arm-smmu.c 49.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
37
#include <linux/iopoll.h>
38 39
#include <linux/module.h>
#include <linux/of.h>
40
#include <linux/of_address.h>
41
#include <linux/pci.h>
42 43 44 45 46 47
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

48
#include "io-pgtable.h"
49 50

/* Maximum number of stream IDs assigned to a single device */
51
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
52 53 54 55 56 57 58 59 60

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
61
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
62

63 64 65 66 67 68 69 70 71 72
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
105
#define ID0_ATOSNS			(1 << 26)
106 107 108
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
109 110
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
162 163 164
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
183
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
184 185 186 187 188 189

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
#define ARM_SMMU_CB_TTBR0_LO		0x20
#define ARM_SMMU_CB_TTBR0_HI		0x24
190 191
#define ARM_SMMU_CB_TTBR1_LO		0x28
#define ARM_SMMU_CB_TTBR1_HI		0x2c
192 193
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
194
#define ARM_SMMU_CB_S1_MAIR1		0x3c
195 196
#define ARM_SMMU_CB_PAR_LO		0x50
#define ARM_SMMU_CB_PAR_HI		0x54
197 198 199 200
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
201
#define ARM_SMMU_CB_S1_TLBIVA		0x600
202
#define ARM_SMMU_CB_S1_TLBIASID		0x610
203 204 205
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
206
#define ARM_SMMU_CB_ATS1PR		0x800
207
#define ARM_SMMU_CB_ATSR		0x8f0
208 209 210 211 212 213 214 215 216 217 218

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

219 220 221 222
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

223 224 225 226
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
227
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
228

229
#define TTBRn_HI_ASID_SHIFT            16
230 231 232 233 234 235 236 237 238 239 240 241

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

242 243 244
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
245
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
246 247 248

#define FSYNR0_WNR			(1 << 4)

249
static int force_stage;
250
module_param_named(force_stage, force_stage, int, S_IRUGO);
251 252 253
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");

254 255 256 257 258
enum arm_smmu_arch_version {
	ARM_SMMU_V1 = 1,
	ARM_SMMU_V2,
};

259 260 261 262 263 264
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

265
struct arm_smmu_master_cfg {
266 267 268 269 270
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

271 272 273 274 275 276
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

277 278 279 280 281
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
282
	unsigned long			pgshift;
283 284 285 286 287 288

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
289
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
290
	u32				features;
291 292 293

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
294
	enum arm_smmu_arch_version	version;
295 296 297 298 299 300 301 302 303

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

304 305 306
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
};
321
#define INVALID_IRPTNDX			0xff
322

323 324 325
#define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)

326 327 328 329 330 331
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

332
struct arm_smmu_domain {
333
	struct arm_smmu_device		*smmu;
334 335
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
336
	struct arm_smmu_cfg		cfg;
337
	enum arm_smmu_domain_stage	stage;
338
	struct mutex			init_mutex; /* Protects smmu pointer */
339
	struct iommu_domain		domain;
340 341
};

342 343
static struct iommu_ops arm_smmu_ops;

344 345 346
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

347 348 349 350 351
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

352
static struct arm_smmu_option_prop arm_smmu_options[] = {
353 354 355 356
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

357 358 359 360 361
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

362 363 364
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
365

366 367 368 369 370 371 372 373 374 375
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

376
static struct device_node *dev_get_dev_node(struct device *dev)
377 378 379
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
380

381 382
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
383
		return bus->bridge->parent->of_node;
384 385
	}

386
	return dev->of_node;
387 388
}

389 390 391 392 393 394 395
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
396

397 398 399 400 401 402 403 404 405 406 407 408 409
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

410
static struct arm_smmu_master_cfg *
411
find_smmu_master_cfg(struct device *dev)
412
{
413 414
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
415

416 417 418 419
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
420

421
	return cfg;
422 423
}

424 425 426 427 428 429 430 431
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
432 433
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

475 476
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
477

478 479
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
480

481 482 483 484 485 486 487 488 489
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
490 491 492
	return insert_smmu_master(smmu, master);
}

493
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
494
{
495
	struct arm_smmu_device *smmu;
496
	struct arm_smmu_master *master = NULL;
497
	struct device_node *dev_node = dev_get_dev_node(dev);
498 499

	spin_lock(&arm_smmu_devices_lock);
500
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
501 502 503 504
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
505
	spin_unlock(&arm_smmu_devices_lock);
506

507
	return master ? smmu : NULL;
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
529
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

547 548 549 550 551 552 553
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
554
{
555
	struct arm_smmu_domain *smmu_domain = cookie;
556 557
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
558
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
559
	void __iomem *base;
560 561 562

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
563 564
		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
			       base + ARM_SMMU_CB_S1_TLBIASID);
565 566
	} else {
		base = ARM_SMMU_GR0(smmu);
567 568
		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
			       base + ARM_SMMU_GR0_TLBIVMID);
569 570
	}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
					  bool leaf, void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
			iova &= ~12UL;
			iova |= ARM_SMMU_CB_ASID(cfg);
			writel_relaxed(iova, reg);
#ifdef CONFIG_64BIT
		} else {
			iova >>= 12;
			iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
			writeq_relaxed(iova, reg);
#endif
		}
#ifdef CONFIG_64BIT
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
		writeq_relaxed(iova >> 12, reg);
#endif
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
		writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

617 618 619 620 621 622
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
623
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
624 625
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
626 627
	void __iomem *cb_base;

628
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
629 630 631 632 633 634 635
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
636
				    "Unexpected context fault (fsr 0x%x)\n",
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
653 654
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
655
		    iova, fsynr, cfg->cbndx);
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
674
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
675 676 677 678 679 680

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

681 682 683
	if (!gfsr)
		return IRQ_NONE;

684 685 686 687 688 689 690
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
691
	return IRQ_HANDLED;
692 693
}

694 695
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
696 697 698
{
	u32 reg;
	bool stage1;
699 700
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
701 702 703 704
	void __iomem *cb_base, *gr0_base, *gr1_base;

	gr0_base = ARM_SMMU_GR0(smmu);
	gr1_base = ARM_SMMU_GR1(smmu);
705 706
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
707

708 709 710 711 712 713 714 715 716 717 718 719 720 721
	if (smmu->version > ARM_SMMU_V1) {
		/*
		 * CBA2R.
		 * *Must* be initialised before CBAR thanks to VMID16
		 * architectural oversight affected some implementations.
		 */
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

722
	/* CBAR */
723
	reg = cfg->cbar;
724
	if (smmu->version == ARM_SMMU_V1)
725
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
726

727 728 729 730 731 732 733 734
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
	} else {
735
		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
736
	}
737
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
738

739 740 741 742 743
	/* TTBRs */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0] >> 32;
744
		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
745
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
746

747 748 749 750 751 752 753 754 755 756 757
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_LO);
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1] >> 32;
		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_HI);
	} else {
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr >> 32;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
	}
758

759 760 761 762 763 764
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
765
			reg |= TTBCR2_SEP_UPSTREAM;
766
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
767 768
		}
	} else {
769 770
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
771 772
	}

773
	/* MAIRs (stage-1 only) */
774
	if (stage1) {
775
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
776
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
777 778
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
779 780 781 782 783 784 785 786 787
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
788
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
789 790 791
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
792
					struct arm_smmu_device *smmu)
793
{
794
	int irq, start, ret = 0;
795 796 797 798
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
799
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
800
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
801

802
	mutex_lock(&smmu_domain->init_mutex);
803 804 805
	if (smmu_domain->smmu)
		goto out_unlock;

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
833 834 835 836 837 838
		ias = smmu->va_size;
		oas = smmu->ipa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S1;
		else
			fmt = ARM_32_LPAE_S1;
839 840
		break;
	case ARM_SMMU_DOMAIN_NESTED:
841 842 843 844
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
845
	case ARM_SMMU_DOMAIN_S2:
846 847
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
848 849 850 851 852 853
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S2;
		else
			fmt = ARM_32_LPAE_S2;
854 855 856 857
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
858 859 860 861 862
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
863
		goto out_unlock;
864

865
	cfg->cbndx = ret;
866
	if (smmu->version == ARM_SMMU_V1) {
867 868
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
869
	} else {
870
		cfg->irptndx = cfg->cbndx;
871 872
	}

873 874 875 876 877
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
878
		.iommu_dev	= smmu->dev,
879 880 881 882 883 884 885 886 887 888 889
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
890

891 892 893 894 895 896 897
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
898
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
899 900 901 902
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
903 904
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
905 906
	}

907 908 909 910
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
911
	return 0;
912

913 914
out_clear_smmu:
	smmu_domain->smmu = NULL;
915
out_unlock:
916
	mutex_unlock(&smmu_domain->init_mutex);
917 918 919 920 921
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
922
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
923 924
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
925
	void __iomem *cb_base;
926 927 928 929 930
	int irq;

	if (!smmu)
		return;

931 932 933 934
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
935
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
936 937
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

938 939
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
940 941 942
		free_irq(irq, domain);
	}

943 944 945
	if (smmu_domain->pgtbl_ops)
		free_io_pgtable_ops(smmu_domain->pgtbl_ops);

946
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
947 948
}

949
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
950 951 952
{
	struct arm_smmu_domain *smmu_domain;

953 954
	if (type != IOMMU_DOMAIN_UNMANAGED)
		return NULL;
955 956 957 958 959 960 961
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
962
		return NULL;
963

964 965
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
966 967

	return &smmu_domain->domain;
968 969
}

970
static void arm_smmu_domain_free(struct iommu_domain *domain)
971
{
972
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
973 974 975 976 977

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
978 979 980 981 982
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
983
					  struct arm_smmu_master_cfg *cfg)
984 985 986 987 988 989 990 991
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

992
	if (cfg->smrs)
993 994
		return -EEXIST;

995
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
996
	if (!smrs) {
997 998
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
999 1000 1001
		return -ENOMEM;
	}

1002
	/* Allocate the SMRs on the SMMU */
1003
	for (i = 0; i < cfg->num_streamids; ++i) {
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1014
			.id	= cfg->streamids[i],
1015 1016 1017 1018
		};
	}

	/* It worked! Now, poke the actual hardware */
1019
	for (i = 0; i < cfg->num_streamids; ++i) {
1020 1021 1022 1023 1024
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1025
	cfg->smrs = smrs;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1036
				      struct arm_smmu_master_cfg *cfg)
1037 1038 1039
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1040
	struct arm_smmu_smr *smrs = cfg->smrs;
1041

1042 1043 1044
	if (!smrs)
		return;

1045
	/* Invalidate the SMRs before freeing back to the allocator */
1046
	for (i = 0; i < cfg->num_streamids; ++i) {
1047
		u8 idx = smrs[i].idx;
1048

1049 1050 1051 1052
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1053
	cfg->smrs = NULL;
1054 1055 1056 1057
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1058
				      struct arm_smmu_master_cfg *cfg)
1059 1060
{
	int i, ret;
1061
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1062 1063
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1064
	/* Devices in an IOMMU group may already be configured */
1065
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1066
	if (ret)
1067
		return ret == -EEXIST ? 0 : ret;
1068

1069
	for (i = 0; i < cfg->num_streamids; ++i) {
1070
		u32 idx, s2cr;
1071

1072
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1073
		s2cr = S2CR_TYPE_TRANS |
1074
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1075 1076 1077 1078 1079 1080 1081
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1082
					  struct arm_smmu_master_cfg *cfg)
1083
{
1084
	int i;
1085
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1086
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1087

1088 1089 1090
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1091 1092 1093 1094 1095

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1096 1097 1098 1099 1100 1101 1102
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];

		writel_relaxed(S2CR_TYPE_BYPASS,
			       gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

1103
	arm_smmu_master_free_smrs(smmu, cfg);
1104 1105 1106 1107
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1108
	int ret;
1109
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1110
	struct arm_smmu_device *smmu;
1111
	struct arm_smmu_master_cfg *cfg;
1112

1113
	smmu = find_smmu_for_device(dev);
1114
	if (!smmu) {
1115 1116 1117 1118
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1119 1120 1121 1122 1123
	if (dev->archdata.iommu) {
		dev_err(dev, "already attached to IOMMU domain\n");
		return -EEXIST;
	}

1124 1125 1126 1127 1128
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1129
	/*
1130 1131
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1132
	 */
1133
	if (smmu_domain->smmu != smmu) {
1134 1135
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1136 1137
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1138 1139 1140
	}

	/* Looks ok, so add the device to the domain */
1141
	cfg = find_smmu_master_cfg(dev);
1142
	if (!cfg)
1143 1144
		return -ENODEV;

1145 1146 1147
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1148 1149 1150 1151 1152
	return ret;
}

static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
1153
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1154
	struct arm_smmu_master_cfg *cfg;
1155

1156
	cfg = find_smmu_master_cfg(dev);
1157 1158 1159 1160 1161
	if (!cfg)
		return;

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
1162 1163 1164
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1165
			phys_addr_t paddr, size_t size, int prot)
1166
{
1167 1168
	int ret;
	unsigned long flags;
1169
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1170
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1171

1172
	if (!ops)
1173 1174
		return -ENODEV;

1175 1176 1177 1178
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1179 1180 1181 1182 1183
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1184 1185
	size_t ret;
	unsigned long flags;
1186
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1187
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1188

1189 1190 1191 1192 1193 1194 1195
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1196 1197
}

1198 1199 1200
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1201
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1202 1203 1204 1205 1206 1207 1208
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1209
	unsigned long va;
1210 1211 1212

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1213 1214 1215 1216 1217 1218 1219 1220
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
#ifdef CONFIG_64BIT
	if (smmu->version == ARM_SMMU_V2)
		writeq_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else
#endif
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1221 1222 1223 1224

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1225
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;

	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1242
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1243
					dma_addr_t iova)
1244
{
1245 1246
	phys_addr_t ret;
	unsigned long flags;
1247
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1248
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1249

1250
	if (!ops)
1251
		return 0;
1252

1253
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1254 1255
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1256
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1257
	} else {
1258
		ret = ops->iova_to_phys(ops, iova);
1259 1260
	}

1261
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1262

1263
	return ret;
1264 1265
}

1266
static bool arm_smmu_capable(enum iommu_cap cap)
1267
{
1268 1269
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1270 1271 1272 1273 1274
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1275
	case IOMMU_CAP_INTR_REMAP:
1276
		return true; /* MSIs are just memory writes */
1277 1278
	case IOMMU_CAP_NOEXEC:
		return true;
1279
	default:
1280
		return false;
1281
	}
1282 1283
}

1284 1285 1286 1287
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1288 1289
}

1290 1291 1292 1293 1294
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1295
static int arm_smmu_add_pci_device(struct pci_dev *pdev)
1296
{
1297 1298
	int i, ret;
	u16 sid;
1299
	struct iommu_group *group;
1300
	struct arm_smmu_master_cfg *cfg;
1301

1302 1303
	group = iommu_group_get_for_dev(&pdev->dev);
	if (IS_ERR(group))
1304
		return PTR_ERR(group);
1305

1306 1307
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1308 1309 1310 1311 1312 1313
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
		if (!cfg) {
			ret = -ENOMEM;
			goto out_put_group;
		}

1314 1315 1316
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1317

1318 1319 1320
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS) {
		ret = -ENOSPC;
		goto out_put_group;
1321 1322
	}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1335

1336
	return 0;
1337 1338
out_put_group:
	iommu_group_put(group);
1339
	return ret;
1340 1341
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
static int arm_smmu_add_platform_device(struct device *dev)
{
	struct iommu_group *group;
	struct arm_smmu_master *master;
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	/* No automatic group creation for platform devices */
	group = iommu_group_alloc();
	if (IS_ERR(group))
		return PTR_ERR(group);

	iommu_group_set_iommudata(group, &master->cfg, NULL);
	return iommu_group_add_device(group, dev);
}

static int arm_smmu_add_device(struct device *dev)
{
	if (dev_is_pci(dev))
		return arm_smmu_add_pci_device(to_pci_dev(dev));

	return arm_smmu_add_platform_device(dev);
}

1372 1373
static void arm_smmu_remove_device(struct device *dev)
{
1374
	iommu_group_remove_device(dev);
1375 1376
}

1377 1378 1379
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1380
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1394
	int ret = 0;
1395
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1396

1397 1398
	mutex_lock(&smmu_domain->init_mutex);

1399 1400
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1401 1402 1403 1404 1405
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1406 1407 1408 1409 1410
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1411
		break;
1412
	default:
1413
		ret = -ENODEV;
1414
	}
1415 1416 1417 1418

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1419 1420
}

1421
static struct iommu_ops arm_smmu_ops = {
1422
	.capable		= arm_smmu_capable,
1423 1424
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1425 1426 1427 1428
	.attach_dev		= arm_smmu_attach_dev,
	.detach_dev		= arm_smmu_detach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1429
	.map_sg			= default_iommu_map_sg,
1430 1431 1432 1433 1434
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1435
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1436 1437 1438 1439 1440
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1441
	void __iomem *cb_base;
1442
	int i = 0;
1443 1444
	u32 reg;

1445 1446 1447
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1448 1449 1450

	/* Mark all SMRn as invalid and all S2CRn as bypass */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1451
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1452 1453
		writel_relaxed(S2CR_TYPE_BYPASS,
			gr0_base + ARM_SMMU_GR0_S2CR(i));
1454 1455
	}

1456 1457 1458 1459 1460 1461
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1462

1463 1464 1465 1466
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1467
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1468

1469
	/* Enable fault reporting */
1470
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1471 1472

	/* Disable TLB broadcasting. */
1473
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1474 1475

	/* Enable client access, but bypass when no mapping is found */
1476
	reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1477 1478

	/* Disable forced broadcasting */
1479
	reg &= ~sCR0_FB;
1480 1481

	/* Don't upgrade barriers */
1482
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1483 1484

	/* Push the button */
1485
	__arm_smmu_tlb_sync(smmu);
1486
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1513
	bool cttw_dt, cttw_reg;
1514 1515 1516 1517 1518 1519

	dev_notice(smmu->dev, "probing hardware configuration...\n");
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1520 1521 1522 1523 1524 1525 1526

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1543
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1544 1545 1546 1547
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1548
	if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1549 1550 1551 1552
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1553 1554 1555 1556 1557 1558 1559 1560 1561
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1562
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1563 1564 1565 1566 1567 1568
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1599 1600 1601
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1602 1603 1604 1605
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1606
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1607

1608
	/* Check for size mismatch of SMMU address space from mapped region */
1609
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1610
	size *= 2 << smmu->pgshift;
1611
	if (smmu->size != size)
1612 1613 1614
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1615

1616
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1628
	smmu->ipa_size = size;
1629

1630
	/* The output mask is also applied for bypass */
1631
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1632
	smmu->pa_size = size;
1633

1634 1635 1636 1637 1638 1639 1640 1641 1642
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1643
	if (smmu->version == ARM_SMMU_V1) {
1644 1645
		smmu->va_size = smmu->ipa_size;
		size = SZ_4K | SZ_2M | SZ_1G;
1646 1647
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1648 1649 1650
		smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
		smmu->va_size = min(32UL, smmu->va_size);
1651
#endif
1652 1653 1654 1655 1656 1657 1658
		size = 0;
		if (id & ID2_PTFS_4K)
			size |= SZ_4K | SZ_2M | SZ_1G;
		if (id & ID2_PTFS_16K)
			size |= SZ_16K | SZ_32M;
		if (id & ID2_PTFS_64K)
			size |= SZ_64K | SZ_512M;
1659 1660
	}

1661 1662 1663
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1664 1665
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1666
			   smmu->va_size, smmu->ipa_size);
1667 1668 1669

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1670
			   smmu->ipa_size, smmu->pa_size);
1671

1672 1673 1674
	return 0;
}

1675
static const struct of_device_id arm_smmu_of_match[] = {
1676 1677 1678
	{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
	{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
	{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
R
Robin Murphy 已提交
1679
	{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1680 1681 1682 1683 1684
	{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1685 1686
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1687
	const struct of_device_id *of_id;
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1702 1703 1704
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
	smmu->version = (enum arm_smmu_arch_version)of_id->data;

1705
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1706 1707 1708
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1724 1725 1726 1727
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1739

1740 1741 1742 1743 1744 1745 1746
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1747 1748 1749 1750
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1767 1768
	parse_driver_options(smmu);

1769
	if (smmu->version > ARM_SMMU_V1 &&
1770 1771 1772 1773
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1774
		err = -ENODEV;
1775
		goto out_put_masters;
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1795 1796

	arm_smmu_device_reset(smmu);
1797 1798 1799 1800 1801 1802 1803 1804
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1805 1806
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1834 1835
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1836 1837 1838
		of_node_put(master->of_node);
	}

1839
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1840 1841 1842 1843 1844 1845
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1846
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1861
	struct device_node *np;
1862 1863
	int ret;

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1875 1876 1877 1878 1879
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1880
	if (!iommu_present(&platform_bus_type))
1881 1882
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1883
#ifdef CONFIG_ARM_AMBA
1884
	if (!iommu_present(&amba_bustype))
1885
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1886
#endif
1887

1888 1889 1890 1891 1892
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

1893 1894 1895 1896 1897 1898 1899 1900
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

1901
subsys_initcall(arm_smmu_init);
1902 1903 1904 1905 1906
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");