arm-smmu.c 64.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
27
 *	- Extended Stream ID (16 bit)
28 29 30 31
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

32 33
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
34
#include <linux/atomic.h>
35
#include <linux/delay.h>
36
#include <linux/dma-iommu.h>
37 38 39 40
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
41
#include <linux/io-64-nonatomic-hi-lo.h>
42
#include <linux/iommu.h>
43
#include <linux/iopoll.h>
44 45
#include <linux/module.h>
#include <linux/of.h>
46
#include <linux/of_address.h>
47
#include <linux/of_device.h>
48
#include <linux/of_iommu.h>
49
#include <linux/pci.h>
50 51 52 53 54 55
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

56
#include "io-pgtable.h"
57 58 59 60 61 62

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
63
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
64

65 66 67 68 69 70 71 72 73 74
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

75 76 77 78 79
/*
 * Some 64-bit registers only make sense to write atomically, but in such
 * cases all the data relevant to AArch32 formats lies within the lower word,
 * therefore this actually makes more sense than it might first appear.
 */
80
#ifdef CONFIG_64BIT
81
#define smmu_write_atomic_lq		writeq_relaxed
82
#else
83
#define smmu_write_atomic_lq		writel_relaxed
84 85
#endif

86 87 88 89 90
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
91
#define sCR0_EXIDENABLE			(1 << 3)
92 93 94 95 96 97
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
98
#define sCR0_VMID16EN			(1 << 31)
99 100 101
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

102 103 104
/* Auxiliary Configuration register */
#define ARM_SMMU_GR0_sACR		0x10

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
123
#define ID0_ATOSNS			(1 << 26)
124 125
#define ID0_PTFS_NO_AARCH32		(1 << 25)
#define ID0_PTFS_NO_AARCH32S		(1 << 24)
126 127 128
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
129 130
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
131
#define ID0_EXIDS			(1 << 8)
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
152
#define ID2_VMID16			(1 << 15)
153

154 155
#define ID7_MAJOR_SHIFT			4
#define ID7_MAJOR_MASK			0xf
156 157 158 159 160 161 162 163 164

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */
165
#define TLB_SPIN_COUNT			10
166 167 168 169 170 171 172 173 174 175

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_ID_SHIFT			0

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
176
#define S2CR_EXIDVALID			(1 << 10)
177 178
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
179 180 181 182 183
enum arm_smmu_s2cr_type {
	S2CR_TYPE_TRANS,
	S2CR_TYPE_BYPASS,
	S2CR_TYPE_FAULT,
};
184

185
#define S2CR_PRIVCFG_SHIFT		24
186 187 188 189 190 191 192
#define S2CR_PRIVCFG_MASK		0x3
enum arm_smmu_s2cr_privcfg {
	S2CR_PRIVCFG_DEFAULT,
	S2CR_PRIVCFG_DIPAN,
	S2CR_PRIVCFG_UNPRIV,
	S2CR_PRIVCFG_PRIV,
};
193

194 195 196 197
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
198 199 200
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
216 217
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
218 219

/* Translation context bank */
220
#define ARM_SMMU_CB(smmu, n)	((smmu)->cb_base + ((n) << (smmu)->pgshift))
221 222

#define ARM_SMMU_CB_SCTLR		0x0
223
#define ARM_SMMU_CB_ACTLR		0x4
224 225
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
226 227
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
228
#define ARM_SMMU_CB_TTBCR		0x30
229
#define ARM_SMMU_CB_CONTEXTIDR		0x34
230
#define ARM_SMMU_CB_S1_MAIR0		0x38
231
#define ARM_SMMU_CB_S1_MAIR1		0x3c
232
#define ARM_SMMU_CB_PAR			0x50
233
#define ARM_SMMU_CB_FSR			0x58
234
#define ARM_SMMU_CB_FAR			0x60
235
#define ARM_SMMU_CB_FSYNR0		0x68
236
#define ARM_SMMU_CB_S1_TLBIVA		0x600
237
#define ARM_SMMU_CB_S1_TLBIASID		0x610
238 239 240
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
241 242
#define ARM_SMMU_CB_TLBSYNC		0x7f0
#define ARM_SMMU_CB_TLBSTATUS		0x7f4
243
#define ARM_SMMU_CB_ATS1PR		0x800
244
#define ARM_SMMU_CB_ATSR		0x8f0
245 246 247 248 249 250 251 252 253 254

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)

255 256
#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

257
#define ARM_MMU500_ACR_CACHE_LOCK	(1 << 26)
258
#define ARM_MMU500_ACR_SMTNMB_TLBEN	(1 << 8)
259

260 261 262 263
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

264 265 266 267
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
268
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
269
#define TTBCR2_AS			(1 << 4)
270

271
#define TTBRn_ASID_SHIFT		48
272 273 274 275 276 277 278 279 280 281 282 283

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

284 285 286
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
287
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
288 289 290

#define FSYNR0_WNR			(1 << 4)

291 292 293
#define MSI_IOVA_BASE			0x8000000
#define MSI_IOVA_LENGTH			0x100000

294
static int force_stage;
295
module_param(force_stage, int, S_IRUGO);
296 297
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
298 299 300 301
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
302

303
enum arm_smmu_arch_version {
304 305
	ARM_SMMU_V1,
	ARM_SMMU_V1_64K,
306 307 308
	ARM_SMMU_V2,
};

309 310
enum arm_smmu_implementation {
	GENERIC_SMMU,
311
	ARM_MMU500,
312
	CAVIUM_SMMUV2,
313 314
};

315 316 317 318 319 320 321 322
/* Until ACPICA headers cover IORT rev. C */
#ifndef ACPI_IORT_SMMU_CORELINK_MMU401
#define ACPI_IORT_SMMU_CORELINK_MMU401	0x4
#endif
#ifndef ACPI_IORT_SMMU_CAVIUM_THUNDERX
#define ACPI_IORT_SMMU_CAVIUM_THUNDERX	0x5
#endif

323
struct arm_smmu_s2cr {
324 325
	struct iommu_group		*group;
	int				count;
326 327 328 329 330 331 332 333 334
	enum arm_smmu_s2cr_type		type;
	enum arm_smmu_s2cr_privcfg	privcfg;
	u8				cbndx;
};

#define s2cr_init_val (struct arm_smmu_s2cr){				\
	.type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS,	\
}

335 336 337
struct arm_smmu_smr {
	u16				mask;
	u16				id;
338
	bool				valid;
339 340
};

341
struct arm_smmu_master_cfg {
342
	struct arm_smmu_device		*smmu;
343
	s16				smendx[];
344
};
345
#define INVALID_SMENDX			-1
346 347
#define __fwspec_cfg(fw) ((struct arm_smmu_master_cfg *)fw->iommu_priv)
#define fwspec_smmu(fw)  (__fwspec_cfg(fw)->smmu)
348 349
#define fwspec_smendx(fw, i) \
	(i >= fw->num_ids ? INVALID_SMENDX : __fwspec_cfg(fw)->smendx[i])
350
#define for_each_cfg_sme(fw, i, idx) \
351
	for (i = 0; idx = fwspec_smendx(fw, i), i < fw->num_ids; ++i)
352 353 354 355 356

struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
357
	void __iomem			*cb_base;
358
	unsigned long			pgshift;
359 360 361 362 363 364

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
365
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
366
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
367 368 369 370 371
#define ARM_SMMU_FEAT_FMT_AARCH64_4K	(1 << 7)
#define ARM_SMMU_FEAT_FMT_AARCH64_16K	(1 << 8)
#define ARM_SMMU_FEAT_FMT_AARCH64_64K	(1 << 9)
#define ARM_SMMU_FEAT_FMT_AARCH32_L	(1 << 10)
#define ARM_SMMU_FEAT_FMT_AARCH32_S	(1 << 11)
372
#define ARM_SMMU_FEAT_EXIDS		(1 << 12)
373
	u32				features;
374 375 376

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
377
	enum arm_smmu_arch_version	version;
378
	enum arm_smmu_implementation	model;
379 380 381 382 383 384 385

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
386 387
	u16				streamid_mask;
	u16				smr_mask_mask;
388
	struct arm_smmu_smr		*smrs;
389
	struct arm_smmu_s2cr		*s2crs;
390
	struct mutex			stream_map_mutex;
391

392 393 394
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
395
	unsigned long			pgsize_bitmap;
396 397 398 399 400

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

401
	u32				cavium_id_base; /* Specific to Cavium */
402

403 404
	spinlock_t			global_sync_lock;

405 406
	/* IOMMU core code handle */
	struct iommu_device		iommu;
407 408
};

409 410 411 412 413
enum arm_smmu_context_fmt {
	ARM_SMMU_CTX_FMT_NONE,
	ARM_SMMU_CTX_FMT_AARCH64,
	ARM_SMMU_CTX_FMT_AARCH32_L,
	ARM_SMMU_CTX_FMT_AARCH32_S,
414 415 416 417 418
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
419 420 421 422
	union {
		u16			asid;
		u16			vmid;
	};
423
	u32				cbar;
424
	enum arm_smmu_context_fmt	fmt;
425
};
426
#define INVALID_IRPTNDX			0xff
427

428 429 430 431
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
432
	ARM_SMMU_DOMAIN_BYPASS,
433 434
};

435
struct arm_smmu_domain {
436
	struct arm_smmu_device		*smmu;
437
	struct io_pgtable_ops		*pgtbl_ops;
438
	struct arm_smmu_cfg		cfg;
439
	enum arm_smmu_domain_stage	stage;
440
	struct mutex			init_mutex; /* Protects smmu pointer */
441
	spinlock_t			cb_lock; /* Serialises ATS1* ops and TLB syncs */
442
	struct iommu_domain		domain;
443 444
};

445 446 447 448 449
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

450 451
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

452 453
static bool using_legacy_binding, using_generic_binding;

454
static struct arm_smmu_option_prop arm_smmu_options[] = {
455 456 457 458
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

459 460 461 462 463
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

464 465 466
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
467

468 469 470 471 472 473 474 475 476 477
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

478
static struct device_node *dev_get_dev_node(struct device *dev)
479 480 481
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
482

483 484
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
485
		return of_node_get(bus->bridge->parent->of_node);
486 487
	}

488
	return of_node_get(dev->of_node);
489 490
}

491
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
492
{
493 494
	*((__be32 *)data) = cpu_to_be32(alias);
	return 0; /* Continue walking */
495 496
}

497
static int __find_legacy_master_phandle(struct device *dev, void *data)
498
{
499 500 501 502 503 504 505 506 507 508 509 510
	struct of_phandle_iterator *it = *(void **)data;
	struct device_node *np = it->node;
	int err;

	of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
			    "#stream-id-cells", 0)
		if (it->node == np) {
			*(void **)data = dev;
			return 1;
		}
	it->node = np;
	return err == -ENOENT ? 0 : err;
511 512
}

513
static struct platform_driver arm_smmu_driver;
514
static struct iommu_ops arm_smmu_ops;
515

516 517
static int arm_smmu_register_legacy_master(struct device *dev,
					   struct arm_smmu_device **smmu)
518
{
519
	struct device *smmu_dev;
520 521 522
	struct device_node *np;
	struct of_phandle_iterator it;
	void *data = &it;
523
	u32 *sids;
524 525
	__be32 pci_sid;
	int err;
526

527 528 529 530 531
	np = dev_get_dev_node(dev);
	if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
		of_node_put(np);
		return -ENODEV;
	}
532

533
	it.node = np;
534 535
	err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
				     __find_legacy_master_phandle);
536
	smmu_dev = data;
537 538 539 540 541
	of_node_put(np);
	if (err == 0)
		return -ENODEV;
	if (err < 0)
		return err;
542

543 544 545 546 547 548 549
	if (dev_is_pci(dev)) {
		/* "mmu-masters" assumes Stream ID == Requester ID */
		pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
				       &pci_sid);
		it.cur = &pci_sid;
		it.cur_count = 1;
	}
550

551 552 553 554
	err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode,
				&arm_smmu_ops);
	if (err)
		return err;
555

556 557 558
	sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL);
	if (!sids)
		return -ENOMEM;
559

560 561 562 563 564
	*smmu = dev_get_drvdata(smmu_dev);
	of_phandle_iterator_args(&it, sids, it.cur_count);
	err = iommu_fwspec_add_ids(dev, sids, it.cur_count);
	kfree(sids);
	return err;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
586 587
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu,
				void __iomem *sync, void __iomem *status)
588
{
589
	unsigned int spin_cnt, delay;
590

591
	writel_relaxed(0, sync);
592 593 594 595 596
	for (delay = 1; delay < TLB_LOOP_TIMEOUT; delay *= 2) {
		for (spin_cnt = TLB_SPIN_COUNT; spin_cnt > 0; spin_cnt--) {
			if (!(readl_relaxed(status) & sTLBGSTATUS_GSACTIVE))
				return;
			cpu_relax();
597
		}
598
		udelay(delay);
599
	}
600 601
	dev_err_ratelimited(smmu->dev,
			    "TLB sync timed out -- SMMU may be deadlocked\n");
602 603
}

604 605 606
static void arm_smmu_tlb_sync_global(struct arm_smmu_device *smmu)
{
	void __iomem *base = ARM_SMMU_GR0(smmu);
607
	unsigned long flags;
608

609
	spin_lock_irqsave(&smmu->global_sync_lock, flags);
610 611
	__arm_smmu_tlb_sync(smmu, base + ARM_SMMU_GR0_sTLBGSYNC,
			    base + ARM_SMMU_GR0_sTLBGSTATUS);
612
	spin_unlock_irqrestore(&smmu->global_sync_lock, flags);
613 614 615
}

static void arm_smmu_tlb_sync_context(void *cookie)
616 617
{
	struct arm_smmu_domain *smmu_domain = cookie;
618 619
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	void __iomem *base = ARM_SMMU_CB(smmu, smmu_domain->cfg.cbndx);
620
	unsigned long flags;
621

622
	spin_lock_irqsave(&smmu_domain->cb_lock, flags);
623 624
	__arm_smmu_tlb_sync(smmu, base + ARM_SMMU_CB_TLBSYNC,
			    base + ARM_SMMU_CB_TLBSTATUS);
625
	spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
626 627
}

628
static void arm_smmu_tlb_sync_vmid(void *cookie)
629 630
{
	struct arm_smmu_domain *smmu_domain = cookie;
631 632

	arm_smmu_tlb_sync_global(smmu_domain->smmu);
633 634
}

635
static void arm_smmu_tlb_inv_context_s1(void *cookie)
636
{
637
	struct arm_smmu_domain *smmu_domain = cookie;
638
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
639
	void __iomem *base = ARM_SMMU_CB(smmu_domain->smmu, cfg->cbndx);
640

641 642 643
	writel_relaxed(cfg->asid, base + ARM_SMMU_CB_S1_TLBIASID);
	arm_smmu_tlb_sync_context(cookie);
}
644

645 646 647 648 649
static void arm_smmu_tlb_inv_context_s2(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	void __iomem *base = ARM_SMMU_GR0(smmu);
650

651 652
	writel_relaxed(smmu_domain->cfg.vmid, base + ARM_SMMU_GR0_TLBIVMID);
	arm_smmu_tlb_sync_global(smmu);
653 654 655
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
656
					  size_t granule, bool leaf, void *cookie)
657 658 659 660
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
661
	void __iomem *reg = ARM_SMMU_CB(smmu_domain->smmu, cfg->cbndx);
662 663 664 665

	if (stage1) {
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

666
		if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
667
			iova &= ~12UL;
668
			iova |= cfg->asid;
669 670 671 672
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
673 674
		} else {
			iova >>= 12;
675
			iova |= (u64)cfg->asid << 48;
676 677 678 679
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
680
		}
681
	} else {
682 683
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
684 685
		iova >>= 12;
		do {
686
			smmu_write_atomic_lq(iova, reg);
687 688
			iova += granule >> 12;
		} while (size -= granule);
689 690 691
	}
}

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
/*
 * On MMU-401 at least, the cost of firing off multiple TLBIVMIDs appears
 * almost negligible, but the benefit of getting the first one in as far ahead
 * of the sync as possible is significant, hence we don't just make this a
 * no-op and set .tlb_sync to arm_smmu_inv_context_s2() as you might think.
 */
static void arm_smmu_tlb_inv_vmid_nosync(unsigned long iova, size_t size,
					 size_t granule, bool leaf, void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	void __iomem *base = ARM_SMMU_GR0(smmu_domain->smmu);

	writel_relaxed(smmu_domain->cfg.vmid, base + ARM_SMMU_GR0_TLBIVMID);
}

static const struct iommu_gather_ops arm_smmu_s1_tlb_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context_s1,
709
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
710 711 712 713 714
	.tlb_sync	= arm_smmu_tlb_sync_context,
};

static const struct iommu_gather_ops arm_smmu_s2_tlb_ops_v2 = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context_s2,
715
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
716 717 718 719 720 721 722
	.tlb_sync	= arm_smmu_tlb_sync_context,
};

static const struct iommu_gather_ops arm_smmu_s2_tlb_ops_v1 = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context_s2,
	.tlb_add_flush	= arm_smmu_tlb_inv_vmid_nosync,
	.tlb_sync	= arm_smmu_tlb_sync_vmid,
723 724
};

725 726
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
727
	u32 fsr, fsynr;
728 729
	unsigned long iova;
	struct iommu_domain *domain = dev;
730
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
731 732
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
733 734
	void __iomem *cb_base;

735
	cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
736 737 738 739 740 741
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
742
	iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
743

744 745 746
	dev_err_ratelimited(smmu->dev,
	"Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
			    fsr, iova, fsynr, cfg->cbndx);
747

748 749
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);
	return IRQ_HANDLED;
750 751 752 753 754 755
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
756
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
757 758 759 760 761 762

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

763 764 765
	if (!gfsr)
		return IRQ_NONE;

766 767 768 769 770 771 772
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
773
	return IRQ_HANDLED;
774 775
}

776 777
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
778
{
779
	u32 reg, reg2;
780
	u64 reg64;
781
	bool stage1;
782 783
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
784
	void __iomem *cb_base, *gr1_base;
785 786

	gr1_base = ARM_SMMU_GR1(smmu);
787
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
788
	cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
789

790
	if (smmu->version > ARM_SMMU_V1) {
791 792 793 794
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
			reg = CBA2R_RW64_64BIT;
		else
			reg = CBA2R_RW64_32BIT;
795 796
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
797
			reg |= cfg->vmid << CBA2R_VMID_SHIFT;
798

799 800 801
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

802
	/* CBAR */
803
	reg = cfg->cbar;
804
	if (smmu->version < ARM_SMMU_V2)
805
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
806

807 808 809 810 811 812 813
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
814 815
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
816
		reg |= cfg->vmid << CBAR_VMID_SHIFT;
817
	}
818
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
819

820 821 822 823 824
	/*
	 * TTBCR
	 * We must write this before the TTBRs, since it determines the
	 * access behaviour of some fields (in particular, ASID[15:8]).
	 */
825
	if (stage1) {
826 827 828 829 830 831 832
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.tcr;
			reg2 = 0;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
			reg2 |= TTBCR2_SEP_UPSTREAM;
833 834
			if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
				reg2 |= TTBCR2_AS;
835
		}
836 837
		if (smmu->version > ARM_SMMU_V1)
			writel_relaxed(reg2, cb_base + ARM_SMMU_CB_TTBCR2);
838
	} else {
839
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
840
	}
841
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
842

843 844
	/* TTBRs */
	if (stage1) {
845 846 847 848 849
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0);
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1);
850
			writel_relaxed(cfg->asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
851 852
		} else {
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
853
			reg64 |= (u64)cfg->asid << TTBRn_ASID_SHIFT;
854 855
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
856
			reg64 |= (u64)cfg->asid << TTBRn_ASID_SHIFT;
857 858
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
		}
859
	} else {
860
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
861
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
862
	}
863

864
	/* MAIRs (stage-1 only) */
865
	if (stage1) {
866 867 868 869 870 871 872
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.prrr;
			reg2 = pgtbl_cfg->arm_v7s_cfg.nmrr;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		}
873
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
874
		writel_relaxed(reg2, cb_base + ARM_SMMU_CB_S1_MAIR1);
875 876 877
	}

	/* SCTLR */
878
	reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
879 880 881 882 883
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
884
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
885 886 887
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
888
					struct arm_smmu_device *smmu)
889
{
890
	int irq, start, ret = 0;
891 892 893 894
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
895
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
896
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
897
	const struct iommu_gather_ops *tlb_ops;
898

899
	mutex_lock(&smmu_domain->init_mutex);
900 901 902
	if (smmu_domain->smmu)
		goto out_unlock;

903 904 905 906 907 908
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		smmu_domain->smmu = smmu;
		goto out_unlock;
	}

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

932 933 934 935 936 937 938 939 940 941
	/*
	 * Choosing a suitable context format is even more fiddly. Until we
	 * grow some way for the caller to express a preference, and/or move
	 * the decision into the io-pgtable code where it arguably belongs,
	 * just aim for the closest thing to the rest of the system, and hope
	 * that the hardware isn't esoteric enough that we can't assume AArch64
	 * support to be a superset of AArch32 support...
	 */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
942 943 944 945 946
	if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
	    !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
	    (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
	    (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
947 948 949 950 951 952 953 954 955 956 957
	if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
	    (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
			       ARM_SMMU_FEAT_FMT_AARCH64_16K |
			       ARM_SMMU_FEAT_FMT_AARCH64_4K)))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;

	if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
		ret = -EINVAL;
		goto out_unlock;
	}

958 959 960 961
	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
962 963
		ias = smmu->va_size;
		oas = smmu->ipa_size;
964
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
965
			fmt = ARM_64_LPAE_S1;
966
		} else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
967
			fmt = ARM_32_LPAE_S1;
968 969
			ias = min(ias, 32UL);
			oas = min(oas, 40UL);
970 971 972 973
		} else {
			fmt = ARM_V7S;
			ias = min(ias, 32UL);
			oas = min(oas, 32UL);
974
		}
975
		tlb_ops = &arm_smmu_s1_tlb_ops;
976 977
		break;
	case ARM_SMMU_DOMAIN_NESTED:
978 979 980 981
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
982
	case ARM_SMMU_DOMAIN_S2:
983 984
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
985 986
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
987
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
988
			fmt = ARM_64_LPAE_S2;
989
		} else {
990
			fmt = ARM_32_LPAE_S2;
991 992 993
			ias = min(ias, 40UL);
			oas = min(oas, 40UL);
		}
994 995 996 997
		if (smmu->version == ARM_SMMU_V2)
			tlb_ops = &arm_smmu_s2_tlb_ops_v2;
		else
			tlb_ops = &arm_smmu_s2_tlb_ops_v1;
998 999 1000 1001
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
1002 1003 1004
	}
	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
1005
	if (ret < 0)
1006
		goto out_unlock;
1007

1008
	cfg->cbndx = ret;
1009
	if (smmu->version < ARM_SMMU_V2) {
1010 1011
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
1012
	} else {
1013
		cfg->irptndx = cfg->cbndx;
1014 1015
	}

1016 1017 1018 1019 1020
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S2)
		cfg->vmid = cfg->cbndx + 1 + smmu->cavium_id_base;
	else
		cfg->asid = cfg->cbndx + smmu->cavium_id_base;

1021
	pgtbl_cfg = (struct io_pgtable_cfg) {
1022
		.pgsize_bitmap	= smmu->pgsize_bitmap,
1023 1024
		.ias		= ias,
		.oas		= oas,
1025
		.tlb		= tlb_ops,
1026
		.iommu_dev	= smmu->dev,
1027 1028
	};

1029 1030 1031
	if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
		pgtbl_cfg.quirks = IO_PGTABLE_QUIRK_NO_DMA;

1032 1033 1034 1035 1036 1037 1038
	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

1039 1040
	/* Update the domain's page sizes to reflect the page table format */
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1041 1042
	domain->geometry.aperture_end = (1UL << ias) - 1;
	domain->geometry.force_aperture = true;
1043

1044 1045 1046 1047 1048 1049 1050
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
1051
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1052 1053
	ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
			       IRQF_SHARED, "arm-smmu-context-fault", domain);
1054
	if (ret < 0) {
1055
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
1056 1057
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
1058 1059
	}

1060 1061 1062 1063
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
1064
	return 0;
1065

1066 1067
out_clear_smmu:
	smmu_domain->smmu = NULL;
1068
out_unlock:
1069
	mutex_unlock(&smmu_domain->init_mutex);
1070 1071 1072 1073 1074
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
1075
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1076 1077
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1078
	void __iomem *cb_base;
1079 1080
	int irq;

1081
	if (!smmu || domain->type == IOMMU_DOMAIN_IDENTITY)
1082 1083
		return;

1084 1085 1086 1087
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
1088
	cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
1089 1090
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

1091 1092
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1093
		devm_free_irq(smmu->dev, irq, domain);
1094 1095
	}

1096
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1097
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1098 1099
}

1100
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1101 1102 1103
{
	struct arm_smmu_domain *smmu_domain;

1104 1105 1106
	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
1107
		return NULL;
1108 1109 1110 1111 1112 1113 1114
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
1115
		return NULL;
1116

1117 1118
	if (type == IOMMU_DOMAIN_DMA && (using_legacy_binding ||
	    iommu_get_dma_cookie(&smmu_domain->domain))) {
1119 1120 1121 1122
		kfree(smmu_domain);
		return NULL;
	}

1123
	mutex_init(&smmu_domain->init_mutex);
1124
	spin_lock_init(&smmu_domain->cb_lock);
1125 1126

	return &smmu_domain->domain;
1127 1128
}

1129
static void arm_smmu_domain_free(struct iommu_domain *domain)
1130
{
1131
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1132 1133 1134 1135 1136

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1137
	iommu_put_dma_cookie(domain);
1138 1139 1140 1141
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

1142 1143 1144
static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_smr *smr = smmu->smrs + idx;
1145
	u32 reg = smr->id << SMR_ID_SHIFT | smr->mask << SMR_MASK_SHIFT;
1146

1147
	if (!(smmu->features & ARM_SMMU_FEAT_EXIDS) && smr->valid)
1148 1149 1150 1151
		reg |= SMR_VALID;
	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
}

1152 1153 1154 1155 1156 1157 1158
static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
	u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
		  (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
		  (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;

1159 1160 1161
	if (smmu->features & ARM_SMMU_FEAT_EXIDS && smmu->smrs &&
	    smmu->smrs[idx].valid)
		reg |= S2CR_EXIDVALID;
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
}

static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
{
	arm_smmu_write_s2cr(smmu, idx);
	if (smmu->smrs)
		arm_smmu_write_smr(smmu, idx);
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
/*
 * The width of SMR's mask field depends on sCR0_EXIDENABLE, so this function
 * should be called after sCR0 is written.
 */
static void arm_smmu_test_smr_masks(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 smr;

	if (!smmu->smrs)
		return;

	/*
	 * SMR.ID bits may not be preserved if the corresponding MASK
	 * bits are set, so check each one separately. We can reject
	 * masters later if they try to claim IDs outside these masks.
	 */
	smr = smmu->streamid_mask << SMR_ID_SHIFT;
	writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
	smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
	smmu->streamid_mask = smr >> SMR_ID_SHIFT;

	smr = smmu->streamid_mask << SMR_MASK_SHIFT;
	writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
	smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
	smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
}

1200
static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
1201 1202
{
	struct arm_smmu_smr *smrs = smmu->smrs;
1203
	int i, free_idx = -ENOSPC;
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	/* Stream indexing is blissfully easy */
	if (!smrs)
		return id;

	/* Validating SMRs is... less so */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
		if (!smrs[i].valid) {
			/*
			 * Note the first free entry we come across, which
			 * we'll claim in the end if nothing else matches.
			 */
			if (free_idx < 0)
				free_idx = i;
1218 1219
			continue;
		}
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		/*
		 * If the new entry is _entirely_ matched by an existing entry,
		 * then reuse that, with the guarantee that there also cannot
		 * be any subsequent conflicting entries. In normal use we'd
		 * expect simply identical entries for this case, but there's
		 * no harm in accommodating the generalisation.
		 */
		if ((mask & smrs[i].mask) == mask &&
		    !((id ^ smrs[i].id) & ~smrs[i].mask))
			return i;
		/*
		 * If the new entry has any other overlap with an existing one,
		 * though, then there always exists at least one stream ID
		 * which would cause a conflict, and we can't allow that risk.
		 */
		if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
			return -EINVAL;
	}
1238

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	return free_idx;
}

static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
{
	if (--smmu->s2crs[idx].count)
		return false;

	smmu->s2crs[idx] = s2cr_init_val;
	if (smmu->smrs)
		smmu->smrs[idx].valid = false;

	return true;
}

static int arm_smmu_master_alloc_smes(struct device *dev)
{
1256 1257
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1258 1259 1260 1261 1262 1263 1264
	struct arm_smmu_device *smmu = cfg->smmu;
	struct arm_smmu_smr *smrs = smmu->smrs;
	struct iommu_group *group;
	int i, idx, ret;

	mutex_lock(&smmu->stream_map_mutex);
	/* Figure out a viable stream map entry allocation */
1265
	for_each_cfg_sme(fwspec, i, idx) {
1266 1267 1268
		u16 sid = fwspec->ids[i];
		u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;

1269 1270 1271
		if (idx != INVALID_SMENDX) {
			ret = -EEXIST;
			goto out_err;
1272 1273
		}

1274
		ret = arm_smmu_find_sme(smmu, sid, mask);
1275 1276 1277 1278 1279
		if (ret < 0)
			goto out_err;

		idx = ret;
		if (smrs && smmu->s2crs[idx].count == 0) {
1280 1281
			smrs[idx].id = sid;
			smrs[idx].mask = mask;
1282 1283 1284 1285
			smrs[idx].valid = true;
		}
		smmu->s2crs[idx].count++;
		cfg->smendx[i] = (s16)idx;
1286 1287
	}

1288 1289 1290 1291 1292 1293 1294 1295
	group = iommu_group_get_for_dev(dev);
	if (!group)
		group = ERR_PTR(-ENOMEM);
	if (IS_ERR(group)) {
		ret = PTR_ERR(group);
		goto out_err;
	}
	iommu_group_put(group);
1296

1297
	/* It worked! Now, poke the actual hardware */
1298
	for_each_cfg_sme(fwspec, i, idx) {
1299 1300 1301
		arm_smmu_write_sme(smmu, idx);
		smmu->s2crs[idx].group = group;
	}
1302

1303
	mutex_unlock(&smmu->stream_map_mutex);
1304 1305
	return 0;

1306
out_err:
1307
	while (i--) {
1308
		arm_smmu_free_sme(smmu, cfg->smendx[i]);
1309 1310
		cfg->smendx[i] = INVALID_SMENDX;
	}
1311 1312
	mutex_unlock(&smmu->stream_map_mutex);
	return ret;
1313 1314
}

1315
static void arm_smmu_master_free_smes(struct iommu_fwspec *fwspec)
1316
{
1317 1318
	struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
	struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1319
	int i, idx;
1320

1321
	mutex_lock(&smmu->stream_map_mutex);
1322
	for_each_cfg_sme(fwspec, i, idx) {
1323 1324
		if (arm_smmu_free_sme(smmu, idx))
			arm_smmu_write_sme(smmu, idx);
1325
		cfg->smendx[i] = INVALID_SMENDX;
1326
	}
1327
	mutex_unlock(&smmu->stream_map_mutex);
1328 1329 1330
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1331
				      struct iommu_fwspec *fwspec)
1332
{
1333
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1334 1335
	struct arm_smmu_s2cr *s2cr = smmu->s2crs;
	u8 cbndx = smmu_domain->cfg.cbndx;
1336
	enum arm_smmu_s2cr_type type;
1337
	int i, idx;
1338

1339 1340 1341 1342 1343
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS)
		type = S2CR_TYPE_BYPASS;
	else
		type = S2CR_TYPE_TRANS;

1344
	for_each_cfg_sme(fwspec, i, idx) {
1345
		if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
1346
			continue;
1347

1348
		s2cr[idx].type = type;
1349
		s2cr[idx].privcfg = S2CR_PRIVCFG_DEFAULT;
1350 1351
		s2cr[idx].cbndx = cbndx;
		arm_smmu_write_s2cr(smmu, idx);
1352
	}
1353
	return 0;
1354 1355
}

1356 1357
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1358
	int ret;
1359 1360
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_device *smmu;
1361
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1362

1363
	if (!fwspec || fwspec->ops != &arm_smmu_ops) {
1364 1365 1366 1367
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	/*
	 * FIXME: The arch/arm DMA API code tries to attach devices to its own
	 * domains between of_xlate() and add_device() - we have no way to cope
	 * with that, so until ARM gets converted to rely on groups and default
	 * domains, just say no (but more politely than by dereferencing NULL).
	 * This should be at least a WARN_ON once that's sorted.
	 */
	if (!fwspec->iommu_priv)
		return -ENODEV;

1378
	smmu = fwspec_smmu(fwspec);
1379
	/* Ensure that the domain is finalised */
1380
	ret = arm_smmu_init_domain_context(domain, smmu);
1381
	if (ret < 0)
1382 1383
		return ret;

1384
	/*
1385 1386
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1387
	 */
1388
	if (smmu_domain->smmu != smmu) {
1389 1390
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1391
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1392
		return -EINVAL;
1393 1394 1395
	}

	/* Looks ok, so add the device to the domain */
1396
	return arm_smmu_domain_add_master(smmu_domain, fwspec);
1397 1398 1399
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1400
			phys_addr_t paddr, size_t size, int prot)
1401
{
1402
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1403

1404
	if (!ops)
1405 1406
		return -ENODEV;

1407
	return ops->map(ops, iova, paddr, size, prot);
1408 1409 1410 1411 1412
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1413
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1414

1415 1416 1417
	if (!ops)
		return 0;

1418
	return ops->unmap(ops, iova, size);
1419 1420
}

1421 1422 1423
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1424
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1425 1426 1427 1428 1429 1430 1431
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1432
	unsigned long va, flags;
1433

1434
	cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
1435

1436
	spin_lock_irqsave(&smmu_domain->cb_lock, flags);
1437 1438 1439
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1440 1441
		smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else /* Register is only 32-bit in v1 */
1442
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1443 1444 1445

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
1446
		spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
1447
		dev_err(dev,
1448
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1449 1450 1451 1452
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

1453
	phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1454
	spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
1455 1456 1457 1458 1459 1460 1461 1462 1463
	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1464
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1465
					dma_addr_t iova)
1466
{
1467
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1468
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1469

1470 1471 1472
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
		return iova;

1473
	if (!ops)
1474
		return 0;
1475

1476
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1477 1478
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1)
		return arm_smmu_iova_to_phys_hard(domain, iova);
1479

1480
	return ops->iova_to_phys(ops, iova);
1481 1482
}

1483
static bool arm_smmu_capable(enum iommu_cap cap)
1484
{
1485 1486
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1487 1488 1489 1490 1491
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1492 1493
	case IOMMU_CAP_NOEXEC:
		return true;
1494
	default:
1495
		return false;
1496
	}
1497 1498
}

1499 1500
static int arm_smmu_match_node(struct device *dev, void *data)
{
1501
	return dev->fwnode == data;
1502 1503
}

1504 1505
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1506 1507
{
	struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1508
						fwnode, arm_smmu_match_node);
1509 1510 1511 1512
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
}

1513
static int arm_smmu_add_device(struct device *dev)
1514
{
1515
	struct arm_smmu_device *smmu;
1516
	struct arm_smmu_master_cfg *cfg;
1517
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1518
	int i, ret;
1519

1520 1521
	if (using_legacy_binding) {
		ret = arm_smmu_register_legacy_master(dev, &smmu);
1522 1523 1524 1525 1526 1527 1528

		/*
		 * If dev->iommu_fwspec is initally NULL, arm_smmu_register_legacy_master()
		 * will allocate/initialise a new one. Thus we need to update fwspec for
		 * later use.
		 */
		fwspec = dev->iommu_fwspec;
1529 1530
		if (ret)
			goto out_free;
1531
	} else if (fwspec && fwspec->ops == &arm_smmu_ops) {
1532
		smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1533 1534 1535
	} else {
		return -ENODEV;
	}
1536

1537
	ret = -EINVAL;
1538 1539
	for (i = 0; i < fwspec->num_ids; i++) {
		u16 sid = fwspec->ids[i];
1540
		u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1541

1542
		if (sid & ~smmu->streamid_mask) {
1543
			dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
1544 1545 1546 1547 1548
				sid, smmu->streamid_mask);
			goto out_free;
		}
		if (mask & ~smmu->smr_mask_mask) {
			dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n",
P
Peng Fan 已提交
1549
				mask, smmu->smr_mask_mask);
1550 1551
			goto out_free;
		}
1552
	}
1553

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	ret = -ENOMEM;
	cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]),
		      GFP_KERNEL);
	if (!cfg)
		goto out_free;

	cfg->smmu = smmu;
	fwspec->iommu_priv = cfg;
	while (i--)
		cfg->smendx[i] = INVALID_SMENDX;

1565
	ret = arm_smmu_master_alloc_smes(dev);
1566
	if (ret)
1567
		goto out_cfg_free;
1568

1569 1570
	iommu_device_link(&smmu->iommu, dev);

1571
	return 0;
1572

1573 1574
out_cfg_free:
	kfree(cfg);
1575
out_free:
1576
	iommu_fwspec_free(dev);
1577
	return ret;
1578 1579
}

1580 1581
static void arm_smmu_remove_device(struct device *dev)
{
1582
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1583 1584 1585
	struct arm_smmu_master_cfg *cfg;
	struct arm_smmu_device *smmu;

1586

1587
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
1588
		return;
1589

1590 1591 1592 1593
	cfg  = fwspec->iommu_priv;
	smmu = cfg->smmu;

	iommu_device_unlink(&smmu->iommu, dev);
1594
	arm_smmu_master_free_smes(fwspec);
1595
	iommu_group_remove_device(dev);
1596 1597
	kfree(fwspec->iommu_priv);
	iommu_fwspec_free(dev);
1598 1599
}

1600 1601
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
1602 1603
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1604 1605 1606
	struct iommu_group *group = NULL;
	int i, idx;

1607
	for_each_cfg_sme(fwspec, i, idx) {
1608 1609 1610 1611 1612 1613 1614 1615
		if (group && smmu->s2crs[idx].group &&
		    group != smmu->s2crs[idx].group)
			return ERR_PTR(-EINVAL);

		group = smmu->s2crs[idx].group;
	}

	if (group)
1616
		return iommu_group_ref_get(group);
1617 1618 1619 1620 1621 1622 1623 1624 1625

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

1626 1627 1628
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1629
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1630

1631 1632 1633
	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1646
	int ret = 0;
1647
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1648

1649 1650 1651
	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

1652 1653
	mutex_lock(&smmu_domain->init_mutex);

1654 1655
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1656 1657 1658 1659 1660
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1661 1662 1663 1664 1665
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1666
		break;
1667
	default:
1668
		ret = -ENODEV;
1669
	}
1670 1671 1672 1673

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1674 1675
}

1676 1677
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
1678
	u32 mask, fwid = 0;
1679 1680 1681 1682 1683 1684

	if (args->args_count > 0)
		fwid |= (u16)args->args[0];

	if (args->args_count > 1)
		fwid |= (u16)args->args[1] << SMR_MASK_SHIFT;
1685 1686
	else if (!of_property_read_u32(args->np, "stream-match-mask", &mask))
		fwid |= (u16)mask << SMR_MASK_SHIFT;
1687 1688 1689 1690

	return iommu_fwspec_add_ids(dev, &fwid, 1);
}

1691 1692 1693 1694 1695 1696 1697
static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1698
					 prot, IOMMU_RESV_SW_MSI);
1699 1700 1701 1702
	if (!region)
		return;

	list_add_tail(&region->list, head);
1703 1704

	iommu_dma_get_resv_regions(dev, head);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
}

static void arm_smmu_put_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

1716
static struct iommu_ops arm_smmu_ops = {
1717
	.capable		= arm_smmu_capable,
1718 1719
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1720 1721 1722
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1723
	.map_sg			= default_iommu_map_sg,
1724 1725 1726
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1727
	.device_group		= arm_smmu_device_group,
1728 1729
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1730
	.of_xlate		= arm_smmu_of_xlate,
1731 1732
	.get_resv_regions	= arm_smmu_get_resv_regions,
	.put_resv_regions	= arm_smmu_put_resv_regions,
1733
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1734 1735 1736 1737 1738
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1739
	void __iomem *cb_base;
1740
	int i;
1741
	u32 reg, major;
1742

1743 1744 1745
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1746

1747 1748 1749 1750
	/*
	 * Reset stream mapping groups: Initial values mark all SMRn as
	 * invalid and all S2CRn as bypass unless overridden.
	 */
1751 1752
	for (i = 0; i < smmu->num_mapping_groups; ++i)
		arm_smmu_write_sme(smmu, i);
1753

1754 1755 1756 1757 1758 1759 1760 1761
	if (smmu->model == ARM_MMU500) {
		/*
		 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
		 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
		 * bit is only present in MMU-500r2 onwards.
		 */
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
		major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
1762
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
1763 1764 1765 1766 1767 1768 1769
		if (major >= 2)
			reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
		/*
		 * Allow unmatched Stream IDs to allocate bypass
		 * TLB entries for reduced latency.
		 */
		reg |= ARM_MMU500_ACR_SMTNMB_TLBEN;
1770 1771 1772
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
	}

1773 1774
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
1775
		cb_base = ARM_SMMU_CB(smmu, i);
1776 1777
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1778 1779 1780 1781 1782 1783 1784 1785 1786
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1787
	}
1788

1789 1790 1791 1792
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1793
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1794

1795
	/* Enable fault reporting */
1796
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1797 1798

	/* Disable TLB broadcasting. */
1799
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1800

1801 1802 1803 1804 1805 1806
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1807 1808

	/* Disable forced broadcasting */
1809
	reg &= ~sCR0_FB;
1810 1811

	/* Don't upgrade barriers */
1812
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1813

1814 1815 1816
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1817 1818 1819
	if (smmu->features & ARM_SMMU_FEAT_EXIDS)
		reg |= sCR0_EXIDENABLE;

1820
	/* Push the button */
1821
	arm_smmu_tlb_sync_global(smmu);
1822
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1849
	bool cttw_reg, cttw_fw = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK;
1850
	int i;
1851 1852

	dev_notice(smmu->dev, "probing hardware configuration...\n");
1853 1854
	dev_notice(smmu->dev, "SMMUv%d with:\n",
			smmu->version == ARM_SMMU_V2 ? 2 : 1);
1855 1856 1857

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1858 1859 1860 1861 1862 1863 1864

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1881
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1882 1883 1884 1885
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1886 1887
	if ((id & ID0_S1TS) &&
		((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1888 1889 1890 1891
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1892 1893
	/*
	 * In order for DMA API calls to work properly, we must defer to what
1894
	 * the FW says about coherency, regardless of what the hardware claims.
1895 1896 1897 1898
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_reg = !!(id & ID0_CTTW);
1899
	if (cttw_fw || cttw_reg)
1900
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
1901 1902
			   cttw_fw ? "" : "non-");
	if (cttw_fw != cttw_reg)
1903
		dev_notice(smmu->dev,
1904
			   "\t(IDR0.CTTW overridden by FW configuration)\n");
1905

1906
	/* Max. number of entries we have for stream matching/indexing */
1907 1908 1909 1910 1911 1912
	if (smmu->version == ARM_SMMU_V2 && id & ID0_EXIDS) {
		smmu->features |= ARM_SMMU_FEAT_EXIDS;
		size = 1 << 16;
	} else {
		size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
	}
1913
	smmu->streamid_mask = size - 1;
1914 1915
	if (id & ID0_SMS) {
		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1916 1917
		size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
		if (size == 0) {
1918 1919 1920 1921 1922
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

1923 1924 1925 1926 1927 1928
		/* Zero-initialised to mark as invalid */
		smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
					  GFP_KERNEL);
		if (!smmu->smrs)
			return -ENOMEM;

1929
		dev_notice(smmu->dev,
1930
			   "\tstream matching with %lu register groups", size);
1931
	}
1932 1933 1934 1935 1936 1937 1938 1939
	/* s2cr->type == 0 means translation, so initialise explicitly */
	smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
					 GFP_KERNEL);
	if (!smmu->s2crs)
		return -ENOMEM;
	for (i = 0; i < size; i++)
		smmu->s2crs[i] = s2cr_init_val;

1940
	smmu->num_mapping_groups = size;
1941
	mutex_init(&smmu->stream_map_mutex);
1942
	spin_lock_init(&smmu->global_sync_lock);
1943

1944 1945 1946 1947 1948 1949
	if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
		smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
		if (!(id & ID0_PTFS_NO_AARCH32S))
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
	}

1950 1951
	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1952
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1953

1954
	/* Check for size mismatch of SMMU address space from mapped region */
1955
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1956 1957
	size <<= smmu->pgshift;
	if (smmu->cb_base != gr0_base + size)
1958
		dev_warn(smmu->dev,
1959 1960
			"SMMU address space size (0x%lx) differs from mapped region size (0x%tx)!\n",
			size * 2, (smmu->cb_base - gr0_base) * 2);
1961

1962
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1963 1964 1965 1966 1967 1968 1969
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
1980
		dev_notice(smmu->dev, "\tenabling workaround for Cavium erratum 27704\n");
1981
	}
1982 1983 1984 1985

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1986
	smmu->ipa_size = size;
1987

1988
	/* The output mask is also applied for bypass */
1989
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1990
	smmu->pa_size = size;
1991

1992 1993 1994
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1995 1996 1997 1998 1999 2000 2001 2002 2003
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

2004
	if (smmu->version < ARM_SMMU_V2) {
2005
		smmu->va_size = smmu->ipa_size;
2006 2007
		if (smmu->version == ARM_SMMU_V1_64K)
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
2008 2009
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
2010 2011
		smmu->va_size = arm_smmu_id_size_to_bits(size);
		if (id & ID2_PTFS_4K)
2012
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
2013
		if (id & ID2_PTFS_16K)
2014
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
2015
		if (id & ID2_PTFS_64K)
2016
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
2017 2018
	}

2019 2020
	/* Now we've corralled the various formats, what'll it do? */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
2021
		smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
2022 2023
	if (smmu->features &
	    (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
2024
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2025
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
2026
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2027
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
2028 2029 2030 2031 2032 2033 2034 2035
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;

	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
		   smmu->pgsize_bitmap);
2036

2037

2038 2039
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
2040
			   smmu->va_size, smmu->ipa_size);
2041 2042 2043

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
2044
			   smmu->ipa_size, smmu->pa_size);
2045

2046 2047 2048
	return 0;
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
2059
ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
2060
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
2061
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
2062

2063
static const struct of_device_id arm_smmu_of_match[] = {
2064 2065 2066
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
2067
	{ .compatible = "arm,mmu-401", .data = &arm_mmu401 },
2068
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
2069
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
2070 2071 2072 2073
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
#ifdef CONFIG_ACPI
static int acpi_smmu_get_data(u32 model, struct arm_smmu_device *smmu)
{
	int ret = 0;

	switch (model) {
	case ACPI_IORT_SMMU_V1:
	case ACPI_IORT_SMMU_CORELINK_MMU400:
		smmu->version = ARM_SMMU_V1;
		smmu->model = GENERIC_SMMU;
		break;
2085 2086 2087 2088
	case ACPI_IORT_SMMU_CORELINK_MMU401:
		smmu->version = ARM_SMMU_V1_64K;
		smmu->model = GENERIC_SMMU;
		break;
2089 2090 2091 2092 2093 2094 2095 2096
	case ACPI_IORT_SMMU_V2:
		smmu->version = ARM_SMMU_V2;
		smmu->model = GENERIC_SMMU;
		break;
	case ACPI_IORT_SMMU_CORELINK_MMU500:
		smmu->version = ARM_SMMU_V2;
		smmu->model = ARM_MMU500;
		break;
2097 2098 2099 2100
	case ACPI_IORT_SMMU_CAVIUM_THUNDERX:
		smmu->version = ARM_SMMU_V2;
		smmu->model = CAVIUM_SMMUV2;
		break;
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
	default:
		ret = -ENODEV;
	}

	return ret;
}

static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node =
		*(struct acpi_iort_node **)dev_get_platdata(dev);
	struct acpi_iort_smmu *iort_smmu;
	int ret;

	/* Retrieve SMMU1/2 specific data */
	iort_smmu = (struct acpi_iort_smmu *)node->node_data;

	ret = acpi_smmu_get_data(iort_smmu->model, smmu);
	if (ret < 0)
		return ret;

	/* Ignore the configuration access interrupt */
	smmu->num_global_irqs = 1;

	if (iort_smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK)
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

2140 2141
static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
2142
{
2143
	const struct arm_smmu_match_data *data;
2144
	struct device *dev = &pdev->dev;
2145 2146
	bool legacy_binding;

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	data = of_device_get_match_data(dev);
	smmu->version = data->version;
	smmu->model = data->model;

	parse_driver_options(smmu);

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL);
	if (legacy_binding && !using_generic_binding) {
		if (!using_legacy_binding)
			pr_notice("deprecated \"mmu-masters\" DT property in use; DMA API support unavailable\n");
		using_legacy_binding = true;
	} else if (!legacy_binding && !using_legacy_binding) {
		using_generic_binding = true;
	} else {
		dev_err(dev, "not probing due to mismatched DT properties\n");
		return -ENODEV;
	}
2170

2171 2172 2173 2174 2175 2176
	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;

	return 0;
}

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
static void arm_smmu_bus_init(void)
{
	/* Oh, for a proper bus abstraction */
	if (!iommu_present(&platform_bus_type))
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
#ifdef CONFIG_ARM_AMBA
	if (!iommu_present(&amba_bustype))
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
#endif
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type)) {
		pci_request_acs();
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
	}
#endif
}

2194 2195 2196
static int arm_smmu_device_probe(struct platform_device *pdev)
{
	struct resource *res;
2197
	resource_size_t ioaddr;
2198 2199 2200 2201
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	int num_irqs, i, err;

2202 2203 2204 2205 2206 2207 2208
	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

2209 2210 2211 2212 2213
	if (dev->of_node)
		err = arm_smmu_device_dt_probe(pdev, smmu);
	else
		err = arm_smmu_device_acpi_probe(pdev, smmu);

2214 2215
	if (err)
		return err;
2216

2217
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2218
	ioaddr = res->start;
2219 2220 2221
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
2222
	smmu->cb_base = smmu->base + resource_size(res) / 2;
2223 2224 2225 2226 2227 2228 2229 2230

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

2231 2232 2233 2234
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
2246

2247 2248 2249 2250 2251 2252 2253
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

2254 2255 2256 2257
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

2258
	if (smmu->version == ARM_SMMU_V2 &&
2259 2260 2261 2262
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
2263
		return -ENODEV;
2264 2265 2266
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
2267 2268 2269 2270 2271
		err = devm_request_irq(smmu->dev, smmu->irqs[i],
				       arm_smmu_global_fault,
				       IRQF_SHARED,
				       "arm-smmu global fault",
				       smmu);
2272 2273 2274
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
2275
			return err;
2276 2277 2278
		}
	}

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	err = iommu_device_sysfs_add(&smmu->iommu, smmu->dev, NULL,
				     "smmu.%pa", &ioaddr);
	if (err) {
		dev_err(dev, "Failed to register iommu in sysfs\n");
		return err;
	}

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	err = iommu_device_register(&smmu->iommu);
	if (err) {
		dev_err(dev, "Failed to register iommu\n");
		return err;
	}

2295
	platform_set_drvdata(pdev, smmu);
2296
	arm_smmu_device_reset(smmu);
2297
	arm_smmu_test_smr_masks(smmu);
2298

2299 2300 2301 2302 2303 2304 2305 2306
	/*
	 * For ACPI and generic DT bindings, an SMMU will be probed before
	 * any device which might need it, so we want the bus ops in place
	 * ready to handle default domain setup as soon as any SMMU exists.
	 */
	if (!using_legacy_binding)
		arm_smmu_bus_init();

2307 2308 2309
	return 0;
}

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
/*
 * With the legacy DT binding in play, though, we have no guarantees about
 * probe order, but then we're also not doing default domains, so we can
 * delay setting bus ops until we're sure every possible SMMU is ready,
 * and that way ensure that no add_device() calls get missed.
 */
static int arm_smmu_legacy_bus_init(void)
{
	if (using_legacy_binding)
		arm_smmu_bus_init();
2320 2321
	return 0;
}
2322
device_initcall_sync(arm_smmu_legacy_bus_init);
2323 2324 2325

static int arm_smmu_device_remove(struct platform_device *pdev)
{
2326
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2327 2328 2329 2330

	if (!smmu)
		return -ENODEV;

2331
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2332
		dev_err(&pdev->dev, "removing device with active domains!\n");
2333 2334

	/* Turn the thing off */
2335
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2336 2337 2338 2339 2340 2341 2342 2343
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
2344
	.probe	= arm_smmu_device_probe,
2345 2346
	.remove	= arm_smmu_device_remove,
};
2347 2348 2349 2350 2351 2352 2353 2354
module_platform_driver(arm_smmu_driver);

IOMMU_OF_DECLARE(arm_smmuv1, "arm,smmu-v1", NULL);
IOMMU_OF_DECLARE(arm_smmuv2, "arm,smmu-v2", NULL);
IOMMU_OF_DECLARE(arm_mmu400, "arm,mmu-400", NULL);
IOMMU_OF_DECLARE(arm_mmu401, "arm,mmu-401", NULL);
IOMMU_OF_DECLARE(arm_mmu500, "arm,mmu-500", NULL);
IOMMU_OF_DECLARE(cavium_smmuv2, "cavium,smmu-v2", NULL);
2355

2356 2357 2358
MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");