spi.c 40.5 KB
Newer Older
1
/*
G
Grant Likely 已提交
2
 * SPI init/core code
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 * Copyright (C) 2005 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
25
#include <linux/mutex.h>
26
#include <linux/of_device.h>
27
#include <linux/slab.h>
28
#include <linux/mod_devicetable.h>
29
#include <linux/spi/spi.h>
30
#include <linux/of_spi.h>
M
Mark Brown 已提交
31
#include <linux/pm_runtime.h>
32
#include <linux/export.h>
33 34 35
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/kthread.h>
36 37 38

static void spidev_release(struct device *dev)
{
39
	struct spi_device	*spi = to_spi_device(dev);
40 41 42 43 44

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
45
	spi_master_put(spi->master);
46
	kfree(spi);
47 48 49 50 51 52 53
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);

54
	return sprintf(buf, "%s\n", spi->modalias);
55 56 57 58 59 60 61 62 63 64 65
}

static struct device_attribute spi_dev_attrs[] = {
	__ATTR_RO(modalias),
	__ATTR_NULL,
};

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

85 86 87
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
88 89
	const struct spi_driver	*sdrv = to_spi_driver(drv);

90 91 92 93
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

94 95
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
96

97
	return strcmp(spi->modalias, drv->name) == 0;
98 99
}

100
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
101 102 103
{
	const struct spi_device		*spi = to_spi_device(dev);

104
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
105 106 107
	return 0;
}

M
Mark Brown 已提交
108 109
#ifdef CONFIG_PM_SLEEP
static int spi_legacy_suspend(struct device *dev, pm_message_t message)
110
{
111
	int			value = 0;
112
	struct spi_driver	*drv = to_spi_driver(dev->driver);
113 114

	/* suspend will stop irqs and dma; no more i/o */
115 116 117 118 119 120
	if (drv) {
		if (drv->suspend)
			value = drv->suspend(to_spi_device(dev), message);
		else
			dev_dbg(dev, "... can't suspend\n");
	}
121 122 123
	return value;
}

M
Mark Brown 已提交
124
static int spi_legacy_resume(struct device *dev)
125
{
126
	int			value = 0;
127
	struct spi_driver	*drv = to_spi_driver(dev->driver);
128 129

	/* resume may restart the i/o queue */
130 131 132 133 134 135
	if (drv) {
		if (drv->resume)
			value = drv->resume(to_spi_device(dev));
		else
			dev_dbg(dev, "... can't resume\n");
	}
136 137 138
	return value;
}

M
Mark Brown 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
static int spi_pm_suspend(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_suspend(dev);
	else
		return spi_legacy_suspend(dev, PMSG_SUSPEND);
}

static int spi_pm_resume(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_resume(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_freeze(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_freeze(dev);
	else
		return spi_legacy_suspend(dev, PMSG_FREEZE);
}

static int spi_pm_thaw(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_thaw(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_poweroff(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_poweroff(dev);
	else
		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
}

static int spi_pm_restore(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_restore(dev);
	else
		return spi_legacy_resume(dev);
}
198
#else
M
Mark Brown 已提交
199 200 201 202 203 204
#define spi_pm_suspend	NULL
#define spi_pm_resume	NULL
#define spi_pm_freeze	NULL
#define spi_pm_thaw	NULL
#define spi_pm_poweroff	NULL
#define spi_pm_restore	NULL
205 206
#endif

M
Mark Brown 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220
static const struct dev_pm_ops spi_pm = {
	.suspend = spi_pm_suspend,
	.resume = spi_pm_resume,
	.freeze = spi_pm_freeze,
	.thaw = spi_pm_thaw,
	.poweroff = spi_pm_poweroff,
	.restore = spi_pm_restore,
	SET_RUNTIME_PM_OPS(
		pm_generic_runtime_suspend,
		pm_generic_runtime_resume,
		pm_generic_runtime_idle
	)
};

221 222 223 224 225
struct bus_type spi_bus_type = {
	.name		= "spi",
	.dev_attrs	= spi_dev_attrs,
	.match		= spi_match_device,
	.uevent		= spi_uevent,
M
Mark Brown 已提交
226
	.pm		= &spi_pm,
227 228 229
};
EXPORT_SYMBOL_GPL(spi_bus_type);

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->probe(to_spi_device(dev));
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->remove(to_spi_device(dev));
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
252 253 254 255 256
/**
 * spi_register_driver - register a SPI driver
 * @sdrv: the driver to register
 * Context: can sleep
 */
257 258 259 260 261 262 263 264 265 266 267 268 269
int spi_register_driver(struct spi_driver *sdrv)
{
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
EXPORT_SYMBOL_GPL(spi_register_driver);

270 271 272 273 274 275 276 277 278 279
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
280
	struct spi_board_info	board_info;
281 282 283
};

static LIST_HEAD(board_list);
284 285 286 287 288 289
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
290
static DEFINE_MUTEX(board_lock);
291

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
 * Returns a pointer to the new device, or NULL.
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;
	struct device		*dev = master->dev.parent;

	if (!spi_master_get(master))
		return NULL;

	spi = kzalloc(sizeof *spi, GFP_KERNEL);
	if (!spi) {
		dev_err(dev, "cannot alloc spi_device\n");
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
325
	spi->dev.parent = &master->dev;
326 327 328 329 330 331 332 333 334 335 336 337 338 339
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
340
 * Returns 0 on success; negative errno on failure
341 342 343
 */
int spi_add_device(struct spi_device *spi)
{
344
	static DEFINE_MUTEX(spi_add_lock);
345
	struct device *dev = spi->master->dev.parent;
346
	struct device *d;
347 348 349 350 351 352 353 354 355 356 357
	int status;

	/* Chipselects are numbered 0..max; validate. */
	if (spi->chip_select >= spi->master->num_chipselect) {
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
			spi->master->num_chipselect);
		return -EINVAL;
	}

	/* Set the bus ID string */
358
	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
359 360
			spi->chip_select);

361 362 363 364 365 366 367

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

368 369
	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
	if (d != NULL) {
370 371
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
372
		put_device(d);
373 374 375 376 377 378 379 380
		status = -EBUSY;
		goto done;
	}

	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
381
	status = spi_setup(spi);
382
	if (status < 0) {
383 384
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
385
		goto done;
386 387
	}

388
	/* Device may be bound to an active driver when this returns */
389
	status = device_add(&spi->dev);
390
	if (status < 0)
391 392
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
393
	else
394
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
395

396 397 398
done:
	mutex_unlock(&spi_add_lock);
	return status;
399 400
}
EXPORT_SYMBOL_GPL(spi_add_device);
401

D
David Brownell 已提交
402 403 404 405 406 407 408
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
409 410 411 412
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
413 414
 *
 * Returns the new device, or NULL.
415
 */
416 417
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
418 419 420 421
{
	struct spi_device	*proxy;
	int			status;

422 423 424 425 426 427 428
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

429 430
	proxy = spi_alloc_device(master);
	if (!proxy)
431 432
		return NULL;

433 434
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

435 436
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
437
	proxy->mode = chip->mode;
438
	proxy->irq = chip->irq;
439
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
440 441 442 443
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

444
	status = spi_add_device(proxy);
445
	if (status < 0) {
446 447
		spi_dev_put(proxy);
		return NULL;
448 449 450 451 452 453
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

454 455 456 457 458 459 460 461 462 463 464 465 466 467
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

D
David Brownell 已提交
468 469 470 471 472 473
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
 */
int __init
spi_register_board_info(struct spi_board_info const *info, unsigned n)
{
490 491
	struct boardinfo *bi;
	int i;
492

493
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
494 495 496
	if (!bi)
		return -ENOMEM;

497 498
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
499

500 501 502 503 504 505
		memcpy(&bi->board_info, info, sizeof(*info));
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
506
	}
507 508

	return 0;
509 510 511 512
}

/*-------------------------------------------------------------------------*/

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
/**
 * spi_pump_messages - kthread work function which processes spi message queue
 * @work: pointer to kthread work struct contained in the master struct
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
 */
static void spi_pump_messages(struct kthread_work *work)
{
	struct spi_master *master =
		container_of(work, struct spi_master, pump_messages);
	unsigned long flags;
	bool was_busy = false;
	int ret;

	/* Lock queue and check for queue work */
	spin_lock_irqsave(&master->queue_lock, flags);
	if (list_empty(&master->queue) || !master->running) {
		if (master->busy) {
			ret = master->unprepare_transfer_hardware(master);
			if (ret) {
				dev_err(&master->dev,
					"failed to unprepare transfer hardware\n");
				return;
			}
		}
		master->busy = false;
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

	/* Make sure we are not already running a message */
	if (master->cur_msg) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}
	/* Extract head of queue */
	master->cur_msg =
	    list_entry(master->queue.next, struct spi_message, queue);

	list_del_init(&master->cur_msg->queue);
	if (master->busy)
		was_busy = true;
	else
		master->busy = true;
	spin_unlock_irqrestore(&master->queue_lock, flags);

	if (!was_busy) {
		ret = master->prepare_transfer_hardware(master);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare transfer hardware\n");
			return;
		}
	}

	ret = master->transfer_one_message(master, master->cur_msg);
	if (ret) {
		dev_err(&master->dev,
			"failed to transfer one message from queue\n");
		return;
	}
}

static int spi_init_queue(struct spi_master *master)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

	INIT_LIST_HEAD(&master->queue);
	spin_lock_init(&master->queue_lock);

	master->running = false;
	master->busy = false;

	init_kthread_worker(&master->kworker);
	master->kworker_task = kthread_run(kthread_worker_fn,
					   &master->kworker,
					   dev_name(&master->dev));
	if (IS_ERR(master->kworker_task)) {
		dev_err(&master->dev, "failed to create message pump task\n");
		return -ENOMEM;
	}
	init_kthread_work(&master->pump_messages, spi_pump_messages);

	/*
	 * Master config will indicate if this controller should run the
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
	if (master->rt) {
		dev_info(&master->dev,
			"will run message pump with realtime priority\n");
		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
 * @master: the master to check for queued messages
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
 */
struct spi_message *spi_get_next_queued_message(struct spi_master *master)
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
	spin_lock_irqsave(&master->queue_lock, flags);
	if (list_empty(&master->queue))
		next = NULL;
	else
		next = list_entry(master->queue.next,
				  struct spi_message, queue);
	spin_unlock_irqrestore(&master->queue_lock, flags);

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
 * @master: the master to return the message to
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
void spi_finalize_current_message(struct spi_master *master)
{
	struct spi_message *mesg;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);
	mesg = master->cur_msg;
	master->cur_msg = NULL;

	queue_kthread_work(&master->kworker, &master->pump_messages);
	spin_unlock_irqrestore(&master->queue_lock, flags);

	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

static int spi_start_queue(struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (master->running || master->busy) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -EBUSY;
	}

	master->running = true;
	master->cur_msg = NULL;
	spin_unlock_irqrestore(&master->queue_lock, flags);

	queue_kthread_work(&master->kworker, &master->pump_messages);

	return 0;
}

static int spi_stop_queue(struct spi_master *master)
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

	spin_lock_irqsave(&master->queue_lock, flags);

	/*
	 * This is a bit lame, but is optimized for the common execution path.
	 * A wait_queue on the master->busy could be used, but then the common
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
	while ((!list_empty(&master->queue) || master->busy) && limit--) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		msleep(10);
		spin_lock_irqsave(&master->queue_lock, flags);
	}

	if (!list_empty(&master->queue) || master->busy)
		ret = -EBUSY;
	else
		master->running = false;

	spin_unlock_irqrestore(&master->queue_lock, flags);

	if (ret) {
		dev_warn(&master->dev,
			 "could not stop message queue\n");
		return ret;
	}
	return ret;
}

static int spi_destroy_queue(struct spi_master *master)
{
	int ret;

	ret = spi_stop_queue(master);

	/*
	 * flush_kthread_worker will block until all work is done.
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
		dev_err(&master->dev, "problem destroying queue\n");
		return ret;
	}

	flush_kthread_worker(&master->kworker);
	kthread_stop(master->kworker_task);

	return 0;
}

/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	struct spi_master *master = spi->master;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (!master->running) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

	list_add_tail(&msg->queue, &master->queue);
	if (master->running && !master->busy)
		queue_kthread_work(&master->kworker, &master->pump_messages);

	spin_unlock_irqrestore(&master->queue_lock, flags);
	return 0;
}

static int spi_master_initialize_queue(struct spi_master *master)
{
	int ret;

	master->queued = true;
	master->transfer = spi_queued_transfer;

	/* Initialize and start queue */
	ret = spi_init_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem initializing queue\n");
		goto err_init_queue;
	}
	ret = spi_start_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem starting queue\n");
		goto err_start_queue;
	}

	return 0;

err_start_queue:
err_init_queue:
	spi_destroy_queue(master);
	return ret;
}

/*-------------------------------------------------------------------------*/

T
Tony Jones 已提交
800
static void spi_master_release(struct device *dev)
801 802 803
{
	struct spi_master *master;

T
Tony Jones 已提交
804
	master = container_of(dev, struct spi_master, dev);
805 806 807 808 809 810
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
811
	.dev_release	= spi_master_release,
812 813 814
};


815

816 817 818
/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
819
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
820
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
821
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
822
 * Context: can sleep
823 824 825
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
826
 * an spi_master structure, prior to calling spi_register_master().
827 828 829 830 831
 *
 * This must be called from context that can sleep.  It returns the SPI
 * master structure on success, else NULL.
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
832
 * the master's methods before calling spi_register_master(); and (after errors
833 834
 * adding the device) calling spi_master_put() and kfree() to prevent a memory
 * leak.
835
 */
836
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
837 838 839
{
	struct spi_master	*master;

D
David Brownell 已提交
840 841 842
	if (!dev)
		return NULL;

843
	master = kzalloc(size + sizeof *master, GFP_KERNEL);
844 845 846
	if (!master)
		return NULL;

T
Tony Jones 已提交
847 848 849
	device_initialize(&master->dev);
	master->dev.class = &spi_master_class;
	master->dev.parent = get_device(dev);
D
David Brownell 已提交
850
	spi_master_set_devdata(master, &master[1]);
851 852 853 854 855 856 857 858

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
859
 * Context: can sleep
860 861 862 863 864 865 866 867 868 869 870 871 872
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
873 874
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
875
 */
876
int spi_register_master(struct spi_master *master)
877
{
878
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
879
	struct device		*dev = master->dev.parent;
880
	struct boardinfo	*bi;
881 882 883
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
884 885 886
	if (!dev)
		return -ENODEV;

887 888 889 890 891 892
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

893
	/* convention:  dynamically assigned bus IDs count down from the max */
894
	if (master->bus_num < 0) {
895 896 897
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
898
		master->bus_num = atomic_dec_return(&dyn_bus_id);
899
		dynamic = 1;
900 901
	}

902 903 904 905
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
	master->bus_lock_flag = 0;

906 907 908
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
909
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
910
	status = device_add(&master->dev);
911
	if (status < 0)
912
		goto done;
913
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
914 915
			dynamic ? " (dynamic)" : "");

916 917 918 919 920 921 922 923 924 925 926
	/* If we're using a queued driver, start the queue */
	if (master->transfer)
		dev_info(dev, "master is unqueued, this is deprecated\n");
	else {
		status = spi_master_initialize_queue(master);
		if (status) {
			device_unregister(&master->dev);
			goto done;
		}
	}

927 928 929 930 931 932
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

933
	status = 0;
934 935 936

	/* Register devices from the device tree */
	of_register_spi_devices(master);
937 938 939 940 941
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);

942
static int __unregister(struct device *dev, void *null)
943
{
944
	spi_unregister_device(to_spi_device(dev));
945 946 947 948 949 950
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
951
 * Context: can sleep
952 953 954 955 956 957 958 959
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
960 961
	int dummy;

962 963 964 965 966
	if (master->queued) {
		if (spi_destroy_queue(master))
			dev_err(&master->dev, "queue remove failed\n");
	}

967 968 969 970
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

971
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
T
Tony Jones 已提交
972
	device_unregister(&master->dev);
973 974 975
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
int spi_master_suspend(struct spi_master *master)
{
	int ret;

	/* Basically no-ops for non-queued masters */
	if (!master->queued)
		return 0;

	ret = spi_stop_queue(master);
	if (ret)
		dev_err(&master->dev, "queue stop failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_suspend);

int spi_master_resume(struct spi_master *master)
{
	int ret;

	if (!master->queued)
		return 0;

	ret = spi_start_queue(master);
	if (ret)
		dev_err(&master->dev, "queue restart failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_resume);

D
Dave Young 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015
static int __spi_master_match(struct device *dev, void *data)
{
	struct spi_master *m;
	u16 *bus_num = data;

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

1016 1017 1018
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
1019
 * Context: can sleep
1020 1021 1022 1023 1024 1025 1026 1027
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
1028
	struct device		*dev;
1029
	struct spi_master	*master = NULL;
D
Dave Young 已提交
1030

1031
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
1032 1033 1034 1035
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
1036
	return master;
1037 1038 1039 1040 1041 1042
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);


/*-------------------------------------------------------------------------*/

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
 */
int spi_setup(struct spi_device *spi)
{
1067
	unsigned	bad_bits;
1068 1069
	int		status;

1070 1071 1072 1073 1074
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
	if (bad_bits) {
1075
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1076 1077 1078 1079
			bad_bits);
		return -EINVAL;
	}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

	status = spi->master->setup(spi);

	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
				"%u bits/w, %u Hz max --> %d\n",
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;

	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		struct spi_transfer *xfer;
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

	message->spi = spi;
	message->status = -EINPROGRESS;
	return master->transfer(spi, message);
}

D
David Brownell 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
1160 1161
	int ret;
	unsigned long flags;
D
David Brownell 已提交
1162

1163
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
1164

1165 1166 1167 1168
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
1169

1170 1171 1172
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
1173 1174 1175
}
EXPORT_SYMBOL_GPL(spi_async);

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

1222 1223 1224 1225 1226 1227 1228 1229

/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

1230 1231 1232 1233 1234
static void spi_complete(void *arg)
{
	complete(arg);
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
		      int bus_locked)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;

	message->complete = spi_complete;
	message->context = &done;

	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

	status = spi_async_locked(spi, message);

	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);

	if (status == 0) {
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

1261 1262 1263 1264
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
1265
 * Context: can sleep
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
1277 1278 1279
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
1280
 * It returns zero on success, else a negative error code.
1281 1282 1283
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
1284
	return __spi_sync(spi, message, 0);
1285 1286 1287
}
EXPORT_SYMBOL_GPL(spi_sync);

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
1299
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
	return __spi_sync(spi, message, 1);
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

1364 1365
/* portable code must never pass more than 32 bytes */
#define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
1366 1367 1368 1369 1370 1371 1372 1373

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
1374 1375
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
1376
 * Context: can sleep
1377 1378 1379 1380
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
1381
 * This call may only be used from a context that may sleep.
1382
 *
D
David Brownell 已提交
1383
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
1384 1385
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
1386
 * spi_{async,sync}() calls with dma-safe buffers.
1387 1388
 */
int spi_write_then_read(struct spi_device *spi,
1389 1390
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
1391
{
D
David Brownell 已提交
1392
	static DEFINE_MUTEX(lock);
1393 1394 1395

	int			status;
	struct spi_message	message;
1396
	struct spi_transfer	x[2];
1397 1398 1399 1400 1401 1402 1403 1404 1405
	u8			*local_buf;

	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
	 * (as a pure convenience thing), but we can keep heap costs
	 * out of the hot path ...
	 */
	if ((n_tx + n_rx) > SPI_BUFSIZ)
		return -EINVAL;

1406
	spi_message_init(&message);
1407 1408 1409 1410 1411 1412 1413 1414 1415
	memset(x, 0, sizeof x);
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
1416

1417
	/* ... unless someone else is using the pre-allocated buffer */
D
David Brownell 已提交
1418
	if (!mutex_trylock(&lock)) {
1419 1420 1421 1422 1423 1424 1425
		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
		if (!local_buf)
			return -ENOMEM;
	} else
		local_buf = buf;

	memcpy(local_buf, txbuf, n_tx);
1426 1427
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
1428 1429 1430

	/* do the i/o */
	status = spi_sync(spi, &message);
1431
	if (status == 0)
1432
		memcpy(rxbuf, x[1].rx_buf, n_rx);
1433

1434
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
1435
		mutex_unlock(&lock);
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

static int __init spi_init(void)
{
1447 1448
	int	status;

1449
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1450 1451 1452 1453 1454 1455 1456 1457
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
1458

1459 1460 1461
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
1462
	return 0;
1463 1464 1465 1466 1467 1468 1469 1470

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
1471
}
1472

1473 1474
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
1475 1476 1477 1478
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
1479
 */
1480
postcore_initcall(spi_init);
1481