (rt_rq->highest_prio.curr < curr->prio)
171
			resched_task(curr);
P
Peter Zijlstra 已提交
172 173 174
	}
}

P
Peter Zijlstra 已提交
175
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
176 177 178 179 180 181 182
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

200
#ifdef CONFIG_SMP
201
static inline const struct cpumask *sched_rt_period_mask(void)
202 203 204
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
205
#else
206
static inline const struct cpumask *sched_rt_period_mask(void)
207
{
208
	return cpu_online_mask;
209 210
}
#endif
P
Peter Zijlstra 已提交
211

212 213
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
214
{
215 216
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
217

P
Peter Zijlstra 已提交
218 219 220 221 222
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

223
#else /* !CONFIG_RT_GROUP_SCHED */
224 225 226

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
227 228 229 230 231 232
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
246
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
247
{
248 249
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
250 251
}

P
Peter Zijlstra 已提交
252
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
253 254 255
{
}

P
Peter Zijlstra 已提交
256 257 258 259
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
260

261
static inline const struct cpumask *sched_rt_period_mask(void)
262
{
263
	return cpu_online_mask;
264 265 266 267 268 269 270 271
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
272 273 274 275 276
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

277
#endif /* CONFIG_RT_GROUP_SCHED */
278

P
Peter Zijlstra 已提交
279
#ifdef CONFIG_SMP
280 281 282
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
283
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
284 285 286 287 288 289
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

290
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
291 292 293

	spin_lock(&rt_b->rt_runtime_lock);
	rt_period = ktime_to_ns(rt_b->rt_period);
294
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
295 296 297 298 299 300 301
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

		spin_lock(&iter->rt_runtime_lock);
302 303 304 305 306
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
307 308 309
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

310 311 312 313
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
314 315
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
316
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
317 318 319 320 321 322 323 324 325 326
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
				spin_unlock(&iter->rt_runtime_lock);
				break;
			}
		}
P
Peter Zijlstra 已提交
327
next:
P
Peter Zijlstra 已提交
328 329 330 331 332 333
		spin_unlock(&iter->rt_runtime_lock);
	}
	spin_unlock(&rt_b->rt_runtime_lock);

	return more;
}
P
Peter Zijlstra 已提交
334

335 336 337
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
353 354 355 356 357
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
358 359 360 361 362
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
		spin_unlock(&rt_rq->rt_runtime_lock);

363 364 365 366 367
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
368 369
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

370 371 372
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
373
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
374 375 376
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

377 378 379
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
380
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
				continue;

			spin_lock(&iter->rt_runtime_lock);
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
			spin_unlock(&iter->rt_runtime_lock);

			if (!want)
				break;
		}

		spin_lock(&rt_rq->rt_runtime_lock);
399 400 401 402
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
403 404
		BUG_ON(want);
balanced:
405 406 407 408
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
		rt_rq->rt_runtime = RUNTIME_INF;
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__disable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static void __enable_runtime(struct rq *rq)
{
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

431 432 433
	/*
	 * Reset each runqueue's bandwidth settings
	 */
P
Peter Zijlstra 已提交
434 435 436 437 438 439 440
	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
441
		rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__enable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

456 457 458 459 460 461 462 463 464 465 466 467
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
		spin_unlock(&rt_rq->rt_runtime_lock);
		more = do_balance_runtime(rt_rq);
		spin_lock(&rt_rq->rt_runtime_lock);
	}

	return more;
}
468
#else /* !CONFIG_SMP */
469 470 471 472
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
473
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
474

475 476 477
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
478
	const struct cpumask *span;
479

480
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
481 482 483
		return 1;

	span = sched_rt_period_mask();
484
	for_each_cpu(i, span) {
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

		spin_lock(&rq->lock);
		if (rt_rq->rt_time) {
			u64 runtime;

			spin_lock(&rt_rq->rt_runtime_lock);
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
			spin_unlock(&rt_rq->rt_runtime_lock);
505 506
		} else if (rt_rq->rt_nr_running)
			idle = 0;
507 508 509 510 511 512 513 514

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
		spin_unlock(&rq->lock);
	}

	return idle;
}
P
Peter Zijlstra 已提交
515

P
Peter Zijlstra 已提交
516 517
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
518
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
519 520 521
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
522
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
523 524 525 526 527
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
528
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
529
{
P
Peter Zijlstra 已提交
530
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
531 532

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
533
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
534

P
Peter Zijlstra 已提交
535 536 537
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

538 539 540 541
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
542

P
Peter Zijlstra 已提交
543
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
544
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
545
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
546
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
547 548
			return 1;
		}
P
Peter Zijlstra 已提交
549 550 551 552 553
	}

	return 0;
}

I
Ingo Molnar 已提交
554 555 556 557
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
558
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
559 560
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
561 562
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
563 564 565 566 567
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

568
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
569 570
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
571 572

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
573 574

	curr->se.sum_exec_runtime += delta_exec;
575 576
	account_group_exec_runtime(curr, delta_exec);

577
	curr->se.exec_start = rq->clock;
578
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
579

580 581 582
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
583 584 585
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

586
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
587
			spin_lock(&rt_rq->rt_runtime_lock);
588 589 590
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
591
			spin_unlock(&rt_rq->rt_runtime_lock);
592
		}
D
Dhaval Giani 已提交
593
	}
I
Ingo Molnar 已提交
594 595
}

596
#if defined CONFIG_SMP
597 598 599 600 601 602 603 604 605 606 607 608 609

static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);

static inline int next_prio(struct rq *rq)
{
	struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);

	if (next && rt_prio(next->prio))
		return next->prio;
	else
		return MAX_RT_PRIO;
}

610 611
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
612
{
G
Gregory Haskins 已提交
613
	struct rq *rq = rq_of_rt_rq(rt_rq);
614

615
	if (prio < prev_prio) {
G
Gregory Haskins 已提交
616

617 618
		/*
		 * If the new task is higher in priority than anything on the
619 620
		 * run-queue, we know that the previous high becomes our
		 * next-highest.
621
		 */
622 623
		rt_rq->highest_prio.next = prev_prio;

624
		if (rq->online)
G
Gregory Haskins 已提交
625
			cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
626

627 628 629 630 631 632 633 634 635 636 637 638
	} else if (prio == rt_rq->highest_prio.curr)
		/*
		 * If the next task is equal in priority to the highest on
		 * the run-queue, then we implicitly know that the next highest
		 * task cannot be any lower than current
		 */
		rt_rq->highest_prio.next = prio;
	else if (prio < rt_rq->highest_prio.next)
		/*
		 * Otherwise, we need to recompute next-highest
		 */
		rt_rq->highest_prio.next = next_prio(rq);
639
}
640

641 642 643 644
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
645

646 647 648 649 650
	if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
		rt_rq->highest_prio.next = next_prio(rq);

	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
651 652
}

653 654
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
655
static inline
656 657 658 659 660
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
661

662
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
679
	if (rt_rq->rt_nr_running) {
680

681
		WARN_ON(prio < prev_prio);
682

683
		/*
684 685
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
686
		 */
687
		if (prio == prev_prio) {
688 689 690
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
691
				sched_find_first_bit(array->bitmap);
692 693
		}

694
	} else
695
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
696

697 698 699 700 701 702 703 704 705
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}

#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
706

707
#ifdef CONFIG_RT_GROUP_SCHED
708 709 710 711 712 713 714 715 716 717 718 719 720 721

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
722 723 724 725
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
764 765
}

766
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
767
{
P
Peter Zijlstra 已提交
768 769 770
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
771
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
772

773 774 775 776 777 778 779
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
780
		return;
781

782
	list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
783
	__set_bit(rt_se_prio(rt_se), array->bitmap);
784

P
Peter Zijlstra 已提交
785 786 787
	inc_rt_tasks(rt_se, rt_rq);
}

788
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
804
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
805
{
806
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
807

808 809 810 811 812 813 814
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
			__dequeue_rt_entity(rt_se);
	}
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
		__enqueue_rt_entity(rt_se);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
			__enqueue_rt_entity(rt_se);
835
	}
I
Ingo Molnar 已提交
836 837 838 839 840
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
841 842 843 844 845 846 847
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

848
	enqueue_rt_entity(rt_se);
849

850 851 852
	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);

853
	inc_cpu_load(rq, p->se.load.weight);
P
Peter Zijlstra 已提交
854 855
}

856
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
857
{
P
Peter Zijlstra 已提交
858
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
859

860
	update_curr_rt(rq);
861
	dequeue_rt_entity(rt_se);
862

863 864
	dequeue_pushable_task(rq, p);

865
	dec_cpu_load(rq, p->se.load.weight);
I
Ingo Molnar 已提交
866 867 868 869 870 871
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
872 873
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
874
{
875
	if (on_rt_rq(rt_se)) {
876 877 878 879 880 881 882
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
883
	}
P
Peter Zijlstra 已提交
884 885
}

886
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
887
{
P
Peter Zijlstra 已提交
888 889
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
890

P
Peter Zijlstra 已提交
891 892
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
893
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
894
	}
I
Ingo Molnar 已提交
895 896
}

P
Peter Zijlstra 已提交
897
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
898
{
899
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
900 901
}

902
#ifdef CONFIG_SMP
903 904
static int find_lowest_rq(struct task_struct *task);

905 906
static int select_task_rq_rt(struct task_struct *p, int sync)
{
907 908 909
	struct rq *rq = task_rq(p);

	/*
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
925
	 */
926
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
927
	    (p->rt.nr_cpus_allowed > 1)) {
928 929 930 931 932 933 934 935 936
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
937 938
	return task_cpu(p);
}
939 940 941

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
942
	cpumask_var_t mask;
943 944 945 946

	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

947
	if (!alloc_cpumask_var(&mask, GFP_ATOMIC))
948 949
		return;

950 951 952 953 954 955
	if (p->rt.nr_cpus_allowed != 1
	    && cpupri_find(&rq->rd->cpupri, p, mask))
		goto free;

	if (!cpupri_find(&rq->rd->cpupri, rq->curr, mask))
		goto free;
956 957 958 959 960 961 962 963

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
964 965
free:
	free_cpumask_var(mask);
966 967
}

968 969
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
970 971 972
/*
 * Preempt the current task with a newly woken task if needed:
 */
973
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
974
{
975
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
976
		resched_task(rq->curr);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
993 994
	if (p->prio == rq->curr->prio && !need_resched())
		check_preempt_equal_prio(rq, p);
995
#endif
I
Ingo Molnar 已提交
996 997
}

P
Peter Zijlstra 已提交
998 999
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1000
{
P
Peter Zijlstra 已提交
1001 1002
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1003 1004 1005 1006
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1007
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1008 1009

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1010
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1011

P
Peter Zijlstra 已提交
1012 1013
	return next;
}
I
Ingo Molnar 已提交
1014

1015
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1016 1017 1018 1019
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1020

P
Peter Zijlstra 已提交
1021 1022 1023 1024 1025
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
1026
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1027 1028 1029 1030
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1031
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1032 1033 1034 1035 1036
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

P
Peter Zijlstra 已提交
1049
	return p;
I
Ingo Molnar 已提交
1050 1051
}

1052
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1053
{
1054
	update_curr_rt(rq);
I
Ingo Molnar 已提交
1055
	p->se.exec_start = 0;
1056 1057 1058 1059 1060 1061 1062

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
	if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1063 1064
}

1065
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1066

S
Steven Rostedt 已提交
1067 1068 1069 1070 1071
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

1072 1073 1074
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1075
	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
1076
	    (p->rt.nr_cpus_allowed > 1))
1077 1078 1079 1080
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1081
/* Return the second highest RT task, NULL otherwise */
1082
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1083
{
P
Peter Zijlstra 已提交
1084 1085 1086 1087
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1088 1089
	int idx;

P
Peter Zijlstra 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1109 1110
	}

S
Steven Rostedt 已提交
1111 1112 1113
	return next;
}

1114
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1115

G
Gregory Haskins 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1134
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1135 1136
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1137

1138 1139
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1140

1141 1142
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1143

1144 1145 1146 1147 1148
	/*
	 * Only consider CPUs that are usable for migration.
	 * I guess we might want to change cpupri_find() to ignore those
	 * in the first place.
	 */
1149
	cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
1150

G
Gregory Haskins 已提交
1151 1152 1153 1154 1155 1156 1157 1158
	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1159
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

1174 1175
			cpumask_and(&domain_mask, sched_domain_span(sd),
				    lowest_mask);
G
Gregory Haskins 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
1190 1191 1192
}

/* Will lock the rq it finds */
1193
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1194 1195 1196
{
	struct rq *lowest_rq = NULL;
	int tries;
1197
	int cpu;
S
Steven Rostedt 已提交
1198

1199 1200 1201
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1202
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1203 1204
			break;

1205 1206
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1207
		/* if the prio of this runqueue changed, try again */
1208
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1209 1210 1211 1212 1213 1214
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1215
			if (unlikely(task_rq(task) != rq ||
1216 1217
				     !cpumask_test_cpu(lowest_rq->cpu,
						       &task->cpus_allowed) ||
1218
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
1219
				     !task->se.on_rq)) {
1220

S
Steven Rostedt 已提交
1221 1222 1223 1224 1225 1226 1227
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1228
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1229 1230 1231
			break;

		/* try again */
1232
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1233 1234 1235 1236 1237 1238
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->rt.nr_cpus_allowed <= 1);

	BUG_ON(!p->se.on_rq);
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1264 1265 1266 1267 1268
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1269
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1270 1271 1272 1273
{
	struct task_struct *next_task;
	struct rq *lowest_rq;

G
Gregory Haskins 已提交
1274 1275 1276
	if (!rq->rt.overloaded)
		return 0;

1277
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1278 1279 1280 1281
	if (!next_task)
		return 0;

 retry:
1282
	if (unlikely(next_task == rq->curr)) {
1283
		WARN_ON(1);
S
Steven Rostedt 已提交
1284
		return 0;
1285
	}
S
Steven Rostedt 已提交
1286 1287 1288 1289 1290 1291

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1292 1293
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1294 1295 1296
		return 0;
	}

1297
	/* We might release rq lock */
S
Steven Rostedt 已提交
1298 1299 1300
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1301
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1302 1303 1304
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1305
		 * find lock_lowest_rq releases rq->lock
1306 1307 1308 1309 1310
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1311
		 */
1312
		task = pick_next_pushable_task(rq);
1313 1314 1315 1316 1317 1318 1319 1320 1321
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
			 * If we get here, the task hasnt moved at all, but
			 * it has failed to push.  We will not try again,
			 * since the other cpus will pull from us when they
			 * are ready.
			 */
			dequeue_pushable_task(rq, next_task);
			goto out;
S
Steven Rostedt 已提交
1322
		}
1323

1324 1325 1326 1327
		if (!task)
			/* No more tasks, just exit */
			goto out;

1328
		/*
1329
		 * Something has shifted, try again.
1330
		 */
1331 1332 1333
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1334 1335
	}

1336
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1337 1338 1339 1340 1341
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

1342
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1343 1344 1345 1346

out:
	put_task_struct(next_task);

1347
	return 1;
S
Steven Rostedt 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1357 1358
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1359
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1360
	struct task_struct *p;
1361 1362
	struct rq *src_rq;

1363
	if (likely(!rt_overloaded(this_rq)))
1364 1365
		return 0;

1366
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1367 1368 1369 1370
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1383 1384 1385
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1386
		 * alter this_rq
1387
		 */
1388
		double_lock_balance(this_rq, src_rq);
1389 1390 1391 1392

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1393 1394
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1395 1396 1397 1398 1399 1400 1401

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1402
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1403 1404 1405 1406 1407 1408 1409 1410 1411
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1412
			 * current task on the run queue
1413
			 */
1414
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1415
				goto skip;
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
			 */
		}
M
Mike Galbraith 已提交
1429
 skip:
1430
		double_unlock_balance(this_rq, src_rq);
1431 1432 1433 1434 1435
	}

	return ret;
}

1436
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1437 1438
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1439
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1440 1441 1442
		pull_rt_task(rq);
}

1443 1444 1445 1446 1447
/*
 * assumes rq->lock is held
 */
static int needs_post_schedule_rt(struct rq *rq)
{
1448
	return has_pushable_tasks(rq);
1449 1450
}

1451
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1452 1453
{
	/*
1454 1455
	 * This is only called if needs_post_schedule_rt() indicates that
	 * we need to push tasks away
S
Steven Rostedt 已提交
1456
	 */
1457 1458 1459
	spin_lock_irq(&rq->lock);
	push_rt_tasks(rq);
	spin_unlock_irq(&rq->lock);
S
Steven Rostedt 已提交
1460 1461
}

1462 1463 1464 1465
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1466
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1467
{
1468
	if (!task_running(rq, p) &&
1469
	    !test_tsk_need_resched(rq->curr) &&
1470
	    has_pushable_tasks(rq) &&
1471
	    p->rt.nr_cpus_allowed > 1)
1472 1473 1474
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
1475
static unsigned long
I
Ingo Molnar 已提交
1476
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1477 1478 1479
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1480
{
1481 1482
	/* don't touch RT tasks */
	return 0;
1483 1484 1485 1486 1487 1488
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1489 1490
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1491
}
1492

1493
static void set_cpus_allowed_rt(struct task_struct *p,
1494
				const struct cpumask *new_mask)
1495
{
1496
	int weight = cpumask_weight(new_mask);
1497 1498 1499 1500 1501 1502 1503

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1504
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1505 1506
		struct rq *rq = task_rq(p);

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		if (!task_current(rq, p)) {
			/*
			 * Make sure we dequeue this task from the pushable list
			 * before going further.  It will either remain off of
			 * the list because we are no longer pushable, or it
			 * will be requeued.
			 */
			if (p->rt.nr_cpus_allowed > 1)
				dequeue_pushable_task(rq, p);

			/*
			 * Requeue if our weight is changing and still > 1
			 */
			if (weight > 1)
				enqueue_pushable_task(rq, p);

		}

P
Peter Zijlstra 已提交
1525
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1526
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1527
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1528 1529 1530 1531
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

1532
		update_rt_migration(&rq->rt);
1533 1534
	}

1535
	cpumask_copy(&p->cpus_allowed, new_mask);
P
Peter Zijlstra 已提交
1536
	p->rt.nr_cpus_allowed = weight;
1537
}
1538

1539
/* Assumes rq->lock is held */
1540
static void rq_online_rt(struct rq *rq)
1541 1542 1543
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1544

P
Peter Zijlstra 已提交
1545 1546
	__enable_runtime(rq);

1547
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1548 1549 1550
}

/* Assumes rq->lock is held */
1551
static void rq_offline_rt(struct rq *rq)
1552 1553 1554
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1555

P
Peter Zijlstra 已提交
1556 1557
	__disable_runtime(rq);

1558
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1559
}
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
1578 1579 1580 1581 1582 1583

static inline void init_sched_rt_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
1584 1585
		alloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
					GFP_KERNEL, cpu_to_node(i));
1586
}
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1635 1636 1637
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1638
		 */
1639
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1640 1641 1642 1643 1644
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1645
#endif /* CONFIG_SMP */
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1672
		if (p->rt.timeout > next)
1673
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1674 1675
	}
}
I
Ingo Molnar 已提交
1676

P
Peter Zijlstra 已提交
1677
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1678
{
1679 1680
	update_curr_rt(rq);

1681 1682
	watchdog(rq, p);

I
Ingo Molnar 已提交
1683 1684 1685 1686 1687 1688 1689
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1690
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1691 1692
		return;

P
Peter Zijlstra 已提交
1693
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1694

1695 1696 1697 1698
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1699
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1700
		requeue_task_rt(rq, p, 0);
1701 1702
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1703 1704
}

1705 1706 1707 1708 1709
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
1710 1711 1712

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1713 1714
}

1715
static const struct sched_class rt_sched_class = {
1716
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1726
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1727 1728
	.select_task_rq		= select_task_rq_rt,

I
Ingo Molnar 已提交
1729
	.load_balance		= load_balance_rt,
1730
	.move_one_task		= move_one_task_rt,
1731
	.set_cpus_allowed       = set_cpus_allowed_rt,
1732 1733
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1734
	.pre_schedule		= pre_schedule_rt,
1735
	.needs_post_schedule	= needs_post_schedule_rt,
1736 1737
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1738
	.switched_from		= switched_from_rt,
1739
#endif
I
Ingo Molnar 已提交
1740

1741
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1742
	.task_tick		= task_tick_rt,
1743 1744 1745

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1746
};
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
	struct rt_rq *rt_rq;

	rcu_read_lock();
	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1760
#endif /* CONFIG_SCHED_DEBUG */
1761