rt2500usb.c 61.1 KB
Newer Older
1
/*
2
	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2500usb
	Abstract: rt2500usb device specific routines.
	Supported chipsets: RT2570.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
32
#include <linux/slab.h>
33 34 35 36 37 38
#include <linux/usb.h>

#include "rt2x00.h"
#include "rt2x00usb.h"
#include "rt2500usb.h"

39 40 41
/*
 * Allow hardware encryption to be disabled.
 */
42
static int modparam_nohwcrypt;
43 44 45
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

46 47 48 49 50 51 52 53 54 55 56 57
/*
 * Register access.
 * All access to the CSR registers will go through the methods
 * rt2500usb_register_read and rt2500usb_register_write.
 * BBP and RF register require indirect register access,
 * and use the CSR registers BBPCSR and RFCSR to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
58
 * If the csr_mutex is already held then the _lock variants must
59
 * be used instead.
60
 */
A
Adam Baker 已提交
61
static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
62 63 64 65 66 67
					   const unsigned int offset,
					   u16 *value)
{
	__le16 reg;
	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
				      USB_VENDOR_REQUEST_IN, offset,
68
				      &reg, sizeof(reg), REGISTER_TIMEOUT);
69 70 71
	*value = le16_to_cpu(reg);
}

72 73 74 75 76 77 78
static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
						const unsigned int offset,
						u16 *value)
{
	__le16 reg;
	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
				       USB_VENDOR_REQUEST_IN, offset,
79
				       &reg, sizeof(reg), REGISTER_TIMEOUT);
80 81 82
	*value = le16_to_cpu(reg);
}

A
Adam Baker 已提交
83
static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
84 85 86 87 88
						const unsigned int offset,
						void *value, const u16 length)
{
	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
				      USB_VENDOR_REQUEST_IN, offset,
I
Ivo van Doorn 已提交
89 90
				      value, length,
				      REGISTER_TIMEOUT16(length));
91 92
}

A
Adam Baker 已提交
93
static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
94 95 96 97 98 99
					    const unsigned int offset,
					    u16 value)
{
	__le16 reg = cpu_to_le16(value);
	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
				      USB_VENDOR_REQUEST_OUT, offset,
100
				      &reg, sizeof(reg), REGISTER_TIMEOUT);
101 102
}

103 104 105 106 107 108 109
static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
						 const unsigned int offset,
						 u16 value)
{
	__le16 reg = cpu_to_le16(value);
	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
				       USB_VENDOR_REQUEST_OUT, offset,
110
				       &reg, sizeof(reg), REGISTER_TIMEOUT);
111 112
}

A
Adam Baker 已提交
113
static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
114 115 116 117 118
						 const unsigned int offset,
						 void *value, const u16 length)
{
	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
				      USB_VENDOR_REQUEST_OUT, offset,
I
Ivo van Doorn 已提交
119 120
				      value, length,
				      REGISTER_TIMEOUT16(length));
121 122
}

123 124 125 126
static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
				  const unsigned int offset,
				  struct rt2x00_field16 field,
				  u16 *reg)
127 128 129 130
{
	unsigned int i;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
131 132 133
		rt2500usb_register_read_lock(rt2x00dev, offset, reg);
		if (!rt2x00_get_field16(*reg, field))
			return 1;
134 135 136
		udelay(REGISTER_BUSY_DELAY);
	}

137 138 139 140 141
	ERROR(rt2x00dev, "Indirect register access failed: "
	      "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
	*reg = ~0;

	return 0;
142 143
}

144 145 146 147 148
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))

A
Adam Baker 已提交
149
static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
150 151 152 153
				const unsigned int word, const u8 value)
{
	u16 reg;

154
	mutex_lock(&rt2x00dev->csr_mutex);
155

156
	/*
157 158
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
159
	 */
160 161 162 163 164
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
165

166 167
		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
	}
168

169
	mutex_unlock(&rt2x00dev->csr_mutex);
170 171
}

A
Adam Baker 已提交
172
static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
173 174 175 176
			       const unsigned int word, u8 *value)
{
	u16 reg;

177
	mutex_lock(&rt2x00dev->csr_mutex);
178

179
	/*
180 181 182 183 184 185
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
186
	 */
187 188 189 190
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
191

192
		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
193

194 195 196
		if (WAIT_FOR_BBP(rt2x00dev, &reg))
			rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
	}
197 198

	*value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
199

200
	mutex_unlock(&rt2x00dev->csr_mutex);
201 202
}

A
Adam Baker 已提交
203
static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
204 205 206 207
			       const unsigned int word, const u32 value)
{
	u16 reg;

208
	mutex_lock(&rt2x00dev->csr_mutex);
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);

		reg = 0;
		rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
		rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
		rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
		rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);

		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
227 228
	}

229
	mutex_unlock(&rt2x00dev->csr_mutex);
230 231 232
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
233 234 235
static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
				     const unsigned int offset,
				     u32 *value)
236
{
237
	rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
238 239
}

240 241 242
static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
				      const unsigned int offset,
				      u32 value)
243
{
244
	rt2500usb_register_write(rt2x00dev, offset, value);
245 246 247 248 249
}

static const struct rt2x00debug rt2500usb_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
250 251 252 253
		.read		= _rt2500usb_register_read,
		.write		= _rt2500usb_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
254 255 256 257 258 259
		.word_size	= sizeof(u16),
		.word_count	= CSR_REG_SIZE / sizeof(u16),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
260
		.word_base	= EEPROM_BASE,
261 262 263 264 265 266
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt2500usb_bbp_read,
		.write		= rt2500usb_bbp_write,
267
		.word_base	= BBP_BASE,
268 269 270 271 272 273
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt2500usb_rf_write,
274
		.word_base	= RF_BASE,
275 276 277 278 279 280
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

281 282 283 284 285 286 287 288
static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u16 reg;

	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
	return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
}

289
#ifdef CONFIG_RT2X00_LIB_LEDS
290
static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
291 292 293 294 295
				     enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
296
	u16 reg;
297

298
	rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
299

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
		rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
	else if (led->type == LED_TYPE_ACTIVITY)
		rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);

	rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
}

static int rt2500usb_blink_set(struct led_classdev *led_cdev,
			       unsigned long *delay_on,
			       unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u16 reg;

	rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
	rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
	rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
	rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
320

321
	return 0;
322
}
323 324 325 326 327 328 329 330 331 332 333

static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00_led *led,
			       enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt2500usb_brightness_set;
	led->led_dev.blink_set = rt2500usb_blink_set;
	led->flags = LED_INITIALIZED;
}
334
#endif /* CONFIG_RT2X00_LIB_LEDS */
335

336 337 338
/*
 * Configuration handlers.
 */
339 340 341 342 343 344 345 346 347 348 349

/*
 * rt2500usb does not differentiate between shared and pairwise
 * keys, so we should use the same function for both key types.
 */
static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_crypto *crypto,
				struct ieee80211_key_conf *key)
{
	u32 mask;
	u16 reg;
350
	enum cipher curr_cipher;
351 352

	if (crypto->cmd == SET_KEY) {
353 354 355 356 357
		/*
		 * Disallow to set WEP key other than with index 0,
		 * it is known that not work at least on some hardware.
		 * SW crypto will be used in that case.
		 */
358 359 360
		if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
		     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
		    key->keyidx != 0)
361 362
			return -EOPNOTSUPP;

363 364 365 366 367 368 369 370
		/*
		 * Pairwise key will always be entry 0, but this
		 * could collide with a shared key on the same
		 * position...
		 */
		mask = TXRX_CSR0_KEY_ID.bit_mask;

		rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
371
		curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
372 373 374 375 376 377 378 379
		reg &= mask;

		if (reg && reg == mask)
			return -ENOSPC;

		reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);

		key->hw_key_idx += reg ? ffz(reg) : 0;
380 381 382 383 384 385 386 387
		/*
		 * Hardware requires that all keys use the same cipher
		 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
		 * If this is not the first key, compare the cipher with the
		 * first one and fall back to SW crypto if not the same.
		 */
		if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
			return -EOPNOTSUPP;
388

389
		rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
390
					      crypto->key, sizeof(crypto->key));
391 392 393

		/*
		 * The driver does not support the IV/EIV generation
I
Ivo van Doorn 已提交
394
		 * in hardware. However it demands the data to be provided
D
Daniel Mack 已提交
395
		 * both separately as well as inside the frame.
I
Ivo van Doorn 已提交
396 397 398
		 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
		 * to ensure rt2x00lib will not strip the data from the
		 * frame after the copy, now we must tell mac80211
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
		 * to generate the IV/EIV data.
		 */
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
	}

	/*
	 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
	 * a particular key is valid.
	 */
	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);

	mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
	if (crypto->cmd == SET_KEY)
		mask |= 1 << key->hw_key_idx;
	else if (crypto->cmd == DISABLE_KEY)
		mask &= ~(1 << key->hw_key_idx);
	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);

	return 0;
}

I
Ivo van Doorn 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
				    const unsigned int filter_flags)
{
	u16 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * and broadcast frames will always be accepted since
	 * there is no filter for it at this time.
	 */
	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
			   !(filter_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
445 446
			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
			   !rt2x00dev->intf_ap_count);
I
Ivo van Doorn 已提交
447 448 449 450 451 452 453
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
			   !(filter_flags & FIF_ALLMULTI));
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
}

454 455 456 457
static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
				  struct rt2x00_intf *intf,
				  struct rt2x00intf_conf *conf,
				  const unsigned int flags)
458
{
459
	unsigned int bcn_preload;
460 461
	u16 reg;

462 463 464 465
	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Enable beacon config
		 */
466
		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
467 468 469
		rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
		rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
		rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
470
				   2 * (conf->type != NL80211_IFTYPE_STATION));
471
		rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
472

473 474 475 476 477 478 479 480 481 482 483
		/*
		 * Enable synchronisation.
		 */
		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
		rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);

		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
	}
484

485 486 487 488 489 490 491
	if (flags & CONFIG_UPDATE_MAC)
		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
					      (3 * sizeof(__le16)));

	if (flags & CONFIG_UPDATE_BSSID)
		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
					      (3 * sizeof(__le16)));
492 493
}

I
Ivo van Doorn 已提交
494
static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
495 496
				 struct rt2x00lib_erp *erp,
				 u32 changed)
497 498 499
{
	u16 reg;

500 501 502 503 504 505
	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
		rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
		rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
				   !!erp->short_preamble);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
	}
506

507 508 509
	if (changed & BSS_CHANGED_BASIC_RATES)
		rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
					 erp->basic_rates);
510

511 512 513 514 515 516
	if (changed & BSS_CHANGED_BEACON_INT) {
		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
		rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
				   erp->beacon_int * 4);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
	}
517

518 519 520 521 522
	if (changed & BSS_CHANGED_ERP_SLOT) {
		rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
		rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
		rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
	}
523 524
}

525 526
static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
				 struct antenna_setup *ant)
527 528 529 530 531 532
{
	u8 r2;
	u8 r14;
	u16 csr5;
	u16 csr6;

533 534 535 536 537 538 539
	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

540 541 542 543 544 545 546 547
	rt2500usb_bbp_read(rt2x00dev, 2, &r2);
	rt2500usb_bbp_read(rt2x00dev, 14, &r14);
	rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
	rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);

	/*
	 * Configure the TX antenna.
	 */
548
	switch (ant->tx) {
549 550 551 552 553 554 555 556 557 558 559
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
		break;
	case ANTENNA_B:
560
	default:
561 562 563 564 565 566 567 568 569
		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
		break;
	}

	/*
	 * Configure the RX antenna.
	 */
570
	switch (ant->rx) {
571 572 573 574 575 576 577
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
		break;
	case ANTENNA_B:
578
	default:
579 580 581 582 583 584 585
		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
		break;
	}

	/*
	 * RT2525E and RT5222 need to flip TX I/Q
	 */
586
	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
587 588 589 590 591 592 593
		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);

		/*
		 * RT2525E does not need RX I/Q Flip.
		 */
594
		if (rt2x00_rf(rt2x00dev, RF2525E))
595 596 597 598 599 600 601 602 603 604 605 606
			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
	} else {
		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
	}

	rt2500usb_bbp_write(rt2x00dev, 2, r2);
	rt2500usb_bbp_write(rt2x00dev, 14, r14);
	rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
	rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
}

607 608 609 610 611 612 613 614 615 616 617
static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
				     struct rf_channel *rf, const int txpower)
{
	/*
	 * Set TXpower.
	 */
	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));

	/*
	 * For RT2525E we should first set the channel to half band higher.
	 */
618
	if (rt2x00_rf(rt2x00dev, RF2525E)) {
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
		static const u32 vals[] = {
			0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
			0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
			0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
			0x00000902, 0x00000906
		};

		rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
		if (rf->rf4)
			rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
	}

	rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
	rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
	rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
	if (rf->rf4)
		rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
}

static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
				     const int txpower)
{
	u32 rf3;

	rt2x00_rf_read(rt2x00dev, 3, &rf3);
	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
	rt2500usb_rf_write(rt2x00dev, 3, rf3);
}

I
Ivo van Doorn 已提交
648 649 650 651 652 653 654 655 656 657 658
static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u16 reg;

	if (state == STATE_SLEEP) {
		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
		rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
659
				   rt2x00dev->beacon_int - 20);
I
Ivo van Doorn 已提交
660 661 662 663 664 665 666 667 668
		rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
				   libconf->conf->listen_interval - 1);

		/* We must first disable autowake before it can be enabled */
		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);

		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
669 670 671 672
	} else {
		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
I
Ivo van Doorn 已提交
673 674 675 676 677
	}

	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
}

678
static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
679 680
			     struct rt2x00lib_conf *libconf,
			     const unsigned int flags)
681
{
682
	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
683 684
		rt2500usb_config_channel(rt2x00dev, &libconf->rf,
					 libconf->conf->power_level);
685 686
	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
687 688
		rt2500usb_config_txpower(rt2x00dev,
					 libconf->conf->power_level);
I
Ivo van Doorn 已提交
689 690
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt2500usb_config_ps(rt2x00dev, libconf);
691 692 693 694 695
}

/*
 * Link tuning
 */
696 697
static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual)
698 699 700 701 702 703 704
{
	u16 reg;

	/*
	 * Update FCS error count from register.
	 */
	rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
705
	qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
706 707 708 709 710

	/*
	 * Update False CCA count from register.
	 */
	rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
711
	qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
712 713
}

714 715
static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
				  struct link_qual *qual)
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
{
	u16 eeprom;
	u16 value;

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
	rt2500usb_bbp_write(rt2x00dev, 24, value);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
	rt2500usb_bbp_write(rt2x00dev, 25, value);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
	rt2500usb_bbp_write(rt2x00dev, 61, value);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
	rt2500usb_bbp_write(rt2x00dev, 17, value);

736
	qual->vgc_level = value;
737 738
}

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
/*
 * Queue handlers.
 */
static void rt2500usb_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u16 reg;

	switch (queue->qid) {
	case QID_RX:
		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
		break;
	case QID_BEACON:
		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
		break;
	default:
		break;
	}
}

static void rt2500usb_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u16 reg;

	switch (queue->qid) {
	case QID_RX:
		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
		break;
	case QID_BEACON:
		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
		break;
	default:
		break;
	}
}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
/*
 * Initialization functions.
 */
static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u16 reg;

	rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
				    USB_MODE_TEST, REGISTER_TIMEOUT);
	rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
				    0x00f0, REGISTER_TIMEOUT);

	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
	rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);

	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);

	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);

	rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);

	rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);

	rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);

847 848 849 850 851 852 853
	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);

854 855 856 857 858 859 860 861 862 863 864 865
	rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
	rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);

866
	if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
867
		rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
868
		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
869
	} else {
870 871 872
		reg = 0;
		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
		rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
873 874 875 876 877 878 879 880 881 882 883 884 885 886
	}
	rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);

	rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
	rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
	rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
	rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);

	rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
	rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
			   rt2x00dev->rx->data_size);
	rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);

	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
887
	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
888
	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
889
	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);

	rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
	rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
	rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);

	rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
	rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
	rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);

	rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
	rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);

	return 0;
}

907
static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
908 909 910 911 912 913 914
{
	unsigned int i;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2500usb_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
915
			return 0;
916 917 918 919 920
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;
921 922 923 924 925 926 927 928 929 930 931
}

static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 value;
	u8 reg_id;

	if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
		return -EACCES;
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985

	rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
	rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
	rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
	rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
	rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
	rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
	rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
	rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
	rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
	rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
	rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
	rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
	rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
	rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
	rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
	rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
	rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
	rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
	rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
	rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
	rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
	rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
	rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
	rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
	rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
	rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
	rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
	rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
	rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
	rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
	rt2500usb_bbp_write(rt2x00dev, 75, 0xff);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt2500usb_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Initialize all registers.
	 */
986 987
	if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
		     rt2500usb_init_bbp(rt2x00dev)))
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		return -EIO;

	return 0;
}

static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);

	/*
	 * Disable synchronisation.
	 */
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);

	rt2x00usb_disable_radio(rt2x00dev);
}

static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	u16 reg;
	u16 reg2;
	unsigned int i;
	char put_to_sleep;
	char bbp_state;
	char rf_state;

	put_to_sleep = (state != STATE_AWAKE);

	reg = 0;
	rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
	rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
	rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
	rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
		bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
		rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
		if (bbp_state == state && rf_state == state)
			return 0;
		rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
		msleep(30);
	}

	return -EBUSY;
}

static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2500usb_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt2500usb_disable_radio(rt2x00dev);
		break;
1056 1057 1058
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		/* No support, but no error either */
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2500usb_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

1071 1072 1073 1074
	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

1075 1076 1077 1078 1079 1080
	return retval;
}

/*
 * TX descriptor initialization
 */
1081
static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1082
				    struct txentry_desc *txdesc)
1083
{
1084 1085
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	__le32 *txd = (__le32 *) entry->skb->data;
1086 1087 1088 1089 1090
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_ACK,
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_OFDM,
			   (txdesc->rate_mode == RATE_MODE_OFDM));
	rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
			   test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1103
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1104 1105 1106 1107 1108
	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
	rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
	rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
	rt2x00_desc_write(txd, 0, word);

1109
	rt2x00_desc_read(txd, 1, &word);
1110
	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
H
Helmut Schaa 已提交
1111 1112 1113
	rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1114 1115 1116
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
1117 1118 1119 1120 1121 1122
	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
			   txdesc->u.plcp.length_low);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
			   txdesc->u.plcp.length_high);
1123 1124
	rt2x00_desc_write(txd, 2, word);

1125 1126 1127 1128 1129
	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
	}

1130 1131 1132
	/*
	 * Register descriptor details in skb frame descriptor.
	 */
1133
	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1134 1135
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
1136 1137
}

1138 1139 1140 1141 1142
/*
 * TX data initialization
 */
static void rt2500usb_beacondone(struct urb *urb);

1143 1144
static void rt2500usb_write_beacon(struct queue_entry *entry,
				   struct txentry_desc *txdesc)
1145 1146 1147 1148
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1149
	int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1150
	int length;
1151
	u16 reg, reg0;
1152 1153 1154 1155 1156 1157 1158 1159 1160

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);

1161 1162 1163 1164 1165 1166
	/*
	 * Add space for the descriptor in front of the skb.
	 */
	skb_push(entry->skb, TXD_DESC_SIZE);
	memset(entry->skb->data, 0, TXD_DESC_SIZE);

1167 1168 1169
	/*
	 * Write the TX descriptor for the beacon.
	 */
1170
	rt2500usb_write_tx_desc(entry, txdesc);
1171 1172 1173 1174 1175 1176

	/*
	 * Dump beacon to userspace through debugfs.
	 */
	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);

1177 1178 1179 1180 1181
	/*
	 * USB devices cannot blindly pass the skb->len as the
	 * length of the data to usb_fill_bulk_urb. Pass the skb
	 * to the driver to determine what the length should be.
	 */
1182
	length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

	usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
			  entry->skb->data, length, rt2500usb_beacondone,
			  entry);

	/*
	 * Second we need to create the guardian byte.
	 * We only need a single byte, so lets recycle
	 * the 'flags' field we are not using for beacons.
	 */
	bcn_priv->guardian_data = 0;
	usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
			  &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
			  entry);

	/*
	 * Send out the guardian byte.
	 */
	usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

	/*
	 * Enable beaconing again.
	 */
	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
	reg0 = reg;
	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
	/*
	 * Beacon generation will fail initially.
	 * To prevent this we need to change the TXRX_CSR19
	 * register several times (reg0 is the same as reg
	 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
	 * and 1 in reg).
	 */
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1222 1223
}

1224
static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1225 1226 1227 1228 1229 1230 1231
{
	int length;

	/*
	 * The length _must_ be a multiple of 2,
	 * but it must _not_ be a multiple of the USB packet size.
	 */
1232 1233
	length = roundup(entry->skb->len, 2);
	length += (2 * !(length % entry->queue->usb_maxpacket));
1234 1235 1236 1237

	return length;
}

1238 1239 1240
/*
 * RX control handlers
 */
I
Ivo van Doorn 已提交
1241 1242
static void rt2500usb_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
1243
{
1244
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1245
	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
I
Ivo van Doorn 已提交
1246 1247 1248
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	__le32 *rxd =
	    (__le32 *)(entry->skb->data +
1249 1250
		       (entry_priv->urb->actual_length -
			entry->queue->desc_size));
1251 1252 1253
	u32 word0;
	u32 word1;

1254
	/*
1255 1256
	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
	 * frame data in rt2x00usb.
1257
	 */
1258
	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1259
	rxd = (__le32 *)skbdesc->desc;
1260 1261

	/*
1262
	 * It is now safe to read the descriptor on all architectures.
1263
	 */
1264 1265 1266
	rt2x00_desc_read(rxd, 0, &word0);
	rt2x00_desc_read(rxd, 1, &word1);

1267
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
I
Ivo van Doorn 已提交
1268
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1269
	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
I
Ivo van Doorn 已提交
1270
		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1271

1272 1273 1274
	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
	if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
		rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1275 1276 1277 1278

	if (rxdesc->cipher != CIPHER_NONE) {
		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1279 1280
		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;

1281 1282
		/* ICV is located at the end of frame */

I
Ivo van Doorn 已提交
1283
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1284 1285 1286 1287 1288 1289
		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

1290 1291
	/*
	 * Obtain the status about this packet.
I
Ivo van Doorn 已提交
1292 1293 1294
	 * When frame was received with an OFDM bitrate,
	 * the signal is the PLCP value. If it was received with
	 * a CCK bitrate the signal is the rate in 100kbit/s.
1295
	 */
I
Ivo van Doorn 已提交
1296
	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1297 1298
	rxdesc->rssi =
	    rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
I
Ivo van Doorn 已提交
1299
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1300 1301 1302

	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
I
Ivo van Doorn 已提交
1303 1304
	else
		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1305 1306
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
1307

1308 1309 1310 1311
	/*
	 * Adjust the skb memory window to the frame boundaries.
	 */
	skb_trim(entry->skb, rxdesc->size);
1312 1313 1314 1315 1316 1317 1318
}

/*
 * Interrupt functions.
 */
static void rt2500usb_beacondone(struct urb *urb)
{
I
Ivo van Doorn 已提交
1319
	struct queue_entry *entry = (struct queue_entry *)urb->context;
1320
	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1321

1322
	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1323 1324 1325 1326 1327 1328 1329 1330
		return;

	/*
	 * Check if this was the guardian beacon,
	 * if that was the case we need to send the real beacon now.
	 * Otherwise we should free the sk_buffer, the device
	 * should be doing the rest of the work now.
	 */
1331 1332 1333
	if (bcn_priv->guardian_urb == urb) {
		usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
	} else if (bcn_priv->urb == urb) {
I
Ivo van Doorn 已提交
1334 1335
		dev_kfree_skb(entry->skb);
		entry->skb = NULL;
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	}
}

/*
 * Device probe functions.
 */
static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u16 word;
	u8 *mac;
1346
	u8 bbp;
1347 1348 1349 1350 1351 1352 1353 1354 1355

	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
		random_ether_addr(mac);
J
Johannes Berg 已提交
1356
		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1357 1358 1359 1360 1361
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
I
Ivo van Doorn 已提交
1362 1363 1364 1365 1366 1367
		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
				   ANTENNA_SW_DIVERSITY);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
				   ANTENNA_SW_DIVERSITY);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
				   LED_MODE_DEFAULT);
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
				   DEFAULT_RSSI_OFFSET);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
		EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
		EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
	}

1399 1400 1401 1402 1403 1404 1405
	/*
	 * Switch lower vgc bound to current BBP R17 value,
	 * lower the value a bit for better quality.
	 */
	rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
	bbp -= 6;

1406 1407 1408
	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1409
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1410 1411
		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
		EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1412 1413 1414
	} else {
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
		EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
		EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
		EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
		EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
	}

	return 0;
}

static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u16 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
	rt2x00_set_chip(rt2x00dev, RT2570, value, reg);

1470
	if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1471 1472 1473 1474
		ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
		return -ENODEV;
	}

1475 1476 1477 1478 1479 1480
	if (!rt2x00_rf(rt2x00dev, RF2522) &&
	    !rt2x00_rf(rt2x00dev, RF2523) &&
	    !rt2x00_rf(rt2x00dev, RF2524) &&
	    !rt2x00_rf(rt2x00dev, RF2525) &&
	    !rt2x00_rf(rt2x00dev, RF2525E) &&
	    !rt2x00_rf(rt2x00dev, RF5222)) {
1481 1482 1483 1484 1485 1486 1487
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

	/*
	 * Identify default antenna configuration.
	 */
1488
	rt2x00dev->default_ant.tx =
1489
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1490
	rt2x00dev->default_ant.rx =
1491 1492
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	/*
	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
	 * I am not 100% sure about this, but the legacy drivers do not
	 * indicate antenna swapping in software is required when
	 * diversity is enabled.
	 */
	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;

1504 1505 1506
	/*
	 * Store led mode, for correct led behaviour.
	 */
1507
#ifdef CONFIG_RT2X00_LIB_LEDS
1508 1509
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);

1510
	rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1511 1512 1513
	if (value == LED_MODE_TXRX_ACTIVITY ||
	    value == LED_MODE_DEFAULT ||
	    value == LED_MODE_ASUS)
1514 1515
		rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
				   LED_TYPE_ACTIVITY);
1516
#endif /* CONFIG_RT2X00_LIB_LEDS */
1517

1518 1519 1520 1521
	/*
	 * Detect if this device has an hardware controlled radio.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
I
Ivo van Doorn 已提交
1522
		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	/*
	 * Read the RSSI <-> dBm offset information.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
	rt2x00dev->rssi_offset =
	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);

	return 0;
}

/*
 * RF value list for RF2522
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2522[] = {
	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
};

/*
 * RF value list for RF2523
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2523[] = {
	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
};

/*
 * RF value list for RF2524
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2524[] = {
	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
};

/*
 * RF value list for RF2525
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2525[] = {
	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
};

/*
 * RF value list for RF2525e
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2525e[] = {
	{ 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
	{ 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
	{ 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
	{ 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
	{ 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
	{ 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
	{ 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
	{ 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
	{ 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
	{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
	{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
	{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
	{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
	{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
};

/*
 * RF value list for RF5222
 * Supports: 2.4 GHz & 5.2 GHz
 */
static const struct rf_channel rf_vals_5222[] = {
	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },

	/* 802.11 UNII */
	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
};

1689
static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1690 1691
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
1692 1693
	struct channel_info *info;
	char *tx_power;
1694 1695 1696 1697
	unsigned int i;

	/*
	 * Initialize all hw fields.
1698 1699 1700 1701 1702 1703
	 *
	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
	 * capable of sending the buffered frames out after the DTIM
	 * transmission using rt2x00lib_beacondone. This will send out
	 * multicast and broadcast traffic immediately instead of buffering it
	 * infinitly and thus dropping it after some time.
1704 1705 1706
	 */
	rt2x00dev->hw->flags =
	    IEEE80211_HW_RX_INCLUDES_FCS |
1707 1708 1709
	    IEEE80211_HW_SIGNAL_DBM |
	    IEEE80211_HW_SUPPORTS_PS |
	    IEEE80211_HW_PS_NULLFUNC_STACK;
1710

1711
	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1712 1713 1714 1715 1716 1717 1718
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
	 * Initialize hw_mode information.
	 */
1719 1720
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1721

1722
	if (rt2x00_rf(rt2x00dev, RF2522)) {
1723 1724
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
		spec->channels = rf_vals_bg_2522;
1725
	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1726 1727
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
		spec->channels = rf_vals_bg_2523;
1728
	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1729 1730
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
		spec->channels = rf_vals_bg_2524;
1731
	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1732 1733
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
		spec->channels = rf_vals_bg_2525;
1734
	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1735 1736
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
		spec->channels = rf_vals_bg_2525e;
1737
	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1738
		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1739 1740 1741
		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
		spec->channels = rf_vals_5222;
	}
1742 1743 1744 1745

	/*
	 * Create channel information array
	 */
1746
	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1747 1748 1749 1750 1751 1752
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;

	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1753 1754 1755 1756
	for (i = 0; i < 14; i++) {
		info[i].max_power = MAX_TXPOWER;
		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
	}
1757 1758

	if (spec->num_channels > 14) {
1759 1760 1761 1762
		for (i = 14; i < spec->num_channels; i++) {
			info[i].max_power = MAX_TXPOWER;
			info[i].default_power1 = DEFAULT_TXPOWER;
		}
1763 1764 1765
	}

	return 0;
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
}

static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2500usb_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt2500usb_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
1786 1787 1788
	retval = rt2500usb_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;
1789 1790

	/*
I
Ivo van Doorn 已提交
1791
	 * This device requires the atim queue
1792
	 */
I
Ivo van Doorn 已提交
1793 1794
	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1795
	if (!modparam_nohwcrypt) {
I
Ivo van Doorn 已提交
1796 1797
		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
		__set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1798
	}
I
Ivo van Doorn 已提交
1799
	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1800
	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

static const struct ieee80211_ops rt2500usb_mac80211_ops = {
	.tx			= rt2x00mac_tx,
1812 1813
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
1814 1815 1816
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
I
Ivo van Doorn 已提交
1817
	.configure_filter	= rt2x00mac_configure_filter,
1818
	.set_tim		= rt2x00mac_set_tim,
1819
	.set_key		= rt2x00mac_set_key,
1820 1821
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1822
	.get_stats		= rt2x00mac_get_stats,
1823
	.bss_info_changed	= rt2x00mac_bss_info_changed,
1824
	.conf_tx		= rt2x00mac_conf_tx,
1825
	.rfkill_poll		= rt2x00mac_rfkill_poll,
I
Ivo van Doorn 已提交
1826
	.flush			= rt2x00mac_flush,
1827 1828
	.set_antenna		= rt2x00mac_set_antenna,
	.get_antenna		= rt2x00mac_get_antenna,
1829
	.get_ringparam		= rt2x00mac_get_ringparam,
1830 1831 1832 1833 1834 1835
};

static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
	.probe_hw		= rt2500usb_probe_hw,
	.initialize		= rt2x00usb_initialize,
	.uninitialize		= rt2x00usb_uninitialize,
1836
	.clear_entry		= rt2x00usb_clear_entry,
1837
	.set_device_state	= rt2500usb_set_device_state,
1838
	.rfkill_poll		= rt2500usb_rfkill_poll,
1839 1840
	.link_stats		= rt2500usb_link_stats,
	.reset_tuner		= rt2500usb_reset_tuner,
1841
	.watchdog		= rt2x00usb_watchdog,
1842 1843 1844
	.start_queue		= rt2500usb_start_queue,
	.kick_queue		= rt2x00usb_kick_queue,
	.stop_queue		= rt2500usb_stop_queue,
I
Ivo van Doorn 已提交
1845
	.flush_queue		= rt2x00usb_flush_queue,
1846
	.write_tx_desc		= rt2500usb_write_tx_desc,
1847
	.write_beacon		= rt2500usb_write_beacon,
1848
	.get_tx_data_len	= rt2500usb_get_tx_data_len,
1849
	.fill_rxdone		= rt2500usb_fill_rxdone,
1850 1851
	.config_shared_key	= rt2500usb_config_key,
	.config_pairwise_key	= rt2500usb_config_key,
I
Ivo van Doorn 已提交
1852
	.config_filter		= rt2500usb_config_filter,
1853
	.config_intf		= rt2500usb_config_intf,
1854
	.config_erp		= rt2500usb_config_erp,
1855
	.config_ant		= rt2500usb_config_ant,
1856 1857 1858
	.config			= rt2500usb_config,
};

I
Ivo van Doorn 已提交
1859
static const struct data_queue_desc rt2500usb_queue_rx = {
1860
	.entry_num		= 32,
I
Ivo van Doorn 已提交
1861 1862
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= RXD_DESC_SIZE,
1863
	.priv_size		= sizeof(struct queue_entry_priv_usb),
I
Ivo van Doorn 已提交
1864 1865 1866
};

static const struct data_queue_desc rt2500usb_queue_tx = {
1867
	.entry_num		= 32,
I
Ivo van Doorn 已提交
1868 1869
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1870
	.priv_size		= sizeof(struct queue_entry_priv_usb),
I
Ivo van Doorn 已提交
1871 1872 1873
};

static const struct data_queue_desc rt2500usb_queue_bcn = {
1874
	.entry_num		= 1,
I
Ivo van Doorn 已提交
1875 1876 1877 1878 1879 1880
	.data_size		= MGMT_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_usb_bcn),
};

static const struct data_queue_desc rt2500usb_queue_atim = {
1881
	.entry_num		= 8,
I
Ivo van Doorn 已提交
1882 1883
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1884
	.priv_size		= sizeof(struct queue_entry_priv_usb),
I
Ivo van Doorn 已提交
1885 1886
};

1887
static const struct rt2x00_ops rt2500usb_ops = {
G
Gertjan van Wingerde 已提交
1888 1889 1890 1891 1892 1893
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 1,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1894
	.extra_tx_headroom	= TXD_DESC_SIZE,
G
Gertjan van Wingerde 已提交
1895 1896 1897 1898 1899 1900
	.rx			= &rt2500usb_queue_rx,
	.tx			= &rt2500usb_queue_tx,
	.bcn			= &rt2500usb_queue_bcn,
	.atim			= &rt2500usb_queue_atim,
	.lib			= &rt2500usb_rt2x00_ops,
	.hw			= &rt2500usb_mac80211_ops,
1901
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1902
	.debugfs		= &rt2500usb_rt2x00debug,
1903 1904 1905 1906 1907 1908 1909 1910
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * rt2500usb module information.
 */
static struct usb_device_id rt2500usb_device_table[] = {
	/* ASUS */
1911 1912
	{ USB_DEVICE(0x0b05, 0x1706) },
	{ USB_DEVICE(0x0b05, 0x1707) },
1913
	/* Belkin */
1914 1915
	{ USB_DEVICE(0x050d, 0x7050) },
	{ USB_DEVICE(0x050d, 0x7051) },
1916
	/* Cisco Systems */
1917 1918 1919
	{ USB_DEVICE(0x13b1, 0x000d) },
	{ USB_DEVICE(0x13b1, 0x0011) },
	{ USB_DEVICE(0x13b1, 0x001a) },
1920
	/* Conceptronic */
1921
	{ USB_DEVICE(0x14b2, 0x3c02) },
1922
	/* D-LINK */
1923
	{ USB_DEVICE(0x2001, 0x3c00) },
1924
	/* Gigabyte */
1925 1926
	{ USB_DEVICE(0x1044, 0x8001) },
	{ USB_DEVICE(0x1044, 0x8007) },
1927
	/* Hercules */
1928
	{ USB_DEVICE(0x06f8, 0xe000) },
1929
	/* Melco */
1930 1931 1932 1933 1934
	{ USB_DEVICE(0x0411, 0x005e) },
	{ USB_DEVICE(0x0411, 0x0066) },
	{ USB_DEVICE(0x0411, 0x0067) },
	{ USB_DEVICE(0x0411, 0x008b) },
	{ USB_DEVICE(0x0411, 0x0097) },
1935
	/* MSI */
1936 1937 1938
	{ USB_DEVICE(0x0db0, 0x6861) },
	{ USB_DEVICE(0x0db0, 0x6865) },
	{ USB_DEVICE(0x0db0, 0x6869) },
1939
	/* Ralink */
1940 1941 1942
	{ USB_DEVICE(0x148f, 0x1706) },
	{ USB_DEVICE(0x148f, 0x2570) },
	{ USB_DEVICE(0x148f, 0x9020) },
1943
	/* Sagem */
1944
	{ USB_DEVICE(0x079b, 0x004b) },
1945
	/* Siemens */
1946
	{ USB_DEVICE(0x0681, 0x3c06) },
1947
	/* SMC */
1948
	{ USB_DEVICE(0x0707, 0xee13) },
1949
	/* Spairon */
1950
	{ USB_DEVICE(0x114b, 0x0110) },
1951
	/* SURECOM */
1952
	{ USB_DEVICE(0x0769, 0x11f3) },
1953
	/* Trust */
1954
	{ USB_DEVICE(0x0eb0, 0x9020) },
1955
	/* VTech */
1956
	{ USB_DEVICE(0x0f88, 0x3012) },
1957
	/* Zinwell */
1958
	{ USB_DEVICE(0x5a57, 0x0260) },
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
MODULE_LICENSE("GPL");

1969 1970 1971 1972 1973 1974
static int rt2500usb_probe(struct usb_interface *usb_intf,
			   const struct usb_device_id *id)
{
	return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
}

1975
static struct usb_driver rt2500usb_driver = {
1976
	.name		= KBUILD_MODNAME,
1977
	.id_table	= rt2500usb_device_table,
1978
	.probe		= rt2500usb_probe,
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
	.disconnect	= rt2x00usb_disconnect,
	.suspend	= rt2x00usb_suspend,
	.resume		= rt2x00usb_resume,
};

static int __init rt2500usb_init(void)
{
	return usb_register(&rt2500usb_driver);
}

static void __exit rt2500usb_exit(void)
{
	usb_deregister(&rt2500usb_driver);
}

module_init(rt2500usb_init);
module_exit(rt2500usb_exit);