igb_main.c 206.4 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2013 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
33
#include <linux/bitops.h>
34 35 36 37
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40
#include <net/checksum.h>
#include <net/ip6_checksum.h>
41
#include <linux/net_tstamp.h>
42 43
#include <linux/mii.h>
#include <linux/ethtool.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/pci.h>
47
#include <linux/pci-aspm.h>
48 49
#include <linux/delay.h>
#include <linux/interrupt.h>
50 51 52
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
53
#include <linux/if_ether.h>
54
#include <linux/aer.h>
55
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
56
#include <linux/pm_runtime.h>
57
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
58 59
#include <linux/dca.h>
#endif
C
Carolyn Wyborny 已提交
60
#include <linux/i2c.h>
61 62
#include "igb.h"

C
Carolyn Wyborny 已提交
63
#define MAJ 4
C
Carolyn Wyborny 已提交
64 65
#define MIN 1
#define BUILD 2
C
Carolyn Wyborny 已提交
66
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67
__stringify(BUILD) "-k"
68 69 70 71
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
72 73
static const char igb_copyright[] =
				"Copyright (c) 2007-2013 Intel Corporation.";
74 75 76 77 78

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

79
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 81 82 83 84
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 86 87 88
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
89 90
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
91
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
92 93 94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
95 96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
97 98
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
99
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
100
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
101
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
102 103
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
104
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
105
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
106
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
107 108 109 110 111 112 113 114 115 116 117 118 119 120
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
121
static void igb_setup_mrqc(struct igb_adapter *);
122
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123
static void igb_remove(struct pci_dev *pdev);
124 125 126
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
127
static void igb_configure(struct igb_adapter *);
128 129 130 131
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
132 133
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
134
static void igb_set_rx_mode(struct net_device *);
135 136 137
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
138
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
139 140
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
141 142
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
143
static void igb_set_uta(struct igb_adapter *adapter);
144 145 146
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
147
static irqreturn_t igb_msix_ring(int irq, void *);
148
#ifdef CONFIG_IGB_DCA
149
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
150
static void igb_setup_dca(struct igb_adapter *);
151
#endif /* CONFIG_IGB_DCA */
152
static int igb_poll(struct napi_struct *, int);
153
static bool igb_clean_tx_irq(struct igb_q_vector *);
154
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 156 157
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
158
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
159 160
static int igb_vlan_rx_add_vid(struct net_device *, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, u16);
161
static void igb_restore_vlan(struct igb_adapter *);
162
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
163 164 165
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
166
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
167
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
168 169 170 171 172 173
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
174
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
175 176

#ifdef CONFIG_PCI_IOV
177
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178
static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
R
RongQing Li 已提交
179
#endif
180 181

#ifdef CONFIG_PM
182
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
183
static int igb_suspend(struct device *);
184
#endif
Y
Yan, Zheng 已提交
185 186 187 188 189 190 191 192 193 194 195
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
196 197
#endif
static void igb_shutdown(struct pci_dev *);
198
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
199
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
200 201 202 203 204 205 206
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
207 208 209 210
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
211
#ifdef CONFIG_PCI_IOV
212 213 214 215 216 217
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

218 219 220 221 222
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

223
static const struct pci_error_handlers igb_err_handler = {
224 225 226 227 228
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

229
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230 231 232 233 234

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
235
	.remove   = igb_remove,
236
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
237
	.driver.pm = &igb_pm_ops,
238 239
#endif
	.shutdown = igb_shutdown,
240
	.sriov_configure = igb_pci_sriov_configure,
241 242 243 244 245 246 247 248
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

249 250 251 252 253
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
354
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 356 357 358
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
359 360
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
377
	u16 i, n;
378 379 380 381 382 383 384

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
385 386 387 388
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
389 390 391 392
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
393
	pr_info(" Register Name   Value\n");
394 395 396 397 398 399 400 401 402 403
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
404
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405
	for (n = 0; n < adapter->num_tx_queues; n++) {
406
		struct igb_tx_buffer *buffer_info;
407
		tx_ring = adapter->tx_ring[n];
408
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
409 410
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 412
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
J
Jeff Kirsher 已提交
413 414
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
436 437 438 439 440 441
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
442 443

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
444
			const char *next_desc;
445
			struct igb_tx_buffer *buffer_info;
446
			tx_desc = IGB_TX_DESC(tx_ring, i);
447
			buffer_info = &tx_ring->tx_buffer_info[i];
448
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
449 450 451 452 453 454 455 456 457 458 459 460
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
461 462
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
463 464
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
465 466
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
467
				buffer_info->skb, next_desc);
468

469
			if (netif_msg_pktdata(adapter) && buffer_info->skb)
470 471
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
472
					16, 1, buffer_info->skb->data,
473 474
					dma_unmap_len(buffer_info, len),
					true);
475 476 477 478 479 480
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
481
	pr_info("Queue [NTU] [NTC]\n");
482 483
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
484 485
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
517 518 519 520 521 522 523
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524 525

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
526
			const char *next_desc;
527 528
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
529
			rx_desc = IGB_RX_DESC(rx_ring, i);
530 531
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
532 533 534 535 536 537 538 539

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

540 541
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
542 543
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
544 545
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
546
					next_desc);
547
			} else {
548 549
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
550 551 552
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
553
					next_desc);
554

555
				if (netif_msg_pktdata(adapter) &&
556
				    buffer_info->dma && buffer_info->page) {
557 558 559
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
560 561
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
562
					  IGB_RX_BUFSZ, true);
563 564 565 566 567 568 569 570 571
				}
			}
		}
	}

exit:
	return;
}

C
Carolyn Wyborny 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
/*  igb_get_i2c_data - Reads the I2C SDA data bit
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Returns the I2C data bit value
 */
static int igb_get_i2c_data(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
}

/* igb_set_i2c_data - Sets the I2C data bit
 *  @data: pointer to hardware structure
 *  @state: I2C data value (0 or 1) to set
 *
 *  Sets the I2C data bit
 */
static void igb_set_i2c_data(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state)
		i2cctl |= E1000_I2C_DATA_OUT;
	else
		i2cctl &= ~E1000_I2C_DATA_OUT;

	i2cctl &= ~E1000_I2C_DATA_OE_N;
	i2cctl |= E1000_I2C_CLK_OE_N;
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();

}

/* igb_set_i2c_clk - Sets the I2C SCL clock
 *  @data: pointer to hardware structure
 *  @state: state to set clock
 *
 *  Sets the I2C clock line to state
 */
static void igb_set_i2c_clk(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state) {
		i2cctl |= E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	} else {
		i2cctl &= ~E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	}
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();
}

/* igb_get_i2c_clk - Gets the I2C SCL clock state
 *  @data: pointer to hardware structure
 *
 *  Gets the I2C clock state
 */
static int igb_get_i2c_clk(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
}

static const struct i2c_algo_bit_data igb_i2c_algo = {
	.setsda		= igb_set_i2c_data,
	.setscl		= igb_set_i2c_clk,
	.getsda		= igb_get_i2c_data,
	.getscl		= igb_get_i2c_clk,
	.udelay		= 5,
	.timeout	= 20,
};

657
/**
658
 * igb_get_hw_dev - return device
659 660
 * used by hardware layer to print debugging information
 **/
661
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
662 663
{
	struct igb_adapter *adapter = hw->back;
664
	return adapter->netdev;
665
}
P
Patrick Ohly 已提交
666

667 668 669 670 671 672 673 674 675
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
676
	pr_info("%s - version %s\n",
677 678
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
679
	pr_info("%s\n", igb_copyright);
680

681
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
682 683
	dca_register_notify(&dca_notifier);
#endif
684
	ret = pci_register_driver(&igb_driver);
685 686 687 688 689 690 691 692 693 694 695 696 697
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
698
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
699 700
	dca_unregister_notify(&dca_notifier);
#endif
701 702 703 704 705
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

706 707 708 709 710 711 712 713 714 715
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
716
	int i = 0, j = 0;
717
	u32 rbase_offset = adapter->vfs_allocated_count;
718 719 720 721 722 723 724 725

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
726
		if (adapter->vfs_allocated_count) {
727
			for (; i < adapter->rss_queues; i++)
728 729
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
730
		}
731
	case e1000_82575:
732
	case e1000_82580:
733
	case e1000_i350:
734 735
	case e1000_i210:
	case e1000_i211:
736
	default:
737
		for (; i < adapter->num_rx_queues; i++)
738
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
739
		for (; j < adapter->num_tx_queues; j++)
740
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
741 742 743 744
		break;
	}
}

A
Alexander Duyck 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

771
#define IGB_N0_QUEUE -1
772
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
773
{
774
	struct igb_adapter *adapter = q_vector->adapter;
775
	struct e1000_hw *hw = &adapter->hw;
776 777
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
778
	u32 msixbm = 0;
779

780 781 782 783
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
784 785 786

	switch (hw->mac.type) {
	case e1000_82575:
787 788 789 790
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
791
		if (rx_queue > IGB_N0_QUEUE)
792
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
793
		if (tx_queue > IGB_N0_QUEUE)
794
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
795 796
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
797
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
798
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
799 800
		break;
	case e1000_82576:
A
Alexander Duyck 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814
		/*
		 * 82576 uses a table that essentially consists of 2 columns
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
815
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
816
		break;
817
	case e1000_82580:
818
	case e1000_i350:
819 820
	case e1000_i210:
	case e1000_i211:
A
Alexander Duyck 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		/*
		 * On 82580 and newer adapters the scheme is similar to 82576
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
836 837
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
838 839 840 841
	default:
		BUG();
		break;
	}
842 843 844 845 846 847

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
865 866
	switch (hw->mac.type) {
	case e1000_82575:
867 868 869 870 871 872 873 874 875
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
876 877 878 879

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
880
		adapter->eims_other = E1000_EIMS_OTHER;
881

A
Alexander Duyck 已提交
882 883 884
		break;

	case e1000_82576:
885
	case e1000_82580:
886
	case e1000_i350:
887 888
	case e1000_i210:
	case e1000_i211:
889 890 891 892 893 894 895 896
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
897 898
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

899
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
900 901 902 903 904
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
905 906 907

	adapter->eims_enable_mask |= adapter->eims_other;

908 909
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
910

911 912 913 914 915 916 917 918 919 920 921 922
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
923
	struct e1000_hw *hw = &adapter->hw;
924
	int i, err = 0, vector = 0, free_vector = 0;
925

926
	err = request_irq(adapter->msix_entries[vector].vector,
927
	                  igb_msix_other, 0, netdev->name, adapter);
928
	if (err)
929
		goto err_out;
930 931 932 933

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

934 935
		vector++;

936 937
		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

938
		if (q_vector->rx.ring && q_vector->tx.ring)
939
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
940 941
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
942
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
943 944
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
945
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
946
				q_vector->rx.ring->queue_index);
947
		else
948 949
			sprintf(q_vector->name, "%s-unused", netdev->name);

950
		err = request_irq(adapter->msix_entries[vector].vector,
951
		                  igb_msix_ring, 0, q_vector->name,
952
		                  q_vector);
953
		if (err)
954
			goto err_free;
955 956 957 958
	}

	igb_configure_msix(adapter);
	return 0;
959 960 961 962 963 964 965 966 967 968 969

err_free:
	/* free already assigned IRQs */
	free_irq(adapter->msix_entries[free_vector++].vector, adapter);

	vector--;
	for (i = 0; i < vector; i++) {
		free_irq(adapter->msix_entries[free_vector++].vector,
			 adapter->q_vector[i]);
	}
err_out:
970 971 972 973 974 975 976 977 978
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
979
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
980
		pci_disable_msi(adapter->pdev);
981
	}
982 983
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/**
 * igb_free_q_vector - Free memory allocated for specific interrupt vector
 * @adapter: board private structure to initialize
 * @v_idx: Index of vector to be freed
 *
 * This function frees the memory allocated to the q_vector.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;

	adapter->q_vector[v_idx] = NULL;
	netif_napi_del(&q_vector->napi);

	/*
	 * ixgbe_get_stats64() might access the rings on this vector,
	 * we must wait a grace period before freeing it.
	 */
	kfree_rcu(q_vector, rcu);
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
1023 1024 1025 1026
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
1027
	adapter->num_q_vectors = 0;
1028 1029 1030

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1044 1045 1046 1047 1048 1049 1050

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1051
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1052 1053 1054 1055
{
	int err;
	int numvecs, i;

1056 1057 1058
	if (!msix)
		goto msi_only;

1059
	/* Number of supported queues. */
1060
	adapter->num_rx_queues = adapter->rss_queues;
1061 1062 1063 1064
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1065

1066 1067 1068
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
1069
	/* if tx handler is separate add 1 for every tx queue */
1070 1071
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1072 1073 1074 1075 1076 1077

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1078 1079
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
1080

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1091
		return;
1092 1093 1094 1095 1096

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1108
		wrfl();
1109 1110 1111 1112
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1113
	adapter->vfs_allocated_count = 0;
1114
	adapter->rss_queues = 1;
1115
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1116
	adapter->num_rx_queues = 1;
1117
	adapter->num_tx_queues = 1;
1118
	adapter->num_q_vectors = 1;
1119
	if (!pci_enable_msi(adapter->pdev))
1120
		adapter->flags |= IGB_FLAG_HAS_MSI;
1121 1122
}

1123 1124 1125 1126 1127 1128 1129
static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

1130
/**
1131
 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1132
 * @adapter: board private structure to initialize
1133 1134 1135 1136 1137 1138
 * @v_count: q_vectors allocated on adapter, used for ring interleaving
 * @v_idx: index of vector in adapter struct
 * @txr_count: total number of Tx rings to allocate
 * @txr_idx: index of first Tx ring to allocate
 * @rxr_count: total number of Rx rings to allocate
 * @rxr_idx: index of first Rx ring to allocate
1139
 *
1140
 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1141
 **/
1142 1143 1144 1145
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
1146 1147
{
	struct igb_q_vector *q_vector;
1148 1149
	struct igb_ring *ring;
	int ring_count, size;
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = sizeof(struct igb_q_vector) +
	       (sizeof(struct igb_ring) * ring_count);

	/* allocate q_vector and rings */
	q_vector = kzalloc(size, GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
1206
	}
1207

1208 1209 1210 1211
	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;
1212

1213 1214
		/* configure backlink on ring */
		ring->q_vector = q_vector;
1215

1216 1217
		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);
1218

1219 1220 1221
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1222

1223 1224 1225 1226 1227 1228
		/*
		 * On i350, i210, and i211, loopback VLAN packets
		 * have the tag byte-swapped.
		 * */
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1229

1230 1231 1232 1233 1234 1235 1236 1237 1238
		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
1239 1240
}

1241

1242
/**
1243 1244
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
1245
 *
1246 1247
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
1248
 **/
1249
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1250
{
1251 1252 1253 1254 1255
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;
1256

1257 1258 1259 1260
	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);
1261

1262 1263 1264 1265 1266 1267
			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
1268 1269
		}
	}
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

1287
	return 0;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
1298 1299 1300 1301 1302 1303 1304
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
1305
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1306 1307 1308 1309
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1310
	igb_set_interrupt_capability(adapter, msix);
1311 1312 1313 1314 1315 1316 1317

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

1318
	igb_cache_ring_register(adapter);
1319 1320

	return 0;
1321

1322 1323 1324 1325 1326
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1327 1328 1329 1330 1331 1332 1333 1334 1335
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1336
	struct pci_dev *pdev = adapter->pdev;
1337 1338 1339 1340
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1341
		if (!err)
1342 1343
			goto request_done;
		/* fall back to MSI */
1344 1345
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1346

1347
		igb_clear_interrupt_scheme(adapter);
1348 1349
		err = igb_init_interrupt_scheme(adapter, false);
		if (err)
1350
			goto request_done;
1351

1352 1353
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1354
		igb_configure(adapter);
1355
	}
P
PJ Waskiewicz 已提交
1356

1357 1358
	igb_assign_vector(adapter->q_vector[0], 0);

1359
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1360
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1361
				  netdev->name, adapter);
1362 1363
		if (!err)
			goto request_done;
1364

1365 1366
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1367
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1368 1369
	}

1370
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1371
			  netdev->name, adapter);
1372

A
Andy Gospodarek 已提交
1373
	if (err)
1374
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1386
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1387

1388
		for (i = 0; i < adapter->num_q_vectors; i++)
1389
			free_irq(adapter->msix_entries[vector++].vector,
1390
				 adapter->q_vector[i]);
1391 1392
	} else {
		free_irq(adapter->pdev->irq, adapter);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1404 1405 1406 1407 1408
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1409
	if (adapter->msix_entries) {
1410 1411 1412 1413 1414
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1415
	}
P
PJ Waskiewicz 已提交
1416 1417

	wr32(E1000_IAM, 0);
1418 1419
	wr32(E1000_IMC, ~0);
	wrfl();
1420 1421 1422 1423 1424 1425 1426
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1438
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1439 1440 1441 1442
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1443
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1444
		if (adapter->vfs_allocated_count) {
1445
			wr32(E1000_MBVFIMR, 0xFF);
1446 1447 1448
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1449
	} else {
1450 1451 1452 1453
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1454
	}
1455 1456 1457 1458
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1459
	struct e1000_hw *hw = &adapter->hw;
1460 1461
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1473
	    !test_bit(old_vid, adapter->active_vlans)) {
1474 1475
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1529
	igb_set_rx_mode(netdev);
1530 1531 1532

	igb_restore_vlan(adapter);

1533
	igb_setup_tctl(adapter);
1534
	igb_setup_mrqc(adapter);
1535
	igb_setup_rctl(adapter);
1536 1537

	igb_configure_tx(adapter);
1538
	igb_configure_rx(adapter);
1539 1540 1541

	igb_rx_fifo_flush_82575(&adapter->hw);

1542
	/* call igb_desc_unused which always leaves
1543 1544 1545
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1546
		struct igb_ring *ring = adapter->rx_ring[i];
1547
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1548 1549 1550
	}
}

1551 1552 1553 1554 1555 1556
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
1557 1558
	igb_reset_phy(&adapter->hw);

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1591 1592 1593
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1594
	if (adapter->msix_entries)
1595
		igb_configure_msix(adapter);
1596 1597
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1598 1599 1600 1601 1602

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1603 1604 1605 1606 1607 1608 1609
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1610 1611
	netif_tx_start_all_queues(adapter->netdev);

1612 1613 1614 1615
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1616 1617 1618 1619 1620 1621
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1622
	struct e1000_hw *hw = &adapter->hw;
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1635
	netif_tx_stop_all_queues(netdev);
1636 1637 1638 1639 1640 1641 1642 1643 1644

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1645 1646
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_disable(&(adapter->q_vector[i]->napi));
1647 1648 1649 1650 1651 1652 1653

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1654 1655

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1656 1657 1658
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1659

1660 1661 1662
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1663 1664
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1665 1666
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1667 1668 1669 1670 1671
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1686
	struct pci_dev *pdev = adapter->pdev;
1687
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1688 1689
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1690
	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1691 1692 1693 1694

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1695
	switch (mac->type) {
1696
	case e1000_i350:
1697 1698 1699 1700
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1701
	case e1000_82576:
1702 1703
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1704 1705
		break;
	case e1000_82575:
1706 1707
	case e1000_i210:
	case e1000_i211:
1708 1709 1710
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1711
	}
1712

A
Alexander Duyck 已提交
1713 1714
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1732
				sizeof(union e1000_adv_tx_desc) -
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1753
		wr32(E1000_PBA, pba);
1754 1755 1756 1757 1758 1759 1760 1761 1762
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1763
			((pba << 10) - 2 * adapter->max_frame_size));
1764

1765
	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1766
	fc->low_water = fc->high_water - 16;
1767 1768
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1769
	fc->current_mode = fc->requested_mode;
1770

1771 1772 1773 1774
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1775
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1776 1777

		/* ping all the active vfs to let them know we are going down */
1778
		igb_ping_all_vfs(adapter);
1779 1780 1781 1782 1783 1784

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1785
	/* Allow time for pending master requests to run */
1786
	hw->mac.ops.reset_hw(hw);
1787 1788
	wr32(E1000_WUC, 0);

1789
	if (hw->mac.ops.init_hw(hw))
1790
		dev_err(&pdev->dev, "Hardware Error\n");
1791

1792 1793 1794 1795 1796 1797 1798
	/*
	 * Flow control settings reset on hardware reset, so guarantee flow
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

1799
	igb_init_dmac(adapter, pba);
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
#ifdef CONFIG_IGB_HWMON
	/* Re-initialize the thermal sensor on i350 devices. */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (mac->type == e1000_i350 && hw->bus.func == 0) {
			/* If present, re-initialize the external thermal sensor
			 * interface.
			 */
			if (adapter->ets)
				mac->ops.init_thermal_sensor_thresh(hw);
		}
	}
#endif
1812 1813 1814
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1815 1816 1817 1818 1819
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1820 1821 1822
	/* Re-enable PTP, where applicable. */
	igb_ptp_reset(adapter);

1823
	igb_get_phy_info(hw);
1824 1825
}

1826 1827
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
{
	/*
	 * Since there is no support for separate rx/tx vlan accel
	 * enable/disable make sure tx flag is always in same state as rx.
	 */
	if (features & NETIF_F_HW_VLAN_RX)
		features |= NETIF_F_HW_VLAN_TX;
	else
		features &= ~NETIF_F_HW_VLAN_TX;

	return features;
}

1841 1842
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
1843
{
1844
	netdev_features_t changed = netdev->features ^ features;
B
Ben Greear 已提交
1845
	struct igb_adapter *adapter = netdev_priv(netdev);
1846

J
Jiri Pirko 已提交
1847 1848 1849
	if (changed & NETIF_F_HW_VLAN_RX)
		igb_vlan_mode(netdev, features);

B
Ben Greear 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	if (!(changed & NETIF_F_RXALL))
		return 0;

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

1860 1861 1862
	return 0;
}

S
Stephen Hemminger 已提交
1863
static const struct net_device_ops igb_netdev_ops = {
1864
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1865
	.ndo_stop		= igb_close,
1866
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1867
	.ndo_get_stats64	= igb_get_stats64,
1868
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1869 1870 1871 1872 1873 1874 1875
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1876 1877 1878 1879
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1880 1881 1882
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1883 1884
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1885 1886
};

1887 1888 1889 1890 1891 1892 1893 1894
/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 *
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1895 1896 1897 1898 1899 1900
	struct e1000_fw_version fw;

	igb_get_fw_version(hw, &fw);

	switch (hw->mac.type) {
	case e1000_i211:
1901
		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
			 "%2d.%2d-%d",
			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
		break;

	default:
		/* if option is rom valid, display its version too */
		if (fw.or_valid) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x, %d.%d.%d",
				 fw.eep_major, fw.eep_minor, fw.etrack_id,
				 fw.or_major, fw.or_build, fw.or_patch);
		/* no option rom */
		} else {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x",
				 fw.eep_major, fw.eep_minor, fw.etrack_id);
		}
		break;
1922 1923 1924 1925
	}
	return;
}

C
Carolyn Wyborny 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
static const struct i2c_board_info i350_sensor_info = {
	I2C_BOARD_INFO("i350bb", 0Xf8),
};

/*  igb_init_i2c - Init I2C interface
 *  @adapter: pointer to adapter structure
 *
 */
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
	s32 status = E1000_SUCCESS;

	/* I2C interface supported on i350 devices */
	if (adapter->hw.mac.type != e1000_i350)
		return E1000_SUCCESS;

	/* Initialize the i2c bus which is controlled by the registers.
	 * This bus will use the i2c_algo_bit structue that implements
	 * the protocol through toggling of the 4 bits in the register.
	 */
	adapter->i2c_adap.owner = THIS_MODULE;
	adapter->i2c_algo = igb_i2c_algo;
	adapter->i2c_algo.data = adapter;
	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
	strlcpy(adapter->i2c_adap.name, "igb BB",
		sizeof(adapter->i2c_adap.name));
	status = i2c_bit_add_bus(&adapter->i2c_adap);
	return status;
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
1968
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1969 1970 1971 1972
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1973
	u16 eeprom_data = 0;
1974
	s32 ret_val;
1975
	static int global_quad_port_a; /* global quad port a indication */
1976 1977
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1978
	int err, pci_using_dac;
1979
	u8 part_str[E1000_PBANUM_LENGTH];
1980

1981 1982 1983 1984 1985
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1986
			pci_name(pdev), pdev->vendor, pdev->device);
1987 1988 1989
		return -EINVAL;
	}

1990
	err = pci_enable_device_mem(pdev);
1991 1992 1993 1994
	if (err)
		return err;

	pci_using_dac = 0;
1995
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1996
	if (!err) {
1997
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1998 1999 2000
		if (!err)
			pci_using_dac = 1;
	} else {
2001
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2002
		if (err) {
2003
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
2004 2005 2006 2007 2008 2009 2010 2011
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

2012 2013 2014
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
2015 2016 2017
	if (err)
		goto err_pci_reg;

2018
	pci_enable_pcie_error_reporting(pdev);
2019

2020
	pci_set_master(pdev);
2021
	pci_save_state(pdev);
2022 2023

	err = -ENOMEM;
2024
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2025
				   IGB_MAX_TX_QUEUES);
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
2037
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2038 2039 2040 2041 2042

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
2043 2044
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
2045 2046
		goto err_ioremap;

S
Stephen Hemminger 已提交
2047
	netdev->netdev_ops = &igb_netdev_ops;
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
2070
		goto err_sw_init;
2071

2072
	/* setup the private structure */
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	/*
	 * features is initialized to 0 in allocation, it might have bits
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX;

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;
B
Ben Greear 已提交
2109
	netdev->hw_features |= NETIF_F_RXALL;
2110 2111 2112 2113 2114 2115 2116 2117 2118

	/* set this bit last since it cannot be part of hw_features */
	netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
2119

2120 2121
	netdev->priv_flags |= IFF_SUPP_NOFCS;

2122
	if (pci_using_dac) {
2123
		netdev->features |= NETIF_F_HIGHDMA;
2124 2125
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2126

2127 2128
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2129
		netdev->features |= NETIF_F_SCTP_CSUM;
2130
	}
2131

2132 2133
	netdev->priv_flags |= IFF_UNICAST_FLT;

2134
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2135 2136 2137 2138 2139

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
	/*
	 * make sure the NVM is good , i211 parts have special NVM that
	 * doesn't contain a checksum
	 */
	if (hw->mac.type != e1000_i211) {
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
2150 2151 2152 2153 2154 2155 2156 2157
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);

2158
	if (!is_valid_ether_addr(netdev->dev_addr)) {
2159 2160 2161 2162 2163
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2164 2165 2166
	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

2167
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2168
	            (unsigned long) adapter);
2169
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2170
	            (unsigned long) adapter);
2171 2172 2173 2174

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2175
	/* Initialize link properties that are user-changeable */
2176 2177 2178 2179
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2180 2181
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2182 2183 2184

	igb_validate_mdi_setting(hw);

2185
	/* By default, support wake on port A */
2186
	if (hw->bus.func == 0)
2187 2188 2189 2190
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* Check the NVM for wake support on non-port A ports */
	if (hw->mac.type >= e1000_82580)
2191 2192 2193
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
2194 2195
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2196

2197 2198
	if (eeprom_data & IGB_EEPROM_APME)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2199 2200 2201 2202 2203 2204

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2205
		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2206 2207
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2208 2209
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2210 2211 2212
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2213
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2214
		break;
2215
	case E1000_DEV_ID_82576_QUAD_COPPER:
2216
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2217 2218
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
2219
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2220 2221 2222 2223 2224 2225
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2226 2227 2228 2229
	default:
		/* If the device can't wake, don't set software support */
		if (!device_can_wakeup(&adapter->pdev->dev))
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2230 2231 2232
	}

	/* initialize the wol settings based on the eeprom settings */
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
		adapter->wol |= E1000_WUFC_MAG;

	/* Some vendors want WoL disabled by default, but still supported */
	if ((hw->mac.type == e1000_i350) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}

	device_set_wakeup_enable(&adapter->pdev->dev,
				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2245 2246 2247 2248

	/* reset the hardware with the new settings */
	igb_reset(adapter);

C
Carolyn Wyborny 已提交
2249 2250 2251 2252 2253 2254 2255
	/* Init the I2C interface */
	err = igb_init_i2c(adapter);
	if (err) {
		dev_err(&pdev->dev, "failed to init i2c interface\n");
		goto err_eeprom;
	}

2256 2257 2258 2259 2260 2261 2262 2263 2264
	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2265 2266 2267
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2268
#ifdef CONFIG_IGB_DCA
2269
	if (dca_add_requester(&pdev->dev) == 0) {
2270
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2271 2272 2273 2274
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2275
#endif
2276 2277 2278 2279
#ifdef CONFIG_IGB_HWMON
	/* Initialize the thermal sensor on i350 devices. */
	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
		u16 ets_word;
2280

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
		/*
		 * Read the NVM to determine if this i350 device supports an
		 * external thermal sensor.
		 */
		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
		if (ets_word != 0x0000 && ets_word != 0xFFFF)
			adapter->ets = true;
		else
			adapter->ets = false;
		if (igb_sysfs_init(adapter))
			dev_err(&pdev->dev,
				"failed to allocate sysfs resources\n");
	} else {
		adapter->ets = false;
	}
#endif
A
Anders Berggren 已提交
2297
	/* do hw tstamp init after resetting */
2298
	igb_ptp_init(adapter);
A
Anders Berggren 已提交
2299

2300 2301
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
2302
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2303
		 netdev->name,
2304
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2305
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2306
		                                            "unknown"),
2307 2308 2309 2310
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2311
		 netdev->dev_addr);
2312

2313 2314 2315 2316
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2317 2318 2319
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2320
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2321
		adapter->num_rx_queues, adapter->num_tx_queues);
2322 2323
	switch (hw->mac.type) {
	case e1000_i350:
2324 2325
	case e1000_i210:
	case e1000_i211:
2326 2327 2328 2329 2330
		igb_set_eee_i350(hw);
		break;
	default:
		break;
	}
Y
Yan, Zheng 已提交
2331 2332

	pm_runtime_put_noidle(&pdev->dev);
2333 2334 2335 2336
	return 0;

err_register:
	igb_release_hw_control(adapter);
C
Carolyn Wyborny 已提交
2337
	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2338 2339
err_eeprom:
	if (!igb_check_reset_block(hw))
2340
		igb_reset_phy(hw);
2341 2342 2343 2344

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2345
	igb_clear_interrupt_scheme(adapter);
2346 2347 2348 2349
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2350 2351
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2352 2353 2354 2355 2356 2357
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
#ifdef CONFIG_PCI_IOV
static int  igb_disable_sriov(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		if (igb_vfs_are_assigned(adapter)) {
			dev_warn(&pdev->dev,
				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
			return -EPERM;
		} else {
			pci_disable_sriov(pdev);
			msleep(500);
		}

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		adapter->vfs_allocated_count = 0;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");

		/* Re-enable DMA Coalescing flag since IOV is turned off */
		adapter->flags |= IGB_FLAG_DMAC;
	}

	return 0;
}

static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	int old_vfs = pci_num_vf(pdev);
	int err = 0;
	int i;

	if (!num_vfs)
		goto out;
	else if (old_vfs && old_vfs == num_vfs)
		goto out;
	else if (old_vfs && old_vfs != num_vfs)
		err = igb_disable_sriov(pdev);

	if (err)
		goto out;

	if (num_vfs > 7) {
		err = -EPERM;
		goto out;
	}

	adapter->vfs_allocated_count = num_vfs;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);

	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
		adapter->vfs_allocated_count = 0;
		dev_err(&pdev->dev,
			"Unable to allocate memory for VF Data Storage\n");
		err = -ENOMEM;
		goto out;
	}

	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
	if (err)
		goto err_out;

	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;

err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return err;
}

#endif
C
Carolyn Wyborny 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
/*
 *  igb_remove_i2c - Cleanup  I2C interface
 *  @adapter: pointer to adapter structure
 *
 */
static void igb_remove_i2c(struct igb_adapter *adapter)
{

	/* free the adapter bus structure */
	i2c_del_adapter(&adapter->i2c_adap);
}

2463 2464 2465 2466 2467 2468 2469 2470 2471
/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
2472
static void igb_remove(struct pci_dev *pdev)
2473 2474 2475
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2476
	struct e1000_hw *hw = &adapter->hw;
2477

Y
Yan, Zheng 已提交
2478
	pm_runtime_get_noresume(&pdev->dev);
2479 2480 2481
#ifdef CONFIG_IGB_HWMON
	igb_sysfs_exit(adapter);
#endif
C
Carolyn Wyborny 已提交
2482
	igb_remove_i2c(adapter);
2483
	igb_ptp_stop(adapter);
2484 2485 2486 2487
	/*
	 * The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
2488 2489 2490 2491
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2492 2493
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2494

2495
#ifdef CONFIG_IGB_DCA
2496
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2497 2498
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2499
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2500
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2501 2502 2503
	}
#endif

2504 2505 2506 2507 2508 2509
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2510
	igb_clear_interrupt_scheme(adapter);
2511

2512
#ifdef CONFIG_PCI_IOV
2513
	igb_disable_sriov(pdev);
2514
#endif
2515

2516 2517 2518
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2519 2520
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2521

2522
	kfree(adapter->shadow_vfta);
2523 2524
	free_netdev(netdev);

2525
	pci_disable_pcie_error_reporting(pdev);
2526

2527 2528 2529
	pci_disable_device(pdev);
}

2530 2531 2532 2533 2534 2535 2536 2537 2538
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
2539
static void igb_probe_vfs(struct igb_adapter *adapter)
2540 2541 2542
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2543
	struct e1000_hw *hw = &adapter->hw;
2544

2545 2546 2547 2548
	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

2549 2550
	igb_enable_sriov(pdev, max_vfs);
	pci_sriov_set_totalvfs(pdev, 7);
2551

2552 2553 2554
#endif /* CONFIG_PCI_IOV */
}

2555
static void igb_init_queue_configuration(struct igb_adapter *adapter)
2556 2557
{
	struct e1000_hw *hw = &adapter->hw;
2558
	u32 max_rss_queues;
2559

2560
	/* Determine the maximum number of RSS queues supported. */
2561
	switch (hw->mac.type) {
2562 2563 2564 2565
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
2566
	case e1000_i210:
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
2585
		break;
2586 2587 2588 2589 2590 2591 2592
	}

	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
2593
	case e1000_i211:
2594
		/* Device supports enough interrupts without queue pairing. */
2595
		break;
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
	case e1000_82576:
		/*
		 * If VFs are going to be allocated with RSS queues then we
		 * should pair the queues in order to conserve interrupts due
		 * to limited supply.
		 */
		if ((adapter->rss_queues > 1) &&
		    (adapter->vfs_allocated_count > 6))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		/* fall through */
	case e1000_82580:
	case e1000_i350:
	case e1000_i210:
2609
	default:
2610 2611 2612 2613 2614 2615
		/*
		 * If rss_queues > half of max_rss_queues, pair the queues in
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2616 2617
		break;
	}
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
}

/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

	/* set default ring sizes */
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;

	/* set default ITR values */
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
		if (adapter->vfs_allocated_count)
			dev_warn(&pdev->dev,
				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
		break;
	default:
		break;
	}
#endif /* CONFIG_PCI_IOV */

	igb_init_queue_configuration(adapter);
2672

2673
	/* Setup and initialize a copy of the hw vlan table array */
2674 2675
	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
				       GFP_ATOMIC);
2676

2677
	/* This call may decrease the number of queues */
2678
	if (igb_init_interrupt_scheme(adapter, true)) {
2679 2680 2681 2682
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2683 2684
	igb_probe_vfs(adapter);

2685 2686 2687
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2688
	if (hw->mac.type >= e1000_i350)
2689 2690
		adapter->flags &= ~IGB_FLAG_DMAC;

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
Y
Yan, Zheng 已提交
2707
static int __igb_open(struct net_device *netdev, bool resuming)
2708 2709 2710
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
2711
	struct pci_dev *pdev = adapter->pdev;
2712 2713 2714 2715
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
2716 2717
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
2718
		return -EBUSY;
Y
Yan, Zheng 已提交
2719 2720 2721 2722
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
2723

2724 2725
	netif_carrier_off(netdev);

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2736
	igb_power_up_link(adapter);
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

2759 2760 2761
	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2762 2763
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2764 2765 2766

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2767 2768 2769

	igb_irq_enable(adapter);

2770 2771 2772 2773 2774 2775 2776
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2777 2778
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
2779 2780 2781
	if (!resuming)
		pm_runtime_put(&pdev->dev);

2782 2783 2784
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2785 2786 2787

	return 0;

2788 2789
err_set_queues:
	igb_free_irq(adapter);
2790 2791
err_req_irq:
	igb_release_hw_control(adapter);
2792
	igb_power_down_link(adapter);
2793 2794 2795 2796 2797
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
2798 2799
	if (!resuming)
		pm_runtime_put(&pdev->dev);
2800 2801 2802 2803

	return err;
}

Y
Yan, Zheng 已提交
2804 2805 2806 2807 2808
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
Y
Yan, Zheng 已提交
2820
static int __igb_close(struct net_device *netdev, bool suspending)
2821 2822
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
2823
	struct pci_dev *pdev = adapter->pdev;
2824 2825 2826

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
2827 2828 2829 2830
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
2831 2832 2833 2834 2835
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
2836 2837
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
2838 2839 2840
	return 0;
}

Y
Yan, Zheng 已提交
2841 2842 2843 2844 2845
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

2846 2847 2848 2849 2850 2851
/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2852
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2853
{
2854
	struct device *dev = tx_ring->dev;
2855 2856
	int size;

2857
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2858 2859

	tx_ring->tx_buffer_info = vzalloc(size);
2860
	if (!tx_ring->tx_buffer_info)
2861 2862 2863
		goto err;

	/* round up to nearest 4K */
2864
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2865 2866
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2867 2868
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
2869 2870 2871 2872 2873
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2874

2875 2876 2877
	return 0;

err:
2878
	vfree(tx_ring->tx_buffer_info);
2879 2880
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2893
	struct pci_dev *pdev = adapter->pdev;
2894 2895 2896
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2897
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2898
		if (err) {
2899
			dev_err(&pdev->dev,
2900 2901
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2902
				igb_free_tx_resources(adapter->tx_ring[i]);
2903 2904 2905 2906 2907 2908 2909 2910
			break;
		}
	}

	return err;
}

/**
2911 2912
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2913
 **/
2914
void igb_setup_tctl(struct igb_adapter *adapter)
2915 2916 2917 2918
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2919 2920
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2936 2937 2938 2939 2940 2941 2942
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2943 2944
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2945 2946
{
	struct e1000_hw *hw = &adapter->hw;
2947
	u32 txdctl = 0;
2948 2949 2950 2951
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2952
	wr32(E1000_TXDCTL(reg_idx), 0);
2953 2954 2955 2956 2957 2958 2959 2960 2961
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2962
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2963
	wr32(E1000_TDH(reg_idx), 0);
2964
	writel(0, ring->tail);
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2985
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2986 2987
}

2988 2989 2990 2991 2992 2993
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2994
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2995
{
2996
	struct device *dev = rx_ring->dev;
2997
	int size;
2998

2999
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3000 3001

	rx_ring->rx_buffer_info = vzalloc(size);
3002
	if (!rx_ring->rx_buffer_info)
3003 3004 3005
		goto err;

	/* Round up to nearest 4K */
3006
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3007 3008
	rx_ring->size = ALIGN(rx_ring->size, 4096);

3009 3010
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
3011 3012 3013
	if (!rx_ring->desc)
		goto err;

3014
	rx_ring->next_to_alloc = 0;
3015 3016 3017 3018 3019 3020
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
3021 3022
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3023
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
3036
	struct pci_dev *pdev = adapter->pdev;
3037 3038 3039
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
3040
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3041
		if (err) {
3042
			dev_err(&pdev->dev,
3043 3044
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
3045
				igb_free_rx_resources(adapter->rx_ring[i]);
3046 3047 3048 3049 3050 3051 3052
			break;
		}
	}

	return err;
}

3053 3054 3055 3056 3057 3058 3059 3060
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
3061
	u32 j, num_rx_queues, shift = 0;
3062 3063 3064 3065
	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
					0xFA01ACBE };
3066 3067

	/* Fill out hash function seeds */
3068 3069
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rsskey[j]);
3070

3071
	num_rx_queues = adapter->rss_queues;
3072

3073 3074 3075 3076 3077 3078 3079
	switch (hw->mac.type) {
	case e1000_82575:
		shift = 6;
		break;
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
		if (adapter->vfs_allocated_count) {
3080 3081 3082
			shift = 3;
			num_rx_queues = 2;
		}
3083 3084 3085
		break;
	default:
		break;
3086 3087
	}

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
	/*
	 * Populate the indirection table 4 entries at a time.  To do this
	 * we are generating the results for n and n+2 and then interleaving
	 * those with the results with n+1 and n+3.
	 */
	for (j = 0; j < 32; j++) {
		/* first pass generates n and n+2 */
		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
		u32 reta = (base & 0x07800780) >> (7 - shift);

		/* second pass generates n+1 and n+3 */
		base += 0x00010001 * num_rx_queues;
		reta |= (base & 0x07800780) << (1 + shift);

		wr32(E1000_RETA(j), reta);
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);
3119

3120 3121 3122
	/* Generate RSS hash based on packet types, TCP/UDP
	 * port numbers and/or IPv4/v6 src and dst addresses
	 */
3123 3124 3125 3126 3127
	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3128

3129 3130 3131 3132 3133
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
3147
		if (adapter->rss_queues > 1)
3148
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3149
		else
3150
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3151
	} else {
3152 3153
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3154 3155 3156 3157 3158 3159
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

3160 3161 3162 3163
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
3164
void igb_setup_rctl(struct igb_adapter *adapter)
3165 3166 3167 3168 3169 3170 3171
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3172
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3173

3174
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3175
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3176

3177 3178 3179 3180
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
3181
	 */
3182
	rctl |= E1000_RCTL_SECRC;
3183

3184
	/* disable store bad packets and clear size bits. */
3185
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3186

A
Alexander Duyck 已提交
3187 3188
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
3189

3190 3191
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
3192

3193 3194 3195 3196 3197 3198 3199 3200 3201
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

B
Ben Greear 已提交
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
		 * in e1000e_set_rx_mode */
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3218 3219 3220
	wr32(E1000_RCTL, rctl);
}

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3241 3242 3243 3244 3245 3246 3247 3248
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3249
	u32 max_frame_size = adapter->max_frame_size;
3250 3251 3252 3253 3254
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3255 3256 3257 3258 3259 3260 3261
		/*
		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3262
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3263 3264 3265 3266 3267
	}

	wr32(E1000_RLPML, max_frame_size);
}

3268 3269
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3282 3283 3284 3285 3286
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3287 3288 3289 3290

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3291
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

3303 3304 3305 3306 3307 3308 3309
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
3310 3311
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3312 3313 3314 3315
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3316
	u32 srrctl = 0, rxdctl = 0;
3317 3318

	/* disable the queue */
3319
	wr32(E1000_RXDCTL(reg_idx), 0);
3320 3321 3322 3323 3324 3325 3326 3327 3328

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
3329
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3330
	wr32(E1000_RDH(reg_idx), 0);
3331
	writel(0, ring->tail);
3332

3333
	/* set descriptor configuration */
3334
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3335
	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3336
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3337
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3338
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3339 3340 3341
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3342 3343 3344

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3345
	/* set filtering for VMDQ pools */
3346
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3347

3348 3349 3350
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3351 3352 3353

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3354 3355 3356
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3357 3358 3359 3360 3361 3362 3363 3364
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3365
	int i;
3366

3367 3368 3369
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3370 3371 3372 3373
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

3374 3375 3376
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
3377
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3378 3379 3380 3381 3382 3383 3384 3385
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
3386
void igb_free_tx_resources(struct igb_ring *tx_ring)
3387
{
3388
	igb_clean_tx_ring(tx_ring);
3389

3390 3391
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3392

3393 3394 3395 3396
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3397 3398
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3414
		igb_free_tx_resources(adapter->tx_ring[i]);
3415 3416
}

3417 3418 3419 3420 3421
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
3422
		if (dma_unmap_len(tx_buffer, len))
3423
			dma_unmap_single(ring->dev,
3424 3425
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
3426
					 DMA_TO_DEVICE);
3427
	} else if (dma_unmap_len(tx_buffer, len)) {
3428
		dma_unmap_page(ring->dev,
3429 3430
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
3431 3432 3433 3434
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
3435
	dma_unmap_len_set(tx_buffer, len, 0);
3436
	/* buffer_info must be completely set up in the transmit path */
3437 3438 3439 3440 3441 3442
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3443
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3444
{
3445
	struct igb_tx_buffer *buffer_info;
3446
	unsigned long size;
3447
	u16 i;
3448

3449
	if (!tx_ring->tx_buffer_info)
3450 3451 3452 3453
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3454
		buffer_info = &tx_ring->tx_buffer_info[i];
3455
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3456 3457
	}

3458 3459
	netdev_tx_reset_queue(txring_txq(tx_ring));

3460 3461
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3479
		igb_clean_tx_ring(adapter->tx_ring[i]);
3480 3481 3482 3483 3484 3485 3486 3487
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3488
void igb_free_rx_resources(struct igb_ring *rx_ring)
3489
{
3490
	igb_clean_rx_ring(rx_ring);
3491

3492 3493
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3494

3495 3496 3497 3498
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3499 3500
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3516
		igb_free_rx_resources(adapter->rx_ring[i]);
3517 3518 3519 3520 3521 3522
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3523
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3524 3525
{
	unsigned long size;
3526
	u16 i;
3527

3528 3529 3530 3531
	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

3532
	if (!rx_ring->rx_buffer_info)
3533
		return;
3534

3535 3536
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3537
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3538

3539 3540 3541 3542 3543 3544 3545 3546 3547
		if (!buffer_info->page)
			continue;

		dma_unmap_page(rx_ring->dev,
			       buffer_info->dma,
			       PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__free_page(buffer_info->page);

3548
		buffer_info->page = NULL;
3549 3550
	}

3551 3552
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3553 3554 3555 3556

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

3557
	rx_ring->next_to_alloc = 0;
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3571
		igb_clean_rx_ring(adapter->rx_ring[i]);
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3584
	struct e1000_hw *hw = &adapter->hw;
3585 3586 3587 3588 3589 3590
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3591
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3592

3593 3594 3595
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3596

3597 3598 3599 3600
	return 0;
}

/**
3601
 * igb_write_mc_addr_list - write multicast addresses to MTA
3602 3603
 * @netdev: network interface device structure
 *
3604 3605 3606 3607
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3608
 **/
3609
static int igb_write_mc_addr_list(struct net_device *netdev)
3610 3611 3612
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3613
	struct netdev_hw_addr *ha;
3614
	u8  *mta_list;
3615 3616
	int i;

3617
	if (netdev_mc_empty(netdev)) {
3618 3619 3620 3621 3622
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3623

3624
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3625 3626
	if (!mta_list)
		return -ENOMEM;
3627

3628
	/* The shared function expects a packed array of only addresses. */
3629
	i = 0;
3630 3631
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3632 3633 3634 3635

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3636
	return netdev_mc_count(netdev);
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3657
	if (netdev_uc_count(netdev) > rar_entries)
3658
		return -ENOMEM;
3659

3660
	if (!netdev_uc_empty(netdev) && rar_entries) {
3661
		struct netdev_hw_addr *ha;
3662 3663

		netdev_for_each_uc_addr(ha, netdev) {
3664 3665
			if (!rar_entries)
				break;
3666 3667
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3668 3669
			                 vfn);
			count++;
3670 3671 3672 3673 3674 3675 3676 3677 3678
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3715
			 * then we should just turn on promiscuous mode so
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3729
		 * unicast promiscuous mode
3730 3731 3732 3733 3734 3735 3736
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3737
	}
3738
	wr32(E1000_RCTL, rctl);
3739

3740 3741 3742 3743 3744 3745
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
3746
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3747
		return;
3748

3749 3750 3751
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3752
	igb_restore_vf_multicasts(adapter);
3753 3754
}

G
Greg Rose 已提交
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3794 3795 3796 3797 3798
/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3799
	igb_get_phy_info(&adapter->hw);
3800 3801
}

A
Alexander Duyck 已提交
3802 3803 3804 3805
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3806
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3838 3839 3840 3841 3842
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

3843
	/* check for thermal sensor event on i350 copper only */
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
			ret = !!(thstat & event);
		}
	}

	return ret;
}

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3871 3872
	                                           struct igb_adapter,
                                                   watchdog_task);
3873 3874
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
3875
	u32 link;
3876
	int i;
3877

A
Alexander Duyck 已提交
3878
	link = igb_has_link(adapter);
3879
	if (link) {
Y
Yan, Zheng 已提交
3880 3881 3882
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

3883 3884
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3885 3886 3887
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3888 3889

			ctrl = rd32(E1000_CTRL);
3890
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
3891 3892
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
3893 3894 3895
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
3896 3897 3898 3899 3900
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3901

3902
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3903 3904 3905 3906 3907
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
3908
			}
3909

3910
			/* adjust timeout factor according to speed/duplex */
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3923
			igb_ping_all_vfs(adapter);
3924
			igb_check_vf_rate_limit(adapter);
3925

3926
			/* link state has changed, schedule phy info update */
3927 3928 3929 3930 3931 3932 3933 3934
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3935 3936

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3937 3938 3939 3940
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
3941
			}
3942

3943 3944 3945
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3946
			netif_carrier_off(netdev);
3947

3948 3949
			igb_ping_all_vfs(adapter);

3950
			/* link state has changed, schedule phy info update */
3951 3952 3953
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
3954 3955 3956

			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
3957 3958 3959
		}
	}

E
Eric Dumazet 已提交
3960 3961 3962
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3963

3964
	for (i = 0; i < adapter->num_tx_queues; i++) {
3965
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3966
		if (!netif_carrier_ok(netdev)) {
3967 3968 3969 3970
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3971 3972 3973 3974 3975 3976
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3977 3978
		}

3979
		/* Force detection of hung controller every watchdog period */
3980
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3981
	}
3982

3983
	/* Cause software interrupt to ensure rx ring is cleaned */
3984
	if (adapter->msix_entries) {
3985
		u32 eics = 0;
3986 3987
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
3988 3989 3990 3991
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3992

G
Greg Rose 已提交
3993
	igb_spoof_check(adapter);
3994
	igb_ptp_rx_hang(adapter);
G
Greg Rose 已提交
3995

3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

4009 4010 4011 4012 4013 4014
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
4015
 *      receive rings.  The divisors and thresholds used by this function
4016 4017 4018 4019 4020 4021 4022
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
4023
 * @q_vector: pointer to q_vector
4024
 **/
4025
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4026
{
4027
	int new_val = q_vector->itr_val;
4028
	int avg_wire_size = 0;
4029
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
4030
	unsigned int packets;
4031

4032 4033 4034 4035
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
4036
		new_val = IGB_4K_ITR;
4037
		goto set_itr_val;
4038
	}
4039

4040 4041 4042
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
4043

4044 4045 4046 4047
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
4048 4049 4050 4051

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
4052

4053 4054 4055 4056 4057
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
4058

4059 4060 4061 4062 4063
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
4064

4065 4066 4067 4068 4069
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
4070

4071
set_itr_val:
4072 4073 4074
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
4075
	}
4076
clear_counts:
4077 4078 4079 4080
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
4096 4097
 * @q_vector: pointer to q_vector
 * @ring_container: ring info to update the itr for
4098
 **/
4099 4100
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
4101
{
4102 4103 4104
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
4105

4106
	/* no packets, exit with status unchanged */
4107
	if (packets == 0)
4108
		return;
4109

4110
	switch (itrval) {
4111 4112 4113
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
4114
			itrval = bulk_latency;
4115
		else if ((packets < 5) && (bytes > 512))
4116
			itrval = low_latency;
4117 4118 4119 4120 4121
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
4122
				itrval = bulk_latency;
4123
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4124
				itrval = bulk_latency;
4125
			} else if ((packets > 35)) {
4126
				itrval = lowest_latency;
4127 4128
			}
		} else if (bytes/packets > 2000) {
4129
			itrval = bulk_latency;
4130
		} else if (packets <= 2 && bytes < 512) {
4131
			itrval = lowest_latency;
4132 4133 4134 4135 4136
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
4137
				itrval = low_latency;
4138
		} else if (bytes < 1500) {
4139
			itrval = low_latency;
4140 4141 4142 4143
		}
		break;
	}

4144 4145 4146 4147 4148 4149
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
4150 4151
}

4152
static void igb_set_itr(struct igb_q_vector *q_vector)
4153
{
4154
	struct igb_adapter *adapter = q_vector->adapter;
4155
	u32 new_itr = q_vector->itr_val;
4156
	u8 current_itr = 0;
4157 4158 4159 4160

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
4161
		new_itr = IGB_4K_ITR;
4162 4163 4164
		goto set_itr_now;
	}

4165 4166
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
4167

4168
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4169

4170
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4171 4172 4173
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4174 4175
		current_itr = low_latency;

4176 4177 4178
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
4179
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4180 4181
		break;
	case low_latency:
4182
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4183 4184
		break;
	case bulk_latency:
4185
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4186 4187 4188 4189 4190 4191
		break;
	default:
		break;
	}

set_itr_now:
4192
	if (new_itr != q_vector->itr_val) {
4193 4194 4195
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
4196 4197 4198
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
4199
				 new_itr) :
4200 4201 4202 4203 4204 4205 4206
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
4207 4208
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
4209 4210 4211
	}
}

4212 4213
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4227
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4228 4229 4230 4231 4232 4233 4234 4235
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4236 4237 4238
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4239
{
4240
	struct sk_buff *skb = first->skb;
4241 4242 4243
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

4244 4245 4246
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

4247 4248
	if (!skb_is_gso(skb))
		return 0;
4249 4250

	if (skb_header_cloned(skb)) {
4251
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4252 4253 4254 4255
		if (err)
			return err;
	}

4256 4257
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4258

4259
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4260 4261 4262 4263 4264 4265 4266
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4267
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4268 4269 4270
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4271
	} else if (skb_is_gso_v6(skb)) {
4272 4273 4274 4275
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4276 4277
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4278 4279
	}

4280
	/* compute header lengths */
4281 4282
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4283

4284 4285 4286 4287
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4288
	/* MSS L4LEN IDX */
4289 4290
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4291

4292 4293 4294
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4295
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4296

4297
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4298

4299
	return 1;
4300 4301
}

4302
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4303
{
4304
	struct sk_buff *skb = first->skb;
4305 4306 4307
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4308

4309
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4310 4311
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4312 4313
	} else {
		u8 l4_hdr = 0;
4314
		switch (first->protocol) {
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but proto=%x!\n",
4328
				 first->protocol);
4329
			}
4330 4331
			break;
		}
4332

4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but l4 proto=%x!\n",
				 l4_hdr);
4353
			}
4354
			break;
4355
		}
4356 4357 4358

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4359
	}
4360

4361
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4362
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4363

4364
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4365 4366
}

4367 4368 4369 4370 4371 4372
#define IGB_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4373 4374
{
	/* set type for advanced descriptor with frame checksum insertion */
4375 4376 4377
	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
		       E1000_ADVTXD_DCMD_DEXT |
		       E1000_ADVTXD_DCMD_IFCS;
4378 4379

	/* set HW vlan bit if vlan is present */
4380 4381 4382 4383 4384 4385
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
				 (E1000_ADVTXD_DCMD_VLE));

	/* set segmentation bits for TSO */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
				 (E1000_ADVTXD_DCMD_TSE));
4386 4387

	/* set timestamp bit if present */
4388 4389
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
				 (E1000_ADVTXD_MAC_TSTAMP));
4390

4391 4392
	/* insert frame checksum */
	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4393 4394 4395 4396

	return cmd_type;
}

4397 4398 4399
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4400 4401 4402
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

4403 4404
	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4405 4406 4407
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
4408 4409 4410
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_CSUM,
				      (E1000_TXD_POPTS_TXSM << 8));
4411

4412 4413 4414 4415
	/* insert IPv4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_IPV4,
				      (E1000_TXD_POPTS_IXSM << 8));
4416

4417
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4418 4419
}

4420 4421 4422 4423 4424
/*
 * The largest size we can write to the descriptor is 65535.  In order to
 * maintain a power of two alignment we have to limit ourselves to 32K.
 */
#define IGB_MAX_TXD_PWR	15
4425
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4426

4427 4428
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4429
		       const u8 hdr_len)
4430
{
4431
	struct sk_buff *skb = first->skb;
4432
	struct igb_tx_buffer *tx_buffer;
4433
	union e1000_adv_tx_desc *tx_desc;
4434
	struct skb_frag_struct *frag;
4435
	dma_addr_t dma;
4436
	unsigned int data_len, size;
4437
	u32 tx_flags = first->tx_flags;
4438
	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4439 4440 4441 4442
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4443 4444 4445 4446
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);

	size = skb_headlen(skb);
	data_len = skb->data_len;
4447 4448

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4449

4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4461 4462 4463

		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
4464
				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4465 4466 4467 4468 4469 4470 4471

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}
4472
			tx_desc->read.olinfo_status = 0;
4473 4474 4475 4476 4477 4478 4479 4480 4481

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4482

4483
		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4484

4485
		i++;
4486 4487 4488
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4489
			i = 0;
4490
		}
4491
		tx_desc->read.olinfo_status = 0;
4492

E
Eric Dumazet 已提交
4493
		size = skb_frag_size(frag);
4494 4495 4496
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4497
				       size, DMA_TO_DEVICE);
4498

4499
		tx_buffer = &tx_ring->tx_buffer_info[i];
4500 4501
	}

4502
	/* write last descriptor with RS and EOP bits */
4503 4504
	cmd_type |= size | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4505

4506 4507
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4508 4509 4510
	/* set the timestamp */
	first->time_stamp = jiffies;

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
	/*
	 * Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4521
	/* set next_to_watch value indicating a packet is present */
4522
	first->next_to_watch = tx_desc;
4523

4524 4525 4526
	i++;
	if (i == tx_ring->count)
		i = 0;
4527

4528
	tx_ring->next_to_use = i;
4529

4530
	writel(i, tx_ring->tail);
4531

4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
4543 4544 4545
		tx_buffer = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
4546
			break;
4547 4548
		if (i == 0)
			i = tx_ring->count;
4549 4550 4551
		i--;
	}

4552 4553 4554
	tx_ring->next_to_use = i;
}

4555
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4556
{
4557 4558
	struct net_device *netdev = tx_ring->netdev;

4559 4560
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4561 4562 4563 4564 4565 4566 4567
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4568
	if (igb_desc_unused(tx_ring) < size)
4569 4570 4571
		return -EBUSY;

	/* A reprieve! */
4572
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4573 4574 4575 4576 4577

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4578 4579 4580
	return 0;
}

4581
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4582
{
4583
	if (igb_desc_unused(tx_ring) >= size)
4584
		return 0;
4585
	return __igb_maybe_stop_tx(tx_ring, size);
4586 4587
}

4588 4589
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4590
{
4591
	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4592
	struct igb_tx_buffer *first;
4593
	int tso;
N
Nick Nunley 已提交
4594
	u32 tx_flags = 0;
4595
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4596
	u8 hdr_len = 0;
4597 4598 4599 4600 4601 4602

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
4603
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4604 4605 4606
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4607

4608 4609 4610 4611 4612 4613
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4614 4615
	skb_tx_timestamp(skb);

4616 4617
	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
		     !(adapter->ptp_tx_skb))) {
4618
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4619
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4620 4621

		adapter->ptp_tx_skb = skb_get(skb);
4622
		adapter->ptp_tx_start = jiffies;
4623 4624
		if (adapter->hw.mac.type == e1000_82576)
			schedule_work(&adapter->ptp_tx_work);
4625
	}
4626

4627
	if (vlan_tx_tag_present(skb)) {
4628 4629 4630 4631
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4632 4633 4634
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4635

4636 4637
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4638
		goto out_drop;
4639 4640
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4641

4642
	igb_tx_map(tx_ring, first, hdr_len);
4643 4644

	/* Make sure there is space in the ring for the next send. */
4645
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4646

4647
	return NETDEV_TX_OK;
4648 4649

out_drop:
4650 4651
	igb_unmap_and_free_tx_resource(tx_ring, first);

4652
	return NETDEV_TX_OK;
4653 4654
}

4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4666 4667
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4668 4669
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4681 4682 4683 4684
	/*
	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
	 * in order to meet this minimum size requirement.
	 */
4685 4686
	if (unlikely(skb->len < 17)) {
		if (skb_pad(skb, 17 - skb->len))
4687 4688
			return NETDEV_TX_OK;
		skb->len = 17;
4689
		skb_set_tail_pointer(skb, 17);
4690
	}
4691

4692
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4706

4707
	if (hw->mac.type >= e1000_82580)
4708 4709
		hw->dev_spec._82575.global_device_reset = true;

4710
	schedule_work(&adapter->reset_task);
4711 4712
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4713 4714 4715 4716 4717 4718 4719
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4720 4721
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4722 4723 4724 4725
	igb_reinit_locked(adapter);
}

/**
E
Eric Dumazet 已提交
4726
 * igb_get_stats64 - Get System Network Statistics
4727
 * @netdev: network interface device structure
E
Eric Dumazet 已提交
4728
 * @stats: rtnl_link_stats64 pointer
4729 4730
 *
 **/
E
Eric Dumazet 已提交
4731 4732
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
						 struct rtnl_link_stats64 *stats)
4733
{
E
Eric Dumazet 已提交
4734 4735 4736 4737 4738 4739 4740 4741
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4754
	struct pci_dev *pdev = adapter->pdev;
4755
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4756

4757
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4758
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4759 4760 4761
		return -EINVAL;
	}

4762
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4763
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4764
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4765 4766 4767 4768 4769
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4770

4771 4772
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4773

4774 4775
	if (netif_running(netdev))
		igb_down(adapter);
4776

4777
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

E
Eric Dumazet 已提交
4796 4797
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4798 4799 4800
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4801
	u32 reg, mpc;
4802
	u16 phy_tmp;
4803 4804
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4805 4806
	unsigned int start;
	u64 _bytes, _packets;
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4819 4820 4821
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
4822
		u32 rqdpc = rd32(E1000_RQDPC(i));
4823
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4824

4825 4826 4827 4828
		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}
E
Eric Dumazet 已提交
4829 4830 4831 4832 4833 4834 4835 4836

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4837 4838
	}

4839 4840
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4841 4842 4843 4844

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4845
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4846 4847 4848 4849 4850 4851 4852
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4853
	}
4854 4855
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4856 4857

	/* read stats registers */
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4875 4876 4877
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4892
	adapter->stats.rnbc += rd32(E1000_RNBC);
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4910 4911
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4912 4913

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4914 4915 4916 4917
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4918 4919 4920 4921 4922

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
4923 4924
	}

4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4939 4940
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4941 4942 4943 4944

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4945
	 * our own version based on RUC and ROC */
4946
	net_stats->rx_errors = adapter->stats.rxerrc +
4947 4948 4949
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4950 4951 4952 4953 4954
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4955 4956

	/* Tx Errors */
4957 4958 4959 4960 4961
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4962 4963 4964 4965 4966 4967

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4968
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4969 4970 4971 4972 4973 4974 4975 4976 4977
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4978 4979 4980 4981 4982 4983 4984 4985 4986

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
4987 4988 4989 4990
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4991
	struct igb_adapter *adapter = data;
4992
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4993 4994
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4995

4996 4997 4998
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4999
	if (icr & E1000_ICR_DOUTSYNC) {
5000 5001
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
5002 5003 5004 5005
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event. */
		igb_check_wvbr(adapter);
5006
	}
5007

5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

P
PJ Waskiewicz 已提交
5030
	wr32(E1000_EIMS, adapter->eims_other);
5031 5032 5033 5034

	return IRQ_HANDLED;
}

5035
static void igb_write_itr(struct igb_q_vector *q_vector)
5036
{
5037
	struct igb_adapter *adapter = q_vector->adapter;
5038
	u32 itr_val = q_vector->itr_val & 0x7FFC;
5039

5040 5041
	if (!q_vector->set_itr)
		return;
5042

5043 5044
	if (!itr_val)
		itr_val = 0x4;
5045

5046 5047
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
5048
	else
5049
		itr_val |= E1000_EITR_CNT_IGNR;
5050

5051 5052
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
5053 5054
}

5055
static irqreturn_t igb_msix_ring(int irq, void *data)
5056
{
5057
	struct igb_q_vector *q_vector = data;
5058

5059 5060
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
5061

5062
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
5063

5064
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
5065 5066
}

5067
#ifdef CONFIG_IGB_DCA
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
static void igb_update_tx_dca(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);

	if (hw->mac.type != e1000_82575)
		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;

	/*
	 * We can enable relaxed ordering for reads, but not writes when
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
		  E1000_DCA_TXCTRL_DATA_RRO_EN |
		  E1000_DCA_TXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}

static void igb_update_rx_dca(struct igb_adapter *adapter,
			      struct igb_ring *rx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);

	if (hw->mac.type != e1000_82575)
		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;

	/*
	 * We can enable relaxed ordering for reads, but not writes when
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
		  E1000_DCA_RXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}

5111
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
5112
{
5113
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
5114 5115
	int cpu = get_cpu();

5116 5117 5118
	if (q_vector->cpu == cpu)
		goto out_no_update;

5119 5120 5121 5122 5123 5124
	if (q_vector->tx.ring)
		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);

	if (q_vector->rx.ring)
		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);

5125 5126
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
5127 5128 5129 5130 5131
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
5132
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
5133 5134
	int i;

5135
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
5136 5137
		return;

5138 5139 5140
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

5141
	for (i = 0; i < adapter->num_q_vectors; i++) {
5142 5143
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
5144 5145 5146 5147 5148 5149 5150
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
5151
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
5152 5153 5154 5155 5156 5157
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
5158
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
5159 5160
			break;
		if (dca_add_requester(dev) == 0) {
5161
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5162
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
5163 5164 5165 5166 5167
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
5168
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
5169
			/* without this a class_device is left
5170
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
5171
			dca_remove_requester(dev);
5172
			dev_info(&pdev->dev, "DCA disabled\n");
5173
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
5174
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
5175 5176 5177
		}
		break;
	}
5178

J
Jeb Cramer 已提交
5179
	return 0;
5180 5181
}

J
Jeb Cramer 已提交
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
5192
#endif /* CONFIG_IGB_DCA */
5193

5194 5195 5196 5197 5198
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

5199
	eth_zero_addr(mac_addr);
5200 5201
	igb_set_vf_mac(adapter, vf, mac_addr);

5202
	return 0;
5203 5204
}

5205
static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5206 5207
{
	struct pci_dev *pdev = adapter->pdev;
5208 5209
	struct pci_dev *vfdev;
	int dev_id;
5210 5211 5212

	switch (adapter->hw.mac.type) {
	case e1000_82576:
5213
		dev_id = IGB_82576_VF_DEV_ID;
5214 5215
		break;
	case e1000_i350:
5216
		dev_id = IGB_I350_VF_DEV_ID;
5217 5218
		break;
	default:
5219
		return false;
5220 5221
	}

5222 5223 5224 5225 5226 5227 5228
	/* loop through all the VFs to see if we own any that are assigned */
	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
	while (vfdev) {
		/* if we don't own it we don't care */
		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
			/* if it is assigned we cannot release it */
			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5229 5230
				return true;
		}
5231 5232

		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5233
	}
5234

5235 5236 5237 5238
	return false;
}

#endif
5239 5240 5241 5242 5243 5244 5245 5246
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5247
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5248 5249 5250 5251 5252
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5253 5254 5255 5256 5257 5258
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5259
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5260 5261 5262 5263 5264
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5265
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

5293 5294 5295 5296 5297 5298 5299 5300
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5301
	/* salt away the number of multicast addresses assigned
5302 5303 5304 5305 5306
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5307 5308 5309 5310 5311
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5312
	for (i = 0; i < n; i++)
5313
		vf_data->vf_mc_hashes[i] = hash_list[i];
5314 5315

	/* Flush and reset the mta with the new values */
5316
	igb_set_rx_mode(adapter->netdev);
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5328 5329 5330
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5331
		vf_data = &adapter->vf_data[i];
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5370 5371

	adapter->vf_data[vf].vlans_enabled = 0;
5372 5373 5374 5375 5376 5377 5378
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5379 5380 5381 5382 5383
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5413 5414
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5415 5416
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5417 5418
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5419
			wr32(E1000_VLVF(i), reg);
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5435
			adapter->vf_data[vf].vlans_enabled++;
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5462 5463
		}
	}
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5523
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5524
{
G
Greg Rose 已提交
5525 5526
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5527
	adapter->vf_data[vf].last_nack = jiffies;
5528 5529

	/* reset offloads to defaults */
5530
	igb_set_vmolr(adapter, vf, true);
5531 5532 5533

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5534 5535 5536 5537 5538 5539
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5540 5541 5542 5543 5544

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5545
	igb_set_rx_mode(adapter->netdev);
5546 5547
}

5548 5549 5550 5551
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

5552
	/* clear mac address as we were hotplug removed/added */
5553
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5554
		eth_zero_addr(vf_mac);
5555 5556 5557 5558 5559 5560

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5561 5562 5563
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5564
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5565 5566 5567 5568
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5569
	igb_vf_reset(adapter, vf);
5570 5571

	/* set vf mac address */
5572
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5573 5574 5575 5576 5577 5578 5579

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5580
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5581 5582 5583 5584 5585 5586 5587 5588 5589

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
5590 5591 5592 5593
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5594 5595
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5596

5597 5598
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5599

5600
	return err;
5601 5602 5603 5604 5605
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5606
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5607 5608 5609
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5610 5611
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5612
		igb_write_mbx(hw, &msg, 1, vf);
5613
		vf_data->last_nack = jiffies;
5614 5615 5616
	}
}

5617
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5618
{
5619 5620
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5621
	struct e1000_hw *hw = &adapter->hw;
5622
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5623 5624
	s32 retval;

5625
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5626

5627 5628
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5629
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5630 5631 5632 5633 5634
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5635 5636 5637

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5638
		return;
5639 5640 5641 5642 5643 5644 5645 5646

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5647
		return;
5648 5649
	}

5650
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5651 5652 5653 5654
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5655 5656 5657 5658
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5659 5660 5661 5662 5663 5664 5665 5666
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set MAC address\nReload the VF driver to "
				 "resume operations\n", vf);
5667
		break;
5668 5669 5670
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5671 5672 5673 5674 5675 5676 5677
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5678 5679 5680 5681 5682 5683
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set VLAN tag\nReload the VF driver to "
				 "resume operations\n", vf);
5684 5685
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5686 5687
		break;
	default:
5688
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5689 5690 5691 5692
		retval = -1;
		break;
	}

5693 5694
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5695 5696 5697 5698 5699 5700 5701
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5702
}
5703

5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5722 5723
}

5724 5725 5726 5727 5728 5729 5730
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5731 5732
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5751 5752 5753 5754 5755 5756 5757
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5758 5759
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5760 5761 5762 5763
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5764
	igb_write_itr(q_vector);
5765

5766 5767 5768
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5769
	if (icr & E1000_ICR_DOUTSYNC) {
5770 5771 5772 5773
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5774 5775 5776 5777 5778 5779
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5791
	napi_schedule(&q_vector->napi);
5792 5793 5794 5795 5796

	return IRQ_HANDLED;
}

/**
5797
 * igb_intr - Legacy Interrupt Handler
5798 5799 5800 5801 5802
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5803 5804
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5815 5816
	igb_write_itr(q_vector);

5817 5818 5819
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5820
	if (icr & E1000_ICR_DOUTSYNC) {
5821 5822 5823 5824
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5825 5826 5827 5828 5829 5830 5831
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5843
	napi_schedule(&q_vector->napi);
5844 5845 5846 5847

	return IRQ_HANDLED;
}

5848
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5849
{
5850
	struct igb_adapter *adapter = q_vector->adapter;
5851
	struct e1000_hw *hw = &adapter->hw;
5852

5853 5854 5855 5856
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5857
		else
5858
			igb_update_ring_itr(q_vector);
5859 5860
	}

5861 5862
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5863
			wr32(E1000_EIMS, q_vector->eims_value);
5864 5865 5866
		else
			igb_irq_enable(adapter);
	}
5867 5868
}

5869 5870 5871 5872 5873 5874
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5875
{
5876 5877 5878
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
5879
	bool clean_complete = true;
5880

5881
#ifdef CONFIG_IGB_DCA
5882 5883
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5884
#endif
5885
	if (q_vector->tx.ring)
5886
		clean_complete = igb_clean_tx_irq(q_vector);
5887

5888
	if (q_vector->rx.ring)
5889
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5890

5891 5892 5893
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5894

5895
	/* If not enough Rx work done, exit the polling mode */
5896 5897
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5898

5899
	return 0;
5900
}
A
Al Viro 已提交
5901

5902 5903
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5904
 * @q_vector: pointer to q_vector containing needed info
5905
 *
5906 5907
 * returns true if ring is completely cleaned
 **/
5908
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5909
{
5910
	struct igb_adapter *adapter = q_vector->adapter;
5911
	struct igb_ring *tx_ring = q_vector->tx.ring;
5912
	struct igb_tx_buffer *tx_buffer;
5913
	union e1000_adv_tx_desc *tx_desc;
5914
	unsigned int total_bytes = 0, total_packets = 0;
5915
	unsigned int budget = q_vector->tx.work_limit;
5916
	unsigned int i = tx_ring->next_to_clean;
5917

5918 5919
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5920

5921
	tx_buffer = &tx_ring->tx_buffer_info[i];
5922
	tx_desc = IGB_TX_DESC(tx_ring, i);
5923
	i -= tx_ring->count;
5924

5925 5926
	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5927 5928 5929 5930

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
5931

5932
		/* prevent any other reads prior to eop_desc */
5933
		read_barrier_depends();
5934

5935 5936 5937 5938
		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

5939 5940
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
5941

5942 5943 5944
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
5945

5946 5947
		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
5948

5949 5950
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
5951 5952
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
5953 5954
				 DMA_TO_DEVICE);

5955 5956 5957 5958
		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

5959 5960
		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
5961 5962
			tx_buffer++;
			tx_desc++;
5963
			i++;
5964 5965
			if (unlikely(!i)) {
				i -= tx_ring->count;
5966
				tx_buffer = tx_ring->tx_buffer_info;
5967 5968
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
5969 5970

			/* unmap any remaining paged data */
5971
			if (dma_unmap_len(tx_buffer, len)) {
5972
				dma_unmap_page(tx_ring->dev,
5973 5974
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
5975
					       DMA_TO_DEVICE);
5976
				dma_unmap_len_set(tx_buffer, len, 0);
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
5989 5990 5991 5992 5993 5994 5995

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));
A
Alexander Duyck 已提交
5996

5997 5998
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
5999
	i += tx_ring->count;
6000
	tx_ring->next_to_clean = i;
6001 6002 6003 6004
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
6005 6006
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
6007

6008
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6009
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
6010

6011 6012
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
6013
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6014
		if (tx_buffer->next_to_watch &&
6015
		    time_after(jiffies, tx_buffer->time_stamp +
6016 6017
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6018 6019

			/* detected Tx unit hang */
6020
			dev_err(tx_ring->dev,
6021
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
6022
				"  Tx Queue             <%d>\n"
6023 6024 6025 6026 6027 6028
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
6029
				"  next_to_watch        <%p>\n"
6030 6031
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
6032
				tx_ring->queue_index,
6033
				rd32(E1000_TDH(tx_ring->reg_idx)),
6034
				readl(tx_ring->tail),
6035 6036
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
6037
				tx_buffer->time_stamp,
6038
				tx_buffer->next_to_watch,
6039
				jiffies,
6040
				tx_buffer->next_to_watch->wb.status);
6041 6042 6043 6044 6045
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
6046 6047
		}
	}
6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068

	if (unlikely(total_packets &&
		     netif_carrier_ok(tx_ring->netdev) &&
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
6069 6070
}

6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
/**
 * igb_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
6096
					 IGB_RX_BUFSZ,
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
					 DMA_FROM_DEVICE);
}

/**
 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @rx_desc: descriptor containing length of buffer written by hardware
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);

	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;

		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
			va += IGB_TS_HDR_LEN;
			size -= IGB_TS_HDR_LEN;
		}

		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(page) == numa_node_id()))
			return true;

		/* this page cannot be reused so discard it */
		put_page(page);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6144
			rx_buffer->page_offset, size, IGB_RX_BUFSZ);
6145 6146 6147 6148 6149

	/* avoid re-using remote pages */
	if (unlikely(page_to_nid(page) != numa_node_id()))
		return false;

6150
#if (PAGE_SIZE < 8192)
6151 6152 6153 6154 6155
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
6156
	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6157 6158 6159 6160 6161 6162 6163

	/*
	 * since we are the only owner of the page and we need to
	 * increment it, just set the value to 2 in order to avoid
	 * an unnecessary locked operation
	 */
	atomic_set(&page->_count, 2);
6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += SKB_DATA_ALIGN(size);

	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
		return false;

	/* bump ref count on page before it is given to the stack */
	get_page(page);
#endif
6174 6175 6176 6177

	return true;
}

6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc,
					   struct sk_buff *skb)
{
	struct igb_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];

	/*
	 * This memory barrier is needed to keep us from reading
	 * any other fields out of the rx_desc until we know the
	 * RXD_STAT_DD bit is set
	 */
	rmb();

	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

		/*
		 * we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
6227
				      IGB_RX_BUFSZ,
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

6246
static inline void igb_rx_checksum(struct igb_ring *ring,
6247 6248
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
6249
{
6250
	skb_checksum_none_assert(skb);
6251

6252
	/* Ignore Checksum bit is set */
6253
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6254 6255 6256 6257
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6258
		return;
6259

6260
	/* TCP/UDP checksum error bit is set */
6261 6262 6263
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
6264 6265 6266 6267 6268
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
6269 6270
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
6271
			u64_stats_update_begin(&ring->rx_syncp);
6272
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
6273 6274
			u64_stats_update_end(&ring->rx_syncp);
		}
6275 6276 6277 6278
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
6279 6280
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
6281 6282
		skb->ip_summed = CHECKSUM_UNNECESSARY;

6283 6284
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
6285 6286
}

6287 6288 6289 6290 6291 6292 6293 6294
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
/**
 * igb_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
/**
 * igb_get_headlen - determine size of header for LRO/GRO
 * @data: pointer to the start of the headers
 * @max_len: total length of section to find headers in
 *
 * This function is meant to determine the length of headers that will
 * be recognized by hardware for LRO, and GRO offloads.  The main
 * motivation of doing this is to only perform one pull for IPv4 TCP
 * packets so that we can do basic things like calculating the gso_size
 * based on the average data per packet.
 **/
static unsigned int igb_get_headlen(unsigned char *data,
				    unsigned int max_len)
{
	union {
		unsigned char *network;
		/* l2 headers */
		struct ethhdr *eth;
		struct vlan_hdr *vlan;
		/* l3 headers */
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	__be16 protocol;
	u8 nexthdr = 0;	/* default to not TCP */
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_len < ETH_HLEN)
		return max_len;

	/* initialize network frame pointer */
	hdr.network = data;

	/* set first protocol and move network header forward */
	protocol = hdr.eth->h_proto;
	hdr.network += ETH_HLEN;

	/* handle any vlan tag if present */
	if (protocol == __constant_htons(ETH_P_8021Q)) {
		if ((hdr.network - data) > (max_len - VLAN_HLEN))
			return max_len;

		protocol = hdr.vlan->h_vlan_encapsulated_proto;
		hdr.network += VLAN_HLEN;
	}

	/* handle L3 protocols */
	if (protocol == __constant_htons(ETH_P_IP)) {
		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
			return max_len;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return hdr.network - data;

6382 6383 6384
		/* record next protocol if header is present */
		if (!hdr.ipv4->frag_off)
			nexthdr = hdr.ipv4->protocol;
6385 6386 6387 6388 6389 6390
	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
			return max_len;

		/* record next protocol */
		nexthdr = hdr.ipv6->nexthdr;
6391
		hlen = sizeof(struct ipv6hdr);
6392 6393 6394 6395
	} else {
		return hdr.network - data;
	}

6396 6397 6398
	/* relocate pointer to start of L4 header */
	hdr.network += hlen;

6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
	/* finally sort out TCP */
	if (nexthdr == IPPROTO_TCP) {
		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
			return max_len;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return hdr.network - data;

		hdr.network += hlen;
	} else if (nexthdr == IPPROTO_UDP) {
		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
			return max_len;

		hdr.network += sizeof(struct udphdr);
	}

	/*
	 * If everything has gone correctly hdr.network should be the
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((hdr.network - data) < max_len)
		return hdr.network - data;
	else
		return max_len;
}

/**
 * igb_pull_tail - igb specific version of skb_pull_tail
 * @rx_ring: rx descriptor ring packet is being transacted on
6434
 * @rx_desc: pointer to the EOP Rx descriptor
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446
 * @skb: pointer to current skb being adjusted
 *
 * This function is an igb specific version of __pskb_pull_tail.  The
 * main difference between this version and the original function is that
 * this function can make several assumptions about the state of things
 * that allow for significant optimizations versus the standard function.
 * As a result we can do things like drop a frag and maintain an accurate
 * truesize for the skb.
 */
static void igb_pull_tail(struct igb_ring *rx_ring,
			  union e1000_adv_rx_desc *rx_desc,
			  struct sk_buff *skb)
6447
{
6448 6449 6450 6451 6452 6453 6454 6455
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;

	/*
	 * it is valid to use page_address instead of kmap since we are
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
6456
	 */
6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530
	va = skb_frag_address(frag);

	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		/* retrieve timestamp from buffer */
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);

		/* update pointers to remove timestamp header */
		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
		frag->page_offset += IGB_TS_HDR_LEN;
		skb->data_len -= IGB_TS_HDR_LEN;
		skb->len -= IGB_TS_HDR_LEN;

		/* move va to start of packet data */
		va += IGB_TS_HDR_LEN;
	}

	/*
	 * we need the header to contain the greater of either ETH_HLEN or
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
 * igb_cleanup_headers - Correct corrupted or empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being fixed
 *
 * Address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{

	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		igb_pull_tail(rx_ring, rx_desc, skb);

	/* if skb_pad returns an error the skb was freed */
	if (unlikely(skb->len < 60)) {
		int pad_len = 60 - skb->len;

		if (skb_pad(skb, pad_len))
			return true;
		__skb_put(skb, pad_len);
	}

	return false;
6531 6532
}

6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
/**
 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 * other fields within the skb.
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);

	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

		__vlan_hwaccel_put_tag(skb, vid);
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

6572
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6573
{
6574
	struct igb_ring *rx_ring = q_vector->rx.ring;
6575
	struct sk_buff *skb = rx_ring->skb;
6576
	unsigned int total_bytes = 0, total_packets = 0;
6577
	u16 cleaned_count = igb_desc_unused(rx_ring);
6578

6579 6580
	do {
		union e1000_adv_rx_desc *rx_desc;
6581

6582 6583 6584 6585 6586
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}
6587

6588
		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6589

6590 6591
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
			break;
6592

6593 6594
		/* retrieve a buffer from the ring */
		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6595

6596 6597 6598
		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;
6599

6600
		cleaned_count++;
6601

6602 6603 6604
		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;
6605 6606 6607 6608 6609

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
6610 6611
		}

6612
		/* probably a little skewed due to removing CRC */
6613 6614
		total_bytes += skb->len;

6615 6616
		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);
6617

J
Jiri Pirko 已提交
6618
		napi_gro_receive(&q_vector->napi, skb);
6619

6620 6621 6622
		/* reset skb pointer */
		skb = NULL;

6623 6624 6625
		/* update budget accounting */
		total_packets++;
	} while (likely(total_packets < budget));
6626

6627 6628 6629
	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

E
Eric Dumazet 已提交
6630
	u64_stats_update_begin(&rx_ring->rx_syncp);
6631 6632
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6633
	u64_stats_update_end(&rx_ring->rx_syncp);
6634 6635
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6636 6637

	if (cleaned_count)
6638
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6639

6640
	return (total_packets < budget);
6641 6642
}

6643
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6644
				  struct igb_rx_buffer *bi)
6645 6646
{
	struct page *page = bi->page;
6647
	dma_addr_t dma;
6648

6649 6650
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
6651 6652
		return true;

6653 6654 6655 6656 6657
	/* alloc new page for storage */
	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
6658 6659
	}

6660 6661
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6662

6663 6664 6665 6666
	/*
	 * if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
	 */
6667
	if (dma_mapping_error(rx_ring->dev, dma)) {
6668 6669
		__free_page(page);

6670 6671 6672 6673
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

6674
	bi->dma = dma;
6675 6676
	bi->page = page;
	bi->page_offset = 0;
6677

6678 6679 6680
	return true;
}

6681
/**
6682
 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6683 6684
 * @adapter: address of board private structure
 **/
6685
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6686 6687
{
	union e1000_adv_rx_desc *rx_desc;
6688
	struct igb_rx_buffer *bi;
6689
	u16 i = rx_ring->next_to_use;
6690

6691 6692 6693 6694
	/* nothing to do */
	if (!cleaned_count)
		return;

6695
	rx_desc = IGB_RX_DESC(rx_ring, i);
6696
	bi = &rx_ring->rx_buffer_info[i];
6697
	i -= rx_ring->count;
6698

6699
	do {
6700
		if (!igb_alloc_mapped_page(rx_ring, bi))
6701
			break;
6702

6703 6704 6705 6706 6707
		/*
		 * Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6708

6709 6710
		rx_desc++;
		bi++;
6711
		i++;
6712
		if (unlikely(!i)) {
6713
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6714
			bi = rx_ring->rx_buffer_info;
6715 6716 6717 6718 6719
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6720 6721 6722

		cleaned_count--;
	} while (cleaned_count);
6723

6724 6725
	i += rx_ring->count;

6726
	if (rx_ring->next_to_use != i) {
6727
		/* record the next descriptor to use */
6728 6729
		rx_ring->next_to_use = i;

6730 6731 6732 6733 6734
		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

		/*
		 * Force memory writes to complete before letting h/w
6735 6736
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
6737 6738
		 * such as IA-64).
		 */
6739
		wmb();
6740
		writel(i, rx_ring->tail);
6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6763 6764
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6787
	case SIOCSHWTSTAMP:
6788
		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6789 6790 6791 6792 6793
	default:
		return -EOPNOTSUPP;
	}
}

6794 6795 6796 6797
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6798
	if (pcie_capability_read_word(adapter->pdev, reg, value))
6799 6800 6801 6802 6803 6804 6805 6806 6807
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6808
	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6809 6810 6811 6812 6813
		return -E1000_ERR_CONFIG;

	return 0;
}

6814
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6815 6816 6817 6818
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6819
	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6820

6821
	if (enable) {
6822 6823 6824 6825 6826
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6827
		/* Disable CFI check */
6828 6829 6830 6831 6832 6833 6834 6835 6836 6837
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6838
	igb_rlpml_set(adapter);
6839 6840
}

6841
static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6842 6843 6844
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6845
	int pf_id = adapter->vfs_allocated_count;
6846

6847 6848
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6849

6850 6851
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6852 6853

	set_bit(vid, adapter->active_vlans);
6854 6855

	return 0;
6856 6857
}

6858
static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6859 6860 6861
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6862
	int pf_id = adapter->vfs_allocated_count;
6863
	s32 err;
6864

6865 6866
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6867

6868 6869
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6870
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6871 6872

	clear_bit(vid, adapter->active_vlans);
6873 6874

	return 0;
6875 6876 6877 6878
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6879
	u16 vid;
6880

6881 6882
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
6883 6884
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, vid);
6885 6886
}

6887
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6888
{
6889
	struct pci_dev *pdev = adapter->pdev;
6890 6891 6892 6893
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6894 6895 6896 6897 6898
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

6899 6900
	/* Fiber NIC's only allow 1000 Gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6901 6902 6903
	    spd != SPEED_1000 &&
	    dplx != DUPLEX_FULL)
		goto err_inval;
6904

6905
	switch (spd + dplx) {
6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
6924
		goto err_inval;
6925
	}
6926 6927 6928 6929

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

6930
	return 0;
6931 6932 6933 6934

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
6935 6936
}

Y
Yan, Zheng 已提交
6937 6938
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
6939 6940 6941 6942
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
6943
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
6944
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6945 6946 6947 6948 6949 6950
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
6951
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
6952
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
6953

6954
	igb_clear_interrupt_scheme(adapter);
6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
6968
		igb_set_rx_mode(netdev);
6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
6986
		igb_disable_pcie_master(hw);
6987 6988 6989 6990 6991 6992 6993 6994

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

6995 6996
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
6997 6998 6999
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
7011
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
7012
static int igb_suspend(struct device *dev)
7013 7014 7015
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
7016
	struct pci_dev *pdev = to_pci_dev(dev);
7017

Y
Yan, Zheng 已提交
7018
	retval = __igb_shutdown(pdev, &wake, 0);
7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}
7031
#endif /* CONFIG_PM_SLEEP */
7032

Y
Yan, Zheng 已提交
7033
static int igb_resume(struct device *dev)
7034
{
Y
Yan, Zheng 已提交
7035
	struct pci_dev *pdev = to_pci_dev(dev);
7036 7037 7038 7039 7040 7041 7042
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
7043
	pci_save_state(pdev);
T
Taku Izumi 已提交
7044

7045
	err = pci_enable_device_mem(pdev);
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

7056
	if (igb_init_interrupt_scheme(adapter, true)) {
A
Alexander Duyck 已提交
7057 7058
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
7059 7060 7061
	}

	igb_reset(adapter);
7062 7063 7064 7065 7066

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

7067 7068
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
7069
	if (netdev->flags & IFF_UP) {
7070
		rtnl_lock();
Y
Yan, Zheng 已提交
7071
		err = __igb_open(netdev, true);
7072
		rtnl_unlock();
A
Alexander Duyck 已提交
7073 7074 7075
		if (err)
			return err;
	}
7076 7077

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7110 7111 7112

	return 0;
}
Y
Yan, Zheng 已提交
7113 7114 7115 7116 7117 7118

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
7119 7120 7121 7122
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
7123 7124
	bool wake;

Y
Yan, Zheng 已提交
7125
	__igb_shutdown(pdev, &wake, 0);
7126 7127 7128 7129 7130

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7131 7132
}

7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198
#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
	struct net_device *netdev = pci_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	rtnl_lock();

	if (netif_running(netdev))
		igb_close(netdev);

	igb_clear_interrupt_scheme(adapter);

	igb_init_queue_configuration(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		igb_open(netdev);

	rtnl_unlock();

	return 0;
}

static int igb_pci_disable_sriov(struct pci_dev *dev)
{
	int err = igb_disable_sriov(dev);

	if (!err)
		err = igb_sriov_reinit(dev);

	return err;
}

static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
	int err = igb_enable_sriov(dev, num_vfs);

	if (err)
		goto out;

	err = igb_sriov_reinit(dev);
	if (!err)
		return num_vfs;

out:
	return err;
}

#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
	if (num_vfs == 0)
		return igb_pci_disable_sriov(dev);
	else
		return igb_pci_enable_sriov(dev, num_vfs);
#endif
	return 0;
}

7199 7200 7201 7202 7203 7204 7205 7206 7207
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
7208
	struct e1000_hw *hw = &adapter->hw;
7209
	struct igb_q_vector *q_vector;
7210 7211
	int i;

7212
	for (i = 0; i < adapter->num_q_vectors; i++) {
7213 7214 7215 7216 7217
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
7218
		napi_schedule(&q_vector->napi);
7219
	}
7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

7239 7240 7241
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7262
	pci_ers_result_t result;
T
Taku Izumi 已提交
7263
	int err;
7264

7265
	if (pci_enable_device_mem(pdev)) {
7266 7267
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
7268 7269 7270 7271
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
7272
		pci_save_state(pdev);
7273

7274 7275
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
7276

7277 7278 7279 7280
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
7281

7282 7283 7284 7285 7286 7287
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
7288 7289

	return result;
7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

7346 7347 7348 7349
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
7350 7351 7352
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7353

7354
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7355

7356
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7357 7358 7359 7360

	return 0;
}

7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
		               E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
L
Lior Levy 已提交
7412 7413 7414 7415 7416
	/*
	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
		         "Link speed has been changed. VF Transmit "
		         "rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
		                      adapter->vf_data[i].tx_rate,
		                      actual_link_speed);
	}
}

7449 7450
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7479
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7480 7481 7482 7483 7484
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

7485 7486 7487
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7488
	u32 reg;
7489

7490 7491
	switch (hw->mac.type) {
	case e1000_82575:
7492 7493
	case e1000_i210:
	case e1000_i211:
7494 7495
	default:
		/* replication is not supported for 82575 */
7496
		return;
7497 7498 7499 7500 7501 7502 7503 7504 7505 7506
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7507 7508
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7509 7510
		break;
	}
7511

7512 7513 7514
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7515 7516
		igb_vmdq_set_anti_spoofing_pf(hw, true,
						adapter->vfs_allocated_count);
7517 7518 7519 7520
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7521 7522
}

7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

			/*
7537 7538 7539
			 * DMA Coalescing high water mark needs to be greater
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7540
			 */
7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

			/*
			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7557 7558 7559 7560 7561 7562 7563 7564 7565 7566
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
7567 7568 7569

			/* Disable BMC-to-OS Watchdog Enable */
			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603
			wr32(E1000_DMACR, reg);

			/*
			 * no lower threshold to disable
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

			/*
			 * free space in tx packet buffer to wake from
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

			/*
			 * make low power state decision controlled
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

C
Carolyn Wyborny 已提交
7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633
static DEFINE_SPINLOCK(i2c_clients_lock);

/*  igb_get_i2c_client - returns matching client
 *  in adapters's client list.
 *  @adapter: adapter struct
 *  @dev_addr: device address of i2c needed.
 */
struct i2c_client *
igb_get_i2c_client(struct igb_adapter *adapter, u8 dev_addr)
{
	ulong flags;
	struct igb_i2c_client_list *client_list;
	struct i2c_client *client = NULL;
	struct i2c_board_info client_info = {
		I2C_BOARD_INFO("igb", 0x00),
	};

	spin_lock_irqsave(&i2c_clients_lock, flags);
	client_list = adapter->i2c_clients;

	/* See if we already have an i2c_client */
	while (client_list) {
		if (client_list->client->addr == (dev_addr >> 1)) {
			client = client_list->client;
			goto exit;
		} else {
			client_list = client_list->next;
		}
	}

7634 7635 7636 7637 7638 7639
	/* no client_list found, create a new one as long as
	 * irqs are not disabled
	 */
	if (unlikely(irqs_disabled()))
		goto exit;

C
Carolyn Wyborny 已提交
7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650
	client_list = kzalloc(sizeof(*client_list), GFP_KERNEL);
	if (client_list == NULL)
		goto exit;

	/* dev_addr passed to us is left-shifted by 1 bit
	 * i2c_new_device call expects it to be flush to the right.
	 */
	client_info.addr = dev_addr >> 1;
	client_info.platform_data = adapter;
	client_list->client = i2c_new_device(&adapter->i2c_adap, &client_info);
	if (client_list->client == NULL) {
7651 7652
		dev_info(&adapter->pdev->dev,
			"Failed to create new i2c device..\n");
C
Carolyn Wyborny 已提交
7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737
		goto err_no_client;
	}

	/* insert new client at head of list */
	client_list->next = adapter->i2c_clients;
	adapter->i2c_clients = client_list;

	client = client_list->client;
	goto exit;

err_no_client:
	kfree(client_list);
exit:
	spin_unlock_irqrestore(&i2c_clients_lock, flags);
	return client;
}

/*  igb_read_i2c_byte - Reads 8 bit word over I2C
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: device address
 *  @data: value read
 *
 *  Performs byte read operation over I2C interface at
 *  a specified device address.
 */
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
				u8 dev_addr, u8 *data)
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
	s32 status;
	u16 swfw_mask = 0;

	if (!this_client)
		return E1000_ERR_I2C;

	swfw_mask = E1000_SWFW_PHY0_SM;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
	    != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;

	status = i2c_smbus_read_byte_data(this_client, byte_offset);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status < 0)
		return E1000_ERR_I2C;
	else {
		*data = status;
		return E1000_SUCCESS;
	}
}

/*  igb_write_i2c_byte - Writes 8 bit word over I2C
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: device address
 *  @data: value to write
 *
 *  Performs byte write operation over I2C interface at
 *  a specified device address.
 */
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
				 u8 dev_addr, u8 data)
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
	s32 status;
	u16 swfw_mask = E1000_SWFW_PHY0_SM;

	if (!this_client)
		return E1000_ERR_I2C;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;
	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status)
		return E1000_ERR_I2C;
	else
		return E1000_SUCCESS;

}
7738
/* igb_main.c */