arch_timer.c 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/arch/arm/kernel/arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/jiffies.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
20
#include <linux/of_irq.h>
21 22
#include <linux/io.h>

23
#include <asm/delay.h>
24
#include <asm/arch_timer.h>
25
#include <asm/sched_clock.h>
26

27
static u32 arch_timer_rate;
28 29 30 31 32 33 34 35 36 37

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];
38

39
static struct clock_event_device __percpu *arch_timer_evt;
40
static struct delay_timer arch_delay_timer;
41

42 43
static bool arch_timer_use_virtual = true;

44 45 46 47
/*
 * Architected system timer support.
 */

48 49 50 51 52
static irqreturn_t inline timer_handler(const int access,
					struct clock_event_device *evt)
{
	unsigned long ctrl;
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
53 54
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
55
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
56 57 58 59 60 61 62
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

63
static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
64
{
65
	struct clock_event_device *evt = dev_id;
66

67
	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
68 69
}

70
static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
71
{
72
	struct clock_event_device *evt = dev_id;
73 74 75 76 77 78 79

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

static inline void timer_set_mode(const int access, int mode)
{
	unsigned long ctrl;
80 81 82
	switch (mode) {
	case CLOCK_EVT_MODE_UNUSED:
	case CLOCK_EVT_MODE_SHUTDOWN:
83 84 85
		ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
		ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
86 87 88 89 90 91
		break;
	default:
		break;
	}
}

92 93
static void arch_timer_set_mode_virt(enum clock_event_mode mode,
				     struct clock_event_device *clk)
94
{
95 96 97 98 99 100 101 102
	timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);
}

static void arch_timer_set_mode_phys(enum clock_event_mode mode,
				     struct clock_event_device *clk)
{
	timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);
}
103

104 105 106 107
static inline void set_next_event(const int access, unsigned long evt)
{
	unsigned long ctrl;
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
108 109
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
110 111 112
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
}
113

114 115 116 117 118 119
static int arch_timer_set_next_event_virt(unsigned long evt,
					  struct clock_event_device *unused)
{
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);
	return 0;
}
120

121 122 123 124
static int arch_timer_set_next_event_phys(unsigned long evt,
					  struct clock_event_device *unused)
{
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);
125 126 127 128 129
	return 0;
}

static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
{
130
	clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
131 132
	clk->name = "arch_sys_timer";
	clk->rating = 450;
133 134 135 136 137 138 139 140 141 142
	if (arch_timer_use_virtual) {
		clk->irq = arch_timer_ppi[VIRT_PPI];
		clk->set_mode = arch_timer_set_mode_virt;
		clk->set_next_event = arch_timer_set_next_event_virt;
	} else {
		clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
		clk->set_mode = arch_timer_set_mode_phys;
		clk->set_next_event = arch_timer_set_next_event_phys;
	}

143 144
	clk->cpumask = cpumask_of(smp_processor_id());

145
	clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);
146 147 148 149

	clockevents_config_and_register(clk, arch_timer_rate,
					0xf, 0x7fffffff);

150 151 152 153 154 155 156
	if (arch_timer_use_virtual)
		enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
	else {
		enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
	}
157

158 159
	arch_counter_set_user_access();

160 161 162 163 164
	return 0;
}

static int arch_timer_available(void)
{
165
	u32 freq;
166 167

	if (arch_timer_rate == 0) {
168
		freq = arch_timer_get_cntfrq();
169 170 171 172 173 174 175 176 177 178

		/* Check the timer frequency. */
		if (freq == 0) {
			pr_warn("Architected timer frequency not available\n");
			return -EINVAL;
		}

		arch_timer_rate = freq;
	}

179
	pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
180 181
		     (unsigned long)arch_timer_rate / 1000000,
		     (unsigned long)(arch_timer_rate / 10000) % 100,
182
		     arch_timer_use_virtual ? "virt" : "phys");
183 184 185
	return 0;
}

186 187 188 189 190 191 192
/*
 * Some external users of arch_timer_read_counter (e.g. sched_clock) may try to
 * call it before it has been initialised. Rather than incur a performance
 * penalty checking for initialisation, provide a default implementation that
 * won't lead to time appearing to jump backwards.
 */
static u64 arch_timer_read_zero(void)
193
{
194
	return 0;
195 196
}

197
u64 (*arch_timer_read_counter)(void) = arch_timer_read_zero;
198

199 200 201
static u32 arch_timer_read_counter32(void)
{
	return arch_timer_read_counter();
202 203
}

204 205
static cycle_t arch_counter_read(struct clocksource *cs)
{
206
	return arch_timer_read_counter();
207 208
}

209
static unsigned long arch_timer_read_current_timer(void)
210
{
211
	return arch_timer_read_counter();
212 213
}

214 215
static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
{
216
	return arch_timer_read_counter();
217 218
}

219 220 221 222 223 224 225 226
static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
};

227 228 229 230 231 232 233 234 235 236 237 238
static struct cyclecounter cyclecounter = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

static struct timecounter timecounter;

struct timecounter *arch_timer_get_timecounter(void)
{
	return &timecounter;
}

239 240 241 242
static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());
243 244 245 246 247 248 249 250 251 252

	if (arch_timer_use_virtual)
		disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
	else {
		disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
	}

	clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
253 254
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
static int __cpuinit arch_timer_cpu_notify(struct notifier_block *self,
					   unsigned long action, void *hcpu)
{
	struct clock_event_device *evt = this_cpu_ptr(arch_timer_evt);

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_STARTING:
		arch_timer_setup(evt);
		break;
	case CPU_DYING:
		arch_timer_stop(evt);
		break;
	}

	return NOTIFY_OK;
}
271

272 273 274
static struct notifier_block arch_timer_cpu_nb __cpuinitdata = {
	.notifier_call = arch_timer_cpu_notify,
};
275

276
static int __init arch_timer_register(void)
277 278
{
	int err;
279
	int ppi;
280 281 282

	err = arch_timer_available();
	if (err)
283
		goto out;
284

285
	arch_timer_evt = alloc_percpu(struct clock_event_device);
286 287 288 289
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}
290 291

	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
292 293 294 295
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
	timecounter_init(&timecounter, &cyclecounter,
			 arch_counter_get_cntpct());
296

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	if (arch_timer_use_virtual) {
		ppi = arch_timer_ppi[VIRT_PPI];
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
	} else {
		ppi = arch_timer_ppi[PHYS_SECURE_PPI];
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
	}

315 316
	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
317
		       ppi, err);
318 319 320
		goto out_free;
	}

321
	err = register_cpu_notifier(&arch_timer_cpu_nb);
322 323 324
	if (err)
		goto out_free_irq;

325 326 327
	/* Immediately configure the timer on the boot CPU */
	arch_timer_setup(this_cpu_ptr(arch_timer_evt));

328 329 330 331
	/* Use the architected timer for the delay loop. */
	arch_delay_timer.read_current_timer = &arch_timer_read_current_timer;
	arch_delay_timer.freq = arch_timer_rate;
	register_current_timer_delay(&arch_delay_timer);
332 333 334
	return 0;

out_free_irq:
335 336 337 338 339 340 341 342 343
	if (arch_timer_use_virtual)
		free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
	else {
		free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
				arch_timer_evt);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
					arch_timer_evt);
	}
344 345 346

out_free:
	free_percpu(arch_timer_evt);
347
out:
348 349
	return err;
}
350

351 352 353 354 355 356 357 358 359
static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible	= "arm,armv7-timer",	},
	{},
};

int __init arch_timer_of_register(void)
{
	struct device_node *np;
	u32 freq;
360
	int i;
361 362 363 364 365 366 367 368 369 370 371

	np = of_find_matching_node(NULL, arch_timer_of_match);
	if (!np) {
		pr_err("arch_timer: can't find DT node\n");
		return -ENODEV;
	}

	/* Try to determine the frequency from the device tree or CNTFRQ */
	if (!of_property_read_u32(np, "clock-frequency", &freq))
		arch_timer_rate = freq;

372 373 374
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

375 376
	of_node_put(np);

377 378 379 380 381 382 383 384 385 386 387 388 389
	/*
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
	 */
	if (!arch_timer_ppi[VIRT_PPI]) {
		arch_timer_use_virtual = false;

		if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
		    !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			pr_warn("arch_timer: No interrupt available, giving up\n");
			return -EINVAL;
		}
	}
390

391 392 393 394 395
	if (arch_timer_use_virtual)
		arch_timer_read_counter = arch_counter_get_cntvct;
	else
		arch_timer_read_counter = arch_counter_get_cntpct;

396
	return arch_timer_register();
397 398
}

399 400 401 402 403 404 405 406
int __init arch_timer_sched_clock_init(void)
{
	int err;

	err = arch_timer_available();
	if (err)
		return err;

407 408
	setup_sched_clock(arch_timer_read_counter32,
			  32, arch_timer_rate);
409 410
	return 0;
}