posix-timers.c 35.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * linux/kernel/posix-timers.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *
 * 2002-10-15  Posix Clocks & timers
 *                           by George Anzinger george@mvista.com
 *
 *			     Copyright (C) 2002 2003 by MontaVista Software.
 *
 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
 *			     Copyright (C) 2004 Boris Hu
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
 */

/* These are all the functions necessary to implement
 * POSIX clocks & timers
 */
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/time.h>
A
Arjan van de Ven 已提交
37
#include <linux/mutex.h>
38
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
39

40
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
41 42 43
#include <linux/list.h>
#include <linux/init.h>
#include <linux/compiler.h>
44
#include <linux/hash.h>
45
#include <linux/posix-clock.h>
L
Linus Torvalds 已提交
46 47 48 49
#include <linux/posix-timers.h>
#include <linux/syscalls.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
50
#include <linux/export.h>
51
#include <linux/hashtable.h>
52
#include <linux/compat.h>
53
#include <linux/nospec.h>
L
Linus Torvalds 已提交
54

55
#include "timekeeping.h"
56
#include "posix-timers.h"
57

L
Linus Torvalds 已提交
58
/*
59 60 61 62 63 64
 * Management arrays for POSIX timers. Timers are now kept in static hash table
 * with 512 entries.
 * Timer ids are allocated by local routine, which selects proper hash head by
 * key, constructed from current->signal address and per signal struct counter.
 * This keeps timer ids unique per process, but now they can intersect between
 * processes.
L
Linus Torvalds 已提交
65 66 67 68 69
 */

/*
 * Lets keep our timers in a slab cache :-)
 */
70
static struct kmem_cache *posix_timers_cache;
71 72 73

static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
static DEFINE_SPINLOCK(hash_lock);
L
Linus Torvalds 已提交
74

75 76
static const struct k_clock * const posix_clocks[];
static const struct k_clock *clockid_to_kclock(const clockid_t id);
77
static const struct k_clock clock_realtime, clock_monotonic;
78

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87
/*
 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
 * SIGEV values.  Here we put out an error if this assumption fails.
 */
#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
#endif

88 89 90 91 92 93 94 95
/*
 * parisc wants ENOTSUP instead of EOPNOTSUPP
 */
#ifndef ENOTSUP
# define ENANOSLEEP_NOTSUP EOPNOTSUPP
#else
# define ENANOSLEEP_NOTSUP ENOTSUP
#endif
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108

/*
 * The timer ID is turned into a timer address by idr_find().
 * Verifying a valid ID consists of:
 *
 * a) checking that idr_find() returns other than -1.
 * b) checking that the timer id matches the one in the timer itself.
 * c) that the timer owner is in the callers thread group.
 */

/*
 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
 *	    to implement others.  This structure defines the various
R
Richard Cochran 已提交
109
 *	    clocks.
L
Linus Torvalds 已提交
110 111 112 113 114 115 116 117 118
 *
 * RESOLUTION: Clock resolution is used to round up timer and interval
 *	    times, NOT to report clock times, which are reported with as
 *	    much resolution as the system can muster.  In some cases this
 *	    resolution may depend on the underlying clock hardware and
 *	    may not be quantifiable until run time, and only then is the
 *	    necessary code is written.	The standard says we should say
 *	    something about this issue in the documentation...
 *
R
Richard Cochran 已提交
119 120
 * FUNCTIONS: The CLOCKs structure defines possible functions to
 *	    handle various clock functions.
L
Linus Torvalds 已提交
121
 *
R
Richard Cochran 已提交
122 123 124 125
 *	    The standard POSIX timer management code assumes the
 *	    following: 1.) The k_itimer struct (sched.h) is used for
 *	    the timer.  2.) The list, it_lock, it_clock, it_id and
 *	    it_pid fields are not modified by timer code.
L
Linus Torvalds 已提交
126 127 128 129 130 131 132 133
 *
 * Permissions: It is assumed that the clock_settime() function defined
 *	    for each clock will take care of permission checks.	 Some
 *	    clocks may be set able by any user (i.e. local process
 *	    clocks) others not.	 Currently the only set able clock we
 *	    have is CLOCK_REALTIME and its high res counter part, both of
 *	    which we beg off on and pass to do_sys_settimeofday().
 */
N
Namhyung Kim 已提交
134 135 136 137 138 139 140
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);

#define lock_timer(tid, flags)						   \
({	struct k_itimer *__timr;					   \
	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
	__timr;								   \
})
L
Linus Torvalds 已提交
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static int hash(struct signal_struct *sig, unsigned int nr)
{
	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
}

static struct k_itimer *__posix_timers_find(struct hlist_head *head,
					    struct signal_struct *sig,
					    timer_t id)
{
	struct k_itimer *timer;

	hlist_for_each_entry_rcu(timer, head, t_hash) {
		if ((timer->it_signal == sig) && (timer->it_id == id))
			return timer;
	}
	return NULL;
}

static struct k_itimer *posix_timer_by_id(timer_t id)
{
	struct signal_struct *sig = current->signal;
	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];

	return __posix_timers_find(head, sig, id);
}

static int posix_timer_add(struct k_itimer *timer)
{
	struct signal_struct *sig = current->signal;
	int first_free_id = sig->posix_timer_id;
	struct hlist_head *head;
	int ret = -ENOENT;

	do {
		spin_lock(&hash_lock);
		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
			hlist_add_head_rcu(&timer->t_hash, head);
			ret = sig->posix_timer_id;
		}
		if (++sig->posix_timer_id < 0)
			sig->posix_timer_id = 0;
		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
			/* Loop over all possible ids completed */
			ret = -EAGAIN;
		spin_unlock(&hash_lock);
	} while (ret == -ENOENT);
	return ret;
}

L
Linus Torvalds 已提交
192 193 194 195 196
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
{
	spin_unlock_irqrestore(&timr->it_lock, flags);
}

197
/* Get clock_realtime */
198
static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
199
{
200
	ktime_get_real_ts64(tp);
201 202 203
	return 0;
}

204 205
/* Set clock_realtime */
static int posix_clock_realtime_set(const clockid_t which_clock,
206
				    const struct timespec64 *tp)
207
{
208
	return do_sys_settimeofday64(tp, NULL);
209 210
}

211 212 213 214 215 216
static int posix_clock_realtime_adj(const clockid_t which_clock,
				    struct timex *t)
{
	return do_adjtimex(t);
}

217 218 219
/*
 * Get monotonic time for posix timers
 */
220
static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
221
{
222
	ktime_get_ts64(tp);
223 224
	return 0;
}
L
Linus Torvalds 已提交
225

226
/*
227
 * Get monotonic-raw time for posix timers
228
 */
229
static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
230
{
231
	getrawmonotonic64(tp);
232 233 234
	return 0;
}

235

236
static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
237
{
238
	*tp = current_kernel_time64();
239 240 241 242
	return 0;
}

static int posix_get_monotonic_coarse(clockid_t which_clock,
243
						struct timespec64 *tp)
244
{
245
	*tp = get_monotonic_coarse64();
246 247 248
	return 0;
}

249
static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
250
{
251
	*tp = ktime_to_timespec64(KTIME_LOW_RES);
252 253
	return 0;
}
254

255
static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
256
{
257
	get_monotonic_boottime64(tp);
258 259 260
	return 0;
}

261
static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
J
John Stultz 已提交
262
{
263
	timekeeping_clocktai64(tp);
J
John Stultz 已提交
264 265
	return 0;
}
266

267
static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
268 269 270 271 272 273
{
	tp->tv_sec = 0;
	tp->tv_nsec = hrtimer_resolution;
	return 0;
}

L
Linus Torvalds 已提交
274 275 276 277 278 279
/*
 * Initialize everything, well, just everything in Posix clocks/timers ;)
 */
static __init int init_posix_timers(void)
{
	posix_timers_cache = kmem_cache_create("posix_timers_cache",
280 281
					sizeof (struct k_itimer), 0, SLAB_PANIC,
					NULL);
L
Linus Torvalds 已提交
282 283 284 285
	return 0;
}
__initcall(init_posix_timers);

286
static void common_hrtimer_rearm(struct k_itimer *timr)
L
Linus Torvalds 已提交
287
{
288 289
	struct hrtimer *timer = &timr->it.real.timer;

290
	if (!timr->it_interval)
L
Linus Torvalds 已提交
291 292
		return;

D
Davide Libenzi 已提交
293 294
	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
						timer->base->get_time(),
295
						timr->it_interval);
296
	hrtimer_restart(timer);
L
Linus Torvalds 已提交
297 298 299 300 301 302 303 304 305 306
}

/*
 * This function is exported for use by the signal deliver code.  It is
 * called just prior to the info block being released and passes that
 * block to us.  It's function is to update the overrun entry AND to
 * restart the timer.  It should only be called if the timer is to be
 * restarted (i.e. we have flagged this in the sys_private entry of the
 * info block).
 *
L
Lucas De Marchi 已提交
307
 * To protect against the timer going away while the interrupt is queued,
L
Linus Torvalds 已提交
308 309
 * we require that the it_requeue_pending flag be set.
 */
310
void posixtimer_rearm(struct siginfo *info)
L
Linus Torvalds 已提交
311 312 313 314 315
{
	struct k_itimer *timr;
	unsigned long flags;

	timr = lock_timer(info->si_tid, &flags);
316 317
	if (!timr)
		return;
L
Linus Torvalds 已提交
318

319
	if (timr->it_requeue_pending == info->si_sys_private) {
320
		timr->kclock->timer_rearm(timr);
L
Linus Torvalds 已提交
321

322
		timr->it_active = 1;
323 324 325 326
		timr->it_overrun_last = timr->it_overrun;
		timr->it_overrun = -1;
		++timr->it_requeue_pending;

327
		info->si_overrun += timr->it_overrun_last;
328 329
	}

330
	unlock_timer(timr, flags);
L
Linus Torvalds 已提交
331 332
}

333
int posix_timer_event(struct k_itimer *timr, int si_private)
L
Linus Torvalds 已提交
334
{
335 336
	struct task_struct *task;
	int shared, ret = -1;
337 338
	/*
	 * FIXME: if ->sigq is queued we can race with
339
	 * dequeue_signal()->posixtimer_rearm().
340 341
	 *
	 * If dequeue_signal() sees the "right" value of
342
	 * si_sys_private it calls posixtimer_rearm().
343
	 * We re-queue ->sigq and drop ->it_lock().
344
	 * posixtimer_rearm() locks the timer
345 346 347
	 * and re-schedules it while ->sigq is pending.
	 * Not really bad, but not that we want.
	 */
L
Linus Torvalds 已提交
348 349
	timr->sigq->info.si_sys_private = si_private;

350 351 352 353 354 355 356
	rcu_read_lock();
	task = pid_task(timr->it_pid, PIDTYPE_PID);
	if (task) {
		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
		ret = send_sigqueue(timr->sigq, task, shared);
	}
	rcu_read_unlock();
357 358
	/* If we failed to send the signal the timer stops. */
	return ret > 0;
L
Linus Torvalds 已提交
359 360 361 362 363 364 365 366 367
}

/*
 * This function gets called when a POSIX.1b interval timer expires.  It
 * is used as a callback from the kernel internal timer.  The
 * run_timer_list code ALWAYS calls with interrupts on.

 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 */
368
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
L
Linus Torvalds 已提交
369
{
370
	struct k_itimer *timr;
L
Linus Torvalds 已提交
371
	unsigned long flags;
372
	int si_private = 0;
373
	enum hrtimer_restart ret = HRTIMER_NORESTART;
L
Linus Torvalds 已提交
374

375
	timr = container_of(timer, struct k_itimer, it.real.timer);
L
Linus Torvalds 已提交
376 377
	spin_lock_irqsave(&timr->it_lock, flags);

378
	timr->it_active = 0;
379
	if (timr->it_interval != 0)
380
		si_private = ++timr->it_requeue_pending;
L
Linus Torvalds 已提交
381

382 383 384 385 386 387
	if (posix_timer_event(timr, si_private)) {
		/*
		 * signal was not sent because of sig_ignor
		 * we will not get a call back to restart it AND
		 * it should be restarted.
		 */
388
		if (timr->it_interval != 0) {
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
			ktime_t now = hrtimer_cb_get_time(timer);

			/*
			 * FIXME: What we really want, is to stop this
			 * timer completely and restart it in case the
			 * SIG_IGN is removed. This is a non trivial
			 * change which involves sighand locking
			 * (sigh !), which we don't want to do late in
			 * the release cycle.
			 *
			 * For now we just let timers with an interval
			 * less than a jiffie expire every jiffie to
			 * avoid softirq starvation in case of SIG_IGN
			 * and a very small interval, which would put
			 * the timer right back on the softirq pending
			 * list. By moving now ahead of time we trick
			 * hrtimer_forward() to expire the timer
			 * later, while we still maintain the overrun
			 * accuracy, but have some inconsistency in
			 * the timer_gettime() case. This is at least
			 * better than a starved softirq. A more
			 * complex fix which solves also another related
			 * inconsistency is already in the pipeline.
			 */
#ifdef CONFIG_HIGH_RES_TIMERS
			{
T
Thomas Gleixner 已提交
415
				ktime_t kj = NSEC_PER_SEC / HZ;
416

417
				if (timr->it_interval < kj)
418 419 420
					now = ktime_add(now, kj);
			}
#endif
D
Davide Libenzi 已提交
421
			timr->it_overrun += (unsigned int)
422
				hrtimer_forward(timer, now,
423
						timr->it_interval);
424
			ret = HRTIMER_RESTART;
425
			++timr->it_requeue_pending;
426
			timr->it_active = 1;
L
Linus Torvalds 已提交
427 428 429
		}
	}

430 431 432
	unlock_timer(timr, flags);
	return ret;
}
L
Linus Torvalds 已提交
433

434
static struct pid *good_sigevent(sigevent_t * event)
L
Linus Torvalds 已提交
435 436 437
{
	struct task_struct *rtn = current->group_leader;

438 439 440 441 442 443 444 445 446 447 448 449 450 451
	switch (event->sigev_notify) {
	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
		rtn = find_task_by_vpid(event->sigev_notify_thread_id);
		if (!rtn || !same_thread_group(rtn, current))
			return NULL;
		/* FALLTHRU */
	case SIGEV_SIGNAL:
	case SIGEV_THREAD:
		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
			return NULL;
		/* FALLTHRU */
	case SIGEV_NONE:
		return task_pid(rtn);
	default:
L
Linus Torvalds 已提交
452
		return NULL;
453
	}
L
Linus Torvalds 已提交
454 455 456 457 458
}

static struct k_itimer * alloc_posix_timer(void)
{
	struct k_itimer *tmr;
459
	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
460 461 462 463
	if (!tmr)
		return tmr;
	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
		kmem_cache_free(posix_timers_cache, tmr);
464
		return NULL;
L
Linus Torvalds 已提交
465
	}
466
	clear_siginfo(&tmr->sigq->info);
L
Linus Torvalds 已提交
467 468 469
	return tmr;
}

E
Eric Dumazet 已提交
470 471 472 473 474 475 476
static void k_itimer_rcu_free(struct rcu_head *head)
{
	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);

	kmem_cache_free(posix_timers_cache, tmr);
}

L
Linus Torvalds 已提交
477 478 479 480 481 482
#define IT_ID_SET	1
#define IT_ID_NOT_SET	0
static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
{
	if (it_id_set) {
		unsigned long flags;
483 484 485
		spin_lock_irqsave(&hash_lock, flags);
		hlist_del_rcu(&tmr->t_hash);
		spin_unlock_irqrestore(&hash_lock, flags);
L
Linus Torvalds 已提交
486
	}
487
	put_pid(tmr->it_pid);
L
Linus Torvalds 已提交
488
	sigqueue_free(tmr->sigq);
E
Eric Dumazet 已提交
489
	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
L
Linus Torvalds 已提交
490 491
}

492 493 494 495 496 497
static int common_timer_create(struct k_itimer *new_timer)
{
	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
	return 0;
}

L
Linus Torvalds 已提交
498
/* Create a POSIX.1b interval timer. */
499 500
static int do_timer_create(clockid_t which_clock, struct sigevent *event,
			   timer_t __user *created_timer_id)
L
Linus Torvalds 已提交
501
{
502
	const struct k_clock *kc = clockid_to_kclock(which_clock);
503
	struct k_itimer *new_timer;
504
	int error, new_timer_id;
L
Linus Torvalds 已提交
505 506
	int it_id_set = IT_ID_NOT_SET;

507
	if (!kc)
L
Linus Torvalds 已提交
508
		return -EINVAL;
509 510
	if (!kc->timer_create)
		return -EOPNOTSUPP;
L
Linus Torvalds 已提交
511 512 513 514 515 516

	new_timer = alloc_posix_timer();
	if (unlikely(!new_timer))
		return -EAGAIN;

	spin_lock_init(&new_timer->it_lock);
517 518 519
	new_timer_id = posix_timer_add(new_timer);
	if (new_timer_id < 0) {
		error = new_timer_id;
L
Linus Torvalds 已提交
520 521 522 523 524 525
		goto out;
	}

	it_id_set = IT_ID_SET;
	new_timer->it_id = (timer_t) new_timer_id;
	new_timer->it_clock = which_clock;
526
	new_timer->kclock = kc;
L
Linus Torvalds 已提交
527 528
	new_timer->it_overrun = -1;

529
	if (event) {
530
		rcu_read_lock();
531
		new_timer->it_pid = get_pid(good_sigevent(event));
532
		rcu_read_unlock();
533
		if (!new_timer->it_pid) {
L
Linus Torvalds 已提交
534 535 536
			error = -EINVAL;
			goto out;
		}
537 538 539
		new_timer->it_sigev_notify     = event->sigev_notify;
		new_timer->sigq->info.si_signo = event->sigev_signo;
		new_timer->sigq->info.si_value = event->sigev_value;
L
Linus Torvalds 已提交
540
	} else {
541 542 543 544
		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
		new_timer->sigq->info.si_signo = SIGALRM;
		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
545
		new_timer->it_pid = get_pid(task_tgid(current));
L
Linus Torvalds 已提交
546 547
	}

548
	new_timer->sigq->info.si_tid   = new_timer->it_id;
549
	new_timer->sigq->info.si_code  = SI_TIMER;
550

551 552 553 554 555 556
	if (copy_to_user(created_timer_id,
			 &new_timer_id, sizeof (new_timer_id))) {
		error = -EFAULT;
		goto out;
	}

557
	error = kc->timer_create(new_timer);
558 559 560
	if (error)
		goto out;

561
	spin_lock_irq(&current->sighand->siglock);
562
	new_timer->it_signal = current->signal;
563 564
	list_add(&new_timer->list, &current->signal->posix_timers);
	spin_unlock_irq(&current->sighand->siglock);
565 566

	return 0;
567
	/*
L
Linus Torvalds 已提交
568 569 570 571 572 573
	 * In the case of the timer belonging to another task, after
	 * the task is unlocked, the timer is owned by the other task
	 * and may cease to exist at any time.  Don't use or modify
	 * new_timer after the unlock call.
	 */
out:
574
	release_posix_timer(new_timer, it_id_set);
L
Linus Torvalds 已提交
575 576 577
	return error;
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
		struct sigevent __user *, timer_event_spec,
		timer_t __user *, created_timer_id)
{
	if (timer_event_spec) {
		sigevent_t event;

		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
			return -EFAULT;
		return do_timer_create(which_clock, &event, created_timer_id);
	}
	return do_timer_create(which_clock, NULL, created_timer_id);
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
		       struct compat_sigevent __user *, timer_event_spec,
		       timer_t __user *, created_timer_id)
{
	if (timer_event_spec) {
		sigevent_t event;

		if (get_compat_sigevent(&event, timer_event_spec))
			return -EFAULT;
		return do_timer_create(which_clock, &event, created_timer_id);
	}
	return do_timer_create(which_clock, NULL, created_timer_id);
}
#endif

L
Linus Torvalds 已提交
608 609 610 611 612 613 614
/*
 * Locking issues: We need to protect the result of the id look up until
 * we get the timer locked down so it is not deleted under us.  The
 * removal is done under the idr spinlock so we use that here to bridge
 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 * be release with out holding the timer lock.
 */
N
Namhyung Kim 已提交
615
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
L
Linus Torvalds 已提交
616 617
{
	struct k_itimer *timr;
E
Eric Dumazet 已提交
618

619 620 621 622 623 624 625
	/*
	 * timer_t could be any type >= int and we want to make sure any
	 * @timer_id outside positive int range fails lookup.
	 */
	if ((unsigned long long)timer_id > INT_MAX)
		return NULL;

E
Eric Dumazet 已提交
626
	rcu_read_lock();
627
	timr = posix_timer_by_id(timer_id);
L
Linus Torvalds 已提交
628
	if (timr) {
E
Eric Dumazet 已提交
629
		spin_lock_irqsave(&timr->it_lock, *flags);
630
		if (timr->it_signal == current->signal) {
E
Eric Dumazet 已提交
631
			rcu_read_unlock();
632 633
			return timr;
		}
E
Eric Dumazet 已提交
634
		spin_unlock_irqrestore(&timr->it_lock, *flags);
635
	}
E
Eric Dumazet 已提交
636
	rcu_read_unlock();
L
Linus Torvalds 已提交
637

638
	return NULL;
L
Linus Torvalds 已提交
639 640
}

641 642 643 644 645 646 647 648 649 650 651 652 653 654
static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
{
	struct hrtimer *timer = &timr->it.real.timer;

	return __hrtimer_expires_remaining_adjusted(timer, now);
}

static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
{
	struct hrtimer *timer = &timr->it.real.timer;

	return (int)hrtimer_forward(timer, now, timr->it_interval);
}

L
Linus Torvalds 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
/*
 * Get the time remaining on a POSIX.1b interval timer.  This function
 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 * mess with irq.
 *
 * We have a couple of messes to clean up here.  First there is the case
 * of a timer that has a requeue pending.  These timers should appear to
 * be in the timer list with an expiry as if we were to requeue them
 * now.
 *
 * The second issue is the SIGEV_NONE timer which may be active but is
 * not really ever put in the timer list (to save system resources).
 * This timer may be expired, and if so, we will do it here.  Otherwise
 * it is the same as a requeue pending timer WRT to what we should
 * report.
 */
671
void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
L
Linus Torvalds 已提交
672
{
673
	const struct k_clock *kc = timr->kclock;
674
	ktime_t now, remaining, iv;
675 676
	struct timespec64 ts64;
	bool sig_none;
L
Linus Torvalds 已提交
677

678
	sig_none = timr->it_sigev_notify == SIGEV_NONE;
679
	iv = timr->it_interval;
680

681
	/* interval timer ? */
682
	if (iv) {
683
		cur_setting->it_interval = ktime_to_timespec64(iv);
684 685 686 687 688 689 690 691
	} else if (!timr->it_active) {
		/*
		 * SIGEV_NONE oneshot timers are never queued. Check them
		 * below.
		 */
		if (!sig_none)
			return;
	}
692

693 694 695 696 697 698
	/*
	 * The timespec64 based conversion is suboptimal, but it's not
	 * worth to implement yet another callback.
	 */
	kc->clock_get(timr->it_clock, &ts64);
	now = timespec64_to_ktime(ts64);
699

700
	/*
701 702
	 * When a requeue is pending or this is a SIGEV_NONE timer move the
	 * expiry time forward by intervals, so expiry is > now.
703
	 */
704 705
	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
		timr->it_overrun += kc->timer_forward(timr, now);
706

707
	remaining = kc->timer_remaining(timr, now);
708
	/* Return 0 only, when the timer is expired and not pending */
T
Thomas Gleixner 已提交
709
	if (remaining <= 0) {
710 711 712 713
		/*
		 * A single shot SIGEV_NONE timer must return 0, when
		 * it is expired !
		 */
714
		if (!sig_none)
715
			cur_setting->it_value.tv_nsec = 1;
716
	} else {
717
		cur_setting->it_value = ktime_to_timespec64(remaining);
718
	}
L
Linus Torvalds 已提交
719 720 721
}

/* Get the time remaining on a POSIX.1b interval timer. */
722
static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
L
Linus Torvalds 已提交
723
{
724
	struct k_itimer *timr;
725
	const struct k_clock *kc;
L
Linus Torvalds 已提交
726
	unsigned long flags;
727
	int ret = 0;
L
Linus Torvalds 已提交
728 729 730 731 732

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

733
	memset(setting, 0, sizeof(*setting));
734
	kc = timr->kclock;
735 736 737
	if (WARN_ON_ONCE(!kc || !kc->timer_get))
		ret = -EINVAL;
	else
738
		kc->timer_get(timr, setting);
L
Linus Torvalds 已提交
739 740

	unlock_timer(timr, flags);
741 742
	return ret;
}
L
Linus Torvalds 已提交
743

744 745 746 747
/* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
		struct itimerspec __user *, setting)
{
748
	struct itimerspec64 cur_setting;
L
Linus Torvalds 已提交
749

750
	int ret = do_timer_gettime(timer_id, &cur_setting);
751
	if (!ret) {
752
		if (put_itimerspec64(&cur_setting, setting))
753 754
			ret = -EFAULT;
	}
755
	return ret;
L
Linus Torvalds 已提交
756
}
757

758 759 760 761
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
		       struct compat_itimerspec __user *, setting)
{
762
	struct itimerspec64 cur_setting;
763

764
	int ret = do_timer_gettime(timer_id, &cur_setting);
765
	if (!ret) {
766
		if (put_compat_itimerspec64(&cur_setting, setting))
767 768 769 770 771 772
			ret = -EFAULT;
	}
	return ret;
}
#endif

L
Linus Torvalds 已提交
773 774 775 776 777 778
/*
 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 * be the overrun of the timer last delivered.  At the same time we are
 * accumulating overruns on the next timer.  The overrun is frozen when
 * the signal is delivered, either at the notify time (if the info block
 * is not queued) or at the actual delivery time (as we are informed by
779
 * the call back to posixtimer_rearm().  So all we need to do is
L
Linus Torvalds 已提交
780 781
 * to pick up the frozen overrun.
 */
782
SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
L
Linus Torvalds 已提交
783 784 785
{
	struct k_itimer *timr;
	int overrun;
786
	unsigned long flags;
L
Linus Torvalds 已提交
787 788 789 790 791 792 793 794 795 796 797

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

	overrun = timr->it_overrun_last;
	unlock_timer(timr, flags);

	return overrun;
}

798 799 800 801 802 803 804
static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
			       bool absolute, bool sigev_none)
{
	struct hrtimer *timer = &timr->it.real.timer;
	enum hrtimer_mode mode;

	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
805 806 807 808 809 810 811 812 813 814 815 816
	/*
	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they become CLOCK_MONOTONIC based under the
	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
	 * functions which use timr->kclock->clock_get() work.
	 *
	 * Note: it_clock stays unmodified, because the next timer_set() might
	 * use ABSTIME, so it needs to switch back.
	 */
	if (timr->it_clock == CLOCK_REALTIME)
		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
	timr->it.real.timer.function = posix_timer_fn;

	if (!absolute)
		expires = ktime_add_safe(expires, timer->base->get_time());
	hrtimer_set_expires(timer, expires);

	if (!sigev_none)
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
}

static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
{
	return hrtimer_try_to_cancel(&timr->it.real.timer);
}

L
Linus Torvalds 已提交
833
/* Set a POSIX.1b interval timer. */
834 835 836
int common_timer_set(struct k_itimer *timr, int flags,
		     struct itimerspec64 *new_setting,
		     struct itimerspec64 *old_setting)
L
Linus Torvalds 已提交
837
{
838 839 840
	const struct k_clock *kc = timr->kclock;
	bool sigev_none;
	ktime_t expires;
L
Linus Torvalds 已提交
841 842 843 844

	if (old_setting)
		common_timer_get(timr, old_setting);

845
	/* Prevent rearming by clearing the interval */
846
	timr->it_interval = 0;
L
Linus Torvalds 已提交
847
	/*
848 849
	 * Careful here. On SMP systems the timer expiry function could be
	 * active and spinning on timr->it_lock.
L
Linus Torvalds 已提交
850
	 */
851
	if (kc->timer_try_to_cancel(timr) < 0)
L
Linus Torvalds 已提交
852 853
		return TIMER_RETRY;

854 855
	timr->it_active = 0;
	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
L
Linus Torvalds 已提交
856 857 858
		~REQUEUE_PENDING;
	timr->it_overrun_last = 0;

859
	/* Switch off the timer when it_value is zero */
860 861
	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
		return 0;
L
Linus Torvalds 已提交
862

863
	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
864
	expires = timespec64_to_ktime(new_setting->it_value);
865
	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
866

867 868
	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
	timr->it_active = !sigev_none;
L
Linus Torvalds 已提交
869 870 871
	return 0;
}

872 873 874
static int do_timer_settime(timer_t timer_id, int flags,
			    struct itimerspec64 *new_spec64,
			    struct itimerspec64 *old_spec64)
L
Linus Torvalds 已提交
875
{
876
	const struct k_clock *kc;
877
	struct k_itimer *timr;
878
	unsigned long flag;
879
	int error = 0;
L
Linus Torvalds 已提交
880

881 882
	if (!timespec64_valid(&new_spec64->it_interval) ||
	    !timespec64_valid(&new_spec64->it_value))
L
Linus Torvalds 已提交
883 884
		return -EINVAL;

885 886
	if (old_spec64)
		memset(old_spec64, 0, sizeof(*old_spec64));
L
Linus Torvalds 已提交
887 888 889 890 891
retry:
	timr = lock_timer(timer_id, &flag);
	if (!timr)
		return -EINVAL;

892
	kc = timr->kclock;
893 894 895
	if (WARN_ON_ONCE(!kc || !kc->timer_set))
		error = -EINVAL;
	else
896
		error = kc->timer_set(timr, flags, new_spec64, old_spec64);
L
Linus Torvalds 已提交
897 898 899

	unlock_timer(timr, flag);
	if (error == TIMER_RETRY) {
900
		old_spec64 = NULL;	// We already got the old time...
L
Linus Torvalds 已提交
901 902 903
		goto retry;
	}

904 905
	return error;
}
L
Linus Torvalds 已提交
906

907 908 909 910 911
/* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
		const struct itimerspec __user *, new_setting,
		struct itimerspec __user *, old_setting)
{
912 913
	struct itimerspec64 new_spec, old_spec;
	struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
914 915 916 917 918
	int error = 0;

	if (!new_setting)
		return -EINVAL;

919
	if (get_itimerspec64(&new_spec, new_setting))
920 921
		return -EFAULT;

922
	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
923
	if (!error && old_setting) {
924
		if (put_itimerspec64(&old_spec, old_setting))
925 926 927 928 929 930 931 932 933 934
			error = -EFAULT;
	}
	return error;
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
		       struct compat_itimerspec __user *, new,
		       struct compat_itimerspec __user *, old)
{
935 936
	struct itimerspec64 new_spec, old_spec;
	struct itimerspec64 *rtn = old ? &old_spec : NULL;
937 938 939 940
	int error = 0;

	if (!new)
		return -EINVAL;
941
	if (get_compat_itimerspec64(&new_spec, new))
942 943
		return -EFAULT;

944
	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
945
	if (!error && old) {
946
		if (put_compat_itimerspec64(&old_spec, old))
947 948
			error = -EFAULT;
	}
L
Linus Torvalds 已提交
949 950
	return error;
}
951
#endif
L
Linus Torvalds 已提交
952

953
int common_timer_del(struct k_itimer *timer)
L
Linus Torvalds 已提交
954
{
955
	const struct k_clock *kc = timer->kclock;
956

957 958
	timer->it_interval = 0;
	if (kc->timer_try_to_cancel(timer) < 0)
L
Linus Torvalds 已提交
959
		return TIMER_RETRY;
960
	timer->it_active = 0;
L
Linus Torvalds 已提交
961 962 963 964 965
	return 0;
}

static inline int timer_delete_hook(struct k_itimer *timer)
{
966
	const struct k_clock *kc = timer->kclock;
967 968 969 970

	if (WARN_ON_ONCE(!kc || !kc->timer_del))
		return -EINVAL;
	return kc->timer_del(timer);
L
Linus Torvalds 已提交
971 972 973
}

/* Delete a POSIX.1b interval timer. */
974
SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
L
Linus Torvalds 已提交
975 976
{
	struct k_itimer *timer;
977
	unsigned long flags;
L
Linus Torvalds 已提交
978 979 980 981 982 983

retry_delete:
	timer = lock_timer(timer_id, &flags);
	if (!timer)
		return -EINVAL;

984
	if (timer_delete_hook(timer) == TIMER_RETRY) {
L
Linus Torvalds 已提交
985 986 987
		unlock_timer(timer, flags);
		goto retry_delete;
	}
988

L
Linus Torvalds 已提交
989 990 991 992 993 994 995
	spin_lock(&current->sighand->siglock);
	list_del(&timer->list);
	spin_unlock(&current->sighand->siglock);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
996
	timer->it_signal = NULL;
997

L
Linus Torvalds 已提交
998 999 1000 1001
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
	return 0;
}
1002

L
Linus Torvalds 已提交
1003 1004 1005
/*
 * return timer owned by the process, used by exit_itimers
 */
1006
static void itimer_delete(struct k_itimer *timer)
L
Linus Torvalds 已提交
1007 1008 1009 1010 1011 1012
{
	unsigned long flags;

retry_delete:
	spin_lock_irqsave(&timer->it_lock, flags);

1013
	if (timer_delete_hook(timer) == TIMER_RETRY) {
L
Linus Torvalds 已提交
1014 1015 1016 1017 1018 1019 1020 1021
		unlock_timer(timer, flags);
		goto retry_delete;
	}
	list_del(&timer->list);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
1022
	timer->it_signal = NULL;
1023

L
Linus Torvalds 已提交
1024 1025 1026 1027 1028
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
}

/*
1029
 * This is called by do_exit or de_thread, only when there are no more
L
Linus Torvalds 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
 * references to the shared signal_struct.
 */
void exit_itimers(struct signal_struct *sig)
{
	struct k_itimer *tmr;

	while (!list_empty(&sig->posix_timers)) {
		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
		itimer_delete(tmr);
	}
}

1042 1043
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
		const struct timespec __user *, tp)
L
Linus Torvalds 已提交
1044
{
1045
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1046
	struct timespec64 new_tp;
L
Linus Torvalds 已提交
1047

1048
	if (!kc || !kc->clock_set)
L
Linus Torvalds 已提交
1049
		return -EINVAL;
1050

1051
	if (get_timespec64(&new_tp, tp))
L
Linus Torvalds 已提交
1052 1053
		return -EFAULT;

1054
	return kc->clock_set(which_clock, &new_tp);
L
Linus Torvalds 已提交
1055 1056
}

1057 1058
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
		struct timespec __user *,tp)
L
Linus Torvalds 已提交
1059
{
1060
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1061
	struct timespec64 kernel_tp;
L
Linus Torvalds 已提交
1062 1063
	int error;

1064
	if (!kc)
L
Linus Torvalds 已提交
1065
		return -EINVAL;
1066

1067
	error = kc->clock_get(which_clock, &kernel_tp);
1068

1069
	if (!error && put_timespec64(&kernel_tp, tp))
L
Linus Torvalds 已提交
1070 1071 1072 1073 1074
		error = -EFAULT;

	return error;
}

1075 1076 1077
SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
		struct timex __user *, utx)
{
1078
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	struct timex ktx;
	int err;

	if (!kc)
		return -EINVAL;
	if (!kc->clock_adj)
		return -EOPNOTSUPP;

	if (copy_from_user(&ktx, utx, sizeof(ktx)))
		return -EFAULT;

	err = kc->clock_adj(which_clock, &ktx);

1092
	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1093 1094 1095 1096 1097
		return -EFAULT;

	return err;
}

1098 1099 1100 1101
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
		struct timespec __user *, tp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1102
	struct timespec64 rtn_tp;
1103 1104 1105 1106 1107
	int error;

	if (!kc)
		return -EINVAL;

1108
	error = kc->clock_getres(which_clock, &rtn_tp);
1109

1110
	if (!error && tp && put_timespec64(&rtn_tp, tp))
1111 1112 1113 1114 1115
		error = -EFAULT;

	return error;
}

1116 1117
#ifdef CONFIG_COMPAT

1118 1119 1120 1121
COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
		       struct compat_timespec __user *, tp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1122
	struct timespec64 ts;
1123 1124 1125 1126

	if (!kc || !kc->clock_set)
		return -EINVAL;

1127
	if (compat_get_timespec64(&ts, tp))
1128 1129
		return -EFAULT;

1130
	return kc->clock_set(which_clock, &ts);
1131 1132 1133 1134 1135 1136
}

COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
		       struct compat_timespec __user *, tp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1137 1138
	struct timespec64 ts;
	int err;
1139 1140 1141 1142

	if (!kc)
		return -EINVAL;

1143
	err = kc->clock_get(which_clock, &ts);
1144

1145 1146
	if (!err && compat_put_timespec64(&ts, tp))
		err = -EFAULT;
1147

1148
	return err;
1149 1150
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
		       struct compat_timex __user *, utp)
{
	const struct k_clock *kc = clockid_to_kclock(which_clock);
	struct timex ktx;
	int err;

	if (!kc)
		return -EINVAL;
	if (!kc->clock_adj)
		return -EOPNOTSUPP;

	err = compat_get_timex(&ktx, utp);
	if (err)
		return err;

	err = kc->clock_adj(which_clock, &ktx);

	if (err >= 0)
		err = compat_put_timex(utp, &ktx);

	return err;
}

1175 1176
COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
		       struct compat_timespec __user *, tp)
L
Linus Torvalds 已提交
1177
{
1178
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1179 1180
	struct timespec64 ts;
	int err;
L
Linus Torvalds 已提交
1181

1182
	if (!kc)
L
Linus Torvalds 已提交
1183 1184
		return -EINVAL;

1185 1186 1187
	err = kc->clock_getres(which_clock, &ts);
	if (!err && tp && compat_put_timespec64(&ts, tp))
		return -EFAULT;
L
Linus Torvalds 已提交
1188

1189
	return err;
L
Linus Torvalds 已提交
1190
}
1191

1192
#endif
L
Linus Torvalds 已提交
1193

1194 1195 1196 1197
/*
 * nanosleep for monotonic and realtime clocks
 */
static int common_nsleep(const clockid_t which_clock, int flags,
1198
			 const struct timespec64 *rqtp)
1199
{
1200
	return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1201 1202
				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
				 which_clock);
1203
}
L
Linus Torvalds 已提交
1204

1205 1206 1207
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
		const struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
L
Linus Torvalds 已提交
1208
{
1209
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1210
	struct timespec64 t;
L
Linus Torvalds 已提交
1211

1212
	if (!kc)
L
Linus Torvalds 已提交
1213
		return -EINVAL;
1214 1215
	if (!kc->nsleep)
		return -ENANOSLEEP_NOTSUP;
L
Linus Torvalds 已提交
1216

1217
	if (get_timespec64(&t, rqtp))
L
Linus Torvalds 已提交
1218 1219
		return -EFAULT;

1220
	if (!timespec64_valid(&t))
L
Linus Torvalds 已提交
1221
		return -EINVAL;
1222 1223
	if (flags & TIMER_ABSTIME)
		rmtp = NULL;
1224
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1225
	current->restart_block.nanosleep.rmtp = rmtp;
L
Linus Torvalds 已提交
1226

1227
	return kc->nsleep(which_clock, flags, &t);
L
Linus Torvalds 已提交
1228
}
1229

1230 1231 1232 1233
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
		       struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
1234
{
1235
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1236
	struct timespec64 t;
1237

1238
	if (!kc)
1239
		return -EINVAL;
1240 1241 1242
	if (!kc->nsleep)
		return -ENANOSLEEP_NOTSUP;

1243
	if (compat_get_timespec64(&t, rqtp))
1244
		return -EFAULT;
1245

1246
	if (!timespec64_valid(&t))
1247 1248 1249 1250 1251 1252
		return -EINVAL;
	if (flags & TIMER_ABSTIME)
		rmtp = NULL;
	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;

1253
	return kc->nsleep(which_clock, flags, &t);
1254
}
1255
#endif
1256 1257

static const struct k_clock clock_realtime = {
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_clock_realtime_get,
	.clock_set		= posix_clock_realtime_set,
	.clock_adj		= posix_clock_realtime_adj,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1272 1273 1274
};

static const struct k_clock clock_monotonic = {
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_ktime_get_ts,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1287 1288 1289
};

static const struct k_clock clock_monotonic_raw = {
1290 1291
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_monotonic_raw,
1292 1293 1294
};

static const struct k_clock clock_realtime_coarse = {
1295 1296
	.clock_getres		= posix_get_coarse_res,
	.clock_get		= posix_get_realtime_coarse,
1297 1298 1299
};

static const struct k_clock clock_monotonic_coarse = {
1300 1301
	.clock_getres		= posix_get_coarse_res,
	.clock_get		= posix_get_monotonic_coarse,
1302 1303 1304
};

static const struct k_clock clock_tai = {
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_tai,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1317 1318
};

1319
static const struct k_clock clock_boottime = {
1320
	.clock_getres		= posix_get_hrtimer_res,
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	.clock_get		= posix_get_boottime,
	.nsleep			= common_nsleep,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
};

static const struct k_clock * const posix_clocks[] = {
	[CLOCK_REALTIME]		= &clock_realtime,
	[CLOCK_MONOTONIC]		= &clock_monotonic,
	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
1342
	[CLOCK_BOOTTIME]		= &clock_boottime,
1343 1344 1345 1346 1347 1348 1349
	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
	[CLOCK_TAI]			= &clock_tai,
};

static const struct k_clock *clockid_to_kclock(const clockid_t id)
{
1350 1351 1352
	clockid_t idx = id;

	if (id < 0) {
1353 1354
		return (id & CLOCKFD_MASK) == CLOCKFD ?
			&clock_posix_dynamic : &clock_posix_cpu;
1355
	}
1356

1357
	if (id >= ARRAY_SIZE(posix_clocks))
1358
		return NULL;
1359 1360

	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1361
}