denali.c 62.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */

#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/mutex.h>
D
David Miller 已提交
24
#include <linux/slab.h>
25 26 27 28 29 30 31 32
#include <linux/pci.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

33
/* We define a module parameter that allows the user to override
34 35 36 37 38 39
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
40 41
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
			" -1 indicates use default timings");
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

#define DENALI_NAND_NAME    "denali-nand"

/* We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience. */
#define DENALI_IRQ_ALL	(INTR_STATUS0__DMA_CMD_COMP | \
			INTR_STATUS0__ECC_TRANSACTION_DONE | \
			INTR_STATUS0__ECC_ERR | \
			INTR_STATUS0__PROGRAM_FAIL | \
			INTR_STATUS0__LOAD_COMP | \
			INTR_STATUS0__PROGRAM_COMP | \
			INTR_STATUS0__TIME_OUT | \
			INTR_STATUS0__ERASE_FAIL | \
			INTR_STATUS0__RST_COMP | \
			INTR_STATUS0__ERASE_COMP)

58
/* indicates whether or not the internal value for the flash bank is
59
   valid or not */
60
#define CHIP_SELECT_INVALID	-1
61 62 63

#define SUPPORT_8BITECC		1

64
/* This macro divides two integers and rounds fractional values up
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
 * to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

/* this macro allows us to convert from an MTD structure to our own
 * device context (denali) structure.
 */
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)

/* These constants are defined by the driver to enable common driver
   configuration options. */
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

87
/* this is a helper macro that allows us to
88 89 90 91 92 93 94 95 96 97 98
 * format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)

/* List of platforms this NAND controller has be integrated into */
static const struct pci_device_id denali_pci_ids[] = {
	{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
	{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
	{ /* end: all zeroes */ }
};


99 100
/* these are static lookup tables that give us easy access to
   registers in the NAND controller.
101
 */
102 103 104
static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
						  INTR_STATUS1,
						  INTR_STATUS2,
105 106 107
						  INTR_STATUS3};

static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
108 109 110
							DEVICE_RESET__BANK1,
							DEVICE_RESET__BANK2,
							DEVICE_RESET__BANK3};
111 112

static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
113 114 115
							INTR_STATUS1__TIME_OUT,
							INTR_STATUS2__TIME_OUT,
							INTR_STATUS3__TIME_OUT};
116 117

static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
118 119 120
							INTR_STATUS1__RST_COMP,
							INTR_STATUS2__RST_COMP,
							INTR_STATUS3__RST_COMP};
121 122

/* specifies the debug level of the driver */
123
static int nand_debug_level;
124 125 126

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
127 128 129 130
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
131 132 133 134 135 136
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

#define DEBUG_DENALI 0

/* This is a wrapper for writing to the denali registers.
 * this allows us to create debug information so we can
137
 * observe how the driver is programming the device.
138 139 140
 * it uses standard linux convention for (val, addr) */
static void denali_write32(uint32_t value, void *addr)
{
141
	iowrite32(value, addr);
142 143

#if DEBUG_DENALI
144 145
	printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value,
			(uint32_t)((uint32_t)addr & 0x1fff));
146
#endif
147
}
148

149 150 151 152 153
/* Certain operations for the denali NAND controller use
 * an indexed mode to read/write data. The operation is
 * performed by writing the address value of the command
 * to the device memory followed by the data. This function
 * abstracts this common operation.
154
*/
155 156
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
157 158 159 160 161 162 163 164 165 166 167 168 169
{
	denali_write32(address, denali->flash_mem);
	denali_write32(data, denali->flash_mem + 0x10);
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
	denali_write32(address, denali->flash_mem);
	*pdata = ioread32(denali->flash_mem + 0x10);
}

170
/* We need to buffer some data for some of the NAND core routines.
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
 * The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
	uint32_t cmd = 0x0;

	/* initialize the data buffer to store status */
	reset_buf(denali);

	/* initiate a device status read */
192
	cmd = MODE_11 | BANK(denali->flash_bank);
193 194 195 196 197 198 199
	index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
	denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);

	/* update buffer with status value */
	write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));

#if DEBUG_DENALI
200 201
	printk(KERN_INFO "device reporting status value of 0x%2x\n",
			denali->buf.buf[0]);
202 203 204 205 206 207 208
#endif
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
	uint32_t irq_status = 0;
209
	uint32_t irq_mask = reset_complete[denali->flash_bank] |
210 211 212 213 214 215 216 217 218
			    operation_timeout[denali->flash_bank];
	int bank = 0;

	clear_interrupts(denali);

	bank = device_reset_banks[denali->flash_bank];
	denali_write32(bank, denali->flash_reg + DEVICE_RESET);

	irq_status = wait_for_irq(denali, irq_mask);
219

220 221 222 223 224
	if (irq_status & operation_timeout[denali->flash_bank])
		printk(KERN_ERR "reset bank failed.\n");
}

/* Reset the flash controller */
225
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
226 227 228 229 230 231 232 233 234 235 236
{
	uint32_t i;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
		denali_write32(reset_complete[i] | operation_timeout[i],
		denali->flash_reg + intr_status_addresses[i]);

	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
237 238 239 240
		denali_write32(device_reset_banks[i],
				denali->flash_reg + DEVICE_RESET);
		while (!(ioread32(denali->flash_reg +
						intr_status_addresses[i]) &
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
			(reset_complete[i] | operation_timeout[i])))
			;
		if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
			operation_timeout[i])
			nand_dbg_print(NAND_DBG_WARN,
			"NAND Reset operation timed out on bank %d\n", i);
	}

	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
		denali_write32(reset_complete[i] | operation_timeout[i],
			denali->flash_reg + intr_status_addresses[i]);

	return PASS;
}

256 257 258
/* this routine calculates the ONFI timing values for a given mode and
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
259
 */
260
static void nand_onfi_timing_set(struct denali_nand_info *denali,
261
								uint16_t mode)
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t TclsRising = 1;
	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

		data_invalid =
		    data_invalid_rhoh <
		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
		acc_clks++;

	if ((data_invalid - acc_clks * CLK_X) < 2)
		nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n",
			__FILE__, __LINE__);

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (!TclsRising)
		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
		acc_clks = 6;

	denali_write32(acc_clks, denali->flash_reg + ACC_CLKS);
	denali_write32(re_2_we, denali->flash_reg + RE_2_WE);
	denali_write32(re_2_re, denali->flash_reg + RE_2_RE);
	denali_write32(we_2_re, denali->flash_reg + WE_2_RE);
	denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
}

/* configures the initial ECC settings for the controller */
static void set_ecc_config(struct denali_nand_info *denali)
{
#if SUPPORT_8BITECC
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) ||
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128))
		denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif

367 368
	if ((ioread32(denali->flash_reg + ECC_CORRECTION) &
				ECC_CORRECTION__VALUE) == 1) {
369
		denali->dev_info.wECCBytesPerSector = 4;
370 371
		denali->dev_info.wECCBytesPerSector *=
			denali->dev_info.wDevicesConnected;
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
		denali->dev_info.wNumPageSpareFlag =
			denali->dev_info.wPageSpareSize -
			denali->dev_info.wPageDataSize /
			(ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
			denali->dev_info.wECCBytesPerSector
			- denali->dev_info.wSpareSkipBytes;
	} else {
		denali->dev_info.wECCBytesPerSector =
			(ioread32(denali->flash_reg + ECC_CORRECTION) &
			ECC_CORRECTION__VALUE) * 13 / 8;
		if ((denali->dev_info.wECCBytesPerSector) % 2 == 0)
			denali->dev_info.wECCBytesPerSector += 2;
		else
			denali->dev_info.wECCBytesPerSector += 1;

387 388 389 390
		denali->dev_info.wECCBytesPerSector *=
			denali->dev_info.wDevicesConnected;
		denali->dev_info.wNumPageSpareFlag =
			denali->dev_info.wPageSpareSize -
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
			denali->dev_info.wPageDataSize /
			(ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
			denali->dev_info.wECCBytesPerSector
			- denali->dev_info.wSpareSkipBytes;
	}
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
	uint16_t blks_lun_l, blks_lun_h, n_of_luns;
	uint32_t blockperlun, id;

	denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET);

	while (!((ioread32(denali->flash_reg + INTR_STATUS0) &
408 409 410
			INTR_STATUS0__RST_COMP) |
			(ioread32(denali->flash_reg + INTR_STATUS0) &
			INTR_STATUS0__TIME_OUT)))
411 412
		;

413 414 415 416
	if (ioread32(denali->flash_reg + INTR_STATUS0) &
			INTR_STATUS0__RST_COMP) {
		denali_write32(DEVICE_RESET__BANK1,
				denali->flash_reg + DEVICE_RESET);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
		while (!((ioread32(denali->flash_reg + INTR_STATUS1) &
			INTR_STATUS1__RST_COMP) |
			(ioread32(denali->flash_reg + INTR_STATUS1) &
			INTR_STATUS1__TIME_OUT)))
			;

		if (ioread32(denali->flash_reg + INTR_STATUS1) &
			INTR_STATUS1__RST_COMP) {
			denali_write32(DEVICE_RESET__BANK2,
				denali->flash_reg + DEVICE_RESET);
			while (!((ioread32(denali->flash_reg + INTR_STATUS2) &
				INTR_STATUS2__RST_COMP) |
				(ioread32(denali->flash_reg + INTR_STATUS2) &
				INTR_STATUS2__TIME_OUT)))
				;

			if (ioread32(denali->flash_reg + INTR_STATUS2) &
				INTR_STATUS2__RST_COMP) {
				denali_write32(DEVICE_RESET__BANK3,
					denali->flash_reg + DEVICE_RESET);
437 438 439 440 441 442
				while (!((ioread32(denali->flash_reg +
						INTR_STATUS3) &
						INTR_STATUS3__RST_COMP) |
						(ioread32(denali->flash_reg +
						INTR_STATUS3) &
						INTR_STATUS3__TIME_OUT)))
443 444 445 446 447 448 449 450 451
					;
			} else {
				printk(KERN_ERR "Getting a time out for bank 2!\n");
			}
		} else {
			printk(KERN_ERR "Getting a time out for bank 1!\n");
		}
	}

452 453 454 455 456 457 458 459
	denali_write32(INTR_STATUS0__TIME_OUT,
			denali->flash_reg + INTR_STATUS0);
	denali_write32(INTR_STATUS1__TIME_OUT,
			denali->flash_reg + INTR_STATUS1);
	denali_write32(INTR_STATUS2__TIME_OUT,
			denali->flash_reg + INTR_STATUS2);
	denali_write32(INTR_STATUS3__TIME_OUT,
			denali->flash_reg + INTR_STATUS3);
460 461 462 463 464 465 466 467 468 469 470 471

	denali->dev_info.wONFIDevFeatures =
		ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES);
	denali->dev_info.wONFIOptCommands =
		ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS);
	denali->dev_info.wONFITimingMode =
		ioread32(denali->flash_reg + ONFI_TIMING_MODE);
	denali->dev_info.wONFIPgmCacheTimingMode =
		ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE);

	n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS;
472 473 474 475
	blks_lun_l = ioread32(denali->flash_reg +
				ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L);
	blks_lun_h = ioread32(denali->flash_reg +
				ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U);
476 477 478 479 480 481 482 483 484 485

	blockperlun = (blks_lun_h << 16) | blks_lun_l;

	denali->dev_info.wTotalBlocks = n_of_luns * blockperlun;

	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
486 487
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
488 489 490
			break;
	}

491
	nand_onfi_timing_set(denali, i);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

	index_addr(denali, MODE_11 | 0, 0x90);
	index_addr(denali, MODE_11 | 1, 0);

	for (i = 0; i < 3; i++)
		index_addr_read_data(denali, MODE_11 | 2, &id);

	nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id);

	denali->dev_info.MLCDevice = id & 0x0C;

	/* By now, all the ONFI devices we know support the page cache */
	/* rw feature. So here we enable the pipeline_rw_ahead feature */
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

static void get_samsung_nand_para(struct denali_nand_info *denali)
{
	uint8_t no_of_planes;
	uint32_t blk_size;
	uint64_t plane_size, capacity;
	uint32_t id_bytes[5];
	int i;

	index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90);
	index_addr(denali, (uint32_t)(MODE_11 | 1), 0);
	for (i = 0; i < 5; i++)
522 523
		index_addr_read_data(denali, (uint32_t)(MODE_11 | 2),
							&id_bytes[i]);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542

	nand_dbg_print(NAND_DBG_DEBUG,
		"ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
		id_bytes[0], id_bytes[1], id_bytes[2],
		id_bytes[3], id_bytes[4]);

	if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */
		/* Set timing register values according to datasheet */
		denali_write32(5, denali->flash_reg + ACC_CLKS);
		denali_write32(20, denali->flash_reg + RE_2_WE);
		denali_write32(12, denali->flash_reg + WE_2_RE);
		denali_write32(14, denali->flash_reg + ADDR_2_DATA);
		denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		denali_write32(2, denali->flash_reg + CS_SETUP_CNT);
	}

	no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2);
	plane_size  = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4);
543 544
	blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) &
					0x30) >> 4);
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	capacity = (uint64_t)128 * plane_size * no_of_planes;

	do_div(capacity, blk_size);
	denali->dev_info.wTotalBlocks = capacity;
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

	/* Workaround to fix a controller bug which reports a wrong */
	/* spare area size for some kind of Toshiba NAND device */
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
		denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
562 563
		denali_write32(tmp,
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
564 565 566 567 568 569 570 571
#if SUPPORT_15BITECC
		denali_write32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
		denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif
	}
}

572 573
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
574 575 576
{
	uint32_t main_size, spare_size;

577
	switch (device_id) {
578 579 580 581 582
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
		denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK);
		denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
583 584 585 586 587 588 589 590
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		denali_write32(main_size,
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
		denali_write32(spare_size,
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
		denali_write32(0, denali->flash_reg + DEVICE_WIDTH);
#if SUPPORT_15BITECC
		denali_write32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
		denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif
		denali->dev_info.MLCDevice  = 1;
		break;
	default:
		nand_dbg_print(NAND_DBG_WARN,
			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
			"Will use default parameter values instead.\n",
			denali->dev_info.wDeviceID);
	}
}

/* determines how many NAND chips are connected to the controller. Note for
608
   Intel CE4100 devices we don't support more than one device.
609 610 611 612 613 614 615 616 617 618
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
	uint32_t id[LLD_MAX_FLASH_BANKS];
	int i;

	denali->total_used_banks = 1;
	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
619 620
		index_addr_read_data(denali,
				(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

		nand_dbg_print(NAND_DBG_DEBUG,
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

636
	if (denali->platform == INTEL_CE4100) {
637 638
		/* Platform limitations of the CE4100 device limit
		 * users to a single chip solution for NAND.
639 640
		 * Multichip support is not enabled.
		 */
641
		if (denali->total_used_banks != 1) {
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
			printk(KERN_ERR "Sorry, Intel CE4100 only supports "
					"a single NAND device.\n");
			BUG();
		}
	}
	nand_dbg_print(NAND_DBG_DEBUG,
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

static void detect_partition_feature(struct denali_nand_info *denali)
{
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
		if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
			PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
			denali->dev_info.wSpectraStartBlock =
			    ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
			      MIN_MAX_BANK_1__MIN_VALUE) *
			     denali->dev_info.wTotalBlocks)
			    +
			    (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
			    MIN_BLK_ADDR_1__VALUE);

			denali->dev_info.wSpectraEndBlock =
			    (((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
			       MIN_MAX_BANK_1__MAX_VALUE) >> 2) *
			     denali->dev_info.wTotalBlocks)
			    +
			    (ioread32(denali->flash_reg + MAX_BLK_ADDR_1) &
			    MAX_BLK_ADDR_1__VALUE);

672 673
			denali->dev_info.wTotalBlocks *=
				denali->total_used_banks;
674 675 676 677 678 679 680 681 682 683 684

			if (denali->dev_info.wSpectraEndBlock >=
			    denali->dev_info.wTotalBlocks) {
				denali->dev_info.wSpectraEndBlock =
				    denali->dev_info.wTotalBlocks - 1;
			}

			denali->dev_info.wDataBlockNum =
				denali->dev_info.wSpectraEndBlock -
				denali->dev_info.wSpectraStartBlock + 1;
		} else {
685 686 687 688
			denali->dev_info.wTotalBlocks *=
				denali->total_used_banks;
			denali->dev_info.wSpectraStartBlock =
				SPECTRA_START_BLOCK;
689 690 691 692 693 694 695 696 697
			denali->dev_info.wSpectraEndBlock =
				denali->dev_info.wTotalBlocks - 1;
			denali->dev_info.wDataBlockNum =
				denali->dev_info.wSpectraEndBlock -
				denali->dev_info.wSpectraStartBlock + 1;
		}
	} else {
		denali->dev_info.wTotalBlocks *= denali->total_used_banks;
		denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
698 699
		denali->dev_info.wSpectraEndBlock =
			denali->dev_info.wTotalBlocks - 1;
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
		denali->dev_info.wDataBlockNum =
			denali->dev_info.wSpectraEndBlock -
			denali->dev_info.wSpectraStartBlock + 1;
	}
}

static void dump_device_info(struct denali_nand_info *denali)
{
	nand_dbg_print(NAND_DBG_DEBUG, "denali->dev_info:\n");
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceMaker: 0x%x\n",
		denali->dev_info.wDeviceMaker);
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceID: 0x%x\n",
		denali->dev_info.wDeviceID);
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceType: 0x%x\n",
		denali->dev_info.wDeviceType);
	nand_dbg_print(NAND_DBG_DEBUG, "SpectraStartBlock: %d\n",
		denali->dev_info.wSpectraStartBlock);
	nand_dbg_print(NAND_DBG_DEBUG, "SpectraEndBlock: %d\n",
		denali->dev_info.wSpectraEndBlock);
	nand_dbg_print(NAND_DBG_DEBUG, "TotalBlocks: %d\n",
		denali->dev_info.wTotalBlocks);
	nand_dbg_print(NAND_DBG_DEBUG, "PagesPerBlock: %d\n",
		denali->dev_info.wPagesPerBlock);
	nand_dbg_print(NAND_DBG_DEBUG, "PageSize: %d\n",
		denali->dev_info.wPageSize);
	nand_dbg_print(NAND_DBG_DEBUG, "PageDataSize: %d\n",
		denali->dev_info.wPageDataSize);
	nand_dbg_print(NAND_DBG_DEBUG, "PageSpareSize: %d\n",
		denali->dev_info.wPageSpareSize);
	nand_dbg_print(NAND_DBG_DEBUG, "NumPageSpareFlag: %d\n",
		denali->dev_info.wNumPageSpareFlag);
	nand_dbg_print(NAND_DBG_DEBUG, "ECCBytesPerSector: %d\n",
		denali->dev_info.wECCBytesPerSector);
	nand_dbg_print(NAND_DBG_DEBUG, "BlockSize: %d\n",
		denali->dev_info.wBlockSize);
	nand_dbg_print(NAND_DBG_DEBUG, "BlockDataSize: %d\n",
		denali->dev_info.wBlockDataSize);
	nand_dbg_print(NAND_DBG_DEBUG, "DataBlockNum: %d\n",
		denali->dev_info.wDataBlockNum);
	nand_dbg_print(NAND_DBG_DEBUG, "PlaneNum: %d\n",
		denali->dev_info.bPlaneNum);
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceMainAreaSize: %d\n",
		denali->dev_info.wDeviceMainAreaSize);
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceSpareAreaSize: %d\n",
		denali->dev_info.wDeviceSpareAreaSize);
	nand_dbg_print(NAND_DBG_DEBUG, "DevicesConnected: %d\n",
		denali->dev_info.wDevicesConnected);
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceWidth: %d\n",
		denali->dev_info.wDeviceWidth);
	nand_dbg_print(NAND_DBG_DEBUG, "HWRevision: 0x%x\n",
		denali->dev_info.wHWRevision);
	nand_dbg_print(NAND_DBG_DEBUG, "HWFeatures: 0x%x\n",
		denali->dev_info.wHWFeatures);
	nand_dbg_print(NAND_DBG_DEBUG, "ONFIDevFeatures: 0x%x\n",
		denali->dev_info.wONFIDevFeatures);
	nand_dbg_print(NAND_DBG_DEBUG, "ONFIOptCommands: 0x%x\n",
		denali->dev_info.wONFIOptCommands);
	nand_dbg_print(NAND_DBG_DEBUG, "ONFITimingMode: 0x%x\n",
		denali->dev_info.wONFITimingMode);
	nand_dbg_print(NAND_DBG_DEBUG, "ONFIPgmCacheTimingMode: 0x%x\n",
		denali->dev_info.wONFIPgmCacheTimingMode);
	nand_dbg_print(NAND_DBG_DEBUG, "MLCDevice: %s\n",
		denali->dev_info.MLCDevice ? "Yes" : "No");
	nand_dbg_print(NAND_DBG_DEBUG, "SpareSkipBytes: %d\n",
		denali->dev_info.wSpareSkipBytes);
	nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageNumber: %d\n",
		denali->dev_info.nBitsInPageNumber);
	nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageDataSize: %d\n",
		denali->dev_info.nBitsInPageDataSize);
	nand_dbg_print(NAND_DBG_DEBUG, "BitsInBlockDataSize: %d\n",
		denali->dev_info.nBitsInBlockDataSize);
}

773
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
774 775 776
{
	uint16_t status = PASS;
	uint8_t no_of_planes;
777 778
	uint32_t id_bytes[5], addr;
	uint8_t i, maf_id, device_id;
779 780 781 782

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

783 784 785 786 787 788 789 790 791 792 793 794
	/* Use read id method to get device ID and other
	 * params. For some NAND chips, controller can't
	 * report the correct device ID by reading from
	 * DEVICE_ID register
	 * */
	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, (uint32_t)addr | 0, 0x90);
	index_addr(denali, (uint32_t)addr | 1, 0);
	for (i = 0; i < 5; i++)
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
795 796 797 798 799

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
800
	} else if (maf_id == 0xEC) { /* Samsung NAND */
801
		get_samsung_nand_para(denali);
802
	} else if (maf_id == 0x98) { /* Toshiba NAND */
803
		get_toshiba_nand_para(denali);
804 805
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
	} else {
		denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
	}

	nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
			"addr_2_data: %d, rdwr_en_lo_cnt: %d, "
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	denali->dev_info.wHWRevision = ioread32(denali->flash_reg + REVISION);
	denali->dev_info.wHWFeatures = ioread32(denali->flash_reg + FEATURES);

	denali->dev_info.wDeviceMainAreaSize =
		ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
	denali->dev_info.wDeviceSpareAreaSize =
		ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);

	denali->dev_info.wPageDataSize =
		ioread32(denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);

	/* Note: When using the Micon 4K NAND device, the controller will report
	 * Page Spare Size as 216 bytes. But Micron's Spec say it's 218 bytes.
	 * And if force set it to 218 bytes, the controller can not work
	 * correctly. So just let it be. But keep in mind that this bug may
	 * cause
	 * other problems in future.       - Yunpeng  2008-10-10
	 */
	denali->dev_info.wPageSpareSize =
		ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);

843 844
	denali->dev_info.wPagesPerBlock =
		ioread32(denali->flash_reg + PAGES_PER_BLOCK);
845 846 847 848 849 850 851 852

	denali->dev_info.wPageSize =
	    denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize;
	denali->dev_info.wBlockSize =
	    denali->dev_info.wPageSize * denali->dev_info.wPagesPerBlock;
	denali->dev_info.wBlockDataSize =
	    denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize;

853 854
	denali->dev_info.wDeviceWidth =
		ioread32(denali->flash_reg + DEVICE_WIDTH);
855 856 857
	denali->dev_info.wDeviceType =
		((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8);

858 859
	denali->dev_info.wDevicesConnected =
		ioread32(denali->flash_reg + DEVICES_CONNECTED);
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895

	denali->dev_info.wSpareSkipBytes =
		ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) *
		denali->dev_info.wDevicesConnected;

	denali->dev_info.nBitsInPageNumber =
		ilog2(denali->dev_info.wPagesPerBlock);
	denali->dev_info.nBitsInPageDataSize =
		ilog2(denali->dev_info.wPageDataSize);
	denali->dev_info.nBitsInBlockDataSize =
		ilog2(denali->dev_info.wBlockDataSize);

	set_ecc_config(denali);

	no_of_planes = ioread32(denali->flash_reg + NUMBER_OF_PLANES) &
		NUMBER_OF_PLANES__VALUE;

	switch (no_of_planes) {
	case 0:
	case 1:
	case 3:
	case 7:
		denali->dev_info.bPlaneNum = no_of_planes + 1;
		break;
	default:
		status = FAIL;
		break;
	}

	find_valid_banks(denali);

	detect_partition_feature(denali);

	dump_device_info(denali);

	/* If the user specified to override the default timings
896
	 * with a specific ONFI mode, we apply those changes here.
897 898
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
899
		nand_onfi_timing_set(denali, onfi_timing_mode);
900 901 902 903

	return status;
}

904
static void denali_set_intr_modes(struct denali_nand_info *denali,
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
					uint16_t INT_ENABLE)
{
	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	if (INT_ENABLE)
		denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
	else
		denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
}

/* validation function to verify that the controlling software is making
   a valid request
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
921
	return (flash_bank >= 0 && flash_bank < 4);
922 923 924 925 926 927 928
}

static void denali_irq_init(struct denali_nand_info *denali)
{
	uint32_t int_mask = 0;

	/* Disable global interrupts */
929
	denali_set_intr_modes(denali, false);
930 931 932 933 934 935 936 937 938 939 940 941 942 943

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0);
	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1);
	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2);
	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3);

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
944
	denali_set_intr_modes(denali, false);
945 946 947
	free_irq(irqnum, denali);
}

948 949
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
950 951 952 953 954 955 956 957
{
	denali_write32(int_mask, denali->flash_reg + INTR_EN0);
	denali_write32(int_mask, denali->flash_reg + INTR_EN1);
	denali_write32(int_mask, denali->flash_reg + INTR_EN2);
	denali_write32(int_mask, denali->flash_reg + INTR_EN3);
}

/* This function only returns when an interrupt that this driver cares about
958
 * occurs. This is to reduce the overhead of servicing interrupts
959 960 961
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
962
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
963 964 965
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
966 967
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
{
	uint32_t intr_status_reg = 0;

	intr_status_reg = intr_status_addresses[denali->flash_bank];

	denali_write32(irq_mask, denali->flash_reg + intr_status_reg);
}

static void clear_interrupts(struct denali_nand_info *denali)
{
	uint32_t status = 0x0;
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);

#if DEBUG_DENALI
	denali->irq_debug_array[denali->idx++] = 0x30000000 | status;
	denali->idx %= 32;
#endif

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
	uint32_t intr_status_reg = 0;

	intr_status_reg = intr_status_addresses[denali->flash_bank];

	return ioread32(denali->flash_reg + intr_status_reg);
}

#if DEBUG_DENALI
static void print_irq_log(struct denali_nand_info *denali)
{
	int i = 0;

1006
	printk(KERN_INFO "ISR debug log index = %X\n", denali->idx);
1007
	for (i = 0; i < 32; i++)
1008
		printk(KERN_INFO "%08X: %08X\n", i, denali->irq_debug_array[i]);
1009 1010 1011
}
#endif

1012 1013 1014
/* This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared
 * interrupt.
1015 1016 1017 1018 1019 1020 1021 1022 1023
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
	uint32_t irq_status = 0x0;
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

1024 1025
	/* check to see if a valid NAND chip has
	 * been selected.
1026
	 */
1027
	if (is_flash_bank_valid(denali->flash_bank)) {
1028
		/* check to see if controller generated
1029
		 * the interrupt, since this is a shared interrupt */
1030 1031
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
1032
#if DEBUG_DENALI
1033 1034
			denali->irq_debug_array[denali->idx++] =
				0x10000000 | irq_status;
1035 1036
			denali->idx %= 32;

1037
			printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
#endif
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
			/* store the status in the device context for someone
			   to read */
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
	unsigned long comp_res = 0;
	uint32_t intr_status = 0;
	bool retry = false;
	unsigned long timeout = msecs_to_jiffies(1000);

1063
	do {
1064
#if DEBUG_DENALI
1065
		printk(KERN_INFO "waiting for 0x%x\n", irq_mask);
1066
#endif
1067 1068
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
1069 1070 1071 1072
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

#if DEBUG_DENALI
1073 1074
		denali->irq_debug_array[denali->idx++] =
			0x20000000 | (irq_mask << 16) | intr_status;
1075 1076 1077
		denali->idx %= 32;
#endif

1078
		if (intr_status & irq_mask) {
1079 1080 1081
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
1082 1083 1084
			if (retry)
				printk(KERN_INFO "status on retry = 0x%x\n",
						intr_status);
1085 1086 1087
#endif
			/* our interrupt was detected */
			break;
1088
		} else {
1089 1090
			/* these are not the interrupts you are looking for -
			 * need to wait again */
1091 1092 1093
			spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
			print_irq_log(denali);
1094 1095 1096 1097
			printk(KERN_INFO "received irq nobody cared:"
					" irq_status = 0x%x, irq_mask = 0x%x,"
					" timeout = %ld\n", intr_status,
					irq_mask, comp_res);
1098 1099 1100 1101 1102
#endif
			retry = true;
		}
	} while (comp_res != 0);

1103
	if (comp_res == 0) {
1104
		/* timeout */
1105 1106
		printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
				intr_status, irq_mask);
1107 1108 1109 1110 1111 1112

		intr_status = 0;
	}
	return intr_status;
}

1113
/* This helper function setups the registers for ECC and whether or not
1114
   the spare area will be transfered. */
1115
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
1116 1117
				bool transfer_spare)
{
1118
	int ecc_en_flag = 0, transfer_spare_flag = 0;
1119 1120 1121 1122 1123 1124 1125

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
	denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
1126 1127
	denali_write32(transfer_spare_flag,
			denali->flash_reg + TRANSFER_SPARE_REG);
1128 1129
}

1130 1131
/* sends a pipeline command operation to the controller. See the Denali NAND
   controller's user guide for more information (section 4.2.3.6).
1132
 */
1133 1134 1135 1136 1137
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
							bool ecc_en,
							bool transfer_spare,
							int access_type,
							int op)
1138 1139
{
	int status = PASS;
1140
	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
1141 1142
		 irq_mask = 0;

1143 1144 1145 1146 1147 1148
	if (op == DENALI_READ)
		irq_mask = INTR_STATUS0__LOAD_COMP;
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
1149 1150 1151 1152 1153

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

#if DEBUG_DENALI
	spin_lock_irq(&denali->irq_lock);
1154 1155 1156
	denali->irq_debug_array[denali->idx++] =
		0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) |
		(access_type << 4);
1157 1158 1159 1160 1161 1162
	denali->idx %= 32;
	spin_unlock_irq(&denali->irq_lock);
#endif


	/* clear interrupts */
1163
	clear_interrupts(denali);
1164 1165 1166

	addr = BANK(denali->flash_bank) | denali->page;

1167
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
1168
		cmd = MODE_01 | addr;
1169
		denali_write32(cmd, denali->flash_mem);
1170
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
1171
		/* read spare area */
1172
		cmd = MODE_10 | addr;
1173 1174
		index_addr(denali, (uint32_t)cmd, access_type);

1175
		cmd = MODE_01 | addr;
1176
		denali_write32(cmd, denali->flash_mem);
1177
	} else if (op == DENALI_READ) {
1178
		/* setup page read request for access type */
1179
		cmd = MODE_10 | addr;
1180 1181 1182
		index_addr(denali, (uint32_t)cmd, access_type);

		/* page 33 of the NAND controller spec indicates we should not
1183
		   use the pipeline commands in Spare area only mode. So we
1184 1185
		   don't.
		 */
1186
		if (access_type == SPARE_ACCESS) {
1187 1188
			cmd = MODE_01 | addr;
			denali_write32(cmd, denali->flash_mem);
1189
		} else {
1190 1191
			index_addr(denali, (uint32_t)cmd,
					0x2000 | op | page_count);
1192 1193

			/* wait for command to be accepted
1194 1195
			 * can always use status0 bit as the
			 * mask is identical for each
1196 1197 1198
			 * bank. */
			irq_status = wait_for_irq(denali, irq_mask);

1199
			if (irq_status == 0) {
1200
				printk(KERN_ERR "cmd, page, addr on timeout "
1201 1202
					"(0x%x, 0x%x, 0x%x)\n", cmd,
					denali->page, addr);
1203
				status = FAIL;
1204
			} else {
1205 1206 1207 1208 1209 1210 1211 1212 1213
				cmd = MODE_01 | addr;
				denali_write32(cmd, denali->flash_mem);
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
1214 1215 1216
static int write_data_to_flash_mem(struct denali_nand_info *denali,
							const uint8_t *buf,
							int len)
1217 1218 1219
{
	uint32_t i = 0, *buf32;

1220 1221
	/* verify that the len is a multiple of 4. see comment in
	 * read_data_from_flash_mem() */
1222 1223 1224 1225 1226 1227
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		denali_write32(*buf32++, denali->flash_mem + 0x10);
1228
	return i*4; /* intent is to return the number of bytes read */
1229 1230 1231
}

/* helper function that simply reads a buffer from the flash */
1232 1233 1234
static int read_data_from_flash_mem(struct denali_nand_info *denali,
								uint8_t *buf,
								int len)
1235 1236 1237 1238 1239
{
	uint32_t i = 0, *buf32;

	/* we assume that len will be a multiple of 4, if not
	 * it would be nice to know about it ASAP rather than
1240 1241 1242
	 * have random failures...
	 * This assumption is based on the fact that this
	 * function is designed to be used to read flash pages,
1243 1244 1245 1246 1247 1248 1249 1250 1251
	 * which are typically multiples of 4...
	 */

	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
1252
	return i*4; /* intent is to return the number of bytes read */
1253 1254 1255 1256 1257 1258 1259
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status = 0;
1260
	uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
1261 1262 1263 1264 1265
						INTR_STATUS0__PROGRAM_FAIL;
	int status = 0;

	denali->page = page;

1266
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
1267
							DENALI_WRITE) == PASS) {
1268 1269 1270 1271
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

#if DEBUG_DENALI
		spin_lock_irq(&denali->irq_lock);
1272 1273
		denali->irq_debug_array[denali->idx++] =
			0x80000000 | mtd->oobsize;
1274 1275 1276 1277
		denali->idx %= 32;
		spin_unlock_irq(&denali->irq_lock);
#endif

1278

1279 1280 1281
		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

1282
		if (irq_status == 0) {
1283 1284 1285
			printk(KERN_ERR "OOB write failed\n");
			status = -EIO;
		}
1286
	} else {
1287
		printk(KERN_ERR "unable to send pipeline command\n");
1288
		status = -EIO;
1289 1290 1291 1292 1293 1294 1295 1296
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1297 1298
	uint32_t irq_mask = INTR_STATUS0__LOAD_COMP,
			 irq_status = 0, addr = 0x0, cmd = 0x0;
1299 1300 1301 1302

	denali->page = page;

#if DEBUG_DENALI
1303
	printk(KERN_INFO "read_oob %d\n", page);
1304
#endif
1305
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
1306
							DENALI_READ) == PASS) {
1307
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
1308

1309
		/* wait for command to be accepted
1310 1311 1312 1313 1314
		 * can always use status0 bit as the mask is identical for each
		 * bank. */
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
1315 1316
			printk(KERN_ERR "page on OOB timeout %d\n",
					denali->page);
1317 1318 1319 1320 1321

		/* We set the device back to MAIN_ACCESS here as I observed
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
1322
		 * if you are in MAIN_ACCESS.
1323 1324
		 */
		addr = BANK(denali->flash_bank) | denali->page;
1325
		cmd = MODE_10 | addr;
1326 1327 1328 1329
		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);

#if DEBUG_DENALI
		spin_lock_irq(&denali->irq_lock);
1330 1331
		denali->irq_debug_array[denali->idx++] =
			0x60000000 | mtd->oobsize;
1332 1333 1334 1335 1336 1337
		denali->idx %= 32;
		spin_unlock_irq(&denali->irq_lock);
#endif
	}
}

1338
/* this function examines buffers to see if they contain data that
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
 * indicate that the buffer is part of an erased region of flash.
 */
bool is_erased(uint8_t *buf, int len)
{
	int i = 0;
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO))
#define ECC_ERR_DEVICE(x)	((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

1358
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
1359 1360 1361 1362
			uint8_t *oobbuf, uint32_t irq_status)
{
	bool check_erased_page = false;

1363
	if (irq_status & INTR_STATUS0__ECC_ERR) {
1364 1365 1366 1367 1368
		/* read the ECC errors. we'll ignore them for now */
		uint32_t err_address = 0, err_correction_info = 0;
		uint32_t err_byte = 0, err_sector = 0, err_device = 0;
		uint32_t err_correction_value = 0;

1369
		do {
1370
			err_address = ioread32(denali->flash_reg +
1371 1372 1373 1374 1375
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);


1376
			err_correction_info = ioread32(denali->flash_reg +
1377
						ERR_CORRECTION_INFO);
1378
			err_correction_value =
1379 1380 1381
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

1382
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
1383
				/* offset in our buffer is computed as:
1384
				   sector number * sector size + offset in
1385 1386
				   sector
				 */
1387
				int offset = err_sector * ECC_SECTOR_SIZE +
1388
								err_byte;
1389
				if (offset < denali->mtd.writesize) {
1390 1391 1392
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
					denali->mtd.ecc_stats.corrected++;
1393
				} else {
1394 1395 1396 1397
					/* bummer, couldn't correct the error */
					printk(KERN_ERR "ECC offset invalid\n");
					denali->mtd.ecc_stats.failed++;
				}
1398
			} else {
1399
				/* if the error is not correctable, need to
1400 1401 1402
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
				 * */
1403 1404 1405
				check_erased_page = true;
			}

1406
#if DEBUG_DENALI
1407 1408 1409 1410
			printk(KERN_INFO "Detected ECC error in page %d:"
					" err_addr = 0x%08x, info to fix is"
					" 0x%08x\n", denali->page, err_address,
					err_correction_info);
1411 1412 1413 1414 1415 1416 1417
#endif
		} while (!ECC_LAST_ERR(err_correction_info));
	}
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
1418
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1419 1420 1421
{
	uint32_t reg_val = 0x0;

1422 1423
	if (en)
		reg_val = DMA_ENABLE__FLAG;
1424 1425 1426 1427 1428 1429

	denali_write32(reg_val, denali->flash_reg + DMA_ENABLE);
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
1430
static void denali_setup_dma(struct denali_nand_info *denali, int op)
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
{
	uint32_t mode = 0x0;
	const int page_count = 1;
	dma_addr_t addr = denali->buf.dma_buf;

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);

	/* 3. set memory low address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);

	/* 4.  interrupt when complete, burst len = 64 bytes*/
	index_addr(denali, mode | 0x14000, 0x2400);
}

1453
/* writes a page. user specifies type, and this function handles the
1454
   configuration details. */
1455
static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
1456 1457 1458 1459 1460 1461 1462 1463 1464
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1465
	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
						INTR_STATUS0__PROGRAM_FAIL;

	/* if it is a raw xfer, we want to disable ecc, and send
	 * the spare area.
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1478
	if (raw_xfer) {
1479
		/* transfer the data to the spare area */
1480 1481 1482
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1483 1484 1485 1486 1487
	}

	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);

	clear_interrupts(denali);
1488
	denali_enable_dma(denali, true);
1489

1490
	denali_setup_dma(denali, DENALI_WRITE);
1491 1492 1493 1494

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1495
	if (irq_status == 0) {
1496 1497
		printk(KERN_ERR "timeout on write_page"
				" (type = %d)\n", raw_xfer);
1498
		denali->status =
1499 1500
			(irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
			NAND_STATUS_FAIL : PASS;
1501 1502
	}

1503
	denali_enable_dma(denali, false);
1504 1505 1506 1507 1508
	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
}

/* NAND core entry points */

1509 1510
/* this is the callback that the NAND core calls to write a page. Since
   writing a page with ECC or without is similar, all the work is done
1511
   by write_page above.   */
1512
static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1513 1514 1515
				const uint8_t *buf)
{
	/* for regular page writes, we let HW handle all the ECC
1516
	 * data written to the device. */
1517 1518 1519
	write_page(mtd, chip, buf, false);
}

1520
/* This is the callback that the NAND core calls to write a page without ECC.
1521
   raw access is similiar to ECC page writes, so all the work is done in the
1522
   write_page() function above.
1523
 */
1524
static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1525 1526
					const uint8_t *buf)
{
1527
	/* for raw page writes, we want to disable ECC and simply write
1528 1529 1530 1531
	   whatever data is in the buffer. */
	write_page(mtd, chip, buf, true);
}

1532
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1533 1534
			    int page)
{
1535
	return write_oob_data(mtd, chip->oob_poi, page);
1536 1537
}

1538
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1539 1540 1541 1542
			   int page, int sndcmd)
{
	read_oob_data(mtd, chip->oob_poi, page);

1543 1544
	return 0; /* notify NAND core to send command to
			   NAND device. */
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
			    uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1557
	uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
1558 1559 1560 1561 1562
			    INTR_STATUS0__ECC_ERR;
	bool check_erased_page = false;

	setup_ecc_for_xfer(denali, true, false);

1563
	denali_enable_dma(denali, true);
1564 1565 1566
	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	clear_interrupts(denali);
1567
	denali_setup_dma(denali, DENALI_READ);
1568 1569 1570 1571 1572 1573 1574

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	memcpy(buf, denali->buf.buf, mtd->writesize);
1575

1576
	check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
1577
	denali_enable_dma(denali, false);
1578

1579
	if (check_erased_page) {
1580 1581 1582
		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);

		/* check ECC failures that may have occurred on erased pages */
1583
		if (check_erased_page) {
1584 1585 1586 1587
			if (!is_erased(buf, denali->mtd.writesize))
				denali->mtd.ecc_stats.failed++;
			if (!is_erased(buf, denali->mtd.oobsize))
				denali->mtd.ecc_stats.failed++;
1588
		}
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	}
	return 0;
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
1604

1605
	setup_ecc_for_xfer(denali, false, true);
1606
	denali_enable_dma(denali, true);
1607 1608 1609 1610

	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	clear_interrupts(denali);
1611
	denali_setup_dma(denali, DENALI_READ);
1612 1613 1614 1615 1616 1617

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

1618
	denali_enable_dma(denali, false);
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

#if DEBUG_DENALI
1635
	printk(KERN_INFO "read byte -> 0x%02x\n", result);
1636 1637 1638 1639 1640 1641 1642 1643
#endif
	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
#if DEBUG_DENALI
1644
	printk(KERN_INFO "denali select chip %d\n", chip);
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
#endif
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
	denali->status = 0;

#if DEBUG_DENALI
1658
	printk(KERN_INFO "waitfunc %d\n", status);
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
#endif
	return status;
}

static void denali_erase(struct mtd_info *mtd, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	uint32_t cmd = 0x0, irq_status = 0;

#if DEBUG_DENALI
1670
	printk(KERN_INFO "erase page: %d\n", page);
1671 1672
#endif
	/* clear interrupts */
1673
	clear_interrupts(denali);
1674 1675 1676 1677 1678 1679

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
	index_addr(denali, (uint32_t)cmd, 0x1);

	/* wait for erase to complete or failure to occur */
1680
	irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
1681 1682
					INTR_STATUS0__ERASE_FAIL);

1683 1684
	denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ?
						NAND_STATUS_FAIL : PASS;
1685 1686
}

1687
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1688 1689 1690
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1691 1692
	uint32_t addr, id;
	int i;
1693 1694

#if DEBUG_DENALI
1695
	printk(KERN_INFO "cmdfunc: 0x%x %d %d\n", cmd, col, page);
1696
#endif
1697
	switch (cmd) {
1698 1699 1700 1701 1702 1703 1704
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
		reset_buf(denali);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
		/*sometimes ManufactureId read from register is not right
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
		 * */
		addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, (uint32_t)addr | 0, 0x90);
		index_addr(denali, (uint32_t)addr | 1, 0);
		for (i = 0; i < 5; i++) {
			index_addr_read_data(denali,
						(uint32_t)addr | 2,
						&id);
			write_byte_to_buf(denali, id);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
		printk(KERN_ERR ": unsupported command"
				" received 0x%x\n", cmd);
		break;
1733 1734 1735 1736
	}
}

/* stubs for ECC functions not used by the NAND core */
1737
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1738 1739 1740 1741 1742 1743 1744
				uint8_t *ecc_code)
{
	printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
	BUG();
	return -EIO;
}

1745
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
				uint8_t *read_ecc, uint8_t *calc_ecc)
{
	printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
	BUG();
	return -EIO;
}

static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
	printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n");
	BUG();
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
	denali_irq_init(denali);
1764
	denali_nand_reset(denali);
1765
	denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1766 1767
	denali_write32(CHIP_EN_DONT_CARE__FLAG,
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777

	denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
	denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);

	/* Should set value for these registers when init */
	denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	denali_write32(1, denali->flash_reg + ECC_ENABLE);
}

/* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes */
1778
#define ECC_BYTES_SLC   (4 * (2048 / ECC_SECTOR_SIZE))
1779 1780 1781
static struct nand_ecclayout nand_oob_slc = {
	.eccbytes = 4,
	.eccpos = { 0, 1, 2, 3 }, /* not used */
1782 1783
	.oobfree = {
		{
1784 1785
			.offset = ECC_BYTES_SLC,
			.length = 64 - ECC_BYTES_SLC
1786 1787
		}
	}
1788 1789
};

1790
#define ECC_BYTES_MLC   (14 * (2048 / ECC_SECTOR_SIZE))
1791 1792 1793
static struct nand_ecclayout nand_oob_mlc_14bit = {
	.eccbytes = 14,
	.eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */
1794 1795
	.oobfree = {
		{
1796 1797
			.offset = ECC_BYTES_MLC,
			.length = 64 - ECC_BYTES_MLC
1798 1799
		}
	}
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

/* initalize driver data structures */
void denali_drv_init(struct denali_nand_info *denali)
{
	denali->idx = 0;

	/* setup interrupt handler */
1831
	/* the completion object will be used to notify
1832 1833 1834 1835
	 * the callee that the interrupt is done */
	init_completion(&denali->complete);

	/* the spinlock will be used to synchronize the ISR
1836
	 * with any element that might be access shared
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	 * data (interrupt status) */
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

/* driver entry point */
static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
	int ret = -ENODEV;
	resource_size_t csr_base, mem_base;
	unsigned long csr_len, mem_len;
	struct denali_nand_info *denali;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	denali = kzalloc(sizeof(*denali), GFP_KERNEL);
	if (!denali)
		return -ENOMEM;

	ret = pci_enable_device(dev);
	if (ret) {
		printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
		goto failed_enable;
	}

	if (id->driver_data == INTEL_CE4100) {
1869 1870 1871
		/* Due to a silicon limitation, we can only support
		 * ONFI timing mode 1 and below.
		 */
1872
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1873 1874
			printk(KERN_ERR "Intel CE4100 only supports"
					" ONFI timing mode 1 or below\n");
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
			ret = -EINVAL;
			goto failed_enable;
		}
		denali->platform = INTEL_CE4100;
		mem_base = pci_resource_start(dev, 0);
		mem_len = pci_resource_len(dev, 1);
		csr_base = pci_resource_start(dev, 1);
		csr_len = pci_resource_len(dev, 1);
	} else {
		denali->platform = INTEL_MRST;
		csr_base = pci_resource_start(dev, 0);
		csr_len = pci_resource_start(dev, 0);
		mem_base = pci_resource_start(dev, 1);
		mem_len = pci_resource_len(dev, 1);
		if (!mem_len) {
			mem_base = csr_base + csr_len;
			mem_len = csr_len;
			nand_dbg_print(NAND_DBG_WARN,
1893 1894 1895
				       "Spectra: No second"
					   " BAR for PCI device;"
					   " assuming %08Lx\n",
1896 1897 1898 1899 1900 1901 1902
				       (uint64_t)csr_base);
		}
	}

	/* Is 32-bit DMA supported? */
	ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));

1903
	if (ret) {
1904 1905 1906
		printk(KERN_ERR "Spectra: no usable DMA configuration\n");
		goto failed_enable;
	}
1907 1908 1909 1910
	denali->buf.dma_buf =
		pci_map_single(dev, denali->buf.buf,
						DENALI_BUF_SIZE,
						PCI_DMA_BIDIRECTIONAL);
1911

1912
	if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
		printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
		goto failed_enable;
	}

	pci_set_master(dev);
	denali->dev = dev;

	ret = pci_request_regions(dev, DENALI_NAND_NAME);
	if (ret) {
		printk(KERN_ERR "Spectra: Unable to request memory regions\n");
		goto failed_req_csr;
	}

	denali->flash_reg = ioremap_nocache(csr_base, csr_len);
	if (!denali->flash_reg) {
		printk(KERN_ERR "Spectra: Unable to remap memory region\n");
		ret = -ENOMEM;
		goto failed_remap_csr;
	}
	nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n",
		       (uint64_t)csr_base, denali->flash_reg, csr_len);

	denali->flash_mem = ioremap_nocache(mem_base, mem_len);
	if (!denali->flash_mem) {
		printk(KERN_ERR "Spectra: ioremap_nocache failed!");
		iounmap(denali->flash_reg);
		ret = -ENOMEM;
		goto failed_remap_csr;
	}

	nand_dbg_print(NAND_DBG_WARN,
		"Spectra: Remapped flash base address: "
		"0x%p, len: %ld\n",
		denali->flash_mem, csr_len);

	denali_hw_init(denali);
	denali_drv_init(denali);

	nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq);
	if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
			DENALI_NAND_NAME, denali)) {
		printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
		ret = -ENODEV;
		goto failed_request_irq;
	}

	/* now that our ISR is registered, we can enable interrupts */
1960
	denali_set_intr_modes(denali, true);
1961 1962 1963

	pci_set_drvdata(dev, denali);

1964
	denali_nand_timing_set(denali);
1965

1966 1967
	/* MTD supported page sizes vary by kernel. We validate our
	 * kernel supports the device here.
1968
	 */
1969
	if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
		ret = -ENODEV;
		printk(KERN_ERR "Spectra: device size not supported by this "
			"version of MTD.");
		goto failed_nand;
	}

	nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
			"addr_2_data: %d, rdwr_en_lo_cnt: %d, "
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	denali->mtd.name = "Denali NAND";
	denali->mtd.owner = THIS_MODULE;
	denali->mtd.priv = &denali->nand;

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

1998
	/* scan for NAND devices attached to the controller
1999
	 * this is the first stage in a two step process to register
2000
	 * with the nand subsystem */
2001
	if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
2002 2003 2004
		ret = -ENXIO;
		goto failed_nand;
	}
2005 2006 2007 2008

	/* second stage of the NAND scan
	 * this stage requires information regarding ECC and
	 * bad block management. */
2009 2010 2011 2012 2013 2014 2015 2016 2017

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
	denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

2018
	if (denali->dev_info.MLCDevice) {
2019 2020
		denali->nand.ecc.layout = &nand_oob_mlc_14bit;
		denali->nand.ecc.bytes = ECC_BYTES_MLC;
2021
	} else {/* SLC */
2022 2023 2024 2025
		denali->nand.ecc.layout = &nand_oob_slc;
		denali->nand.ecc.bytes = ECC_BYTES_SLC;
	}

2026 2027 2028
	/* These functions are required by the NAND core framework, otherwise,
	 * the NAND core will assert. However, we don't need them, so we'll stub
	 * them out. */
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	denali->nand.ecc.calculate = denali_ecc_calculate;
	denali->nand.ecc.correct = denali_ecc_correct;
	denali->nand.ecc.hwctl = denali_ecc_hwctl;

	/* override the default read operations */
	denali->nand.ecc.size = denali->mtd.writesize;
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
	denali->nand.erase_cmd = denali_erase;

2043
	if (nand_scan_tail(&denali->mtd)) {
2044 2045 2046 2047 2048 2049
		ret = -ENXIO;
		goto failed_nand;
	}

	ret = add_mtd_device(&denali->mtd);
	if (ret) {
2050 2051
		printk(KERN_ERR "Spectra: Failed to register"
				" MTD device: %d\n", ret);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
		goto failed_nand;
	}
	return 0;

 failed_nand:
	denali_irq_cleanup(dev->irq, denali);
 failed_request_irq:
	iounmap(denali->flash_reg);
	iounmap(denali->flash_mem);
 failed_remap_csr:
	pci_release_regions(dev);
 failed_req_csr:
2064
	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
							PCI_DMA_BIDIRECTIONAL);
 failed_enable:
	kfree(denali);
	return ret;
}

/* driver exit point */
static void denali_pci_remove(struct pci_dev *dev)
{
	struct denali_nand_info *denali = pci_get_drvdata(dev);

	nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	nand_release(&denali->mtd);
	del_mtd_device(&denali->mtd);

	denali_irq_cleanup(dev->irq, denali);

	iounmap(denali->flash_reg);
	iounmap(denali->flash_mem);
	pci_release_regions(dev);
	pci_disable_device(dev);
2088
	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
							PCI_DMA_BIDIRECTIONAL);
	pci_set_drvdata(dev, NULL);
	kfree(denali);
}

MODULE_DEVICE_TABLE(pci, denali_pci_ids);

static struct pci_driver denali_pci_driver = {
	.name = DENALI_NAND_NAME,
	.id_table = denali_pci_ids,
	.probe = denali_pci_probe,
	.remove = denali_pci_remove,
};

static int __devinit denali_init(void)
{
2105 2106
	printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n",
			__DATE__, __TIME__);
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	return pci_register_driver(&denali_pci_driver);
}

/* Free memory */
static void __devexit denali_exit(void)
{
	pci_unregister_driver(&denali_pci_driver);
}

module_init(denali_init);
module_exit(denali_exit);