sched_rt.c 21.9 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15
	cpu_set(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
16 17 18 19 20 21 22 23
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
24
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
25
}
I
Ingo Molnar 已提交
26

S
Steven Rostedt 已提交
27 28 29
static inline void rt_clear_overload(struct rq *rq)
{
	/* the order here really doesn't matter */
30 31
	atomic_dec(&rq->rd->rto_count);
	cpu_clear(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
32
}
33 34 35

static void update_rt_migration(struct rq *rq)
{
36
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 38 39 40 41
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
42
		rt_clear_overload(rq);
43 44
		rq->rt.overloaded = 0;
	}
45
}
S
Steven Rostedt 已提交
46 47
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
48 49 50 51
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
52
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
53 54 55 56 57 58 59
{
	struct task_struct *curr = rq->curr;
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

60
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
61 62
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
63 64

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
65 66

	curr->se.sum_exec_runtime += delta_exec;
67
	curr->se.exec_start = rq->clock;
68
	cpuacct_charge(curr, delta_exec);
I
Ingo Molnar 已提交
69 70
}

71 72 73 74
static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
{
	WARN_ON(!rt_task(p));
	rq->rt.rt_nr_running++;
75 76 77
#ifdef CONFIG_SMP
	if (p->prio < rq->rt.highest_prio)
		rq->rt.highest_prio = p->prio;
78 79 80 81
	if (p->nr_cpus_allowed > 1)
		rq->rt.rt_nr_migratory++;

	update_rt_migration(rq);
82
#endif /* CONFIG_SMP */
83 84 85 86 87 88 89
}

static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
{
	WARN_ON(!rt_task(p));
	WARN_ON(!rq->rt.rt_nr_running);
	rq->rt.rt_nr_running--;
90 91 92 93 94 95 96 97 98 99 100 101 102
#ifdef CONFIG_SMP
	if (rq->rt.rt_nr_running) {
		struct rt_prio_array *array;

		WARN_ON(p->prio < rq->rt.highest_prio);
		if (p->prio == rq->rt.highest_prio) {
			/* recalculate */
			array = &rq->rt.active;
			rq->rt.highest_prio =
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
		rq->rt.highest_prio = MAX_RT_PRIO;
103 104 105 106
	if (p->nr_cpus_allowed > 1)
		rq->rt.rt_nr_migratory--;

	update_rt_migration(rq);
107
#endif /* CONFIG_SMP */
108 109
}

110
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
I
Ingo Molnar 已提交
111 112 113
{
	struct rt_prio_array *array = &rq->rt.active;

P
Peter Zijlstra 已提交
114
	list_add_tail(&p->rt.run_list, array->queue + p->prio);
I
Ingo Molnar 已提交
115
	__set_bit(p->prio, array->bitmap);
116
	inc_cpu_load(rq, p->se.load.weight);
117 118

	inc_rt_tasks(p, rq);
119 120 121

	if (wakeup)
		p->rt.timeout = 0;
I
Ingo Molnar 已提交
122 123 124 125 126
}

/*
 * Adding/removing a task to/from a priority array:
 */
127
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
128 129 130
{
	struct rt_prio_array *array = &rq->rt.active;

131
	update_curr_rt(rq);
I
Ingo Molnar 已提交
132

P
Peter Zijlstra 已提交
133
	list_del(&p->rt.run_list);
I
Ingo Molnar 已提交
134 135
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
136
	dec_cpu_load(rq, p->se.load.weight);
137 138

	dec_rt_tasks(p, rq);
I
Ingo Molnar 已提交
139 140 141 142 143 144 145 146 147 148
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
	struct rt_prio_array *array = &rq->rt.active;

P
Peter Zijlstra 已提交
149
	list_move_tail(&p->rt.run_list, array->queue + p->prio);
I
Ingo Molnar 已提交
150 151 152
}

static void
153
yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
154
{
155
	requeue_task_rt(rq, rq->curr);
I
Ingo Molnar 已提交
156 157
}

158
#ifdef CONFIG_SMP
159 160
static int find_lowest_rq(struct task_struct *task);

161 162
static int select_task_rq_rt(struct task_struct *p, int sync)
{
163 164 165
	struct rq *rq = task_rq(p);

	/*
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
181
	 */
182 183
	if (unlikely(rt_task(rq->curr)) &&
	    (p->nr_cpus_allowed > 1)) {
184 185 186 187 188 189 190 191 192
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
193 194 195 196
	return task_cpu(p);
}
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
197 198 199 200 201 202 203 204 205
/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
	if (p->prio < rq->curr->prio)
		resched_task(rq->curr);
}

206
static struct task_struct *pick_next_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
207 208 209 210 211 212 213 214 215 216 217
{
	struct rt_prio_array *array = &rq->rt.active;
	struct task_struct *next;
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
	if (idx >= MAX_RT_PRIO)
		return NULL;

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
218
	next = list_entry(queue->next, struct task_struct, rt.run_list);
I
Ingo Molnar 已提交
219

220
	next->se.exec_start = rq->clock;
I
Ingo Molnar 已提交
221 222 223 224

	return next;
}

225
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
226
{
227
	update_curr_rt(rq);
I
Ingo Molnar 已提交
228 229 230
	p->se.exec_start = 0;
}

231
#ifdef CONFIG_SMP
S
Steven Rostedt 已提交
232 233 234 235 236 237
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

238 239 240
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
241 242
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
	    (p->nr_cpus_allowed > 1))
243 244 245 246
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
247
/* Return the second highest RT task, NULL otherwise */
248
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
{
	struct rt_prio_array *array = &rq->rt.active;
	struct task_struct *next;
	struct list_head *queue;
	int idx;

	if (likely(rq->rt.rt_nr_running < 2))
		return NULL;

	idx = sched_find_first_bit(array->bitmap);
	if (unlikely(idx >= MAX_RT_PRIO)) {
		WARN_ON(1); /* rt_nr_running is bad */
		return NULL;
	}

	queue = array->queue + idx;
265 266
	BUG_ON(list_empty(queue));

P
Peter Zijlstra 已提交
267
	next = list_entry(queue->next, struct task_struct, rt.run_list);
268 269
	if (unlikely(pick_rt_task(rq, next, cpu)))
		goto out;
S
Steven Rostedt 已提交
270 271 272

	if (queue->next->next != queue) {
		/* same prio task */
273
		next = list_entry(queue->next->next, struct task_struct,
P
Peter Zijlstra 已提交
274
				  rt.run_list);
275 276
		if (pick_rt_task(rq, next, cpu))
			goto out;
S
Steven Rostedt 已提交
277 278
	}

279
 retry:
S
Steven Rostedt 已提交
280 281
	/* slower, but more flexible */
	idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
282
	if (unlikely(idx >= MAX_RT_PRIO))
S
Steven Rostedt 已提交
283 284 285
		return NULL;

	queue = array->queue + idx;
286 287
	BUG_ON(list_empty(queue));

P
Peter Zijlstra 已提交
288
	list_for_each_entry(next, queue, rt.run_list) {
289 290 291 292 293
		if (pick_rt_task(rq, next, cpu))
			goto out;
	}

	goto retry;
S
Steven Rostedt 已提交
294

295
 out:
S
Steven Rostedt 已提交
296 297 298 299 300
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
301
static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
S
Steven Rostedt 已提交
302
{
G
Gregory Haskins 已提交
303
	int       lowest_prio = -1;
304
	int       lowest_cpu  = -1;
G
Gregory Haskins 已提交
305
	int       count       = 0;
306
	int       cpu;
S
Steven Rostedt 已提交
307

308
	cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
S
Steven Rostedt 已提交
309

310 311 312
	/*
	 * Scan each rq for the lowest prio.
	 */
313
	for_each_cpu_mask(cpu, *lowest_mask) {
314
		struct rq *rq = cpu_rq(cpu);
S
Steven Rostedt 已提交
315

316 317
		/* We look for lowest RT prio or non-rt CPU */
		if (rq->rt.highest_prio >= MAX_RT_PRIO) {
318 319 320 321 322 323 324 325 326
			/*
			 * if we already found a low RT queue
			 * and now we found this non-rt queue
			 * clear the mask and set our bit.
			 * Otherwise just return the queue as is
			 * and the count==1 will cause the algorithm
			 * to use the first bit found.
			 */
			if (lowest_cpu != -1) {
G
Gregory Haskins 已提交
327
				cpus_clear(*lowest_mask);
328 329
				cpu_set(rq->cpu, *lowest_mask);
			}
G
Gregory Haskins 已提交
330
			return 1;
331 332 333
		}

		/* no locking for now */
G
Gregory Haskins 已提交
334 335 336 337 338
		if ((rq->rt.highest_prio > task->prio)
		    && (rq->rt.highest_prio >= lowest_prio)) {
			if (rq->rt.highest_prio > lowest_prio) {
				/* new low - clear old data */
				lowest_prio = rq->rt.highest_prio;
339 340
				lowest_cpu = cpu;
				count = 0;
G
Gregory Haskins 已提交
341
			}
G
Gregory Haskins 已提交
342
			count++;
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
		} else
			cpu_clear(cpu, *lowest_mask);
	}

	/*
	 * Clear out all the set bits that represent
	 * runqueues that were of higher prio than
	 * the lowest_prio.
	 */
	if (lowest_cpu > 0) {
		/*
		 * Perhaps we could add another cpumask op to
		 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
		 * Then that could be optimized to use memset and such.
		 */
		for_each_cpu_mask(cpu, *lowest_mask) {
			if (cpu >= lowest_cpu)
				break;
			cpu_clear(cpu, *lowest_mask);
S
Steven Rostedt 已提交
362
		}
363 364
	}

G
Gregory Haskins 已提交
365
	return count;
G
Gregory Haskins 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
}

static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
389 390 391 392
	int count    = find_lowest_cpus(task, lowest_mask);

	if (!count)
		return -1; /* No targets found */
G
Gregory Haskins 已提交
393

G
Gregory Haskins 已提交
394 395 396 397 398 399
	/*
	 * There is no sense in performing an optimal search if only one
	 * target is found.
	 */
	if (count == 1)
		return first_cpu(*lowest_mask);
G
Gregory Haskins 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
439 440 441
}

/* Will lock the rq it finds */
442
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
443 444 445
{
	struct rq *lowest_rq = NULL;
	int tries;
446
	int cpu;
S
Steven Rostedt 已提交
447

448 449 450
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

451
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
452 453
			break;

454 455
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
456
		/* if the prio of this runqueue changed, try again */
457
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
458 459 460 461 462 463
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
464
			if (unlikely(task_rq(task) != rq ||
465 466
				     !cpu_isset(lowest_rq->cpu,
						task->cpus_allowed) ||
467
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
468
				     !task->se.on_rq)) {
469

S
Steven Rostedt 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
		spin_unlock(&lowest_rq->lock);
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
493
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
494 495 496 497 498 499
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
500 501 502
	if (!rq->rt.overloaded)
		return 0;

503
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
504 505 506 507
	if (!next_task)
		return 0;

 retry:
508
	if (unlikely(next_task == rq->curr)) {
509
		WARN_ON(1);
S
Steven Rostedt 已提交
510
		return 0;
511
	}
S
Steven Rostedt 已提交
512 513 514 515 516 517

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
518 519
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
520 521 522
		return 0;
	}

523
	/* We might release rq lock */
S
Steven Rostedt 已提交
524 525 526
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
527
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
528 529 530
	if (!lowest_rq) {
		struct task_struct *task;
		/*
531
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
532 533 534
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
535
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
536 537 538 539 540 541 542 543
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

544
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

	spin_unlock(&lowest_rq->lock);

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

576 577
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
578 579
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p, *next;
580 581
	struct rq *src_rq;

582
	if (likely(!rt_overloaded(this_rq)))
583 584 585 586
		return 0;

	next = pick_next_task_rt(this_rq);

587
	for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
588 589 590 591 592 593 594 595 596 597 598 599 600
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
I
Ingo Molnar 已提交
601

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
		if (src_rq->rt.rt_nr_running <= 1) {
			spin_unlock(&src_rq->lock);
			continue;
		}

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
I
Ingo Molnar 已提交
637
				goto out;
638 639 640 641 642 643 644 645 646 647 648

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
I
Ingo Molnar 已提交
649
			 *
650 651 652 653 654 655 656
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
I
Ingo Molnar 已提交
657
 out:
658 659 660 661 662 663
		spin_unlock(&src_rq->lock);
	}

	return ret;
}

664
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
665 666
{
	/* Try to pull RT tasks here if we lower this rq's prio */
667
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
668 669 670
		pull_rt_task(rq);
}

671
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
672 673 674 675 676 677 678 679
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
680
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
681 682 683 684 685 686
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

687

688
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
689
{
690
	if (!task_running(rq, p) &&
G
Gregory Haskins 已提交
691 692
	    (p->prio >= rq->rt.highest_prio) &&
	    rq->rt.overloaded)
693 694 695
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
696
static unsigned long
I
Ingo Molnar 已提交
697
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
698 699 700
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
701
{
702 703
	/* don't touch RT tasks */
	return 0;
704 705 706 707 708 709
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
710 711
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
712
}
713

714 715 716 717 718 719 720 721 722 723 724 725 726
static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
	if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
		struct rq *rq = task_rq(p);

727
		if ((p->nr_cpus_allowed <= 1) && (weight > 1)) {
728
			rq->rt.rt_nr_migratory++;
729
		} else if ((p->nr_cpus_allowed > 1) && (weight <= 1)) {
730 731 732 733 734 735 736 737 738 739
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

	p->cpus_allowed    = *new_mask;
	p->nr_cpus_allowed = weight;
}
740

741 742 743 744 745 746 747 748 749 750 751 752 753
/* Assumes rq->lock is held */
static void join_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
}

/* Assumes rq->lock is held */
static void leave_domain_rt(struct rq *rq)
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
}
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
		 * then reschedule.
		 */
		if (p->prio > rq->rt.highest_prio)
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
828
#endif /* CONFIG_SMP */
829 830 831 832 833 834 835 836 837 838 839
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
		if (next > p->rt.timeout) {
			u64 next_time = p->se.sum_exec_runtime;

			next_time += next * (NSEC_PER_SEC/HZ);
			if (p->it_sched_expires > next_time)
				p->it_sched_expires = next_time;
		} else
			p->it_sched_expires = p->se.sum_exec_runtime;
	}
}
I
Ingo Molnar 已提交
865 866 867

static void task_tick_rt(struct rq *rq, struct task_struct *p)
{
868 869
	update_curr_rt(rq);

870 871
	watchdog(rq, p);

I
Ingo Molnar 已提交
872 873 874 875 876 877 878
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
879
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
880 881
		return;

P
Peter Zijlstra 已提交
882
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
883

884 885 886 887
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
888
	if (p->rt.run_list.prev != p->rt.run_list.next) {
889 890 891
		requeue_task_rt(rq, p);
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
892 893
}

894 895 896 897 898 899 900
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

901 902
const struct sched_class rt_sched_class = {
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
903 904 905
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,
906 907 908
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_rt,
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
909 910 911 912 913 914

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

915
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
916
	.load_balance		= load_balance_rt,
917
	.move_one_task		= move_one_task_rt,
918
	.set_cpus_allowed       = set_cpus_allowed_rt,
919 920
	.join_domain            = join_domain_rt,
	.leave_domain           = leave_domain_rt,
921 922 923
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
924
	.switched_from		= switched_from_rt,
925
#endif
I
Ingo Molnar 已提交
926

927
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
928
	.task_tick		= task_tick_rt,
929 930 931

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
932
};