arch_timer.c 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/arch/arm/kernel/arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/jiffies.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
20
#include <linux/of_irq.h>
21 22 23 24 25 26
#include <linux/io.h>

#include <asm/cputype.h>
#include <asm/localtimer.h>
#include <asm/arch_timer.h>
#include <asm/system_info.h>
27
#include <asm/sched_clock.h>
28 29

static unsigned long arch_timer_rate;
30 31 32 33 34 35 36 37 38 39

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];
40 41 42

static struct clock_event_device __percpu **arch_timer_evt;

43 44
extern void init_current_timer_delay(unsigned long freq);

45 46
static bool arch_timer_use_virtual = true;

47 48 49 50 51 52 53 54 55 56 57 58
/*
 * Architected system timer support.
 */

#define ARCH_TIMER_CTRL_ENABLE		(1 << 0)
#define ARCH_TIMER_CTRL_IT_MASK		(1 << 1)
#define ARCH_TIMER_CTRL_IT_STAT		(1 << 2)

#define ARCH_TIMER_REG_CTRL		0
#define ARCH_TIMER_REG_FREQ		1
#define ARCH_TIMER_REG_TVAL		2

59 60 61 62 63 64 65 66 67
#define ARCH_TIMER_PHYS_ACCESS		0
#define ARCH_TIMER_VIRT_ACCESS		1

/*
 * These register accessors are marked inline so the compiler can
 * nicely work out which register we want, and chuck away the rest of
 * the code. At least it does so with a recent GCC (4.6.3).
 */
static inline void arch_timer_reg_write(const int access, const int reg, u32 val)
68
{
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
	if (access == ARCH_TIMER_PHYS_ACCESS) {
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			asm volatile("mcr p15, 0, %0, c14, c2, 1" : : "r" (val));
			break;
		case ARCH_TIMER_REG_TVAL:
			asm volatile("mcr p15, 0, %0, c14, c2, 0" : : "r" (val));
			break;
		}
	}

	if (access == ARCH_TIMER_VIRT_ACCESS) {
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			asm volatile("mcr p15, 0, %0, c14, c3, 1" : : "r" (val));
			break;
		case ARCH_TIMER_REG_TVAL:
			asm volatile("mcr p15, 0, %0, c14, c3, 0" : : "r" (val));
			break;
		}
89 90 91 92 93
	}

	isb();
}

94
static inline u32 arch_timer_reg_read(const int access, const int reg)
95
{
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	u32 val = 0;

	if (access == ARCH_TIMER_PHYS_ACCESS) {
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			asm volatile("mrc p15, 0, %0, c14, c2, 1" : "=r" (val));
			break;
		case ARCH_TIMER_REG_TVAL:
			asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (val));
			break;
		case ARCH_TIMER_REG_FREQ:
			asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (val));
			break;
		}
	}
111

112 113 114 115 116 117 118 119 120
	if (access == ARCH_TIMER_VIRT_ACCESS) {
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			asm volatile("mrc p15, 0, %0, c14, c3, 1" : "=r" (val));
			break;
		case ARCH_TIMER_REG_TVAL:
			asm volatile("mrc p15, 0, %0, c14, c3, 0" : "=r" (val));
			break;
		}
121 122 123 124 125
	}

	return val;
}

126
static inline cycle_t arch_timer_counter_read(const int access)
127
{
128 129 130 131 132 133 134 135 136 137
	cycle_t cval = 0;

	if (access == ARCH_TIMER_PHYS_ACCESS)
		asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (cval));

	if (access == ARCH_TIMER_VIRT_ACCESS)
		asm volatile("mrrc p15, 1, %Q0, %R0, c14" : "=r" (cval));

	return cval;
}
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
static inline cycle_t arch_counter_get_cntpct(void)
{
	return arch_timer_counter_read(ARCH_TIMER_PHYS_ACCESS);
}

static inline cycle_t arch_counter_get_cntvct(void)
{
	return arch_timer_counter_read(ARCH_TIMER_VIRT_ACCESS);
}

static irqreturn_t inline timer_handler(const int access,
					struct clock_event_device *evt)
{
	unsigned long ctrl;
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
154 155
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
156
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
157 158 159 160 161 162 163
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

164
static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
165
{
166
	struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
167

168
	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
169 170
}

171
static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
172
{
173 174 175 176 177 178 179 180
	struct clock_event_device *evt = *(struct clock_event_device **)dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

static inline void timer_set_mode(const int access, int mode)
{
	unsigned long ctrl;
181 182 183
	switch (mode) {
	case CLOCK_EVT_MODE_UNUSED:
	case CLOCK_EVT_MODE_SHUTDOWN:
184 185 186
		ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
		ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
187 188 189 190 191 192
		break;
	default:
		break;
	}
}

193 194
static void arch_timer_set_mode_virt(enum clock_event_mode mode,
				     struct clock_event_device *clk)
195
{
196 197 198 199 200 201 202 203
	timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);
}

static void arch_timer_set_mode_phys(enum clock_event_mode mode,
				     struct clock_event_device *clk)
{
	timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);
}
204

205 206 207 208
static inline void set_next_event(const int access, unsigned long evt)
{
	unsigned long ctrl;
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
209 210
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
211 212 213
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
}
214

215 216 217 218 219 220
static int arch_timer_set_next_event_virt(unsigned long evt,
					  struct clock_event_device *unused)
{
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);
	return 0;
}
221

222 223 224 225
static int arch_timer_set_next_event_phys(unsigned long evt,
					  struct clock_event_device *unused)
{
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);
226 227 228 229 230
	return 0;
}

static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
{
231
	clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
232 233
	clk->name = "arch_sys_timer";
	clk->rating = 450;
234 235 236 237 238 239 240 241 242 243 244
	if (arch_timer_use_virtual) {
		clk->irq = arch_timer_ppi[VIRT_PPI];
		clk->set_mode = arch_timer_set_mode_virt;
		clk->set_next_event = arch_timer_set_next_event_virt;
	} else {
		clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
		clk->set_mode = arch_timer_set_mode_phys;
		clk->set_next_event = arch_timer_set_next_event_phys;
	}

	clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);
245 246 247 248 249 250

	clockevents_config_and_register(clk, arch_timer_rate,
					0xf, 0x7fffffff);

	*__this_cpu_ptr(arch_timer_evt) = clk;

251 252 253 254 255 256 257
	if (arch_timer_use_virtual)
		enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
	else {
		enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
	}
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

	return 0;
}

/* Is the optional system timer available? */
static int local_timer_is_architected(void)
{
	return (cpu_architecture() >= CPU_ARCH_ARMv7) &&
	       ((read_cpuid_ext(CPUID_EXT_PFR1) >> 16) & 0xf) == 1;
}

static int arch_timer_available(void)
{
	unsigned long freq;

	if (!local_timer_is_architected())
		return -ENXIO;

	if (arch_timer_rate == 0) {
277 278
		freq = arch_timer_reg_read(ARCH_TIMER_PHYS_ACCESS,
					   ARCH_TIMER_REG_FREQ);
279 280 281 282 283 284 285 286 287 288

		/* Check the timer frequency. */
		if (freq == 0) {
			pr_warn("Architected timer frequency not available\n");
			return -EINVAL;
		}

		arch_timer_rate = freq;
	}

289 290 291
	pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
		     arch_timer_rate / 1000000, (arch_timer_rate / 10000) % 100,
		     arch_timer_use_virtual ? "virt" : "phys");
292 293 294
	return 0;
}

295
static u32 notrace arch_counter_get_cntpct32(void)
296
{
297
	cycle_t cnt = arch_counter_get_cntpct();
298

299 300 301 302 303 304
	/*
	 * The sched_clock infrastructure only knows about counters
	 * with at most 32bits. Forget about the upper 24 bits for the
	 * time being...
	 */
	return (u32)cnt;
305 306
}

307 308
static u32 notrace arch_counter_get_cntvct32(void)
{
309
	cycle_t cnt = arch_counter_get_cntvct();
310 311 312 313 314 315

	/*
	 * The sched_clock infrastructure only knows about counters
	 * with at most 32bits. Forget about the upper 24 bits for the
	 * time being...
	 */
316
	return (u32)cnt;
317 318
}

319 320
static cycle_t arch_counter_read(struct clocksource *cs)
{
321 322 323 324
	/*
	 * Always use the physical counter for the clocksource.
	 * CNTHCTL.PL1PCTEN must be set to 1.
	 */
325 326 327
	return arch_counter_get_cntpct();
}

328 329 330 331 332 333 334 335
int read_current_timer(unsigned long *timer_val)
{
	if (!arch_timer_rate)
		return -ENXIO;
	*timer_val = arch_counter_get_cntpct();
	return 0;
}

336 337 338 339 340 341 342 343 344 345 346 347
static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
};

static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());
348 349 350 351 352 353 354 355 356 357

	if (arch_timer_use_virtual)
		disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
	else {
		disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
	}

	clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
358 359 360 361 362 363 364
}

static struct local_timer_ops arch_timer_ops __cpuinitdata = {
	.setup	= arch_timer_setup,
	.stop	= arch_timer_stop,
};

365 366
static struct clock_event_device arch_timer_global_evt;

367
static int __init arch_timer_register(void)
368 369
{
	int err;
370
	int ppi;
371 372 373

	err = arch_timer_available();
	if (err)
374
		goto out;
375 376

	arch_timer_evt = alloc_percpu(struct clock_event_device *);
377 378 379 380
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}
381 382 383

	clocksource_register_hz(&clocksource_counter, arch_timer_rate);

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	if (arch_timer_use_virtual) {
		ppi = arch_timer_ppi[VIRT_PPI];
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
	} else {
		ppi = arch_timer_ppi[PHYS_SECURE_PPI];
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
	}

402 403
	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
404
		       ppi, err);
405 406 407 408
		goto out_free;
	}

	err = local_timer_register(&arch_timer_ops);
409 410 411 412 413 414 415 416 417 418 419
	if (err) {
		/*
		 * We couldn't register as a local timer (could be
		 * because we're on a UP platform, or because some
		 * other local timer is already present...). Try as a
		 * global timer instead.
		 */
		arch_timer_global_evt.cpumask = cpumask_of(0);
		err = arch_timer_setup(&arch_timer_global_evt);
	}

420 421 422
	if (err)
		goto out_free_irq;

423
	init_current_timer_delay(arch_timer_rate);
424 425 426
	return 0;

out_free_irq:
427 428 429 430 431 432 433 434 435
	if (arch_timer_use_virtual)
		free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
	else {
		free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
				arch_timer_evt);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
					arch_timer_evt);
	}
436 437 438

out_free:
	free_percpu(arch_timer_evt);
439
out:
440 441
	return err;
}
442

443 444 445 446 447 448 449 450 451
static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible	= "arm,armv7-timer",	},
	{},
};

int __init arch_timer_of_register(void)
{
	struct device_node *np;
	u32 freq;
452
	int i;
453 454 455 456 457 458 459 460 461 462 463

	np = of_find_matching_node(NULL, arch_timer_of_match);
	if (!np) {
		pr_err("arch_timer: can't find DT node\n");
		return -ENODEV;
	}

	/* Try to determine the frequency from the device tree or CNTFRQ */
	if (!of_property_read_u32(np, "clock-frequency", &freq))
		arch_timer_rate = freq;

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

	/*
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
	 */
	if (!arch_timer_ppi[VIRT_PPI]) {
		arch_timer_use_virtual = false;

		if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
		    !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			pr_warn("arch_timer: No interrupt available, giving up\n");
			return -EINVAL;
		}
	}
480

481
	return arch_timer_register();
482 483
}

484 485
int __init arch_timer_sched_clock_init(void)
{
486
	u32 (*cnt32)(void);
487 488 489 490 491 492
	int err;

	err = arch_timer_available();
	if (err)
		return err;

493 494 495 496 497 498
	if (arch_timer_use_virtual)
		cnt32 = arch_counter_get_cntvct32;
	else
		cnt32 = arch_counter_get_cntpct32;

	setup_sched_clock(cnt32, 32, arch_timer_rate);
499 500
	return 0;
}