migrate.c 76.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2
/*
3
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
4 5 6 7 8 9 10 11 12
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
13
 * Christoph Lameter
C
Christoph Lameter 已提交
14 15 16
 */

#include <linux/migrate.h>
17
#include <linux/export.h>
C
Christoph Lameter 已提交
18
#include <linux/swap.h>
19
#include <linux/swapops.h>
C
Christoph Lameter 已提交
20
#include <linux/pagemap.h>
21
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
22
#include <linux/mm_inline.h>
23
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
24
#include <linux/pagevec.h>
25
#include <linux/ksm.h>
C
Christoph Lameter 已提交
26 27 28 29
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
30
#include <linux/writeback.h>
31 32
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
33
#include <linux/security.h>
34
#include <linux/backing-dev.h>
35
#include <linux/compaction.h>
36
#include <linux/syscalls.h>
N
Naoya Horiguchi 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/hugetlb_cgroup.h>
39
#include <linux/gfp.h>
40
#include <linux/pfn_t.h>
41
#include <linux/memremap.h>
42
#include <linux/userfaultfd_k.h>
43
#include <linux/balloon_compaction.h>
44
#include <linux/mmu_notifier.h>
45
#include <linux/page_idle.h>
46
#include <linux/page_owner.h>
47
#include <linux/sched/mm.h>
48
#include <linux/ptrace.h>
C
Christoph Lameter 已提交
49

50 51
#include <asm/tlbflush.h>

52 53 54
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
55 56 57
#include "internal.h"

/*
58
 * migrate_prep() needs to be called before we start compiling a list of pages
59 60
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

75 76 77 78 79 80 81 82
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

83
int isolate_movable_page(struct page *page, isolate_mode_t mode)
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
	 * so unconditionally grapping the lock ruins page's owner side.
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
	__SetPageIsolated(page);
	unlock_page(page);

134
	return 0;
135 136 137 138 139 140

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
141
	return -EBUSY;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
}

/* It should be called on page which is PG_movable */
void putback_movable_page(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	VM_BUG_ON_PAGE(!PageIsolated(page), page);

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
	__ClearPageIsolated(page);
}

158 159 160 161
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
162 163 164
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
165 166 167 168 169 170
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
171
	list_for_each_entry_safe(page, page2, l, lru) {
172 173 174 175
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
176
		list_del(&page->lru);
177 178 179 180 181
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
182
		if (unlikely(__PageMovable(page))) {
183 184 185 186 187 188 189 190 191
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		} else {
192 193
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
194
			putback_lru_page(page);
195
		}
C
Christoph Lameter 已提交
196 197 198
	}
}

199 200 201
/*
 * Restore a potential migration pte to a working pte entry
 */
M
Minchan Kim 已提交
202
static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
203
				 unsigned long addr, void *old)
204
{
205 206 207 208 209 210 211 212
	struct page_vma_mapped_walk pvmw = {
		.page = old,
		.vma = vma,
		.address = addr,
		.flags = PVMW_SYNC | PVMW_MIGRATION,
	};
	struct page *new;
	pte_t pte;
213 214
	swp_entry_t entry;

215 216
	VM_BUG_ON_PAGE(PageTail(page), page);
	while (page_vma_mapped_walk(&pvmw)) {
217 218 219 220 221
		if (PageKsm(page))
			new = page;
		else
			new = page - pvmw.page->index +
				linear_page_index(vma, pvmw.address);
222

223 224 225 226 227 228 229 230 231
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
		/* PMD-mapped THP migration entry */
		if (!pvmw.pte) {
			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
			remove_migration_pmd(&pvmw, new);
			continue;
		}
#endif

232 233 234 235
		get_page(new);
		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
		if (pte_swp_soft_dirty(*pvmw.pte))
			pte = pte_mksoft_dirty(pte);
236

237 238 239 240 241 242
		/*
		 * Recheck VMA as permissions can change since migration started
		 */
		entry = pte_to_swp_entry(*pvmw.pte);
		if (is_write_migration_entry(entry))
			pte = maybe_mkwrite(pte, vma);
243

244 245 246 247 248 249 250 251
		if (unlikely(is_zone_device_page(new))) {
			if (is_device_private_page(new)) {
				entry = make_device_private_entry(new, pte_write(pte));
				pte = swp_entry_to_pte(entry);
			} else if (is_device_public_page(new)) {
				pte = pte_mkdevmap(pte);
				flush_dcache_page(new);
			}
252 253 254
		} else
			flush_dcache_page(new);

A
Andi Kleen 已提交
255
#ifdef CONFIG_HUGETLB_PAGE
256 257 258
		if (PageHuge(new)) {
			pte = pte_mkhuge(pte);
			pte = arch_make_huge_pte(pte, vma, new, 0);
259
			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
260 261 262 263
			if (PageAnon(new))
				hugepage_add_anon_rmap(new, vma, pvmw.address);
			else
				page_dup_rmap(new, true);
264 265 266 267
		} else
#endif
		{
			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
268

269 270 271 272 273
			if (PageAnon(new))
				page_add_anon_rmap(new, vma, pvmw.address, false);
			else
				page_add_file_rmap(new, false);
		}
274 275 276 277 278 279
		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
			mlock_vma_page(new);

		/* No need to invalidate - it was non-present before */
		update_mmu_cache(vma, pvmw.address, pvmw.pte);
	}
280

M
Minchan Kim 已提交
281
	return true;
282 283
}

284 285 286 287
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
288
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
289
{
290 291 292 293 294
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

295 296 297 298
	if (locked)
		rmap_walk_locked(new, &rwc);
	else
		rmap_walk(new, &rwc);
299 300
}

301 302 303 304 305
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
306
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
307
				spinlock_t *ptl)
308
{
309
	pte_t pte;
310 311 312
	swp_entry_t entry;
	struct page *page;

313
	spin_lock(ptl);
314 315 316 317 318 319 320 321 322 323
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
324 325 326 327 328 329 330 331 332
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
333 334 335 336 337 338 339 340
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

341 342 343 344 345 346 347 348
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

349 350
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
351
{
352
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
353 354 355
	__migration_entry_wait(mm, pte, ptl);
}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
{
	spinlock_t *ptl;
	struct page *page;

	ptl = pmd_lock(mm, pmd);
	if (!is_pmd_migration_entry(*pmd))
		goto unlock;
	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
	if (!get_page_unless_zero(page))
		goto unlock;
	spin_unlock(ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
unlock:
	spin_unlock(ptl);
}
#endif

377 378
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
379 380
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
381 382 383 384
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
385
	if (mode != MIGRATE_ASYNC) {
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
421
							enum migrate_mode mode)
422 423 424 425 426
{
	return true;
}
#endif /* CONFIG_BLOCK */

C
Christoph Lameter 已提交
427
/*
428
 * Replace the page in the mapping.
429 430 431 432
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
433
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
434
 */
435
int migrate_page_move_mapping(struct address_space *mapping,
436
		struct page *newpage, struct page *page,
437 438
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
C
Christoph Lameter 已提交
439
{
440 441
	struct zone *oldzone, *newzone;
	int dirty;
442
	int expected_count = 1 + extra_count;
443
	void **pslot;
C
Christoph Lameter 已提交
444

445
	/*
446 447
	 * Device public or private pages have an extra refcount as they are
	 * ZONE_DEVICE pages.
448
	 */
449 450
	expected_count += is_device_private_page(page);
	expected_count += is_device_public_page(page);
451

452
	if (!mapping) {
453
		/* Anonymous page without mapping */
454
		if (page_count(page) != expected_count)
455
			return -EAGAIN;
456 457 458 459 460

		/* No turning back from here */
		newpage->index = page->index;
		newpage->mapping = page->mapping;
		if (PageSwapBacked(page))
461
			__SetPageSwapBacked(newpage);
462

463
		return MIGRATEPAGE_SUCCESS;
464 465
	}

466 467 468
	oldzone = page_zone(page);
	newzone = page_zone(newpage);

N
Nick Piggin 已提交
469
	spin_lock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
470

471 472
	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 					page_index(page));
C
Christoph Lameter 已提交
473

474
	expected_count += 1 + page_has_private(page);
N
Nick Piggin 已提交
475
	if (page_count(page) != expected_count ||
476
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Nick Piggin 已提交
477
		spin_unlock_irq(&mapping->tree_lock);
478
		return -EAGAIN;
C
Christoph Lameter 已提交
479 480
	}

481
	if (!page_ref_freeze(page, expected_count)) {
N
Nick Piggin 已提交
482
		spin_unlock_irq(&mapping->tree_lock);
N
Nick Piggin 已提交
483 484 485
		return -EAGAIN;
	}

486 487 488 489 490 491 492
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
493 494
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
495
		page_ref_unfreeze(page, expected_count);
496 497 498 499
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
500
	/*
501 502
	 * Now we know that no one else is looking at the page:
	 * no turning back from here.
C
Christoph Lameter 已提交
503
	 */
504 505
	newpage->index = page->index;
	newpage->mapping = page->mapping;
506
	get_page(newpage);	/* add cache reference */
507 508 509 510 511 512 513 514
	if (PageSwapBacked(page)) {
		__SetPageSwapBacked(newpage);
		if (PageSwapCache(page)) {
			SetPageSwapCache(newpage);
			set_page_private(newpage, page_private(page));
		}
	} else {
		VM_BUG_ON_PAGE(PageSwapCache(page), page);
C
Christoph Lameter 已提交
515 516
	}

517 518 519 520 521 522 523
	/* Move dirty while page refs frozen and newpage not yet exposed */
	dirty = PageDirty(page);
	if (dirty) {
		ClearPageDirty(page);
		SetPageDirty(newpage);
	}

524
	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
525 526

	/*
527 528
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
529 530
	 * We know this isn't the last reference.
	 */
531
	page_ref_unfreeze(page, expected_count - 1);
532

533 534 535
	spin_unlock(&mapping->tree_lock);
	/* Leave irq disabled to prevent preemption while updating stats */

536 537 538 539 540 541 542
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
543
	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
544 545
	 * are mapped to swap space.
	 */
546
	if (newzone != oldzone) {
547 548
		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
549
		if (PageSwapBacked(page) && !PageSwapCache(page)) {
550 551
			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
552 553
		}
		if (dirty && mapping_cap_account_dirty(mapping)) {
554
			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
555
			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
556
			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
557
			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
558
		}
559
	}
560
	local_irq_enable();
C
Christoph Lameter 已提交
561

562
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
563
}
564
EXPORT_SYMBOL(migrate_page_move_mapping);
C
Christoph Lameter 已提交
565

N
Naoya Horiguchi 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

	spin_lock_irq(&mapping->tree_lock);

	pslot = radix_tree_lookup_slot(&mapping->page_tree,
					page_index(page));

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
583
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Naoya Horiguchi 已提交
584 585 586 587
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

588
	if (!page_ref_freeze(page, expected_count)) {
N
Naoya Horiguchi 已提交
589 590 591 592
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

593 594
	newpage->index = page->index;
	newpage->mapping = page->mapping;
595

N
Naoya Horiguchi 已提交
596 597
	get_page(newpage);

598
	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
N
Naoya Horiguchi 已提交
599

600
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
601 602

	spin_unlock_irq(&mapping->tree_lock);
603

604
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
605 606
}

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
655 656 657
/*
 * Copy the page to its new location
 */
658
void migrate_page_states(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
659
{
660 661
	int cpupid;

C
Christoph Lameter 已提交
662 663 664 665 666 667
	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
668
	if (TestClearPageActive(page)) {
669
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
670
		SetPageActive(newpage);
671 672
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
C
Christoph Lameter 已提交
673 674 675 676 677
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

678 679 680
	/* Move dirty on pages not done by migrate_page_move_mapping() */
	if (PageDirty(page))
		SetPageDirty(newpage);
C
Christoph Lameter 已提交
681

682 683 684 685 686
	if (page_is_young(page))
		set_page_young(newpage);
	if (page_is_idle(page))
		set_page_idle(newpage);

687 688 689 690 691 692 693
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

694
	ksm_migrate_page(newpage, page);
695 696 697 698
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
699 700
	if (PageSwapCache(page))
		ClearPageSwapCache(page);
C
Christoph Lameter 已提交
701 702 703 704 705 706 707 708 709
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
710 711

	copy_page_owner(page, newpage);
712 713

	mem_cgroup_migrate(page, newpage);
C
Christoph Lameter 已提交
714
}
715 716 717 718 719 720 721 722 723 724 725
EXPORT_SYMBOL(migrate_page_states);

void migrate_page_copy(struct page *newpage, struct page *page)
{
	if (PageHuge(page) || PageTransHuge(page))
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);

	migrate_page_states(newpage, page);
}
726
EXPORT_SYMBOL(migrate_page_copy);
C
Christoph Lameter 已提交
727

728 729 730 731
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
732
/*
733
 * Common logic to directly migrate a single LRU page suitable for
734
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
735 736 737
 *
 * Pages are locked upon entry and exit.
 */
738
int migrate_page(struct address_space *mapping,
739 740
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
741 742 743 744 745
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

746
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
C
Christoph Lameter 已提交
747

748
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
749 750
		return rc;

751 752 753 754
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
755
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
756 757 758
}
EXPORT_SYMBOL(migrate_page);

759
#ifdef CONFIG_BLOCK
760 761 762 763 764
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
765
int buffer_migrate_page(struct address_space *mapping,
766
		struct page *newpage, struct page *page, enum migrate_mode mode)
767 768 769 770 771
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
772
		return migrate_page(mapping, newpage, page, mode);
773 774 775

	head = page_buffers(page);

776
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
777

778
	if (rc != MIGRATEPAGE_SUCCESS)
779 780
		return rc;

781 782 783 784 785
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
786 787
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

804 805 806 807
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
808 809 810 811

	bh = head;
	do {
		unlock_buffer(bh);
812
		put_bh(bh);
813 814 815 816
		bh = bh->b_this_page;

	} while (bh != head);

817
	return MIGRATEPAGE_SUCCESS;
818 819
}
EXPORT_SYMBOL(buffer_migrate_page);
820
#endif
821

822 823 824 825
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
826
{
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

844
	/*
845 846 847 848 849 850
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
851
	 */
852
	remove_migration_ptes(page, page, false);
853

854
	rc = mapping->a_ops->writepage(page, &wbc);
855

856 857 858 859
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
860
	return (rc < 0) ? -EIO : -EAGAIN;
861 862 863 864 865 866
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
867
	struct page *newpage, struct page *page, enum migrate_mode mode)
868
{
869
	if (PageDirty(page)) {
870
		/* Only writeback pages in full synchronous migration */
871 872 873 874 875
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
876
			return -EBUSY;
877
		}
878
		return writeout(mapping, page);
879
	}
880 881 882 883 884

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
885
	if (page_has_private(page) &&
886 887 888
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

889
	return migrate_page(mapping, newpage, page, mode);
890 891
}

892 893 894 895 896 897
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
898 899 900
 *
 * Return value:
 *   < 0 - error code
901
 *  MIGRATEPAGE_SUCCESS - success
902
 */
903
static int move_to_new_page(struct page *newpage, struct page *page,
904
				enum migrate_mode mode)
905 906
{
	struct address_space *mapping;
907 908
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
909

910 911
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
912 913

	mapping = page_mapping(page);
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
932
		/*
933 934
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
935
		 */
936 937 938 939 940 941 942 943 944 945 946 947
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
			__ClearPageIsolated(page);
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
948

949 950 951 952 953
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
			__ClearPageIsolated(page);
		}

		/*
		 * Anonymous and movable page->mapping will be cleard by
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
970
			page->mapping = NULL;
971
	}
972
out:
973 974 975
	return rc;
}

976
static int __unmap_and_move(struct page *page, struct page *newpage,
977
				int force, enum migrate_mode mode)
978
{
979
	int rc = -EAGAIN;
980
	int page_was_mapped = 0;
981
	struct anon_vma *anon_vma = NULL;
982
	bool is_lru = !__PageMovable(page);
983

N
Nick Piggin 已提交
984
	if (!trylock_page(page)) {
985
		if (!force || mode == MIGRATE_ASYNC)
986
			goto out;
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
1002
			goto out;
1003

1004 1005 1006 1007
		lock_page(page);
	}

	if (PageWriteback(page)) {
1008
		/*
1009
		 * Only in the case of a full synchronous migration is it
1010 1011 1012
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
1013
		 */
1014 1015 1016 1017 1018
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
1019
			rc = -EBUSY;
1020
			goto out_unlock;
1021 1022
		}
		if (!force)
1023
			goto out_unlock;
1024 1025
		wait_on_page_writeback(page);
	}
1026

1027
	/*
1028 1029
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
1030
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1031
	 * of migration. File cache pages are no problem because of page_lock()
1032 1033
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
1034 1035 1036 1037 1038 1039
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
1040
	 */
1041
	if (PageAnon(page) && !PageKsm(page))
1042
		anon_vma = page_get_anon_vma(page);
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

1055 1056 1057 1058 1059
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

1060
	/*
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
1071
	 */
1072
	if (!page->mapping) {
1073
		VM_BUG_ON_PAGE(PageAnon(page), page);
1074
		if (page_has_private(page)) {
1075
			try_to_free_buffers(page);
1076
			goto out_unlock_both;
1077
		}
1078 1079
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1080 1081
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1082
		try_to_unmap(page,
1083
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1084 1085
		page_was_mapped = 1;
	}
1086

1087
	if (!page_mapped(page))
1088
		rc = move_to_new_page(newpage, page, mode);
1089

1090 1091
	if (page_was_mapped)
		remove_migration_ptes(page,
1092
			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1093

1094 1095 1096
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1097
	/* Drop an anon_vma reference if we took one */
1098
	if (anon_vma)
1099
		put_anon_vma(anon_vma);
1100
	unlock_page(page);
1101
out:
1102 1103 1104 1105 1106 1107 1108
	/*
	 * If migration is successful, decrease refcount of the newpage
	 * which will not free the page because new page owner increased
	 * refcounter. As well, if it is LRU page, add the page to LRU
	 * list in here.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1109
		if (unlikely(__PageMovable(newpage)))
1110 1111 1112 1113 1114
			put_page(newpage);
		else
			putback_lru_page(newpage);
	}

1115 1116
	return rc;
}
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
/*
 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 * around it.
 */
#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
#define ICE_noinline noinline
#else
#define ICE_noinline
#endif

1128 1129 1130 1131
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1132 1133 1134
static ICE_noinline int unmap_and_move(new_page_t get_new_page,
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1135 1136
				   int force, enum migrate_mode mode,
				   enum migrate_reason reason)
1137
{
1138
	int rc = MIGRATEPAGE_SUCCESS;
1139
	int *result = NULL;
1140
	struct page *newpage;
1141

1142
	newpage = get_new_page(page, private, &result);
1143 1144 1145 1146 1147
	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1148 1149
		ClearPageActive(page);
		ClearPageUnevictable(page);
1150 1151 1152 1153 1154 1155
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
				__ClearPageIsolated(page);
			unlock_page(page);
		}
1156 1157 1158 1159
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1160 1161 1162
		goto out;
	}

1163
	if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1164 1165 1166 1167
		lock_page(page);
		rc = split_huge_page(page);
		unlock_page(page);
		if (rc)
1168
			goto out;
1169
	}
1170

1171
	rc = __unmap_and_move(page, newpage, force, mode);
1172
	if (rc == MIGRATEPAGE_SUCCESS)
1173
		set_page_owner_migrate_reason(newpage, reason);
1174

1175
out:
1176
	if (rc != -EAGAIN) {
1177 1178 1179 1180 1181 1182 1183
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
1184 1185 1186 1187 1188 1189 1190

		/*
		 * Compaction can migrate also non-LRU pages which are
		 * not accounted to NR_ISOLATED_*. They can be recognized
		 * as __PageMovable
		 */
		if (likely(!__PageMovable(page)))
1191 1192
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	}

	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		put_page(page);
		if (reason == MR_MEMORY_FAILURE) {
1203
			/*
1204 1205 1206
			 * Set PG_HWPoison on just freed page
			 * intentionally. Although it's rather weird,
			 * it's how HWPoison flag works at the moment.
1207
			 */
1208 1209
			if (!test_set_page_hwpoison(page))
				num_poisoned_pages_inc();
1210 1211
		}
	} else {
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
		if (rc != -EAGAIN) {
			if (likely(!__PageMovable(page))) {
				putback_lru_page(page);
				goto put_new;
			}

			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		}
put_new:
1227 1228 1229 1230
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1231
	}
1232

1233 1234 1235 1236 1237 1238
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(newpage);
	}
1239 1240 1241
	return rc;
}

N
Naoya Horiguchi 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1261 1262
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1263
				enum migrate_mode mode, int reason)
N
Naoya Horiguchi 已提交
1264
{
1265
	int rc = -EAGAIN;
N
Naoya Horiguchi 已提交
1266
	int *result = NULL;
1267
	int page_was_mapped = 0;
1268
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1269 1270
	struct anon_vma *anon_vma = NULL;

1271 1272 1273 1274 1275 1276 1277
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1278
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1279
		putback_active_hugepage(hpage);
1280
		return -ENOSYS;
1281
	}
1282

1283
	new_hpage = get_new_page(hpage, private, &result);
N
Naoya Horiguchi 已提交
1284 1285 1286 1287
	if (!new_hpage)
		return -ENOMEM;

	if (!trylock_page(hpage)) {
1288
		if (!force)
N
Naoya Horiguchi 已提交
1289
			goto out;
1290 1291 1292 1293 1294 1295 1296
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
			goto out;
		}
N
Naoya Horiguchi 已提交
1297 1298 1299
		lock_page(hpage);
	}

1300 1301
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1302

1303 1304 1305
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1306 1307 1308 1309 1310
	if (page_mapped(hpage)) {
		try_to_unmap(hpage,
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
		page_was_mapped = 1;
	}
N
Naoya Horiguchi 已提交
1311 1312

	if (!page_mapped(hpage))
1313
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1314

1315 1316
	if (page_was_mapped)
		remove_migration_ptes(hpage,
1317
			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
N
Naoya Horiguchi 已提交
1318

1319 1320 1321
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1322
	if (anon_vma)
1323
		put_anon_vma(anon_vma);
1324

1325
	if (rc == MIGRATEPAGE_SUCCESS) {
1326
		hugetlb_cgroup_migrate(hpage, new_hpage);
1327
		put_new_page = NULL;
1328
		set_page_owner_migrate_reason(new_hpage, reason);
1329
	}
1330

N
Naoya Horiguchi 已提交
1331
	unlock_page(hpage);
1332
out:
1333 1334
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1335 1336
	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
		num_poisoned_pages_inc();
1337 1338 1339 1340 1341 1342

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1343
	if (put_new_page)
1344 1345
		put_new_page(new_hpage, private);
	else
1346
		putback_active_hugepage(new_hpage);
1347

N
Naoya Horiguchi 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(new_hpage);
	}
	return rc;
}

C
Christoph Lameter 已提交
1357
/*
1358 1359
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1360
 *
1361 1362 1363
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1364 1365
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1366 1367 1368 1369
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1370
 *
1371 1372
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1373
 * The caller should call putback_movable_pages() to return pages to the LRU
1374
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1375
 *
1376
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1377
 */
1378
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1379 1380
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1381
{
1382
	int retry = 1;
C
Christoph Lameter 已提交
1383
	int nr_failed = 0;
1384
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1394 1395
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1396

1397 1398
		list_for_each_entry_safe(page, page2, from, lru) {
			cond_resched();
1399

1400 1401
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1402
						put_new_page, private, page,
1403
						pass > 2, mode, reason);
1404
			else
1405
				rc = unmap_and_move(get_new_page, put_new_page,
1406 1407
						private, page, pass > 2, mode,
						reason);
1408

1409
			switch(rc) {
1410
			case -ENOMEM:
1411
				nr_failed++;
1412
				goto out;
1413
			case -EAGAIN:
1414
				retry++;
1415
				break;
1416
			case MIGRATEPAGE_SUCCESS:
1417
				nr_succeeded++;
1418 1419
				break;
			default:
1420 1421 1422 1423 1424 1425
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1426
				nr_failed++;
1427
				break;
1428
			}
C
Christoph Lameter 已提交
1429 1430
		}
	}
1431 1432
	nr_failed += retry;
	rc = nr_failed;
1433
out:
1434 1435 1436 1437
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1438 1439
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1440 1441 1442
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1443
	return rc;
C
Christoph Lameter 已提交
1444
}
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
#ifdef CONFIG_NUMA
/*
 * Move a list of individual pages
 */
struct page_to_node {
	unsigned long addr;
	struct page *page;
	int node;
	int status;
};

static struct page *new_page_node(struct page *p, unsigned long private,
		int **result)
{
	struct page_to_node *pm = (struct page_to_node *)private;

	while (pm->node != MAX_NUMNODES && pm->page != p)
		pm++;

	if (pm->node == MAX_NUMNODES)
		return NULL;

	*result = &pm->status;

1470 1471 1472
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
					pm->node);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	else if (thp_migration_supported() && PageTransHuge(p)) {
		struct page *thp;

		thp = alloc_pages_node(pm->node,
			(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
			HPAGE_PMD_ORDER);
		if (!thp)
			return NULL;
		prep_transhuge_page(thp);
		return thp;
	} else
1484
		return __alloc_pages_node(pm->node,
1485
				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1486 1487 1488 1489 1490 1491
}

/*
 * Move a set of pages as indicated in the pm array. The addr
 * field must be set to the virtual address of the page to be moved
 * and the node number must contain a valid target node.
1492
 * The pm array ends with node = MAX_NUMNODES.
1493
 */
1494 1495 1496
static int do_move_page_to_node_array(struct mm_struct *mm,
				      struct page_to_node *pm,
				      int migrate_all)
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
{
	int err;
	struct page_to_node *pp;
	LIST_HEAD(pagelist);

	down_read(&mm->mmap_sem);

	/*
	 * Build a list of pages to migrate
	 */
	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
		struct vm_area_struct *vma;
		struct page *page;
1510 1511
		struct page *head;
		unsigned int follflags;
1512 1513 1514

		err = -EFAULT;
		vma = find_vma(mm, pp->addr);
1515
		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1516 1517
			goto set_status;

1518
		/* FOLL_DUMP to ignore special (like zero) pages */
1519 1520 1521 1522
		follflags = FOLL_GET | FOLL_DUMP;
		if (!thp_migration_supported())
			follflags |= FOLL_SPLIT;
		page = follow_page(vma, pp->addr, follflags);
1523 1524 1525 1526 1527

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
		err = -ENOENT;
		if (!page)
			goto set_status;

		err = page_to_nid(page);

		if (err == pp->node)
			/*
			 * Node already in the right place
			 */
			goto put_and_set;

		err = -EACCES;
		if (page_mapcount(page) > 1 &&
				!migrate_all)
			goto put_and_set;

1545
		if (PageHuge(page)) {
1546
			if (PageHead(page)) {
1547
				isolate_huge_page(page, &pagelist);
1548 1549 1550
				err = 0;
				pp->page = page;
			}
1551 1552 1553
			goto put_and_set;
		}

1554 1555 1556
		pp->page = compound_head(page);
		head = compound_head(page);
		err = isolate_lru_page(head);
1557
		if (!err) {
1558 1559 1560 1561
			list_add_tail(&head->lru, &pagelist);
			mod_node_page_state(page_pgdat(head),
				NR_ISOLATED_ANON + page_is_file_cache(head),
				hpage_nr_pages(head));
1562
		}
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
put_and_set:
		/*
		 * Either remove the duplicate refcount from
		 * isolate_lru_page() or drop the page ref if it was
		 * not isolated.
		 */
		put_page(page);
set_status:
		pp->status = err;
	}

1574
	err = 0;
1575
	if (!list_empty(&pagelist)) {
1576
		err = migrate_pages(&pagelist, new_page_node, NULL,
1577
				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1578
		if (err)
1579
			putback_movable_pages(&pagelist);
1580
	}
1581 1582 1583 1584 1585

	up_read(&mm->mmap_sem);
	return err;
}

1586 1587 1588 1589
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1590
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1591 1592 1593 1594 1595
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
1596 1597 1598 1599
	struct page_to_node *pm;
	unsigned long chunk_nr_pages;
	unsigned long chunk_start;
	int err;
1600

1601 1602 1603
	err = -ENOMEM;
	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
	if (!pm)
1604
		goto out;
1605 1606 1607

	migrate_prep();

1608
	/*
1609 1610
	 * Store a chunk of page_to_node array in a page,
	 * but keep the last one as a marker
1611
	 */
1612
	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1613

1614 1615 1616 1617
	for (chunk_start = 0;
	     chunk_start < nr_pages;
	     chunk_start += chunk_nr_pages) {
		int j;
1618

1619 1620 1621 1622 1623 1624
		if (chunk_start + chunk_nr_pages > nr_pages)
			chunk_nr_pages = nr_pages - chunk_start;

		/* fill the chunk pm with addrs and nodes from user-space */
		for (j = 0; j < chunk_nr_pages; j++) {
			const void __user *p;
1625 1626
			int node;

1627 1628 1629 1630 1631 1632
			err = -EFAULT;
			if (get_user(p, pages + j + chunk_start))
				goto out_pm;
			pm[j].addr = (unsigned long) p;

			if (get_user(node, nodes + j + chunk_start))
1633 1634 1635
				goto out_pm;

			err = -ENODEV;
1636 1637 1638
			if (node < 0 || node >= MAX_NUMNODES)
				goto out_pm;

1639
			if (!node_state(node, N_MEMORY))
1640 1641 1642 1643 1644 1645
				goto out_pm;

			err = -EACCES;
			if (!node_isset(node, task_nodes))
				goto out_pm;

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
			pm[j].node = node;
		}

		/* End marker for this chunk */
		pm[chunk_nr_pages].node = MAX_NUMNODES;

		/* Migrate this chunk */
		err = do_move_page_to_node_array(mm, pm,
						 flags & MPOL_MF_MOVE_ALL);
		if (err < 0)
			goto out_pm;
1657 1658

		/* Return status information */
1659 1660
		for (j = 0; j < chunk_nr_pages; j++)
			if (put_user(pm[j].status, status + j + chunk_start)) {
1661
				err = -EFAULT;
1662 1663 1664 1665
				goto out_pm;
			}
	}
	err = 0;
1666 1667

out_pm:
1668
	free_page((unsigned long)pm);
1669 1670 1671 1672
out:
	return err;
}

1673
/*
1674
 * Determine the nodes of an array of pages and store it in an array of status.
1675
 */
1676 1677
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1678
{
1679 1680
	unsigned long i;

1681 1682
	down_read(&mm->mmap_sem);

1683
	for (i = 0; i < nr_pages; i++) {
1684
		unsigned long addr = (unsigned long)(*pages);
1685 1686
		struct vm_area_struct *vma;
		struct page *page;
1687
		int err = -EFAULT;
1688 1689

		vma = find_vma(mm, addr);
1690
		if (!vma || addr < vma->vm_start)
1691 1692
			goto set_status;

1693 1694
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1695 1696 1697 1698 1699

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1700
		err = page ? page_to_nid(page) : -ENOENT;
1701
set_status:
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1723 1724
	while (nr_pages) {
		unsigned long chunk_nr;
1725

1726 1727 1728 1729 1730 1731
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1732 1733 1734

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1735 1736
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1737

1738 1739 1740 1741 1742
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1743 1744 1745 1746 1747 1748
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1749 1750 1751 1752
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
1753 1754 1755
{
	struct task_struct *task;
	struct mm_struct *mm;
1756
	int err;
1757
	nodemask_t task_nodes;
1758 1759 1760 1761 1762 1763 1764 1765 1766

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1767
	rcu_read_lock();
1768
	task = pid ? find_task_by_vpid(pid) : current;
1769
	if (!task) {
1770
		rcu_read_unlock();
1771 1772
		return -ESRCH;
	}
1773
	get_task_struct(task);
1774 1775 1776

	/*
	 * Check if this process has the right to modify the specified
1777
	 * process. Use the regular "ptrace_may_access()" checks.
1778
	 */
1779
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1780
		rcu_read_unlock();
1781
		err = -EPERM;
1782
		goto out;
1783
	}
1784
	rcu_read_unlock();
1785

1786 1787
 	err = security_task_movememory(task);
 	if (err)
1788
		goto out;
1789

1790 1791 1792 1793
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1794 1795 1796 1797 1798 1799 1800 1801
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1802 1803 1804

	mmput(mm);
	return err;
1805 1806 1807 1808

out:
	put_task_struct(task);
	return err;
1809 1810
}

1811 1812 1813 1814 1815 1816
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1817
				   unsigned long nr_migrate_pages)
1818 1819
{
	int z;
M
Mel Gorman 已提交
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
					   unsigned long data,
					   int **result)
{
	int nid = (int) data;
	struct page *newpage;

1845
	newpage = __alloc_pages_node(nid,
1846 1847 1848
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1849
					 ~__GFP_RECLAIM, 0);
1850

1851 1852 1853
	return newpage;
}

1854 1855 1856 1857 1858 1859 1860 1861
/*
 * page migration rate limiting control.
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 * window of time. Default here says do not migrate more than 1280M per second.
 */
static unsigned int migrate_interval_millisecs __read_mostly = 100;
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);

1862
/* Returns true if the node is migrate rate-limited after the update */
1863 1864
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
					unsigned long nr_pages)
1865
{
1866 1867 1868 1869 1870 1871
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1872
		spin_lock(&pgdat->numabalancing_migrate_lock);
1873 1874 1875
		pgdat->numabalancing_migrate_nr_pages = 0;
		pgdat->numabalancing_migrate_next_window = jiffies +
			msecs_to_jiffies(migrate_interval_millisecs);
1876
		spin_unlock(&pgdat->numabalancing_migrate_lock);
1877
	}
1878 1879 1880
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
								nr_pages);
1881
		return true;
1882
	}
1883 1884 1885 1886 1887 1888 1889 1890 1891

	/*
	 * This is an unlocked non-atomic update so errors are possible.
	 * The consequences are failing to migrate when we potentiall should
	 * have which is not severe enough to warrant locking. If it is ever
	 * a problem, it can be converted to a per-cpu counter.
	 */
	pgdat->numabalancing_migrate_nr_pages += nr_pages;
	return false;
1892 1893
}

1894
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1895
{
1896
	int page_lru;
1897

1898
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1899

1900
	/* Avoid migrating to a node that is nearly full */
1901 1902
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1903

1904 1905
	if (isolate_lru_page(page))
		return 0;
1906

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1917 1918
	}

1919
	page_lru = page_is_file_cache(page);
M
Mel Gorman 已提交
1920
	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1921 1922
				hpage_nr_pages(page));

1923
	/*
1924 1925 1926
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1927 1928
	 */
	put_page(page);
1929
	return 1;
1930 1931
}

1932 1933 1934 1935 1936 1937
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

1938 1939 1940 1941 1942
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1943 1944
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1945 1946
{
	pg_data_t *pgdat = NODE_DATA(node);
1947
	int isolated;
1948 1949 1950 1951
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1952 1953
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1954
	 */
1955 1956
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1957 1958 1959 1960 1961 1962 1963
		goto out;

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1964
	if (numamigrate_update_ratelimit(pgdat, 1))
1965 1966 1967 1968 1969 1970 1971
		goto out;

	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1972
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1973 1974
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1975
	if (nr_remaining) {
1976 1977
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
M
Mel Gorman 已提交
1978
			dec_node_page_state(page, NR_ISOLATED_ANON +
1979 1980 1981
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1982 1983 1984
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1985 1986
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1987 1988 1989 1990

out:
	put_page(page);
	return 0;
1991
}
1992
#endif /* CONFIG_NUMA_BALANCING */
1993

1994
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1995 1996 1997 1998
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1999 2000 2001 2002 2003 2004
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
2005
	spinlock_t *ptl;
2006 2007 2008 2009
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
2010 2011
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2012 2013 2014 2015 2016 2017

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
2018
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2019 2020 2021
		goto out_dropref;

	new_page = alloc_pages_node(node,
2022
		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2023
		HPAGE_PMD_ORDER);
2024 2025
	if (!new_page)
		goto out_fail;
2026
	prep_transhuge_page(new_page);
2027

2028
	isolated = numamigrate_isolate_page(pgdat, page);
2029
	if (!isolated) {
2030
		put_page(new_page);
2031
		goto out_fail;
2032
	}
2033

2034
	/* Prepare a page as a migration target */
2035
	__SetPageLocked(new_page);
2036 2037
	if (PageSwapBacked(page))
		__SetPageSwapBacked(new_page);
2038 2039 2040 2041 2042 2043 2044 2045

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
2046
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2047
	ptl = pmd_lock(mm, pmd);
2048
	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2049
		spin_unlock(ptl);
2050
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

2061 2062
		/* Retake the callers reference and putback on LRU */
		get_page(page);
2063
		putback_lru_page(page);
M
Mel Gorman 已提交
2064
		mod_node_page_state(page_pgdat(page),
2065
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2066 2067

		goto out_unlock;
2068 2069
	}

K
Kirill A. Shutemov 已提交
2070
	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2071
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2072

2073 2074 2075 2076 2077 2078 2079
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
2080
	flush_cache_range(vma, mmun_start, mmun_end);
2081
	page_add_anon_rmap(new_page, vma, mmun_start, true);
2082
	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2083
	set_pmd_at(mm, mmun_start, pmd, entry);
2084
	update_mmu_cache_pmd(vma, address, &entry);
2085

2086
	page_ref_unfreeze(page, 2);
2087
	mlock_migrate_page(new_page, page);
2088
	page_remove_rmap(page, true);
2089
	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2090

2091
	spin_unlock(ptl);
2092
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2093

2094 2095 2096 2097
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

2098 2099 2100 2101 2102 2103 2104 2105
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

M
Mel Gorman 已提交
2106
	mod_node_page_state(page_pgdat(page),
2107 2108 2109 2110
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

2111 2112
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2113
out_dropref:
2114 2115
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
2116
		entry = pmd_modify(entry, vma->vm_page_prot);
2117
		set_pmd_at(mm, mmun_start, pmd, entry);
2118 2119 2120
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
2121

2122
out_unlock:
2123
	unlock_page(page);
2124 2125 2126
	put_page(page);
	return 0;
}
2127 2128 2129
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */
2130

2131
#if defined(CONFIG_MIGRATE_VMA_HELPER)
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
struct migrate_vma {
	struct vm_area_struct	*vma;
	unsigned long		*dst;
	unsigned long		*src;
	unsigned long		cpages;
	unsigned long		npages;
	unsigned long		start;
	unsigned long		end;
};

static int migrate_vma_collect_hole(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2149
	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2150
		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2151
		migrate->dst[migrate->npages] = 0;
2152
		migrate->npages++;
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
		migrate->cpages++;
	}

	return 0;
}

static int migrate_vma_collect_skip(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
		migrate->dst[migrate->npages] = 0;
		migrate->src[migrate->npages++] = 0;
	}

	return 0;
}

static int migrate_vma_collect_pmd(pmd_t *pmdp,
				   unsigned long start,
				   unsigned long end,
				   struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	struct vm_area_struct *vma = walk->vma;
	struct mm_struct *mm = vma->vm_mm;
2182
	unsigned long addr = start, unmapped = 0;
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	spinlock_t *ptl;
	pte_t *ptep;

again:
	if (pmd_none(*pmdp))
		return migrate_vma_collect_hole(start, end, walk);

	if (pmd_trans_huge(*pmdp)) {
		struct page *page;

		ptl = pmd_lock(mm, pmdp);
		if (unlikely(!pmd_trans_huge(*pmdp))) {
			spin_unlock(ptl);
			goto again;
		}

		page = pmd_page(*pmdp);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			split_huge_pmd(vma, pmdp, addr);
			if (pmd_trans_unstable(pmdp))
2204
				return migrate_vma_collect_skip(start, end,
2205 2206 2207 2208 2209 2210 2211
								walk);
		} else {
			int ret;

			get_page(page);
			spin_unlock(ptl);
			if (unlikely(!trylock_page(page)))
2212
				return migrate_vma_collect_skip(start, end,
2213 2214 2215 2216
								walk);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
2217 2218 2219 2220
			if (ret)
				return migrate_vma_collect_skip(start, end,
								walk);
			if (pmd_none(*pmdp))
2221 2222 2223 2224 2225 2226
				return migrate_vma_collect_hole(start, end,
								walk);
		}
	}

	if (unlikely(pmd_bad(*pmdp)))
2227
		return migrate_vma_collect_skip(start, end, walk);
2228 2229

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2230 2231
	arch_enter_lazy_mmu_mode();

2232 2233 2234
	for (; addr < end; addr += PAGE_SIZE, ptep++) {
		unsigned long mpfn, pfn;
		struct page *page;
2235
		swp_entry_t entry;
2236 2237 2238 2239 2240
		pte_t pte;

		pte = *ptep;
		pfn = pte_pfn(pte);

2241
		if (pte_none(pte)) {
2242 2243 2244
			mpfn = MIGRATE_PFN_MIGRATE;
			migrate->cpages++;
			pfn = 0;
2245 2246 2247
			goto next;
		}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
		if (!pte_present(pte)) {
			mpfn = pfn = 0;

			/*
			 * Only care about unaddressable device page special
			 * page table entry. Other special swap entries are not
			 * migratable, and we ignore regular swapped page.
			 */
			entry = pte_to_swp_entry(pte);
			if (!is_device_private_entry(entry))
				goto next;

			page = device_private_entry_to_page(entry);
			mpfn = migrate_pfn(page_to_pfn(page))|
				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
			if (is_write_device_private_entry(entry))
				mpfn |= MIGRATE_PFN_WRITE;
		} else {
2266 2267 2268 2269 2270 2271
			if (is_zero_pfn(pfn)) {
				mpfn = MIGRATE_PFN_MIGRATE;
				migrate->cpages++;
				pfn = 0;
				goto next;
			}
2272
			page = _vm_normal_page(migrate->vma, addr, pte, true);
2273 2274 2275 2276
			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
		}

2277 2278 2279 2280 2281
		/* FIXME support THP */
		if (!page || !page->mapping || PageTransCompound(page)) {
			mpfn = pfn = 0;
			goto next;
		}
2282
		pfn = page_to_pfn(page);
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

		/*
		 * By getting a reference on the page we pin it and that blocks
		 * any kind of migration. Side effect is that it "freezes" the
		 * pte.
		 *
		 * We drop this reference after isolating the page from the lru
		 * for non device page (device page are not on the lru and thus
		 * can't be dropped from it).
		 */
		get_page(page);
		migrate->cpages++;

2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
		/*
		 * Optimize for the common case where page is only mapped once
		 * in one process. If we can lock the page, then we can safely
		 * set up a special migration page table entry now.
		 */
		if (trylock_page(page)) {
			pte_t swp_pte;

			mpfn |= MIGRATE_PFN_LOCKED;
			ptep_get_and_clear(mm, addr, ptep);

			/* Setup special migration page table entry */
			entry = make_migration_entry(page, pte_write(pte));
			swp_pte = swp_entry_to_pte(entry);
			if (pte_soft_dirty(pte))
				swp_pte = pte_swp_mksoft_dirty(swp_pte);
			set_pte_at(mm, addr, ptep, swp_pte);

			/*
			 * This is like regular unmap: we remove the rmap and
			 * drop page refcount. Page won't be freed, as we took
			 * a reference just above.
			 */
			page_remove_rmap(page, false);
			put_page(page);
2321 2322 2323

			if (pte_present(pte))
				unmapped++;
2324 2325
		}

2326
next:
2327
		migrate->dst[migrate->npages] = 0;
2328 2329
		migrate->src[migrate->npages++] = mpfn;
	}
2330
	arch_leave_lazy_mmu_mode();
2331 2332
	pte_unmap_unlock(ptep - 1, ptl);

2333 2334 2335 2336
	/* Only flush the TLB if we actually modified any entries */
	if (unmapped)
		flush_tlb_range(walk->vma, start, end);

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	return 0;
}

/*
 * migrate_vma_collect() - collect pages over a range of virtual addresses
 * @migrate: migrate struct containing all migration information
 *
 * This will walk the CPU page table. For each virtual address backed by a
 * valid page, it updates the src array and takes a reference on the page, in
 * order to pin the page until we lock it and unmap it.
 */
static void migrate_vma_collect(struct migrate_vma *migrate)
{
	struct mm_walk mm_walk;

	mm_walk.pmd_entry = migrate_vma_collect_pmd;
	mm_walk.pte_entry = NULL;
	mm_walk.pte_hole = migrate_vma_collect_hole;
	mm_walk.hugetlb_entry = NULL;
	mm_walk.test_walk = NULL;
	mm_walk.vma = migrate->vma;
	mm_walk.mm = migrate->vma->vm_mm;
	mm_walk.private = migrate;

2361 2362 2363
	mmu_notifier_invalidate_range_start(mm_walk.mm,
					    migrate->start,
					    migrate->end);
2364
	walk_page_range(migrate->start, migrate->end, &mm_walk);
2365 2366 2367
	mmu_notifier_invalidate_range_end(mm_walk.mm,
					  migrate->start,
					  migrate->end);
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
}

/*
 * migrate_vma_check_page() - check if page is pinned or not
 * @page: struct page to check
 *
 * Pinned pages cannot be migrated. This is the same test as in
 * migrate_page_move_mapping(), except that here we allow migration of a
 * ZONE_DEVICE page.
 */
static bool migrate_vma_check_page(struct page *page)
{
	/*
	 * One extra ref because caller holds an extra reference, either from
	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
	 * a device page.
	 */
	int extra = 1;

	/*
	 * FIXME support THP (transparent huge page), it is bit more complex to
	 * check them than regular pages, because they can be mapped with a pmd
	 * or with a pte (split pte mapping).
	 */
	if (PageCompound(page))
		return false;

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	/* Page from ZONE_DEVICE have one extra reference */
	if (is_zone_device_page(page)) {
		/*
		 * Private page can never be pin as they have no valid pte and
		 * GUP will fail for those. Yet if there is a pending migration
		 * a thread might try to wait on the pte migration entry and
		 * will bump the page reference count. Sadly there is no way to
		 * differentiate a regular pin from migration wait. Hence to
		 * avoid 2 racing thread trying to migrate back to CPU to enter
		 * infinite loop (one stoping migration because the other is
		 * waiting on pte migration entry). We always return true here.
		 *
		 * FIXME proper solution is to rework migration_entry_wait() so
		 * it does not need to take a reference on page.
		 */
		if (is_device_private_page(page))
			return true;

2415 2416 2417 2418 2419 2420 2421
		/*
		 * Only allow device public page to be migrated and account for
		 * the extra reference count imply by ZONE_DEVICE pages.
		 */
		if (!is_device_public_page(page))
			return false;
		extra++;
2422 2423
	}

2424 2425 2426 2427
	/* For file back page */
	if (page_mapping(page))
		extra += 1 + page_has_private(page);

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	if ((page_count(page) - extra) > page_mapcount(page))
		return false;

	return true;
}

/*
 * migrate_vma_prepare() - lock pages and isolate them from the lru
 * @migrate: migrate struct containing all migration information
 *
 * This locks pages that have been collected by migrate_vma_collect(). Once each
 * page is locked it is isolated from the lru (for non-device pages). Finally,
 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
 * migrated by concurrent kernel threads.
 */
static void migrate_vma_prepare(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
2446 2447
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;
2448 2449 2450 2451 2452 2453
	bool allow_drain = true;

	lru_add_drain();

	for (i = 0; (i < npages) && migrate->cpages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2454
		bool remap = true;
2455 2456 2457 2458

		if (!page)
			continue;

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
			/*
			 * Because we are migrating several pages there can be
			 * a deadlock between 2 concurrent migration where each
			 * are waiting on each other page lock.
			 *
			 * Make migrate_vma() a best effort thing and backoff
			 * for any page we can not lock right away.
			 */
			if (!trylock_page(page)) {
				migrate->src[i] = 0;
				migrate->cpages--;
				put_page(page);
				continue;
			}
			remap = false;
			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2476 2477
		}

2478 2479 2480 2481 2482 2483 2484
		/* ZONE_DEVICE pages are not on LRU */
		if (!is_zone_device_page(page)) {
			if (!PageLRU(page) && allow_drain) {
				/* Drain CPU's pagevec */
				lru_add_drain_all();
				allow_drain = false;
			}
2485

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
			if (isolate_lru_page(page)) {
				if (remap) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					migrate->cpages--;
					restore++;
				} else {
					migrate->src[i] = 0;
					unlock_page(page);
					migrate->cpages--;
					put_page(page);
				}
				continue;
2498
			}
2499 2500 2501

			/* Drop the reference we took in collect */
			put_page(page);
2502 2503 2504
		}

		if (!migrate_vma_check_page(page)) {
2505 2506 2507 2508
			if (remap) {
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				migrate->cpages--;
				restore++;
2509

2510 2511 2512 2513
				if (!is_zone_device_page(page)) {
					get_page(page);
					putback_lru_page(page);
				}
2514 2515 2516 2517 2518
			} else {
				migrate->src[i] = 0;
				unlock_page(page);
				migrate->cpages--;

2519 2520 2521 2522
				if (!is_zone_device_page(page))
					putback_lru_page(page);
				else
					put_page(page);
2523
			}
2524 2525
		}
	}
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_pte(page, migrate->vma, addr, page);

		migrate->src[i] = 0;
		unlock_page(page);
		put_page(page);
		restore--;
	}
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
}

/*
 * migrate_vma_unmap() - replace page mapping with special migration pte entry
 * @migrate: migrate struct containing all migration information
 *
 * Replace page mapping (CPU page table pte) with a special migration pte entry
 * and check again if it has been pinned. Pinned pages are restored because we
 * cannot migrate them.
 *
 * This is the last step before we call the device driver callback to allocate
 * destination memory and copy contents of original page over to new page.
 */
static void migrate_vma_unmap(struct migrate_vma *migrate)
{
	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;

	for (i = 0; i < npages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

2566 2567 2568 2569
		if (page_mapped(page)) {
			try_to_unmap(page, flags);
			if (page_mapped(page))
				goto restore;
2570
		}
2571 2572 2573 2574 2575 2576 2577 2578

		if (migrate_vma_check_page(page))
			continue;

restore:
		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
		migrate->cpages--;
		restore++;
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
	}

	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_ptes(page, page, false);

		migrate->src[i] = 0;
		unlock_page(page);
		restore--;

2593 2594 2595 2596
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2597 2598 2599
	}
}

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
static void migrate_vma_insert_page(struct migrate_vma *migrate,
				    unsigned long addr,
				    struct page *page,
				    unsigned long *src,
				    unsigned long *dst)
{
	struct vm_area_struct *vma = migrate->vma;
	struct mm_struct *mm = vma->vm_mm;
	struct mem_cgroup *memcg;
	bool flush = false;
	spinlock_t *ptl;
	pte_t entry;
	pgd_t *pgdp;
	p4d_t *p4dp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;

	/* Only allow populating anonymous memory */
	if (!vma_is_anonymous(vma))
		goto abort;

	pgdp = pgd_offset(mm, addr);
	p4dp = p4d_alloc(mm, pgdp, addr);
	if (!p4dp)
		goto abort;
	pudp = pud_alloc(mm, p4dp, addr);
	if (!pudp)
		goto abort;
	pmdp = pmd_alloc(mm, pudp, addr);
	if (!pmdp)
		goto abort;

	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
		goto abort;

	/*
	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
	 * pte_offset_map() on pmds where a huge pmd might be created
	 * from a different thread.
	 *
	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
	 * parallel threads are excluded by other means.
	 *
	 * Here we only have down_read(mmap_sem).
	 */
	if (pte_alloc(mm, pmdp, addr))
		goto abort;

	/* See the comment in pte_alloc_one_map() */
	if (unlikely(pmd_trans_unstable(pmdp)))
		goto abort;

	if (unlikely(anon_vma_prepare(vma)))
		goto abort;
	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
		goto abort;

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	if (is_zone_device_page(page)) {
		if (is_device_private_page(page)) {
			swp_entry_t swp_entry;

			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
			entry = swp_entry_to_pte(swp_entry);
		} else if (is_device_public_page(page)) {
			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
			if (vma->vm_flags & VM_WRITE)
				entry = pte_mkwrite(pte_mkdirty(entry));
			entry = pte_mkdevmap(entry);
		}
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
	} else {
		entry = mk_pte(page, vma->vm_page_prot);
		if (vma->vm_flags & VM_WRITE)
			entry = pte_mkwrite(pte_mkdirty(entry));
	}

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);

	if (pte_present(*ptep)) {
		unsigned long pfn = pte_pfn(*ptep);

		if (!is_zero_pfn(pfn)) {
			pte_unmap_unlock(ptep, ptl);
			mem_cgroup_cancel_charge(page, memcg, false);
			goto abort;
		}
		flush = true;
	} else if (!pte_none(*ptep)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	/*
	 * Check for usefaultfd but do not deliver the fault. Instead,
	 * just back off.
	 */
	if (userfaultfd_missing(vma)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	inc_mm_counter(mm, MM_ANONPAGES);
	page_add_new_anon_rmap(page, vma, addr, false);
	mem_cgroup_commit_charge(page, memcg, false, false);
	if (!is_zone_device_page(page))
		lru_cache_add_active_or_unevictable(page, vma);
	get_page(page);

	if (flush) {
		flush_cache_page(vma, addr, pte_pfn(*ptep));
		ptep_clear_flush_notify(vma, addr, ptep);
		set_pte_at_notify(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	} else {
		/* No need to invalidate - it was non-present before */
		set_pte_at(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	}

	pte_unmap_unlock(ptep, ptl);
	*src = MIGRATE_PFN_MIGRATE;
	return;

abort:
	*src &= ~MIGRATE_PFN_MIGRATE;
}

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
/*
 * migrate_vma_pages() - migrate meta-data from src page to dst page
 * @migrate: migrate struct containing all migration information
 *
 * This migrates struct page meta-data from source struct page to destination
 * struct page. This effectively finishes the migration from source page to the
 * destination page.
 */
static void migrate_vma_pages(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
2748 2749 2750 2751
	struct vm_area_struct *vma = migrate->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long addr, i, mmu_start;
	bool notified = false;
2752 2753 2754 2755 2756 2757 2758

	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
		struct address_space *mapping;
		int r;

2759 2760
		if (!newpage) {
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2761
			continue;
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
		}

		if (!page) {
			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
				continue;
			}
			if (!notified) {
				mmu_start = addr;
				notified = true;
				mmu_notifier_invalidate_range_start(mm,
								mmu_start,
								migrate->end);
			}
			migrate_vma_insert_page(migrate, addr, newpage,
						&migrate->src[i],
						&migrate->dst[i]);
2778
			continue;
2779
		}
2780 2781 2782

		mapping = page_mapping(page);

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
		if (is_zone_device_page(newpage)) {
			if (is_device_private_page(newpage)) {
				/*
				 * For now only support private anonymous when
				 * migrating to un-addressable device memory.
				 */
				if (mapping) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					continue;
				}
2793
			} else if (!is_device_public_page(newpage)) {
2794 2795 2796 2797 2798 2799 2800 2801 2802
				/*
				 * Other types of ZONE_DEVICE page are not
				 * supported.
				 */
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				continue;
			}
		}

2803 2804 2805 2806
		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
		if (r != MIGRATEPAGE_SUCCESS)
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
	}
2807 2808 2809 2810

	if (notified)
		mmu_notifier_invalidate_range_end(mm, mmu_start,
						  migrate->end);
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
}

/*
 * migrate_vma_finalize() - restore CPU page table entry
 * @migrate: migrate struct containing all migration information
 *
 * This replaces the special migration pte entry with either a mapping to the
 * new page if migration was successful for that page, or to the original page
 * otherwise.
 *
 * This also unlocks the pages and puts them back on the lru, or drops the extra
 * refcount, for device pages.
 */
static void migrate_vma_finalize(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	unsigned long i;

	for (i = 0; i < npages; i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

2833 2834 2835 2836 2837
		if (!page) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
2838
			continue;
2839 2840
		}

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
			newpage = page;
		}

		remove_migration_ptes(page, newpage, false);
		unlock_page(page);
		migrate->cpages--;

2853 2854 2855 2856
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2857 2858 2859

		if (newpage != page) {
			unlock_page(newpage);
2860 2861 2862 2863
			if (is_zone_device_page(newpage))
				put_page(newpage);
			else
				putback_lru_page(newpage);
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
		}
	}
}

/*
 * migrate_vma() - migrate a range of memory inside vma
 *
 * @ops: migration callback for allocating destination memory and copying
 * @vma: virtual memory area containing the range to be migrated
 * @start: start address of the range to migrate (inclusive)
 * @end: end address of the range to migrate (exclusive)
 * @src: array of hmm_pfn_t containing source pfns
 * @dst: array of hmm_pfn_t containing destination pfns
 * @private: pointer passed back to each of the callback
 * Returns: 0 on success, error code otherwise
 *
 * This function tries to migrate a range of memory virtual address range, using
 * callbacks to allocate and copy memory from source to destination. First it
 * collects all the pages backing each virtual address in the range, saving this
 * inside the src array. Then it locks those pages and unmaps them. Once the pages
 * are locked and unmapped, it checks whether each page is pinned or not. Pages
 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
 * in the corresponding src array entry. It then restores any pages that are
 * pinned, by remapping and unlocking those pages.
 *
 * At this point it calls the alloc_and_copy() callback. For documentation on
 * what is expected from that callback, see struct migrate_vma_ops comments in
 * include/linux/migrate.h
 *
 * After the alloc_and_copy() callback, this function goes over each entry in
 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
 * then the function tries to migrate struct page information from the source
 * struct page to the destination struct page. If it fails to migrate the struct
 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
 * array.
 *
 * At this point all successfully migrated pages have an entry in the src
 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
 * array entry with MIGRATE_PFN_VALID flag set.
 *
 * It then calls the finalize_and_map() callback. See comments for "struct
 * migrate_vma_ops", in include/linux/migrate.h for details about
 * finalize_and_map() behavior.
 *
 * After the finalize_and_map() callback, for successfully migrated pages, this
 * function updates the CPU page table to point to new pages, otherwise it
 * restores the CPU page table to point to the original source pages.
 *
 * Function returns 0 after the above steps, even if no pages were migrated
 * (The function only returns an error if any of the arguments are invalid.)
 *
 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
 * unsigned long entries.
 */
int migrate_vma(const struct migrate_vma_ops *ops,
		struct vm_area_struct *vma,
		unsigned long start,
		unsigned long end,
		unsigned long *src,
		unsigned long *dst,
		void *private)
{
	struct migrate_vma migrate;

	/* Sanity check the arguments */
	start &= PAGE_MASK;
	end &= PAGE_MASK;
	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
		return -EINVAL;
	if (start < vma->vm_start || start >= vma->vm_end)
		return -EINVAL;
	if (end <= vma->vm_start || end > vma->vm_end)
		return -EINVAL;
	if (!ops || !src || !dst || start >= end)
		return -EINVAL;

	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
	migrate.src = src;
	migrate.dst = dst;
	migrate.start = start;
	migrate.npages = 0;
	migrate.cpages = 0;
	migrate.end = end;
	migrate.vma = vma;

	/* Collect, and try to unmap source pages */
	migrate_vma_collect(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Lock and isolate page */
	migrate_vma_prepare(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Unmap pages */
	migrate_vma_unmap(&migrate);
	if (!migrate.cpages)
		return 0;

	/*
	 * At this point pages are locked and unmapped, and thus they have
	 * stable content and can safely be copied to destination memory that
	 * is allocated by the callback.
	 *
	 * Note that migration can fail in migrate_vma_struct_page() for each
	 * individual page.
	 */
	ops->alloc_and_copy(vma, src, dst, start, end, private);

	/* This does the real migration of struct page */
	migrate_vma_pages(&migrate);

	ops->finalize_and_map(vma, src, dst, start, end, private);

	/* Unlock and remap pages */
	migrate_vma_finalize(&migrate);

	return 0;
}
EXPORT_SYMBOL(migrate_vma);
2986
#endif /* defined(MIGRATE_VMA_HELPER) */