arch_timer.c 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/arch/arm/kernel/arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/jiffies.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
20
#include <linux/of_irq.h>
21 22
#include <linux/io.h>

23
#include <asm/delay.h>
24 25
#include <asm/localtimer.h>
#include <asm/arch_timer.h>
26
#include <asm/sched_clock.h>
27

28
static u32 arch_timer_rate;
29 30 31 32 33 34 35 36 37 38

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];
39 40

static struct clock_event_device __percpu **arch_timer_evt;
41
static struct delay_timer arch_delay_timer;
42

43 44
static bool arch_timer_use_virtual = true;

45 46 47 48
/*
 * Architected system timer support.
 */

49 50 51 52 53
static irqreturn_t inline timer_handler(const int access,
					struct clock_event_device *evt)
{
	unsigned long ctrl;
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
54 55
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
56
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
57 58 59 60 61 62 63
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

64
static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
65
{
66
	struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
67

68
	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
69 70
}

71
static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
72
{
73 74 75 76 77 78 79 80
	struct clock_event_device *evt = *(struct clock_event_device **)dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

static inline void timer_set_mode(const int access, int mode)
{
	unsigned long ctrl;
81 82 83
	switch (mode) {
	case CLOCK_EVT_MODE_UNUSED:
	case CLOCK_EVT_MODE_SHUTDOWN:
84 85 86
		ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
		ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
87 88 89 90 91 92
		break;
	default:
		break;
	}
}

93 94
static void arch_timer_set_mode_virt(enum clock_event_mode mode,
				     struct clock_event_device *clk)
95
{
96 97 98 99 100 101 102 103
	timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);
}

static void arch_timer_set_mode_phys(enum clock_event_mode mode,
				     struct clock_event_device *clk)
{
	timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);
}
104

105 106 107 108
static inline void set_next_event(const int access, unsigned long evt)
{
	unsigned long ctrl;
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
109 110
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
111 112 113
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
}
114

115 116 117 118 119 120
static int arch_timer_set_next_event_virt(unsigned long evt,
					  struct clock_event_device *unused)
{
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);
	return 0;
}
121

122 123 124 125
static int arch_timer_set_next_event_phys(unsigned long evt,
					  struct clock_event_device *unused)
{
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);
126 127 128 129 130
	return 0;
}

static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
{
131
	clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
132 133
	clk->name = "arch_sys_timer";
	clk->rating = 450;
134 135 136 137 138 139 140 141 142 143 144
	if (arch_timer_use_virtual) {
		clk->irq = arch_timer_ppi[VIRT_PPI];
		clk->set_mode = arch_timer_set_mode_virt;
		clk->set_next_event = arch_timer_set_next_event_virt;
	} else {
		clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
		clk->set_mode = arch_timer_set_mode_phys;
		clk->set_next_event = arch_timer_set_next_event_phys;
	}

	clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);
145 146 147 148 149 150

	clockevents_config_and_register(clk, arch_timer_rate,
					0xf, 0x7fffffff);

	*__this_cpu_ptr(arch_timer_evt) = clk;

151 152 153 154 155 156 157
	if (arch_timer_use_virtual)
		enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
	else {
		enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
	}
158 159 160 161 162 163

	return 0;
}

static int arch_timer_available(void)
{
164
	u32 freq;
165 166

	if (arch_timer_rate == 0) {
167
		freq = arch_timer_get_cntfrq();
168 169 170 171 172 173 174 175 176 177

		/* Check the timer frequency. */
		if (freq == 0) {
			pr_warn("Architected timer frequency not available\n");
			return -EINVAL;
		}

		arch_timer_rate = freq;
	}

178
	pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
179 180
		     (unsigned long)arch_timer_rate / 1000000,
		     (unsigned long)(arch_timer_rate / 10000) % 100,
181
		     arch_timer_use_virtual ? "virt" : "phys");
182 183 184
	return 0;
}

185 186 187 188 189 190 191
/*
 * Some external users of arch_timer_read_counter (e.g. sched_clock) may try to
 * call it before it has been initialised. Rather than incur a performance
 * penalty checking for initialisation, provide a default implementation that
 * won't lead to time appearing to jump backwards.
 */
static u64 arch_timer_read_zero(void)
192
{
193
	return 0;
194 195
}

196
u64 (*arch_timer_read_counter)(void) = arch_timer_read_zero;
197

198 199 200
static u32 arch_timer_read_counter32(void)
{
	return arch_timer_read_counter();
201 202
}

203 204
static cycle_t arch_counter_read(struct clocksource *cs)
{
205
	return arch_timer_read_counter();
206 207
}

208
static unsigned long arch_timer_read_current_timer(void)
209
{
210
	return arch_timer_read_counter();
211 212
}

213 214
static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
{
215
	return arch_timer_read_counter();
216 217
}

218 219 220 221 222 223 224 225
static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
};

226 227 228 229 230 231 232 233 234 235 236 237
static struct cyclecounter cyclecounter = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

static struct timecounter timecounter;

struct timecounter *arch_timer_get_timecounter(void)
{
	return &timecounter;
}

238 239 240 241
static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());
242 243 244 245 246 247 248 249 250 251

	if (arch_timer_use_virtual)
		disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
	else {
		disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
	}

	clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
252 253 254 255 256 257 258
}

static struct local_timer_ops arch_timer_ops __cpuinitdata = {
	.setup	= arch_timer_setup,
	.stop	= arch_timer_stop,
};

259 260
static struct clock_event_device arch_timer_global_evt;

261
static int __init arch_timer_register(void)
262 263
{
	int err;
264
	int ppi;
265 266 267

	err = arch_timer_available();
	if (err)
268
		goto out;
269 270

	arch_timer_evt = alloc_percpu(struct clock_event_device *);
271 272 273 274
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}
275 276

	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
277 278 279 280
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
	timecounter_init(&timecounter, &cyclecounter,
			 arch_counter_get_cntpct());
281

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	if (arch_timer_use_virtual) {
		ppi = arch_timer_ppi[VIRT_PPI];
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
	} else {
		ppi = arch_timer_ppi[PHYS_SECURE_PPI];
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
	}

300 301
	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
302
		       ppi, err);
303 304 305 306
		goto out_free;
	}

	err = local_timer_register(&arch_timer_ops);
307 308 309 310 311 312 313 314 315 316
	if (err) {
		/*
		 * We couldn't register as a local timer (could be
		 * because we're on a UP platform, or because some
		 * other local timer is already present...). Try as a
		 * global timer instead.
		 */
		arch_timer_global_evt.cpumask = cpumask_of(0);
		err = arch_timer_setup(&arch_timer_global_evt);
	}
317 318 319
	if (err)
		goto out_free_irq;

320 321 322 323
	/* Use the architected timer for the delay loop. */
	arch_delay_timer.read_current_timer = &arch_timer_read_current_timer;
	arch_delay_timer.freq = arch_timer_rate;
	register_current_timer_delay(&arch_delay_timer);
324 325 326
	return 0;

out_free_irq:
327 328 329 330 331 332 333 334 335
	if (arch_timer_use_virtual)
		free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
	else {
		free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
				arch_timer_evt);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
					arch_timer_evt);
	}
336 337 338

out_free:
	free_percpu(arch_timer_evt);
339
out:
340 341
	return err;
}
342

343 344 345 346 347 348 349 350 351
static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible	= "arm,armv7-timer",	},
	{},
};

int __init arch_timer_of_register(void)
{
	struct device_node *np;
	u32 freq;
352
	int i;
353 354 355 356 357 358 359 360 361 362 363

	np = of_find_matching_node(NULL, arch_timer_of_match);
	if (!np) {
		pr_err("arch_timer: can't find DT node\n");
		return -ENODEV;
	}

	/* Try to determine the frequency from the device tree or CNTFRQ */
	if (!of_property_read_u32(np, "clock-frequency", &freq))
		arch_timer_rate = freq;

364 365 366
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

367 368
	of_node_put(np);

369 370 371 372 373 374 375 376 377 378 379 380 381
	/*
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
	 */
	if (!arch_timer_ppi[VIRT_PPI]) {
		arch_timer_use_virtual = false;

		if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
		    !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			pr_warn("arch_timer: No interrupt available, giving up\n");
			return -EINVAL;
		}
	}
382

383 384 385 386 387
	if (arch_timer_use_virtual)
		arch_timer_read_counter = arch_counter_get_cntvct;
	else
		arch_timer_read_counter = arch_counter_get_cntpct;

388
	return arch_timer_register();
389 390
}

391 392 393 394 395 396 397 398
int __init arch_timer_sched_clock_init(void)
{
	int err;

	err = arch_timer_available();
	if (err)
		return err;

399 400
	setup_sched_clock(arch_timer_read_counter32,
			  32, arch_timer_rate);
401 402
	return 0;
}